SAMSUNG K7D163674B-HC33

K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
Document Title
16M DDR SYNCHRONOUS SRAM
Revision History
Rev No.
History
Draft Data
Remark
Rev. 0.0
Initial document.
Oct. 2003
Advance
Rev. 0.1
Change JTAG DC OPERATING CONDITONS/AC TEST CONDITIONS
-to support 1.8~2.5V VDD, change some items.
Nov. 2003
Preliminary
Rev. 0.2
Change DC CHARACTERISTICS (Stop Clock Standby Current)
-ISB1 : 100 -> 150
Feb. 2004
Preliminary
Rev. 0.3
Change JTAG Instruction Cording
- For Reserved
Feb. 2004
Preliminary
Rev. 1.0
Change DC CHARACTERISTICS (Increase Operating Current)
- x36 : add 40mA, x18 : add 60mA
Mar. 2004
Final
Rev. 1.1
Add DC CHARACTERISTICS
- VIN-CLK, VDIF-CLK, VCM-CLK
Jan. 2004
Final
Add AC INPUT CHARACTERISTICS
Add INPUT DEFINITION
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the
right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters
of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.
-1-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
FEATURES
• Registered Addresses, Burst Control and Data Inputs.
• Registered Outputs.
• Double and Single Data Rate Burst Read and Write.
• Burst Count Controllable With Max Burst Length of 4
• Interleved and Linear Burst mode support
• Bypass Operation Support
• Programmable Impedance Output Drivers.
• JTAG Boundary Scan (subset of IEEE std. 1149.1)
• 153(9x17) Pin Ball Grid Array Package(14mmx22mm)
•
•
•
•
•
512Kx36 or 1Mx18 Organizations.
1.8~2.5V VDD/1.5V VDDQ.(1.9V max VDDQ)
HSTL Input and Outputs.
Single Differential HSTL Clock.
Synchronous Pipeline Mode of Operation with Self-Timed
Late Write.
• Free Running Active High and Active Low Echo Clock Output
Pin.
• Asynchronous Output Enable.
GENERAL DESCRIPTION
The K7D163674B and K7D161874B are 18,874,368 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as
524,288 words by 36 bits for K7D163674B and 1,048,576 words by 18 bits for K7D161874B, fabricated using Samsung's advanced
CMOS technology.
Single differential HSTL level clock, K and K are used to initiate the read/write operation and all internal operations are self-timed. At
the rising edge of K clock, all addresses and burst control inputs are registered internally. Data inputs are registered one cycle after
write addresses are asserted(Late Write), at the rising edge of K clock for single data rate (SDR) write operations and at rising and
falling edge of K clock for a double data rate (DDR) write operations.
Data outputs are updated from output registers off the rising edges of K clock for SDR read operations and off the rising and falling
edges of K clock for DDR read operations. Free running echo clocks are supported which are representive of data output access
time for all SDR and DDR operations.
The chip is operated with a single +2.5V power supply and is compatible with Extended HSTL input and output. The package is
9x17(153) Ball Grid Array balls on a 1.27mm pitch.
ORDERING INFORMATION
Part Number
Organization
375MHz
K7D163674B-HC37
K7D163674B-HC33
Maximum
Frequency
512Kx36
333MHz
K7D163674B-HC30
300MHz
K7D163674B-HC27
275MHz
K7D161874B-HC37
375MHz
K7D161874B-HC33
1Mx18
333MHz
K7D161874B-HC30
300MHz
K7D161874B-HC27
275MHz
-2-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
FUNCTIONAL BLOCK DIAGRAM
SA[0:18]( or SA[0:19])
Address
Register
17(or 18)
(Burst Address)
CE
Clock
Buffer
K,K
19(or 20)
Advance
Control
Co
B3
SD/DD
Data Out
36(or 18)x2
Synchronous
Select
&
R/W control
W/D
Array
(Burst Write
Address)
19(or 20)
36(or 18)x2
17(or 18)
36(or18)x2
2 : 1 MUX
CE
Data In
36(or18)x2
S/A Array
Write
Address
Register
(2 stage)
CE
B2
Memory Array
512Kx36
or
(1Mx18)
Dec.
Burst
Counter
Comparator
B1
2:1
MUX
Write Buffer
Strobe_out
Data Output Strobe
LD
Echo Clock
Output
Output
Buffer
R/W
Data In
Register
(2 stage)
Data Output Enable
State Machine
Internal
Clock
Generator
36(or 18)
DQ
G
XDIN
CQ,CQ
PIN DESCRIPTION
Pin Name
Pin Description
Pin Name
Differential Clocks
SA
Synchronous Address Input
TCK
JTAG Test Clock
Synchronous Burst Address Input (SA0 = LSB)
TMS
JTAG Test Mode Select
Synchronous Data I/O
TDI
JTAG Test Data Input
SA0, SA1
DQ
ZQ
Pin Description
K, K
Output Driver Impedance Control Input
Differential Output Echo Clocks
TDO
JTAG Test Data Output
B1
Load External Address
VREF
HSTL Input Reference Voltage
B2
Burst R/W Enable
VDD
Power Supply
B3
Single/Double Data Selection
VDDQ
Output Power Supply
G
Asynchronous Output Enable
VSS
GND
Linear Burst Order
NC
No Connection
CQ, CQ
LBO
-3-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
PACKAGE PIN CONFIGURATIONS(TOP VIEW)
K7D163674B(512Kx36)
1
2
3
4
5
6
7
8
9
A
VSS
VDDQ
SA
SA
ZQ
SA
SA
VDDQ
VSS
B
DQ
DQ
SA
VSS
B1
VSS
SA
DQ
DQ
C
VSS
VDDQ
SA
SA
G
SA
SA
VDDQ
VSS
D
DQ
DQ
SA
VSS
VDD
VSS
SA
DQ
DQ
E
VSS
VDDQ
VSS
VDD
VREF
VDD
VSS
VDDQ
VSS
F
DQ
CQ1
DQ
VDD
VDD
VDD
DQ
CQ2
DQ
G
VSS
VDDQ
VSS
VSS
K
VSS
VSS
VDDQ
VSS
H
DQ
DQ
DQ
VDD
K
VDD
DQ
DQ
DQ
J
VSS
VDDQ
VSS
VDD
VDD
VDD
VSS
VDDQ
VSS
K
DQ
DQ
DQ
VSS
B2
VSS
DQ
DQ
DQ
L
VSS
VDDQ
VSS
LBO
B3
MODE
VSS
VDDQ
VSS
M
DQ
CQ1
DQ
VDD
VDD
VDD
DQ
CQ2
DQ
N
VSS
VDDQ
VSS
VDD
VREF
VDD
VSS
VDDQ
VSS
P
DQ
DQ
NC
VSS
VDD
VSS
SA
DQ
DQ
R
VSS
VDDQ
VDD
SA
SA1
SA
VDD
VDDQ
VSS
T
DQ
DQ
SA
VSS
SA0
VSS
SA
DQ
DQ
U
VSS
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
VSS
* Mode Pin(6L) is a internally NC.
K7D161874B(1Mx18)
A
1
2
3
4
5
6
7
8
9
VSS
VDDQ
SA
SA
ZQ
SA
SA
VDDQ
VSS
B
NC
DQ
SA
VSS
B1
VSS
SA
NC
DQ
C
VSS
VDDQ
SA
SA
G
SA
SA
VDDQ
VSS
D
DQ
NC
SA
VSS
VDD
VSS
SA
DQ
NC
E
VSS
VDDQ
VSS
VDD
VREF
VDD
VSS
VDDQ
VSS
F
NC
CQ1
NC
VDD
VDD
VDD
DQ
NC
DQ
G
VSS
VDDQ
VSS
VSS
K
VSS
VSS
VDDQ
VSS
H
DQ
NC
DQ
VDD
K
VDD
NC
DQ
NC
J
VSS
VDDQ
VSS
VDD
VDD
VDD
VSS
VDDQ
VSS
K
NC
DQ
NC
VSS
B2
VSS
DQ
NC
DQ
L
VSS
VDDQ
VSS
LBO
B3
MODE
VSS
VDDQ
VSS
M
DQ
NC
DQ
VDD
VDD
VDD
NC
CQ1
NC
N
VSS
VDDQ
VSS
VDD
VREF
VDD
VSS
VDDQ
VSS
P
NC
DQ
SA
VSS
VDD
VSS
SA
NC
DQ
R
VSS
VDDQ
VDD
SA
SA1
SA
VDD
VDDQ
VSS
T
DQ
NC
SA
VSS
SA0
VSS
SA
DQ
NC
U
VSS
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
VSS
* Mode Pin(6L)is a internally NC.
-4-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
Read Operation(Single and Double)
During SDR read operations, addresses and controls are registered at the first rising edge of K clock and then the internal array is
read between first and second rising edges of K clock. Data outputs are updated from output registers off the second rising edge of
K clock. During DDR read operations, addresses and controls are registered at the first rising edge of K clock, and then the internal
array is read twice between first and second rising edges of K clock. Data outputs are updated from output registers sequentially by
burst order off the second rising and falling edge of K clock.
Interleave and linear burst operation is controlled by LBO pin and the burst count is controllable with the maximum burst length of 4.
To avoid data contention,at least one NOP operations are required between the last read and the first write operation.
Write Operation(Late Write)
During SDR write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered
at the following rising edge of K clock. During DDR write operations, addresses and controls are registered at the first rising edge of
K clock and data inputs are registered twice at the following rising and falling edge of K clock. Write addresses and data inputs are
stored in the data in registers until the next write operation, and only at the next write opeation are data inputs fully written into SRAM
array.
Echo clock operation
Free running type of Echo clocks are generated from K clock regardless of read, write and NOP operations. They will stop operation
only when K clock is in the stop mode.
Echo clocks are designed to represent data output access time and this allows the echo clocks to be used as reference to capture
data outputs outputs.
Bypass Read Operation
Bypass read operation occurs when the last write operation is followed by a read operation where write and read addresses are
identical. For this case, data outputs are from the data in registers instead of SRAM array.
Programmable Impedance Output Driver
The data output and echo clock driver impedance are adjusted by an external resistor, RQ, connected between ZQ pin and VSS, and
are equal to RQ/5. For example, 250Ω resistor will give an output impedance of 50Ω. Output driver impedance tolerance is 15% by
test(10% by design) and is periodically readjusted to reflect the changes in supply voltage and temperature. Impedance updates
occur early in cycles that do not activate the outputs, such as deselect cycles. They may also occur in cycles initiated with G high. In
all cases impedance updates are transparent to the user and do not produce access time "push-outs" or other anomalous behavior
in the SRAM. Impedance updates occur no more often than every 32 clock cycles. Clock cycles are counted whether the SRAM is
selected or not and proceed regardless of the type of cycle being executed. Therefore, the user can be assured that after 33 continuous read cycles have occurred, an impedance update will occur the next time G are high at a rising edge of the K clock. There are
no power up requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the SRAM needs
1024 non-read cycles.
Power-Up/Power-Down Supply Voltage Sequencing
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ
does not exceed VDD by more than 0.5V during power-down.
-5-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
TRUTH TABLE
K
G
B1
B2
B3
DQ
Operation
L
X
X
X
X
Hi-Z
Clock Stop
↑
X
H
L
X
Hi-Z
No Operation, Pipeline High-Z
↑
L
L
H
H
DOUT
Load Address, Single Read
↑
L
L
H
L
DOUT
Load Address, Double Read
↑
X
L
L
H
DIN
Load Address, Single Write
↑
X
L
L
L
DIN
Load Address, Double Write
↑
X
H
H
X
B
Increment Address, Continue
NOTE : - B(Both) is DIN in write cycle and DOUT in read cycle. Byte write function is not supported. X means "Don't Care".
- K & K are complementary.
BURST SEQUENCE TABLE
4 Burst Operation for Interleaved Burst (LBO = VDDQ)
Case 1
Interleaved Burst
First Address
Fourth Address
Case 2
Case 3
Case 4
A1
A0
A1
A0
A1
A0
A1
A0
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
NOTE : - For Interleave Burst LBO = VDDQ is recommended. If LBO = VDD, it must not exceed 2.63V.
4 Burst Operation for Linear Burst (LBO = VSS)
Linear Burst Mode
First Address
Fourth Address
Case 1
Case 2
Case 3
Case 4
A1
A0
A1
A0
A1
A0
A1
A0
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
-6-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
BUS CYCLE STATE DIAGRAM
LOAD
NEW ADDRESS
3
,B
3
B1
B1
B1
B1
,B
B2
B2
,B
B2
B2
,B
3
3
B1, B2
B1, B2
B1, B2
B1, B2
INCREMENT
ADDRESS
B1, B2
B1 , B2
B1, B2
B1 , B2
B1 , B2
B1, B2
POWER
UP
WRITE
DDR
INCREMENT
ADDRESS
B1 , B2
INCREMENT
ADDRESS
B1 , B2
INCREMENT
ADDRESS
READ
DDR
B1, B2
B1, B2
WRITE
SDR
B1, B2
B1, B2
READ
SDR
NO OP
NOTE :
1. State transitions ; B1 =(Load Address), B1=(Increment Address, Continue)
B2 =(Read), B2 =(Write)
B3 =(Single Data Rate), B3 =(Double Data Rate)
-7-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
Core Supply Voltage Relative to VSS
Parameter
VDD
-0.5 to 3.13
V
Output Supply Voltage Relative to VSS
VDDQ
-0.5 to 2.3
V
VIN
-0.5 to VDDQ+0.5 (2.3V MAX)
V
Voltage on any pin Relative to VSS
Output Short-Circuit Current(per I/O)
IOUT
25
mA
Storage Temperature
TSTR
-55 to 125
°C
NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data.
Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
RECOMMENDED DC OPERATING CONDITIONS
Symbol
Min
Typ
Max
Unit
Core Power Supply Voltage
Parameter
VDD
1.7
2.5
2.63
V
Output Power Supply Voltage
VDDQ
1.4
1.5
1.9
V
VIH
VREF+0.1
-
VDDQ+0.3
V
1, 2
1, 3
Input High Level Voltage
Note
Input Low Level Voltage
VIL
-0.3
-
VREF-0.1
V
Input Reference Voltage
VREF
0.68
0.75
0.95
V
Clock Input Signal Voltage
VIN-CLK
-0.3
-
VDDQ+0.3
V
1, 4
Clock Input Differential Voltage
VDIF-CLK
0.1
-
VDDQ+0.6
V
1, 5
Clock Input Common Mode Voltage
VCM-CLK
0.68
0.75
0.9
V
1, 6
NOTE :1. These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring
timing parameters.
2. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=2.6V (2.1V for DQs) (pulse width ≤ 20% of cycle time).
3. VIL (Min)DC=-0.3V, VIL (Min)AC=-1.0V (-0.5V for DQs) (pulse width ≤ 20% of cycle time).
4. VIN-CLK specifies the maximum allowable DC level for the differential clock. i.e VIL-CLK and VIH-CLK.
5. VDIF-CLK specifies the minimum Clock differential voltage required for switching. i.e DC voltage difference between VIL-CLK and VIH-CLK.
6. VCM-CLK specifies the Clock crossing point for the differential clock or the allowable common clock level for a single ended clock.
DC CHARACTERISTICS
Parameter
Symbol
Min
Max
Unit
Note
-
540
490
440
420
mA
1,2
mA
1,2
1
Average Power Supply Operating Current(x36)
(Cycle time = tKHKH min)
IDD37
IDD33
IDD30
IDD27
Average Power Supply Operating Current(x18)
(Cycle time = tKHKH min)
IDD37
IDD33
IDD30
IDD27
-
510
460
410
390
Stop Clock Standby Current
(VIN=VDD-0.2V or 0.2V fixed, K=Low, K=High)
ISB1
-
150
mA
Input Leakage Current
(VIN=VSS or VDDQ)
ILI
-1
1
µA
Output Leakage Current
(VOUT=VSS or VDDQ)
ILO
-1
1
µA
Output High Voltage(Programmable Impedance Mode)
VOH1
VDDQ/2
VDDQ
V
Output Low Voltage(Programmable Impedance Mode)
VOL1
VSS
VDDQ/2
V
4
Output High Voltage(IOH=-0.1mA)
VOH2
VDDQ-0.2
VDDQ
V
5
Output Low Voltage(IOL=0.1mA)
VOL2
VSS
0.2
V
5
3
NOTE :1. Minimum cycle. IOUT=0mA.
2. 50% read cycles.
3. |IOH|=(VDDQ/2)/(RQ/5)±15% @VOH=VDDQ/2 for 175Ω ≤ RQ ≤ 350Ω.
4. |IOL|=(VDDQ/2)/(RQ/5)±15% @VOL=VDDQ/2 for 175Ω ≤ RQ ≤ 350Ω.
5. Minimum Impedance Mode when ZQ pin is connected to VSS.
-8-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
PIN CAPACITANCE
Parameter
Input Capacitance
Data Output Capacitance
Symbol
Test Condition
TYP
Max
Unit
CIN
VIN=0V
-
4
pF
COUT
VOUT=0V
-
5
pF
Max
Unit
Note
V
-
VREF - 0.4
V
-
V
-
V
-
Note
NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=1MHz)
AC INPUT CHARACTERISTICS
Parameter
Symbol
Min
AC Input Logic High
VIH (AC)
VREF + 0.4
AC Input Logic Low
VIL (AC)
Clock Input Differential Voltage
VDIF (AC)
VREF Peak-to-Peak AC Voltage
VREF (AC)
0.8
5% VREF (DC)
AC INPUT DEFINITION
CK
VDIF(AC)
CK
VIH(AC)
VREF
Setup
Time
VIL(AC)
Hold
Time
AC TEST CONDITIONS(TA=0 to 70°C, VDD=1.7 -2.63V, VDDQ=1.5V)
Symbol
Value
Unit
Input High/Low Level
Parameter
VIH/VIL
1.25/0.25
V
-
Input Reference Level
VREF
0.75
V
-
Input Rise/Fall Time
TR/TF
0.5/0.5
ns
-
Output Timing Reference Level
0.75
V
-
Clock Input Timing Reference Level
Cross Point
V
-
Output Load
See Below
-9-
-
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
AC TEST OUTPUT LOAD
50Ω
0.75V
50Ω
5pF
25Ω
DQ
0.75V
50Ω
0.75V
50Ω
5pF
AC TIMING CHARACTERISTICS
PARAMETER
SYMBOL
-33
-37
-30
-27
Min
Max
Min
Max
Min
Max
Min
Max
UNITS NOTES
Clock
Clock Cycle Time
tKHKH
2.66
-
3.0
-
3.3
-
3.63
-
ns
Clock High Pulse Width
tKHKL
1.3
-
1.3
-
1.5
-
1.7
-
ns
Clock Low Pulse Width
tKLKH
1.3
-
1.3
-
1.5
-
1.7
-
ns
Address Setup Time
tAVKH
0.4
-
0.4
-
0.4
-
0.5
-
ns
Control(B1,B2,B3) Setup Time
tBVKH
0.4
-
0.4
-
0.4
-
0.5
-
ns
Data Setup Time
tDVKX
0.25
-
0.3
-
0.3
-
0.4
-
ns
1
Setup Times
2
Hold Times
Address Hold Time
tKHAX
0.4
-
0.4
-
0.4
-
0.5
-
ns
Control(B1,B2,B3) Hold Time
tKHBX
0.4
-
0.4
-
0.4
-
0.5
-
ns
Data Hold Time
tKXDX
0.25
-
0.3
-
0.3
-
0.4
-
ns
2
Output Times
Echo Clock High Pulse Width
tCHCL
tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1
ns
2
Echo Clock Low Pulse Width
tCLCH
tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1
ns
2
Clock Crossing to Echo Clock
tCXCH
ns
3
3
0.5
2.3
0.5
2.3
0.5
2.3
0.5
2.3
Clock Crossing to Echo Clock
tCXCL
0.5
2.3
0.5
2.3
0.5
2.3
0.5
2.3
ns
Echo Clock High to Output Vaild
tCHQV
-0.20
0.20
-0.20
0.20
-0.20
0.20
-0.20
0.20
ns
Echo Clock Low to Output Valid
tCLQV
-0.20
0.20
-0.20
0.20
-0.20
0.20
-0.20
0.20
ns
Echo Clock High to Output Hold
tCHQX
-0.20
Echo Clock Low to Output Hold
tCLQX
-0.20
Echo Clock High to Output High-Z
tCHQZ
-0.20
-0.20
0.20
Echo Clock High to Output Low-Z
tCHLZ
-0.20
G Low to Output Valid
tGLQV
-
G High to Output Low-Z
tGHQX
0.5
G High to Output High-Z
tGHQZ
-
-0.20
-0.20
0.20
-0.20
1.7
-
-
ns
0.20
ns
2.0
ns
ns
4
2.0
ns
4
-0.20
1.9
0.5
1.7
ns
-0.20
0.20
-0.20
1.7
0.5
1.7
-0.20
-
ns
0.5
1.9
-
4
Notes: 1. The maximum cycle time must be limited to guarantee AC timing specification.
2. This parameter is guaranteed by design, and may not be tested at values shown in the table.
3. This parameter refers to CQ and CQ rising and falling edges.
4. This parameter is only for 16Mb density
5. K and K Clocks must be used differencitally to meet AC timing specifications.
- 10
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
TIMING WAVEFORMS FOR DOUBLE DATA RATE CYCLES
(Burst Length=4, 2)
NOP
1
READ
READ
READ
CONTINUE READ
CONTINUE READ
NOP
(burst of 4)
(burst of 4)
(burst of 2)
2
5
4
3
NOP
7
6
8
WRITE
WRITE
(burst of 4)
9
READ
CONTINUE READ
(burst of 4)
10
CONTINUE
12
11
K
tKHKH
tKHKL
tKLKH
K
B1
B2
tBVKH
tKHBX
B3
SA
A5
A0
tAVKH
A2
A1
tKHAX
G
tGHQZ
tGHQX
DQ
Q01
QX2
tKXCV tCHQV
tCHQZ
A3
Q02
Q03
Q04
tCHQX
Q51
Q52
Q53
tCLQV
Q54
Q11
Q12
tKHDX
tGLQV
tGLQX
tDVKH
D21
D22
D23
D24
Q31
tKXCL
tCHCL tCLCH
tCHLZ
CQ
CQ
DON’T CARE
UNDEFINED
NOTE
1. Q01 refers to output from address A. Q02 refers to output from the next internal burst address following A, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.
3. Doing more than one Read Continue or Write Continue will cause the address to wrap around.
- 11
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
TIMING WAVEFORMS FOR SINGLE DATA RATE CYCLES
(Burst Length=4, 2, 1)
NOP
READ
(burst of 4)
1
READ
CONTINUE
2
3
READ
READ
CONTINUE CONTINUE
4
5
READ
NOP
(burst of 1)
6
NOP
7
8
WRITE
WRITE
(burst of 2)
9
READ
CONTINUE READ
CONTINUE
(burst of 2)
10
11
12
K
tKHKH
tKHKL tKLKH
K
B1
B2
tBVKH
tKHBX
B3
tAVKH
A2
A1
A0
SA
A3
tDVKH
tKHAX
G
tGHQZ
tGHQX
DQ
Q01
QX1
Q02
Q03
Q04
Q11
tKHDX
D21
tGLQV
tGLQX
D22
Q31
tKXCV
tCHQV
tCHQZ
tCHQX
tKXCL
tCHCL tCLCH
tCHLZ
CQ
CQ
DON’T CARE
UNDEFINED
NOTE :
1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst address following A0, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.
3. This devices supports cycle lengths of 1, 2, 4. Continue(B1=HIGH, B2=HIGH, B3=X) up to three times following a B1 operation. Any further
Continue assertions constitute invalid operations.
4. This device will have an address wraparound if further Continues are applied.
- 12
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing
between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use
this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must
be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the
application of a logic 1, and therefore can be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left
unconnected.
JTAG Block Diagram
JTAG Instruction Coding
IR2 IR1 IR0
SRAM
CORE
SA
SA
TDI
TDO Output
Notes
Boundary Scan Register
1
IDCODE
Identification Register
3
SAMPLE-Z
Boundary Scan Register
2
0
0
EXTEST
0
0
1
0
1
0
0
1
1
RESERVED
Do Not Use
6
1
0
0
SAMPLE
Boundary Scan Register
5
1
0
1
RESERVED
Do Not Use
6
1
1
0
RESERVED
Do Not Use
6
1
1
1
BYPASS
Bypass Register
4
NOTE :
1. Places DQs in Hi-Z in order to sample all input data regardless of other
SRAM inputs. This instruction is not IEEE 1149.1 compliant.
TDO
2. Places DQs in Hi-Z in order to sample all input data regardless of other
SRAM inputs.
3. TDI is sampled as an input to the first ID register to allow for the serial shift
of the external TDI data.
4. Bypass register is initiated to VSS when BYPASS instruction is invoked. The
Bypass Register also holds serially loaded TDI when exiting the Shift DR
states.
BYPASS Reg.
Identification Reg.
Instruction Reg.
Control Signals
TMS
TCK
Instruction
0
TAP Controller
5. SAMPLE instruction dose not places DQs in Hi-Z.
6. This instruction is reserved for future use.
TAP Controller State Diagram
1
Test Logic Reset
0
0
Run Test Idle
1
Select DR
1
Select IR
0
1
0
1
Capture DR
0
0
1
Pause DR
1
Exit2 DR
1
Update DR
0
- 13
Shift IR
1
Exit1 DR
0
1
Capture IR
0
Shift DR
1
1
0
1
Exit1 IR
0
0
0
Pause IR
1
Exit2 IR
1
Update IR
0
0
0
1
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
SCAN REGISTER DEFINITION
Part
Instruction Register
Bypass Register
ID Register
Boundary Scan
512Kx36
3 bits
1 bits
32 bits
68 bits
1M x 18
3 bits
1 bits
32 bits
49 bits
ID REGISTER DEFINITION
Part
Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1)
Start Bit
(0)
512Kx36
0000
00111 00100
XXXXXX
00001001110
1
1M x 18
0000
01000 00011
XXXXXX
00001001110
1
BOUNDARY SCAN EXIT ORDER(x36)
BOUNDARY SCAN EXIT ORDER(x18)
36
4A
SA
SA
6A
35
26
4A
SA
SA
6A
25
37
4C
SA
SA
6C
34
27
4C
SA
SA
6C
24
38
3A
SA
SA
7A
33
28
3A
SA
SA
7A
23
39
3B
SA
SA
7B
32
29
3B
SA
SA
7B
22
40
3C
SA
SA
7C
31
30
3C
SA
SA
7C
21
41
3D
SA
SA
7D
30
31
3D
SA
SA
7D
20
32
2B
DQ
42
2B
DQ
DQ
8B
29
43
1B
DQ
DQ
9B
28
DQ
9B
19
44
2D
DQ
DQ
8D
27
DQ
8D
18
45
3F
DQ
DQ
7F
26
DQ
7F
17
46
1D
DQ
DQ
9D
25
33
1D
DQ
47
2F
CQ
CQ
8F
24
34
2F
CQ
48
1F
DQ
DQ
9F
23
DQ
9F
16
49
3H
DQ
DQ
7H
22
50
2H
DQ
DQ
8H
21
DQ
8H
15
51
1H
DQ
DQ
9H
52
5A
ZQ
G
5C
14
35
3H
DQ
20
36
1H
DQ
19
37
5A
ZQ
G
5C
53
5B
B1
K
5G
18
38
5B
B1
K
5G
13
54
5K
B2
K
5H
17
39
5K
B2
K
5H
12
55
5L
B3
MODE
6L
16
40
5L
B3
MODE
6L
11
56
4L
LBO
DQ
9K
15
41
4L
LBO
DQ
9K
10
57
1K
DQ
DQ
8K
14
58
2K
DQ
DQ
7K
13
42
2K
DQ
DQ
7K
9
59
3K
DQ
DQ
9M
12
60
1M
DQ
CQ
8M
11
43
1M
DQ
CQ
8M
8
DQ
9P
7
61
2M
CQ
DQ
9P
10
62
1P
DQ
DQ
7M
9
63
3M
DQ
DQ
8P
8
44
3M
DQ
64
2P
DQ
DQ
9T
7
45
2P
DQ
46
1T
DQ
65
1T
DQ
DQ
8T
6
66
2T
DQ
SA
7P
5
DQ
8T
6
SA
7P
5
67
3T
SA
SA
7T
4
47
3P
SA
SA
7T
4
68
4R
SA
SA
6R
3
48
3T
SA
SA
6R
3
SA
5T
2
49
4R
SA
SA
5T
2
SA
5R
1
SA
5R
1
* Reserved for Mode Pin
* Reserved for Mode Pin
- 14
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
JTAG DC OPERATING CONDITIONS
Parameter
Symbol
Min
Typ
Max
Unit
Power Supply Voltage
VDD
1.7
2.5
2.6
V
Input High Level
VIH
0.7*VDD
-
VDD+0.3
V
Input Low Level
VIL
-0.3
-
0.3*VDD
V
Output High Voltage(IOH=-2mA)
VOH
0.75*VDD
-
VDD
V
Output Low Voltage(IOL=2mA)
VOL
VSS
-
0.25*VDD
V
Note
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.
JTAG AC TEST CONDITIONS
Parameter
Symbol
Min
Input High/Low Level
VIH/VIL
VDD/0.0
V
Input Rise/Fall Time
TR/TF
1.0/1.0
ns
VDD/2
V
Input and Output Timing Reference Level
Unit
Note
1
NOTE : 1. See SRAM AC test output load on page 5.
JTAG AC Characteristics
Parameter
Symbol
Min
Max
Unit
TCK Cycle Time
tCHCH
50
-
ns
TCK High Pulse Width
tCHCL
20
-
ns
TCK Low Pulse Width
tCLCH
20
-
ns
TMS Input Setup Time
tMVCH
5
-
ns
TMS Input Hold Time
tCHMX
5
-
ns
TDI Input Setup Time
tDVCH
5
-
ns
TDI Input Hold Time
tCHDX
5
-
ns
Clock Low to Output Valid
tCLQV
0
10
ns
Note
JTAG TIMING DIAGRAM
TCK
tCHCH
TMS
tCHCL
tMVCH
tCHMX
tDVCH
tCHDX
tCLCH
TDI
tCLQV
TDO
- 15
Rev 1.1
Jan. 2005
K7D163674B
K7D161874B
512Kx36 & 1Mx18 SRAM
153 BGA PACKAGE DIMENSIONS
1.27
0.050
12.50 ±0.10
0.492 ±0.004
14.00 ±0.10
0.551 ±0.004
0.56 ±0.04
0.022 ±0.002
0.90 ±0.10
0.035 ±0.004
2.21
MAX
0.087
1.27
0.050
U T RPNML K J HGF EDCBA
9 8 7 6 5 4 3 2 1
22.00 ±0.10
0.866 ±0.004
20.50 ±0.10
0.807 ±0.004
0.60 ±0.10
0.024 ±0.004
153-∅
∅ 0.3/0.012MAX
0.75 ±0.15
0.030 ±0.006
0.15
0.006 MAX
BOTTOM VIEW
TOP VIEW
NOTE :
1. All Dimensions are in Millimeters.
2. Solder Ball to PCS Offset : 0.10 MAX.
3. PCB to Cavity Offset : 0.10 MAX.
153 BGA PACKAGE THERMAL CHARACTERISTICS
Symbol
Thermal Resistance
Unit
Junction to Ambient(at still air)
Parameter
Theta_JA
TBD
°C/W
Junction to Case
Theta_JC
TBD
°C/W
Junction to Board
Theta_JB
TBD
°C/W
Note
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.
- 16
Rev 1.1
Jan. 2005