SAMSUNG K7Z163688B

K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
Document Title
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
Revision History
Rev. No.
History
Draft Date
Remark
0.0
1. Initial document.
Feb. 10, 2003
Preliminary
0.1
1. Correct the ZQ to programmable.
Mar. 8, 2003
Preliminary
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the
specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.
-1-
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
512Kx36 & 256Kx72-Bit DLW(Dobule Late Write) RAM
FEATURES
GENERAL DESCRIPTION
• Double Late Write mode , Pipelined Read mode.
• Compatible with Double Late Write Sigma RAMT M x36/x72.
• 1.8V+150/-100 mV Power Supply.
• I/O Supply Voltage 1.5V+0.1V/-0.1V for 1.5V I/O
• HSTL I/O
• Byte Writable Function.
• Single READ/WRITE control pin.
• Self-Timed Write Cycle.
• Complement echo clock outputs
• Programmable impedance output buffer(ZQ)
• 2 User programmable chip enable inputs for easy depth
expansion.(EP2, EP3)
• Supports linear burst mode only.
• Slow Down Function.(SD)
• IEEE 1149.1 JTAG Compatible Boundary Scan
• 209 bump, 14mm x 22mm, 1mm bump pitch BGA package
• 209BGA(11x19 Ball Grid Array Package).
FAST ACCESS TIMES
PARAMETER
Symbol
-35
Unit
Cycle Time
tCYC
2.85
ns
Clock Access Time
tCD
1.7
ns
The K7Z163688B & K7Z167288B is 18,874,368-bits Synchronous Static SRAMs.
The Double Late Write RAM utilizes all the bandwidth in any combination of operating cycles.
Address, data inputs, and all control signals except EP2, EP3,
and SD are synchronized to input clock.
Write cycles are internally self-timed and initiated by the rising
edge of the clock input. This feature eliminates complex off-chip
write pulse generation and provides increased timing flexibility for
incoming signals.
For read cycles,the SRAM output data is temporarily stored by an
edge triggered output register and then released to the output
buffers at the next rising edge of clock.
The K7Z163688B & K7Z167288B are implemented with SAMSUNG ′s high performance CMOS technology and is available in
209BGA packages. Multiple power and ground pins minimize
ground bounce.
LOGIC BLOCK DIAGRAM
A [0:18]
A [0:17]
ADDRESS
REGISTER A 2~A 17 or A 2~A 18
CO NTRO L
LOG IC
CK
BURST
ADDRESS
COUNTER
A 0 ~ A1
WE
BWx
(x=a ~ h)
(x=a ~ d)
CONTROL
ADV
EP2
EP3
K
REGISTER
E1
E2
E3
WRITE
ADDRESS
REGISTER
A ′0 ~A′1
512K x 36 & 256K x 72
MEMORY
ARRAY
WRITE
ADDRESS
REGISTER
K
DATA-IN
REGISTER
K
DATA-IN
REGISTER
CONTROL
LOGIC
K
OUTPUT
REGISTER
BUFFER
K
Echo Clock
OUTPUT
BUFFER
36 / 72
DQa0 ~ DQh7 or DQa0 ~ DQd7
DQPa ~ DQPh
DQPa ~ DQPd
4
CQ1, CQ1
CQ2, CQ2
-2-
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
209BGA PACKAGE PIN CONFIGURATIONS (TOP VIEW)
512Kx36 Common I/O-Top View
1
2
4
5
6
7
A
NC
NC
B
NC
NC
A
E2
A
ADV
A
BWc
NC
A
WE
A
C
NC
NC
D
NC
NC
NC
B Wd
NC(128M)
E1
NC
V SS
Vref
NC
MCL
NC
E
NC
DQPc
F
DQc
DQc
V DDQ
V DDQ
V DD
V DD
V DD
V SS
V SS
V SS
ZQ
V SS
G
DQc
H
DQc
DQc
V DDQ
V DDQ
V DD
EP2
DQc
V SS
V SS
V SS
EP3
3
8
9
10
11
E3
A
DQb
DQb
BW b
NC
DQb
DQb
NC
BWa
DQb
DQb
Vref
V SS
DQb
DQb
V DDQ
V DDQ
NC
DQPb
V SS
V SS
NC
NC
V DD
V DDQ
V DDQ
NC
NC
V SS
V SS
V SS
NC
NC
J
DQc
DQc
V DDQ
V DDQ
V DD
MCH
V DD
V DDQ
V DDQ
NC
NC
K
CQ2
CQ2
CK
Vref
V SS
MCL
V SS
NC
NC
CQ1
CQ1
L
NC
NC
V DDQ
V DDQ
V DD
MCH
V DD
V DDQ
V DDQ
DQa
DQa
M
NC
NC
V SS
V SS
V SS
MCL
V SS
V SS
V SS
DQa
DQa
N
NC
NC
V DDQ
V DDQ
V DD
SD
V DD
V DDQ
V DDQ
DQa
DQa
P
NC
NC
V SS
V SS
V SS
MCL
V SS
V SS
V SS
DQa
DQa
R
DQPd
NC
V DDQ
V DDQ
V DD
V DD
V DD
V DDQ
V DDQ
DQPa
NC
T
DQd
DQd
V SS
Vref
NC
MCL
NC
Vref
V SS
NC
NC
U
DQd
DQd
NC
A
NC(64M)
A
NC(32M)
A
NC
NC
NC
V
DQd
DQd
A
A
A
A1
A
A
A
NC
NC
W
DQd
DQd
TMS
TDI
A
A0
A
TDO
TCK
NC
NC
-3-
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
209BGA PACKAGE PIN CONFIGURATIONS (TOP VIEW)
256Kx72 Common I/O-Top View
1
2
5
6
7
A
DQg
DQg
A
B
DQg
DQg
BWc
E2
A
ADV
A
B Wg
NC
WE
A
C
DQg
DQg
BWh
B Wd
D
DQg
DQg
V SS
Vref
NC(128M)
E1
NC
NC
MCL
NC
E
DQPg
DQPc
V DDQ
F
DQc
DQc
V SS
V DDQ
V DD
V DD
V SS
V SS
ZQ
G
DQc
DQc
H
DQc
DQc
V DDQ
V DDQ
V DD
V SS
V SS
V SS
3
4
8
9
10
11
E3
A
DQb
DQb
BW b
BWf
DQb
DQb
BW e
BWa
DQb
DQb
Vref
V SS
DQb
DQb
V DD
V DDQ
V DDQ
DQPf
DQPb
V SS
V SS
V SS
DQf
DQf
EP2
V DD
V DDQ
V DDQ
DQf
DQf
EP3
V SS
V SS
V SS
DQf
DQf
J
DQc
DQc
V DDQ
V DDQ
V DD
MCH
V DD
V DDQ
V DDQ
DQf
DQf
K
CQ2
CQ2
CK
Vref
V SS
MCL
V SS
NC
NC
CQ1
CQ1
L
DQh
DQh
V DDQ
V DDQ
V DD
MCH
V DD
V DDQ
V DDQ
DQa
DQa
M
DQh
DQh
V SS
V SS
V SS
MCL
V SS
V SS
V SS
DQa
DQa
N
DQh
DQh
V DDQ
V DDQ
V DD
SD
V DD
V DDQ
V DDQ
DQa
DQa
P
DQh
DQh
V SS
V SS
V SS
MCL
V SS
V SS
V SS
DQa
DQa
R
DQPd
DQPh
V DDQ
V DDQ
V DD
V DD
V DD
V DDQ
V DDQ
DQPa
DQPe
T
DQd
DQd
V SS
Vref
NC
MCL
NC
Vref
V SS
DQe
DQe
U
DQd
DQd
NC
A
NC(64M)
A
NC(32M)
A
NC
DQe
DQe
V
DQd
DQd
A
A
A
A1
A
A
A
DQe
DQe
W
DQd
DQd
TMS
TDI
A
A0
A
TDO
TCK
DQe
DQe
-4-
Mar. 2003
Rev 0.1
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
Pin Description Table
Pin Name
Description
Type
Comments
A
Address
Input
-
ADV
Advance
Input
Active High
BWx(x=a~h or a~d)
Byte Write Enable
Input
Active Low
CK
Clock
Input
Active High
DQ
Data I/O
Input/Output
-
CQ
Echo Clock Outputs
Output
Active High
CQ
Echo Clock Outputs
Output
Active Low
E1
Chip Enable
Input
Active Low
E 2 & E3
Chip Enable
Input
Programmable Active High or Low
EP2 & EP3
Chip Enable Program Pin
Input
-
SD
Slow Down Input
Input
Active Low
TCK
Test Clock
Input
Active High
TDI
Test Data In
Input
-
TDO
Test Data Out
Output
-
TMS
Test Mode Select
Input
-
MCH
Must Connect High
Input
Active High
MCL
Must Connect Low
Input
Active Low
NC
No Connect
-
Not connected to die
WE
Write
Input
Active Low
V DD
Core Power Supply
Input
1.8V
V DDQ
Output Driver Power Supply
Input
1.5V
V SS
Ground
Input
-
ZQ
Output Impedance Control
Input
Programmable ZQ
Vref
Input Reference Voltage
Input
-
-5-
Mar. 2003
Rev 0.1
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
FUNCTION DESCRIPTION
The K7Z163688B & K7Z167288B are Double Late Write RAM designed to sustain 100% bus bandwidth by eliminating turnaround
cycle when there is transition from Read to Write, or vice versa.
Because a Double Late Write RAM is a synchronous device, address, data Inputs, and read/write control inputs are captured on the
rising edge of the input clock. EP2 , EP3 and SD are asynchronous control input.
Read operation is initiated when at the rising edge of the clock, the address presented to the address inputs are latched in the
address register, all three chip enables(E1, E2, E3) are active, the write enable input signals WE are driven high, and ADV driven
low.The internal array is read between the first rising edge and the second rising edge of the clock and the data is latched in the output register. At the second clock edge the data is driven out of the SRAM.
Write operation occurs when WE is driven low at the rising edge of the clock. BWx[h:a] can be used for byte write operation.
The Double Late Write RAM uses a double-late write cycle to utilize 100% of the bandwidth.
At the first rising edge of the clock, W E and address are registered, and the data associated with that address is required two cycle
later.
Subsequent addresses are generated by ADV High for the burst access as shown below. The starting point of the burst seguence is
provided by the external address. The burst address counter wraps around to its initial state upon completion.
Double Late Write RAM supports linear burst sequence only.
BURST SEQUENCE TABLE (Linear Burst Order )
A[1:0]
A[1:0]
A[1:0]
A[1:0]
1st address
00
01
10
11
2nd address
01
10
11
00
3rd address
10
11
00
01
4th address
11
00
01
10
Slow Down Function
S D is helpful to prevent to bus contention in read operation after write operation , especially high frequency application.
When SD is Low, the SRAM is operated in a slow down mode. In a slow down mode, the enable/disable timings of output data
become slower , which are defined as tKHQV,tKHQZ,tKHQX,tKHQX1/tKHCH and tKLCL.
The valid data window in slow down mode is same with normal operation mode , so it will be helpful in read operation after write
operation
When SD is High , the SRAM returns to normal operation node.
The state of SD must be fixed before operation , and it can not be changed during operation.
-6-
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
Programmable Enables
Double Late Write RAM features two user programmable chip enable inputs, E2 and E3. The sense of the inputs, whether they function as active low or active high inputs, is determined by the state of the programming inputs, EP2 and E P3. For example, if EP2 is
held at VDD, E2 functions as an active high enable. If EP2 is held to VSS, E2 functions as an active low chip enable input.
Programmability of E2 and E3 allows four banks of depth expansion to be accomplished with no additional logic. By programming
the enable inputs of four Double Late Write RAMs in binary sequence(00, 01, 10, 11)and driving the enable inputs with two address
inputs. Four Double Late Write RAM can be made to look like one larger RAM to the system.
Deselection of the RAM via E1 does not deactive the Echo Clocks.
Programmable Impedance Output Driver
The data output and echo clock driver impedance are adjusted by an external resistor, RQ, connected between ZQ pin and V SS , and
are equal to RQ/5. For example, 250Ω resistor will give an output impedance of 50Ω. Output driver impedance tolerance is 15% by
test(10% by design) and is periodically readjusted to reflect the changes in supply voltage and temperature. Impedance updates
occur early in cycles that do not activate the outputs, such as deselect cycles. They may also occur in cycles initiated with G high. In
all cases impedance updates are transparent to the user and do not produce access time "push-outs" or other anomalous behavior
in the SRAM. Impedance updates occur no more often than every 32 clock cycles. Clock cycles are counted whether the SRAM is
selected or not and proceed regardless of the type of cycle being executed. Therefore, the user can be assured that after 33 continuous read cycles have occurred, an impedance update will occur the next time G are high at a rising edge of the K clock. There are
no power up requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the SRAM needs
1024 non-read cycles.
Example Four Bank Depth Expansion Schematic
A0 - An
E1
CK
WE
DQ 0 - DQ n
A 0 - An-2
Bank 0
A
Bank 1
A 0 - A n-2
A
Bank 2
A 0 - A n-2
Bank 3
A
A 0 - A n-2
A
A n-1
E3
A n-1
E3
An-1
E3
An-1
E3
An
E2
An
E2
An
E2
An
E2
E1
E1
E1
E1
CK
CK
CK
CK
W
W
W
W
DQ
DQ
DQ
DQ
Bank Enable Truth Table
EP2
EP3
E2
E3
Bank 0
V SS
V SS
Active Low
Active Low
Bank 1
V SS
V DD
Active Low
Active High
Bank 2
V DD
V SS
Active High
Active Low
Bank 3
V DD
V DD
Active High
Active High
-7-
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
STATE DIAGRAM FOR Double Late Write RAM
X,F,L,X, or X,X,H,X
Bank
Deselect
L,T,L,H
L,T,L,L
H,T,L,X
X,F,L,X
Deselect
L,T,L,H
L,T,L,L
H,T,L,X, or X,X,H,X
H,T,L,X
H,T,L,X
L,T,L,L
Read
X,F,L,X
Write
L,T,L,H
L,T,L,H
X,X,H,X
X,X,H,X
L,T,L,L
L,T,L,H
L,T,L,H
H,T,L,X
X,F,L,X
Read
Continue
Write
Continue
X,X,H,X
X,X,H,X
X,F,L,X
L,T,L,L
H,T,L,X
X,F,L,X
Notes:
1. The notation "X,X,X,X" controlling the state transitions above indicate the states of inputs E 1,E,ADV, and WE respectively.
2. If (E2=EP2 and E3=EP3) then E="T" else E="F".
3. "H"=input "high"; "L"=input"low"; "X"=input"don’t care"; "T"=input "true"; "F"=input "false".
-8-
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
TRUTH TABLES
Previous
Cycle
Input
Type
E1
(tn)
E
(tn)
ADV WE
(tn) (tn)
BW x
(tn)
Current Operation
Address
DQ/CQ
(tn)
DQ/CQ
(tn+1)
Notes
N/A
D
H
T
L
X
X
Deselect Cycle
None
*
Hi-Z/CQ
4
Deselect
C
X
X
H
X
X
Deselect Cycle, Continue
Next
Hi-Z/CQ
Hi-Z/CQ
4
N/A
D
X
F
L
X
X
Bank Deselect Cycle
None
*
Hi-Z
4, 5
Bank Deselect
C
X
X
H
X
X
Bank Deselect Cycle, Continue
Next
Hi-Z
Hi-Z
4,5
N/A
R
L
T
L
H
X
Read Cycle, Begin Burst
External
*
Q/CQ
2
Read
C
X
X
H
X
X
Read Cycle, Continue Burst
Next
Q /CQ
Q/CQ
N/A
W
L
T
L
L
X
Write Cycle, Begin Burst
External
*
D/CQ
2, 3
N/A
W
L
T
L
L
F
Non-Write Cycle, Begin Burst
External
*
*
2, 3
Write
C
X
X
H
X
T
Write Cycle, Continue Burst
Next
D/CQ
D/CQ
3
Write
C
X
X
H
X
F
Non-Write Cycle, Continue Burst
Next
*
D/CQ
3, 4, 5
Note:
1. X=Don’t Care, H=High, L=Low.
2. E=T(True) if E2=active and E3=active; E=F(False) if E2=inactive or E3=inactive .
3. " * " indicates that the DQ input requirement / output state and CQ output state are determined by the previous operation.
4. BWx= F(False) if all Byte Write Enable pins are high. B Wx=T(True) if any one Byte Write Enable pin is low.
5. DQs are tri-state in response to Bank Deselect, Deselect, and Write commands .
6. Deassertion of E1 does not deactive the echo clock outputs( CQ1, CQ1 , CQ2, CQ2 ).
Echo clock outputs are tri-stated in response to Bank Deselect Commands only.
WRITE TRUTH TABLE(x36)
WE
BW a
BW b
BWc
BWd
OPERATION
H
X
X
X
X
READ
L
L
H
H
H
WRITE BYTE a
L
H
L
H
H
WRITE BYTE b
L
H
H
L
H
WRITE BYTE c
L
H
H
H
L
WRITE BYTE d
L
L
L
L
L
WRITE ALL BYTEs
L
H
H
H
H
WRITE ABORT/NOP
Notes : 1. X means "Don′t Care".
2. All inputs in this table must meet setup and hold time around the rising edge of CLK(↑).
WRITE TRUTH TABLE(x72)
WE
BW a
BW b
BWc
BWd
BWe
BW f
BW g
BWh
H
X
X
X
L
L
H
H
X
X
H
H
L
H
L
L
H
H
H
H
L
H
L
H
H
L
H
H
H
H
L
H
L
H
H
H
H
H
H
H
L
H
H
H
H
OPERATION
X
X
X
READ
H
H
H
WRITE BYTE a
H
H
H
H
WRITE BYTE b
H
H
H
H
WRITE BYTE c
L
H
H
H
H
WRITE BYTE d
H
L
H
H
H
WRITE BYTE e
H
L
H
H
WRITE BYTE f
H
H
L
H
WRITE BYTE g
H
H
H
L
WRITE BYTE h
L
L
L
L
L
L
L
L
L
WRITE ALL BYTEs
L
H
H
H
H
H
H
H
H
WRITE ABORT/NOP
Notes : 1. X means "Don′t Care".
2. All inputs in this table must meet setup and hold time around the rising edge of CLK(↑).
-9-
Mar. 2003
Rev 0.1
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
ABSOLUTE MAXIMUM RATINGS*
SYMBOL
RATING
UNIT
Voltage on V DD Supply Relative to V SS
PARAMETER
V DD
-0.5 to 2.9
V
Voltage on V DDQ Supply Relative to V SS
V DDQ
-0.5 to VDD
V
Voltage on Any Other Pin Relative to VSS
VI N
-0.5 to VDD+ 0.3
V
Power Dissipation
PD
1.6
W
Storage Temperature
TSTG
-65 to 150
°C
Operating Temperature
T OPR
0 to 70
°C
Storage Temperature Range Under Bias
TBIAS
-10 to 85
°C
*Note : Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
OPERATING CONDITIONS (0°C ≤ TA ≤ 70°C)
PARAMETER
Supply Voltage
Ground
SYMBOL
MIN
Typ.
MAX
UNIT
V DD
1.7
1.8
1.95
V
V DDQ
1.4
1.5
1.6
V
V SS
0
0
0
V
*Note : V DD and VDDQ must be supplied with identical v ol tage levels.
DC ELECTRICAL CHARACTERISTICS (VDD =1.8V + 150/-100mV, TA=0°C to +70°C)
PARAMETER
SYM.
TEST CONDITIONS
MIN
MAX
UNIT NOTE
Input Leakage Current
IIL
V DD=Max ; V IN=VSS to V DD
-2
+2
µA
Output Leakage Current
IOL
Output Disabled,
-2
+2
µA
Operating Current
ICC
x72
-
TBD
x36
-
TBD
-
TBD
mA
-
TBD
mA
-
TBD
mA
ISB1
Standby Current
ISB2
ISB3
V DD=Max , I OUT =0mA
Cycle Time ≥ tCYC Min
-35
E2 or E3 False, IOUT=0mA , f=Max
All Inputs ≤V IL or ≥V IH
E1 ≥V IH, IOUT=0mA, f=Max,
All Inputs ≤V IL or ≥V IH
Device deselected, I OUT=0mA,
f=0, All Inputs=fixed (VDD-0.2V or 0.2V)
mA
1,2
Input Low Voltage
V IL
-0.3
V ref * 0.1
V
3,5,6
Input High Voltage
V IH
V ref +0.1
V DD+0.3
V
3,5,7
Output High Voltage(Programmable Impedance)
V OH1
V DDQ /2
V DDQ
V
8
Output Low Voltage(Programmable Impedance)
V OL1
V SS
V DDQ/2
V
9
Output High Voltage(IOH=-0.1mA)
V OH2
V DDQ-0.2
V DDQ
V
10
Output Low Voltage(IOL =0.1mA)
V OL2
V SS
0.2
V
10
Notes : 1. Reference AC Operating Conditions and Characteristics for input and timing.
2. Data states are all zero.
3. In Case of I/O Pins, the Max. V I H=VDDQ+0.3V
4. The EP2, EP3 pins must not be changed during operation.
5. These are DC test criteria. DC design criteria is V R E F±50mV. The AC V IH /VIL levels are defined separately for measuring timing parameters.
6. V IL (Min)DC= - 0.3V, VIL (Min)AC=-1.5V(pulse width ≤ 3ns).
7. VIH (Max)DC=V DDQ+0.3, V IH (Max)AC=V DDQ+0.85V(pulse width ≤ 3ns).
8. |I OH |=(VDDQ /2)/(RQ/5)±15% @VOH =VDDQ /2 for 175Ω ≤ RQ ≤ 350 Ω.
9. |I OL |=(VDDQ /2)/(RQ/5)±15% @VOL =V DDQ /2 for 175Ω ≤ RQ ≤ 350Ω.
10. Minimum Impedance Mode when ZQ pin is connected to VSS .
- 10 -
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
CAPACITANCE*(TA =25°C, f=1MHz)
PARAMETER
Input Capacitance
Output Capacitance
SYMBOL
TEST CONDITION
MIN
MAX
UNIT
C IN
V I N=0V
-
TBD
pF
COUT
V OUT=0V
-
TBD
pF
*Note : Sampled not 100% tested.
Overershoot Timing
Undershoot Timing
20% tKHKH (MIN)
V IH
V DDQ +0.5V
V DDQ +0.25V
V SS
V DDQ
V SS-0.25V
V SS -0.5V
20% t KHKH(MIN)
V IL
Note: For power-up, VIH ≤ VDDQ +0.3V and VD D ≤ 1.7V and VDDQ ≤ 1.4V t ≤ 200ms
AC TEST CONDITIONS
Parameter
Symbol
Value
Unit
V DD
1.7~1.9
V
Core Power Supply Voltage
Output Power Supply Voltage
V DDQ
1.4~1.6
V
Input High/Low Level
V IH/VIL
1.25/0.25
V
Input Reference Level
V REF
0.75
V
Input Rise/Fall Time
TR/T F
0.3/0.3
ns
V DDQ/2
V
Output Timing Reference Level
Note: Parameters are tested with RQ=250 Ω
AC TEST OUTPUT LOAD
50 Ω
50 Ω
0.75V
5pF
25 Ω
DQ
0.75V
50 Ω
50 Ω
0.75V
5pF
- 11 -
Mar. 2003
Rev 0.1
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
AC TIMING CHARACTERISTICS (VDD =1.8V + 150/-100mV, TA =0 to 70°C)
-35 SD=VDD
PARAMETER
SYMBOL
-35 S D=VSS
UNIT
MIN
MAX
MIN
MAX
2.85
-
2.85
-
ns
Cycle Time
tKHKH
Clock High to Output Valid
tKHQV
-
1.7
-
2.6
ns
Clock High to Output High-Z
tKHQZ
0.5
1.7
1.4
2.6
ns
Output Hold from Clock High
tKHQX
0.5
-
1.4
-
ns
Clock High to Output Low-Z
tKHQX1
0.5
-
1.4
-
ns
Clock High to CQ High
tKHCH
0.5
1.7
1.4
2.6
ns
Clock Low to CQ Low
tKLCL
0.5
1.7
1.4
2.6
ns
Output Hold from CQ High
tCHQX
-0.4
-
-0.4
-
ns
CQ High to Output Low-Z
tCHQX1
-0.4
-
-0.4
-
ns
CQ High to Output Valid
tCHQV
-
0.4
-
0.4
ns
Clock High to CQ Low-Z
tKHCX1
0.5
-
1.4
-
ns
Clock High to CQ High-Z
tKHCZ
0.5
1.5
1.4
2.4
ns
Clock High Pulse Width
tKHKL
1.2
-
1.2
-
ns
Clock Low Pulse Width
tKLKH
1.2
-
1.2
-
ns
Address Setup to Clock High
tAVKH
0.6
-
0.6
-
ns
Chip Enable Setup to Clock High
tEVKH
0.6
-
0.6
-
ns
Write Setup to Clock High(WE, BW X)
tWVKH
0.6
-
0.6
-
ns
Data Setup to Clock High
tDVKH
0.6
-
0.6
-
ns
Address Advance Setup to Clock High
tadvVKH
0.6
-
0.6
-
ns
Address Hold from Clock High
tKHAX
0.4
-
0.4
-
ns
Chip Enable Hold from Clock High
tKHEX
0.4
-
0.4
-
ns
Write Hold from Clock High(WE, BW X )
tKHWX
0.4
-
0.4
-
ns
Data Hold from Clock High
tKHDX
0.4
-
0.4
-
ns
Address Advance Hold from Clock High
tKHadvX
0.4
Notes :
0.4
ns
1. All address inputs must meet the specified setup and hold times for all rising clock(CLK) edges when ADV is sampled low and E 1 i s
sampled low. All other synchronous inputs must meet the specified setup and hold times whenever this devi ce is chip selected.
2. Chip selects must be valid at each rising edge of CLK(when ADV is Low) to remain enabled.
3. A write cycle is defined by WE low having been registered into the device at ADV Low, A Read cycle is defined by WE High with ADV Low,
Both cases must meet setup and hold times.
4. To avoid bus contention, At a given voltage and temperature t KHQX1 is more than tKHQZ.
The specs as shown do not imply bus contention because tKHQX1 is a Min. parameter that is worst case at totally different test conditions
( 0°C,1.95V) than tK H Q Z, which is a Max. parameter(worst case at 70 °C,1.7V)
It is not possible for two SRAMs on the same board to be at such different voltage and temperature.
- 12 -
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
This part contains an IEEE standard 1149.1 Compatible Test Access Port(TAP). The package pads are monitored by the Serial Scan
circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not
driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up,
therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without
interfacing with normal operation of the SRAM, TCK must be tied to VSS to preclude mid level input. TMS and TDI are designed so an
undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be
tied to VDD through a resistor. TDO should be left unconnected.
JTAG Block Diagram
JTAG Instruction Coding
IR2 IR1
SRAM
CORE
TDI
BYPASS Reg.
TDO
Identification Reg.
Instruction Reg.
Control Signals
TMS
TCK
TAP Controller
IR0
Instruction
TDO Output
Notes
0
0
0
EXTEST
Boundary Scan Register
1
0
0
1
IDCODE
Identification Register
3
0
1
0
SAMPLE-Z
Boundary Scan Register
2
0
1
1
BYPASS
Bypass Register
4
1
0
0
SAMPLE
Boundary Scan Register
5
1
0
1
RESERVED
Do Not Use
6
1
1
0
BYPASS
Bypass Register
4
1
1
1
BYPASS
Bypass Register
4
NOTE :
1. Places DQs in Hi-Z in order to sample all input data regardless of other
SRAM inputs. This instruction is not IEEE 1149.1 compliant.
2. Places DQs in Hi-Z in order to sample all input data regardless of other
SRAM inputs.
3. TDI is sampled as an input to the first ID register to allow for the serial shift
of the external TDI data.
4. Bypass register is initiated to V SS when BYPASS instruction is invoked. The
Bypass Register also holds serially loaded TDI when exiting the Shift DR
states.
5. SAMPLE instruction dose not places DQs in Hi-Z.
6. This instruction is reserved for future use.
TAP Controller State Diagram
1
Test Logic Reset
0
0
Run Test Idle
1
1
Select DR
0
Exit2 DR
1
1
Update DR
0
- 13 -
1
Capture IR
0
0
Shift IR
1
1
Exit1 DR
0
Pause DR
1
Select IR
0
1
Capture DR
0
Shift DR
1
1
1
0
0
0
Exit1 IR
0
Pause IR
1
Exit2 IR
1
Update IR
1
0
0
0
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
SCAN REGISTER DEFINITION
Part
Instruction Register
Bypass Register
ID Register
Boundary Scan
512Kx36
3 bits
1 bits
32 bits
121 bits
256Kx72
3 bits
1 bits
32 bits
121 bits
ID REGISTER DEFINITION
Part
Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1)
Start Bit(0)
512Kx36
0000
00111 00100
XXXXXX
00001001110
1
256Kx72
0000
00110 00101
XXXXXX
00001001110
1
BOUNDARY SCAN EXIT ORDER
Order
Pin ID
Order
Pin ID
Order
Pin ID
Order
Pin ID
1
6W
36
11H
71
4A
106
2R
2
6V
37
10H
72
3C
107
1R
3
6U
38
10G
73
3B
108
1T
4
7V
39
11G
74
3A
109
2T
5
7U
40
11F
75
2A
110
2U
6
7W
41
10F
76
1A
111
1U
7
8U
42
10E
77
1B
112
1V
8
8V
43
11E
78
2B
113
2V
9
9V
44
11D
79
2C
114
2W
10
10W
45
10D
80
1C
115
1W
11
11W
46
10C
81
1D
116
3V
12
11V
47
11C
82
2D
117
4V
13
10V
48
11B
83
1E
118
4U
14
10U
49
10B
84
2E
119
5U
15
11U
50
10A
85
2F
120
5V
16
11T
51
11A
86
1F
121
5W
17
10T
52
9C
87
1G
18
11R
53
9B
88
2G
19
10R
54
9A
89
2H
20
10P
55
8C
90
1H
21
11P
56
8B
91
1J
22
11N
57
8A
92
2J
23
10N
58
7B
93
1K
24
10M
59
7A
94
6N
25
11M
60
6H
95
3K
26
11L
61
6G
96
4K
27
10L
62
6D
97
2K
28
11K
63
6C
98
2L
29
6M
64
6B
99
1L
30
6L
65
6A
100
1M
31
6J
66
5C
101
2M
32
6F
67
5A
102
2N
33
10K
68
4C
103
1N
34
10J
69
4B
104
1P
35
11J
70
5B
105
2P
NOTE,
NC,MCL and MCH ; Don′t Care
- 14 -
Mar. 2003
Rev 0.1
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
JTAG DC OPERATING CONDITIONS
Parameter
Symbol
Min
Typ
Max
Unit
Power Supply Voltage
V DD
1.7
Input High Level
V IH
1.3
1.8
1.95
V
-
V DD+0.3
V
Input Low Level
V IL
-0.3
Output High Voltage(IOH=-2mA)
V OH
1.5
-
0.5
V
-
V DD
V
Output Low Voltage(I OL=2mA)
V OL
V SS
-
0.45
V
Note
1
*Note : 1. In Case of I/O Pins, the Max. VIH =VDDQ +0.3V
JTAG AC TEST CONDITIONS
Parameter
Symbol
Min
Unit
Input High/Low Level
V IH/VIL
1.3/0.5
V
Input Rise/Fall Time
TR/TF
1.0/1.0
ns
0.9
V
Input and Output Timing Reference Level
Note
JTAG AC Characteristics
Parameter
Symbol
Min
Max
Unit
TCK Cycle Time
tCHCH
20
-
ns
TCK High Pulse Width
tCHCL
10
-
ns
TCK Low Pulse Width
tCLCH
10
-
ns
TMS Input Setup Time
tMVCH
5
-
ns
TMS Input Hold Time
tCHMX
5
-
ns
TDI Input Setup Time
tDVCH
5
-
ns
TDI Input Hold Time
tCHDX
5
-
ns
SRAM Input Setup Time
tSVCH
5
-
ns
SRAM Input Hold Time
tCHSX
5
-
ns
Clock Low to Output Valid
tCLQV
0
10
ns
Note
JTAG TIMING DIAGRAM
TCK
t CHCH
t CHCL
t MVCH
t CHMX
tD V C H
t CHDX
t SVCH
t CHSX
t CLCH
TMS
TDI
PI
(SRAM)
t CLQV
TDO
- 15 -
Mar. 2003
Rev 0.1
- 16 -
CQ
CQ
Data Out
Data In
ADV
E1
WE
Address
Clock
tADVVKH
tEVKH
tWVKH
tAVKH
A1
tKHQX
tKHQX1
CHQX1
Q1-1
tKHQZ
A2
Read
tKHQV
Deselect
tCHQV
tKHADVX
tKHEX
tKHWX
tKHAX
Read
t KH KH
Q2-1
Q 2-2
t KH K L tK LK H
tKLCL
Q2-3
A3
Write
tKHCH
Q2-4
tDVKH
A4
Wr ite
D3-1
D4-1
tKHDX
TIMING WAVEFORM OF READ/WRITE CYCLE with Continue operation
D4-2
D4-3
Un defined
Do n′t Care
D4-4
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
Mar. 2003
Rev 0.1
- 17 -
CQ
CQ
Data In
Data Out
ADV
E1
WE
Address
Clock
A1
Read
A2
Write
Q1-1
A3
tDVKH
Read
D2-1
tKHDX
Deselect
Q 3-1
A4
Read
A5
Write
Q4-1
A6
Read
D5-1
A7
TIMING WAVEFORM OF SINGLE READ/WRITE
Read
Q6-1
A8
Write
Q7-1
A9
W rite
Undefined
Don′t Ca re
D8-1
A10
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
Mar. 2003
Rev 0.1
- 18 -
Dout
Bank2
CQ
Bank2
CQ1+CQ2
CQ
Bank1
Dout
Bank1
E2 Bank1
E2 Bank2
ADV
WE
E1
Address
Clock
Hi
A2
Read
tKHCX1
Q1-1
A3
Read
Q2-1
A5
Read
Q 3-1
A4
NOTE: E1 does not desele ct the Echo Clock Outputs. E ch o Clock Ou tpu ts a re
de se lected by E2 o r E 3 b eing sa mp led false.
A1
Read
Read
Q4-1
A5
Read
Q5-1
A6
Read
ECHO CLOCK CONTROL IN TWO BANKS
Q6-1
A7
Read
Q 7-1
A8
tCYC
Read
Q 8-1
A9
Read
Undefined
Don′t Ca re
Q9-1
A10
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
Mar. 2003
Rev 0.1
- 19 -
Dout
Bank2
CQ
Bank2
CQ1+CQ2
CQ
Bank1
Dout
Bank1
E2 Bank1
E2 Bank2
ADV
WE
E1
Address
Clock
A1
Read
Hi-Z
A2
tKLCX1
Q1-1
Deselect
Read
A3
Hi-Z
Read
Q 2-1
A4
Read
Q 3-1
A5
Read
Q 4-1
A6
Read
BANK SWITCH WITH E1 DESELECT
Q 5-1
A7
Read
Q6-1
A8
Read
Q7-1
A9
Read
Undefined
Don′t Ca re
Q8-1
A10
K7Z167288B
K7Z163688B
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
Mar. 2003
Rev 0.1
Preliminary
512Kx36 & 256Kx72 DLW(Double Late Write) RAM
K7Z167288B
K7Z163688B
209 Bump BGA PACKAGE DIMENSIONS
14mm x 22mm Body, 1.0mm Bump Pitch, 11x19 Bump Array
1.00x10=10.00(BSC)
14.00
1.00(BSC)
20 .50± 0.0 5
22.00
C1.00
1.00x18=1 8.0 0(BSC)
1.0 0(BSC)
Indicator of
Ball(1A) Location
C0.70
2.20 MAX
1.50
12.50
0.90
0.50±0 .05
209-∅0.06±0.10
NOTE :
1. All Dimensions are in Millimeters.
2. Solder Ball to PCB Offset: 0.10 MAX.
3. PCB to Cavity Offset: 0.10 MAX.
- 20 -
Mar. 2003
Rev 0.1