M48Z129Y M48Z129V 5.0 V or 3.3 V, 1 Mbit (128 Kb x 8) ZEROPOWER® SRAM Features ■ Integrated, ultra low power SRAM, power-fail control circuit, and battery ■ Conventional SRAM operation; unlimited WRITE cycles ■ 10 years of data retention in the absence of power ■ Microprocessor power-on reset (reset valid even during battery backup mode) ■ Battery low pin - provides warning of battery end-of-life ■ Automatic power-fail chip deselect and WRITE protection ■ WRITE protect voltages (VPFD = power-fail deselect voltage): – M48Z129Y: VCC = 4.5 to 5.5 V 4.2 V ≤ VPFD ≤ 4.5 V (contact the ST sales office for availability) – M48Z129V: VCC = 3.0 to 3.6 V 2.7 V ≤ VPFD ≤ 3.0 V ■ Self-contained battery in the CAPHAT™ DIP package ■ Pin and function compatible with JEDEC standard 128 K x 8 SRAMs ■ RoHS compliant – Lead-free second level interconnect June 2010 Doc ID 5716 Rev 7 32 1 PMDIP32 module (PM) 1/20 www.st.com 1 Contents M48Z129Y, M48Z129V Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 READ mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 WRITE mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Data retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 VCC noise and negative going transients . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 Environmental information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2/20 Doc ID 5716 Rev 7 M48Z129Y, M48Z129V List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 READ mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 WRITE mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Operating and AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power down/up AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power down/up trip points DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PMDIP32 – 32-pin plastic DIP, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . 16 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Doc ID 5716 Rev 7 3/20 List of figures M48Z129Y, M48Z129V List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. 4/20 Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DIP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Address controlled, READ mode AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chip enable or output enable controlled, READ mode AC waveforms. . . . . . . . . . . . . . . . . 8 WRITE enable controlled, WRITE mode AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chip enable controlled, WRITE mode AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Supply voltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 AC testing load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power down/up mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PMDIP32 – 32-pin plastic module DIP, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Recycling symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Doc ID 5716 Rev 7 M48Z129Y, M48Z129V 1 Description Description The M48Z129Y/V ZEROPOWER® SRAM is a 1,048,576 bit non-volatile static RAM organized as 131,072 words by 8 bits. The device combines an internal lithium battery, a CMOS SRAM and a control circuit in a plastic 32-pin DIP module. The M48Z129Y/V directly replaces industry standard 128 K x 8 SRAM. It also provides the non-volatility of FLASH without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed. Figure 1. Logic diagram VCC 17 8 A0-A16 W DQ0-DQ7 M48Z129Y M48Z129V E RST BL G VSS AI02309 Table 1. Signal names A0-A16 DQ0-DQ7 Address inputs Data inputs / outputs E Chip enable G Output enable W WRITE enable RST BL Reset output (open drain) Battery low output (open drain) VCC Supply voltage VSS Ground Doc ID 5716 Rev 7 5/20 Description M48Z129Y, M48Z129V Figure 2. DIP connections RST A16 A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 DQ0 DQ1 DQ2 VSS Figure 3. 1 32 2 31 30 3 29 4 28 5 27 6 26 7 8 M48Z129Y 25 9 M48Z129V 24 23 10 22 11 21 12 20 13 19 14 18 15 17 16 VCC A15 BL W A13 A8 A9 A11 G A10 E DQ7 DQ6 DQ5 DQ4 DQ3 AI02310 Block diagram VCC A0-A16 POWER E VOLTAGE SENSE AND SWITCHING CIRCUITRY 131,072 x 8 SRAM ARRAY E DQ0-DQ7 W G INTERNAL BATTERY RST 6/20 BL Doc ID 5716 Rev 7 VSS AI03608 M48Z129Y, M48Z129V 2 Operation modes Operation modes The M48Z129Y/V also has its own power-fail detect circuit. This control circuitry constantly monitors the supply voltage for an out of tolerance condition. When VCC is out of tolerance, the circuit write protects the SRAM, providing data security in the midst of unpredictable system operation. As VCC falls, the control circuitry automatically switches to the battery, maintaining data until valid power is restored. Table 2. Operating modes Mode VCC Deselect WRITE READ 4.5 to 5.5 V or 3.0 to 3.6 V READ Deselect VSO to VPFD ≤ Deselect 1. E G W DQ0-DQ7 Power VIH X X High Z Standby VIL X VIL DIN Active VIL VIL VIH DOUT Active VIL VIH VIH High Z Active X X X High Z CMOS standby X X X High Z Battery backup mode (min)(1) VSO(1) See Table 10 for details. Note: X = VIH or VIL; VSO = battery backup switchover voltage 2.1 READ mode The M48Z129Y/V is in the READ mode whenever W (WRITE enable) is high and E (chip enable) is low. The unique address specified by the 17 address inputs defines which one of the 131,072 bytes of data is to be accessed. Valid data will be available at the data I/O pins within tAVQV (address access time) after the last address input signal is stable, providing the E and G access times are also satisfied. If the E and G access times are not met, valid data will be available after the latter of the chip enable access times (tELQV) or output enable access time (tGLQV). The state of the eight three-state data I/O signals is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an indeterminate state until tAVQV. If the address inputs are changed while E and G remain active, output data will remain valid for tAXQX (output data hold time) but will go indeterminate until the next address access. Figure 4. Address controlled, READ mode AC waveforms tAVAV VALID A0-A16 tAVQV tAXQX DQ0-DQ7 DATA VALID DATA VALID AI02324 Note: Chip enable (E) and output enable (G) = low, WRITE enable (W) = high Doc ID 5716 Rev 7 7/20 Operation modes M48Z129Y, M48Z129V Figure 5. Chip enable or output enable controlled, READ mode AC waveforms tAVAV VALID A0-A16 tAVQV tAXQX tELQV tEHQZ E tELQX tGLQV tGHQZ G tGLQX DQ0-DQ7 DATA OUT AI01197 Table 3. READ mode AC characteristics M48Z129Y M48Z129V –70 –85 Parameter(1) Symbol Min Max READ cycle time tAVQV Address valid to output valid 70 85 ns tELQV Chip enable low to output valid 70 85 ns tGLQV Output enable low to output valid 35 45 ns (2) 70 Min tAVAV 85 ns Chip enable low to output transition 5 5 ns tGLQX(2) tEHQZ(2) tGHQZ(2) Output enable low to output transition 3 5 ns tAXQX Address transition to output transition tELQX 8/20 Max Unit Chip enable high to output Hi-Z 30 40 ns Output enable high to output Hi-Z 20 25 ns 5 5 1. Valid for ambient operating temperature: TA = 0 to 70 °C; VCC = 4.5 to 5.5 V or 3.0 to 3.6 V (except where noted). 2. CL = 5pF (see Figure 9). Doc ID 5716 Rev 7 ns M48Z129Y, M48Z129V 2.2 Operation modes WRITE mode The M48Z129Y/V is in the WRITE mode whenever W (WRITE enable) and E (chip enable) are active. The start of a WRITE is referenced from the latter occurring falling edge of W or E. A WRITE is terminated by the earlier rising edge of W or E. The addresses must be held valid throughout the cycle. E or W must return high for a minimum of tEHAX from chip enable or tWHAX from WRITE enable prior to the initiation of another READ or WRITE cycle. Data-in must be valid tDVWH prior to the end of WRITE and remain valid for tWHDX afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and G a low on W will disable the outputs tWLQZ after W falls. Figure 6. WRITE enable controlled, WRITE mode AC waveform tAVAV VALID A0-A16 tAVWH tAVEL tWHAX E tWLWH tAVWL W tWLQZ tWHQX tWHDX DQ0-DQ7 DATA INPUT tDVWH AI02382 Figure 7. Chip enable controlled, WRITE mode AC waveforms tAVAV VALID A0-A16 tAVEH tAVEL tELEH tEHAX E tWLWH tAVWL W tDVEH tEHDX DATA INPUT DQ0-DQ7 AI03611 Doc ID 5716 Rev 7 9/20 Operation modes Table 4. M48Z129Y, M48Z129V WRITE mode AC characteristics M48Z129Y M48Z129V –70 –85 Parameter(1) Symbol Min Min Max tAVAV WRITE cycle time 70 85 ns tAVWL Address valid to WRITE enable low 0 0 ns tAVEL Address valid to chip enable low 0 0 ns tWLWH WRITE enable pulse width 55 65 ns tELEH Chip enable low to chip enable high 55 75 ns tWHAX WRITE enable high to address transition 5 5 ns tEHAX Chip enable high to address transition 15 15 ns tDVWH Input valid to WRITE enable high 30 35 ns tDVEH Input valid to chip enable high 30 35 ns tWHDX WRITE enable high to input transition 0 0 ns tEHDX Chip enable high to input transition 10 15 ns tWLQZ(2)(3) WRITE enable low to output Hi-Z 25 30 ns tAVWH Address valid to WRITE enable high 65 75 ns tAVEH Address valid to chip enable high 65 75 ns WRITE enable high to output transition 5 5 ns tWHQX(2)(3) 2.3 Max Unit 1. Valid for ambient operating temperature: TA = 0 to 70 °C; VCC = 4.5 to 5.5 V or 3.0 to 3.6 V (except where noted). 2. CL = 5 pF (see Figure 9). 3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state. Data retention mode With valid VCC applied, the M48Z129Y/V operates as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will automatically deselect, write protecting itself when VCC falls between VPFD (max), VPFD (min) window. All outputs become high impedance and all inputs are treated as “Don’t care”. Note: A power failure during a WRITE cycle may corrupt data at the current addressed location, but does not jeopardize the rest of the RAM’s content. At voltages below VPFD(min), the memory will be in a write protected state, provided the VCC fall time is not less than tF. The M48Z129Y/V may respond to transient noise spikes on VCC that cross into the deselect window during the time the device is sampling VCC. Therefore, decoupling of the power supply lines is recommended. When VCC drops below VSO, the control circuit switches power to the internal battery, preserving data. The internal energy source will maintain data in the M48Z129Y/V for an accumulated period of at least 10 years at room temperature. As system power rises above VSO, the battery is disconnected, and the power supply is switched to external VCC. Deselect continues for tREC after VCC reaches VPFD(max). For more information on battery storage life refer to the application note AN1012. 10/20 Doc ID 5716 Rev 7 M48Z129Y, M48Z129V 2.4 Operation modes VCC noise and negative going transients ICC transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1 µF (as shown in Figure 8) is recommended in order to provide the needed filtering. In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values below VSS by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommended to connect a schottky diode from VCC to VSS (cathode connected to VCC, anode to VSS). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount. Figure 8. Supply voltage protection VCC VCC 0.1µF DEVICE VSS AI02169 Doc ID 5716 Rev 7 11/20 Maximum ratings 3 M48Z129Y, M48Z129V Maximum ratings Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 5. Absolute maximum ratings Symbol TA TSTG TSLD(1) Parameter Ambient operating temperature Storage temperature (VCC off, oscillator off) Lead solder temperature for 10 seconds Value Unit 0 to 70 °C –40 to 85 °C 260 °C VIO Input or output voltages –0.3 to 7 V VCC Supply voltage –0.3 to 7 V IO Output current 20 mA PD Power dissipation 1 W 1. Soldering temperature of the IC leads is to not exceed 260 °C for 10 seconds. In order to protect the lithium battery, preheat temperatures must be limited such that the battery temperature does not exceed +85 °C. Furthermore, the devices shall not be exposed to IR reflow. Caution: 12/20 Negative undershoots below –0.3 V are not allowed on any pin while in the battery backup mode. Doc ID 5716 Rev 7 M48Z129Y, M48Z129V 4 DC and AC parameters DC and AC parameters This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC characteristic tables are derived from tests performed under the measurement conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 6. Operating and AC measurement conditions Parameter M48Z129Y M48Z129V Unit 4.5 to 5.5 3.0 to 3.6 V Supply voltage (VCC) 0 to 70 0 to 70 °C Load capacitance (CL) Ambient operating temperature (TA) 100 50 pF Input rise and fall times ≤5 ≤5 ns 0 to 3 0 to 3 V 1.5 1.5 V Input pulse voltages Input and output timing ref. voltages Note: Output Hi-Z is defined as the point where data is no longer driven. Figure 9. AC testing load circuit 650Ω DEVICE UNDER TEST CL = 100pF or 50pF(1) 1.75V CL includes JIG capacitance AI03630 1. 50 pF for M48Z129V (3.3 V). Table 7. Capacitance Parameter(1)(2) Symbol CIN CIO (3) Min Max Unit Input capacitance - 10 pF Input / output capacitance - 10 pF 1. Effective capacitance measured with power supply at 5 V; sampled only, not 100% tested. 2. At 25 °C, f = 1 MHz. 3. Outputs deselected. Doc ID 5716 Rev 7 13/20 DC and AC parameters Table 8. M48Z129Y, M48Z129V DC characteristics Sym Parameter M48Z129Y M48Z129V –70 –85 Test condition(1) Min ILI ILO(2) Input leakage current Output leakage current Max Min Unit Max 0 V ≤ VIN ≤ VCC ±1 ±1 µA 0 V ≤ VOUT ≤ VCC ±1 ±1 µA Outputs open 95 50 mA E = VIH 7 4 mA E = VCC – 0.2 V 4 3 mA ICC Supply current ICC1 Supply current (standby) TTL ICC2 Supply current (standby) CMOS VIL Input low voltage –0.3 0.8 –0.3 0.6 V VIH Input high voltage 2.2 VCC + 0.3 2.2 VCC + 0.3 V VOL Output low voltage IOL = 2.1 mA VOH Output high voltage IOH = –1 mA 0.4 2.4 0.4 2.2 1. Valid for ambient operating temperature: TA = 0 to 70 °C; VCC = 4.5 to 5.5 V or 3.0 to 3.6 V (except where noted). 2. Outputs deselected. 14/20 Doc ID 5716 Rev 7 V V M48Z129Y, M48Z129V DC and AC parameters Figure 10. Power down/up mode AC waveforms VCC VPFD (max) VPFD (min) VSO tF tR tDR tFB tRB tREC tWPT E DON'T CARE RECOGNIZED RECOGNIZED HIGH-Z OUTPUTS VALID VALID (PER CONTROL INPUT) (PER CONTROL INPUT) RST AI03610 Table 9. Power down/up AC characteristics Parameter(1) Symbol tF(2) VPFD (max) to VPFD (min) VCC fall time tFB(3) VPFD (min) to VSS VCC fall time Min Max 300 M48Z129Y 10 M48Z129V 150 Unit µs µs tR VPFD (min) to VPFD (max) VCC rise time 10 µs tRB VSS to VPFD (min) VCC rise time 1 µs tWPT Write protect time tREC VPFD (max) to RST high M48Z129Y 40 150 M48Z129V 40 250 40 200 µs ms 1. Valid for ambient operating temperature: TA = 0 to 70 °C; VCC = 4.5 to 5.5 V or 3.0 to 3.6 V (except where noted). 2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200 µs after VCC passes VPFD (min). 3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data. Table 10. Power down/up trip points DC characteristics Parameter(1)(2) Symbol VPFD Power-fail deselect voltage VSO Battery backup switchover voltage tDR(3) Expected data retention time Min Typ Max Unit M48Z129Y 4.2 4.35 4.5 V M48Z129V 2.7 2.9 3.0 V M48Z129Y 3.0 V M48Z129V 2.45 V 10 Years 1. All voltages referenced to VSS. 2. Valid for ambient operating temperature: TA = 0 to 70 °C; VCC = 4.5 to 5.5 V or 3.0 to 3.6 V (except where noted). 3. At 25 °C, VCC = 0 V. Doc ID 5716 Rev 7 15/20 Package mechanical data 5 M48Z129Y, M48Z129V Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 11. PMDIP32 – 32-pin plastic module DIP, package outline A A1 B S L C eA e1 e3 D N E 1 PMDIP Note: Drawing is not to scale. Table 11. PMDIP32 – 32-pin plastic DIP, package mechanical data mm inches Symb Typ Min Max A 9.27 A1 Min Max 9.52 0.365 0.375 0.38 – 0.015 – B 0.43 0.59 0.017 0.023 C 0.20 0.33 0.008 0.013 D 42.42 43.18 1.670 1.700 E 18.03 18.80 0.710 0.740 e1 2.29 2.79 0.090 0.110 e3 16/20 38.1 Typ 1.5 eA 14.99 16.00 0.590 0.630 L 3.05 3.81 0.120 0.150 S 1.91 2.79 0.075 0.110 N 32 Doc ID 5716 Rev 7 32 M48Z129Y, M48Z129V 6 Part numbering Part numbering Table 12. Ordering information scheme Example: M48Z 129Y –70 PM 1 Device Type M48Z Supply voltage and write protect voltage 129Y(1) = VCC = 4.5 to 5.5 V; 4.2 V ≤ VPFD ≤ 4.5 V 129V = VCC = 3.0 to 3.6 V; 2.7 V ≤ VPFD ≤ 3.0 V Speed –70 = 70 ns (M48Z129Y) –85 = 85 ns (M48Z129V) Package PM = PMDIP32 Temperature range 1 = 0 to 70 °C Shipping method blank = ECOPACK® package, tubes 1. Contact local ST sales office. For other options, or for more information on any aspect of this device, please contact the ST sales office nearest you. Doc ID 5716 Rev 7 17/20 Environmental information 7 M48Z129Y, M48Z129V Environmental information Figure 12. Recycling symbols This product contains a non-rechargeable lithium (lithium carbon monofluoride chemistry) button cell battery fully encapsulated in the final product. Recycle or dispose of batteries in accordance with the battery manufacturer's instructions and local/national disposal and recycling regulations. Please refer to the following web site address for additional information regarding compliance statements and waste recycling. Go to www.st.com/nvram, then select "Lithium Battery Recycling" from "Related Topics". 18/20 Doc ID 5716 Rev 7 M48Z129Y, M48Z129V 8 Revision history Revision history Table 13. Document revision history Date Revision Dec-1999 1.0 Changes First issue 30-Mar-2000 2 20-Jun-2000 2.1 From preliminary data to datasheet 14-Sep-2001 3 29-May-2002 3.1 02-Apr-2003 4 v2.2 template applied; test condition updated (Table 10) 18-Feb-2005 5 Reformatted; IR reflow update (Table 5) 22-Apr-2010 6 Updated Table 11, 12, footnote 1 of Table 5; added Ecopack® text to Section 5; reformatted document. 23-Jun-2010 7 Updated Features, Table 11; added Section 7: Environmental information; minor textual changes. tGLQX changed for M48Z129Y (Table 3) Reformatted; temperature information added to tables (Table 7, 8, 3, 4, 9, 10) Add countries to disclaimer Doc ID 5716 Rev 7 19/20 M48Z129Y, M48Z129V Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 20/20 Doc ID 5716 Rev 7