STMICROELECTRONICS M48Z08

M48Z08
M48Z18
5V, 64 Kbit (8Kb x 8) ZEROPOWER® SRAM
FEATURES SUMMARY
■
■
■
■
■
■
■
■
INTEGRATED, ULTRA LOW POWER SRAM
AND POWER-FAIL CONTROL CIRCUIT
UNLIMITED WRITE CYCLES
READ CYCLE TIME EQUALS WRITE CYCLE
TIME
AUTOMATIC POWER-FAIL CHIP
DESELECT AND WRITE PROTECTION
WRITE PROTECT VOLTAGES
(VPFD = Power-fail Deselect Voltage):
– M48Z08: VCC = 4.75 to 5.5V
4.5V ≤ VPFD ≤ 4.75V
– M48Z18: VCC = 4.5 to 5.5V
4.2V ≤ VPFD ≤ 4.5V
SELF-CONTAINED BATTERY IN THE
CAPHAT™ DIP PACKAGE
PIN AND FUNCTION COMPATIBLE WITH
JEDEC STANDARD 8K x 8 SRAMs
RoHS COMPLIANCE
Lead-free components are compliant with the
RoHS Directive.
Figure 1. 28-pin CAPHAT, DIP Package
28
1
PCDIP28 (PC)
Battery CAPHAT™
Rev 5.0
December 2005
1/16
M48Z08, M48Z18
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. 28-pin CAPHAT, DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2.
Table 1.
Figure 3.
Figure 4.
Logic Diagram . .
Signal Names . .
DIP Connections
Block Diagram . .
...................
...................
...................
...................
.......
.......
.......
.......
......
......
......
......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
.....3
.....3
.....3
.....4
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 6. WRITE Enable Controlled, WRITE Mode AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 7. Chip Enable Controlled, WRITE Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Data Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 5. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 6. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 9. AC Testing Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 8. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 11.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline . . . . . . . . . . . . . . . . 13
Table 11. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data. . . . . . . . . 13
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/16
M48Z08, M48Z18
SUMMARY DESCRIPTION
The M48Z08/18 ZEROPOWER® RAM is a 8K x 8
non-volatile static RAM which is pin and functional
compatible with the DS1225.
The monolithic chip is available in two special
packages to provide a highly integrated battery
backed-up memory solution.
The M48Z08/18 is a non-volatile pin and function
equivalent to any JEDEC standard 8K x 8 SRAM.
It also easily fits into many ROM, EPROM, and
EEPROM sockets, providing the non-volatility of
PROMs without any requirement for special write
timing or limitations on the number of writes that
can be performed.
The 28-pin, 600mil DIP CAPHAT™ houses the
M48Z08/18 silicon with a long life lithium button
cell in a single package.
Figure 2. Logic Diagram
Table 1. Signal Names
VCC
A0-A12
Address Inputs
DQ0-DQ7
Data Inputs / Outputs
E
Chip Enable
G
Output Enable
W
WRITE Enable
E
VCC
Supply Voltage
G
VSS
Ground
NC
Not Connected Internally
13
8
A0-A12
W
DQ0-DQ7
M48Z08
M48Z18
VSS
AI01022
Figure 3. DIP Connections
NC
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
VSS
1
28
2
27
3
26
4
25
5
24
6
23
7
M48Z08 22
M48Z18 21
8
9
20
10
19
11
18
12
17
13
16
14
15
VCC
W
NC
A8
A9
A11
G
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
AI01183
3/16
M48Z08, M48Z18
Figure 4. Block Diagram
A0-A12
LITHIUM
CELL
POWER
VOLTAGE SENSE
AND
SWITCHING
CIRCUITRY
8K x 8
SRAM ARRAY
DQ0-DQ7
E
VPFD
W
G
VSS
VCC
AI01394
OPERATION MODES
The M48Z08/18 also has its own Power-fail Detect
circuit. The control circuitry constantly monitors
the single 5V supply for an out of tolerance condition. When VCC is out of tolerance, the circuit write
protects the SRAM, providing a high degree of
data security in the midst of unpredictable system
operation brought on by low VCC. As VCC falls below approximately 3V, the control circuitry connects the battery which maintains data until valid
power returns.
Table 2. Operating Modes
Mode
VCC
Deselect
WRITE
READ
4.75 to 5.5V
or
4.5 to 5.5V
READ
E
G
W
DQ0-DQ7
Power
VIH
X
X
High Z
Standby
VIL
X
VIL
DIN
Active
VIL
VIL
VIH
DOUT
Active
VIL
VIH
VIH
High Z
Active
Deselect
VSO to VPFD(min)(1)
X
X
X
High Z
CMOS Standby
Deselect
≤ VSO(1)
X
X
X
High Z
Battery Back-up Mode
Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.
1. See Table 10., page 12 for details.
4/16
M48Z08, M48Z18
READ Mode
The M48Z08/18 is in the READ Mode whenever W
(WRITE Enable) is high and E (Chip Enable) is
low. The device architecture allows ripple-through
access of data from eight of 65,536 locations in the
static storage array. Thus, the unique address
specified by the 13 address inputs defines which
one of the 8,192 bytes of data is to be accessed.
Valid data will be available at the Data I/O pins
within address access time (tAVQV) after the last
address input signal is stable, providing that the E
and G access times are also satisfied. If the E and
G access times are not met, valid data will be
available after the latter of the Chip Enable Access
time (tELQV) or Output Enable Access time
(tGLQV).
The state of the eight three-state Data I/O signals
is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an
indeterminate state until tAVQV. If the address inputs are changed while E and G remain active,
output data will remain valid for Output Data Hold
time (tAXQX) but will go indeterminate until the next
address access.
Figure 5. READ Mode AC Waveforms
tAVAV
A0-A12
VALID
tAVQV
tAXQX
tELQV
tEHQZ
E
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ7
VALID
AI01385
Note: WRITE Enable (W) = High.
Table 3. READ Mode AC Characteristics
Symbol
Parameter(1)
M48Z08/M48Z18
Unit
Min
Max
tAVAV
READ Cycle Time
tAVQV
Address Valid to Output Valid
100
ns
tELQV
Chip Enable Low to Output Valid
100
ns
tGLQV
Output Enable Low to Output Valid
50
ns
100
ns
tELQX(2)
Chip Enable Low to Output Transition
10
ns
tGLQX(2)
Output Enable Low to Output Transition
5
ns
tEHQZ(2)
Chip Enable High to Output Hi-Z
50
ns
tGHQZ(2)
Output Enable High to Output Hi-Z
40
ns
tAXQX
Address Transition to Output Transition
5
ns
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
2. CL = 30pF.
5/16
M48Z08, M48Z18
WRITE Mode
WRITE Enable prior to the initiation of another
READ or WRITE cycle. Data-in must be valid tDVWH prior to the end of WRITE and remain valid for
tWHDX afterward. G should be kept high during
WRITE cycles to avoid bus contention; although, if
the output bus has been activated by a low on E
and G, a low on W will disable the outputs tWLQZ
after W falls.
The M48Z08/18 is in the WRITE Mode whenever
W and E are active. The start of a WRITE is referenced from the latter occurring falling edge of W or
E.
A WRITE is terminated by the earlier rising edge of
W or E. The addresses must be held valid throughout the cycle. E or W must return high for a minimum of tEHAX from Chip Enable or tWHAX from
Figure 6. WRITE Enable Controlled, WRITE Mode AC Waveform
tAVAV
VALID
A0-A12
tAVWH
tWHAX
tAVEL
E
tWLWH
tAVWL
W
tWLQZ
tWHQX
tWHDX
DQ0-DQ7
DATA INPUT
tDVWH
AI01386
Figure 7. Chip Enable Controlled, WRITE Mode AC Waveforms
tAVAV
VALID
A0-A12
tAVEH
tAVEL
tELEH
tEHAX
E
tAVWL
W
tEHDX
DQ0-DQ7
DATA INPUT
tDVEH
AI01387B
6/16
M48Z08, M48Z18
Table 4. WRITE Mode AC Characteristics
Symbol
Parameter(1)
tAVAV
WRITE Cycle Time
tAVWL
M48Z08/M48Z18
Unit
Min
Max
100
ns
Address Valid to WRITE Enable Low
0
ns
tAVEL
Address Valid to Chip Enable 1 Low
0
ns
tWLWH
WRITE Enable Pulse Width
80
ns
tELEH
Chip Enable Low to Chip Enable 1 High
80
ns
tWHAX
WRITE Enable High to Address Transition
10
ns
tEHAX
Chip Enable High to Address Transition
10
ns
tDVWH
Input Valid to WRITE Enable High
50
ns
tDVEH
Input Valid to Chip Enable 1 High
30
ns
tWHDX
WRITE Enable High to Input Transition
5
ns
tEHDX
Chip Enable High to Input Transition
5
ns
tWLQZ(2,3)
WRITE Enable Low to Output Hi-Z
50
ns
tAVWH
Address Valid to WRITE Enable High
80
ns
tAVEH
Address Valid to Chip Enable High
80
ns
WRITE Enable High to Output Transition
10
ns
tWHQX(2,3)
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
2. CL = 30pF.
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.
7/16
M48Z08, M48Z18
Data Retention Mode
VCC Noise And Negative Going Transients
With valid VCC applied, the M48Z08/18 operates
as a conventional BYTEWIDE™ static RAM.
Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when VCC falls within the VPFD (max), VPFD
(min) window. All outputs become high impedance, and all inputs are treated as “Don't care.”
Note: A power failure during a WRITE cycle may
corrupt data at the currently addressed location,
but does not jeopardize the rest of the RAM's content. At voltages below VPFD (min), the user can be
assured the memory will be in a write protected
state, provided the VCC fall time is not less than tF.
The M48Z08/18 may respond to transient noise
spikes on VCC that reach into the deselect window
during the time the device is sampling VCC. Therefore, decoupling of the power supply lines is recommended.
When VCC drops below VSO, the control circuit
switches power to the internal battery which preserves data. The internal button cell will maintain
data in the M48Z08/18 for an accumulated period
of at least 11 years when VCC is less than VSO.
As system power returns and VCC rises above
VSO, the battery is disconnected, and the power
supply is switched to external VCC. Write protection continues until VCC reaches VPFD (min) plus
trec (min). E should be kept high as VCC rises past
VPFD (min) to prevent inadvertent write cycles prior
to system stabilization. Normal RAM operation can
resume trec after VCC exceeds VPFD (max).
For more information on Battery Storage Life refer
to the Application Note AN1012.
ICC transients, including those produced by output
switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients
can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy
stored in the bypass capacitors will be released as
low going spikes are generated or energy will be
absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (as shown in Figure
8.) is recommended in order to provide the needed
filtering.
In addition to transients that are caused by normal
SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values
below VSS by as much as one volt. These negative
spikes can cause data corruption in the SRAM
while in battery backup mode. To protect from
these voltage spikes, STMicroelectronics recommends connecting a schottky diode from VCC to
VSS (cathode connected to VCC, anode to VSS).
Schottky diode 1N5817 is recommended for
through hole and MBRS120T3 is recommended
for surface mount.
Figure 8. Supply Voltage Protection
VCC
VCC
0.1µF
DEVICE
VSS
AI02169
8/16
M48Z08, M48Z18
MAXIMUM RATING
Stressing the device above the rating listed in the
“Absolute Maximum Ratings” table may cause
permanent damage to the device. These are
stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this specification is
not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability.
Refer
also
to
the
STMicroelectronics SURE Program and other relevant quality documents.
Table 5. Absolute Maximum Ratings
Symbol
TA
TSTG
TSLD(1)
Parameter
Ambient Operating Temperature
Storage Temperature (VCC Off, Oscillator Off)
Lead Solder Temperature for 10 seconds
Value
Unit
0 to 70
°C
–40 to 85
°C
260
°C
VIO
Input or Output Voltages
–0.3 to 7
V
VCC
Supply Voltage
–0.3 to 7
V
IO
Output Current
20
mA
PD
Power Dissipation
1
W
Note: 1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer
than 30 seconds).
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.
9/16
M48Z08, M48Z18
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 6. Operating and AC Measurement Conditions
Parameter
M48Z08
M48Z18
Unit
4.75 to 5.5
4.5 to 5.5
V
0 to 70
0 to 70
°C
Load Capacitance (CL)
100
100
pF
Input Rise and Fall Times
≤5
≤5
ns
0 to 3
0 to 3
V
1.5
1.5
V
Supply Voltage (VCC)
Ambient Operating Temperature (TA)
Input Pulse Voltages
Input and Output Timing Ref. Voltages
Note: Output Hi-Z is defined as the point where data is no longer driven.
Figure 9. AC Testing Load Circuit
5V
1.8kΩ
DEVICE
UNDER
TEST
OUT
1kΩ
CL = 100pF or 30pF
CL includes JIG capacitance
AI01398
Table 7. Capacitance
Parameter(1,2)
Symbol
CIN
CIO(3)
Min
Max
Unit
Input Capacitance
10
pF
Input / Output Capacitance
10
pF
Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.
2. At 25°C, f = 1MHz.
3. Outputs deselected.
10/16
M48Z08, M48Z18
Table 8. DC Characteristics
Symbol
ILI
ILO(2)
Parameter
Input Leakage Current
Output Leakage Current
Test Condition(1)
Min
Max
Unit
0V ≤ VIN ≤ VCC
±1
µA
0V ≤ VOUT ≤ VCC
±1
µA
Outputs open
80
mA
E = VIH
3
mA
E = VCC – 0.2V
3
mA
ICC
Supply Current
ICC1
Supply Current (Standby) TTL
ICC2
Supply Current (Standby) CMOS
VIL
Input Low Voltage
–0.3
0.8
V
VIH
Input High Voltage
2.2
VCC + 0.3
V
VOL
Output Low Voltage
IOL = 2.1mA
0.4
V
VOH
Output High Voltage
IOH = –1mA
2.4
V
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
2. Outputs deselected.
11/16
M48Z08, M48Z18
Figure 10. Power Down/Up Mode AC Waveforms
VCC
VPFD (max)
VPFD (min)
VSO
tF
tDR
tPD
INPUTS
tR
tFB
tRB
tREC
DON'T CARE
RECOGNIZED
NOTE
RECOGNIZED
HIGH-Z
OUTPUTS
VALID
VALID
(PER CONTROL INPUT)
(PER CONTROL INPUT)
AI00606
Note: Inputs may or may not be recognized at this time. Caution should be taken to keep E high as VCC rises past VPFD (min). Some systems
may perform inadvertent WRITE cycles after VCC rises above VPFD (min) but before normal system operations begin. Even though a
power on reset is being applied to the processor, a reset condition may not occur until after the system is running.
Table 9. Power Down/Up AC Characteristics
Symbol
Parameter(1)
tPD
E or W at VIH before Power Down
tF(2)
tFB(3)
Min
Max
Unit
0
µs
VPFD (max) to VPFD (min) VCC Fall Time
300
µs
VPFD (min) to VSS VCC Fall Time
10
µs
tR
VPFD (min) to VPFD (max) VCC Rise Time
0
µs
tRB
VSS to VPFD (min) VCC Rise Time
1
µs
trec
E or W at VIH before Power Up
2
ms
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC passes VPFD (min).
3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data.
Table 10. Power Down/Up Trip Points DC Characteristics
Symbol
Parameter(1,2)
VPFD
Power-fail Deselect Voltage
VSO
Battery Back-up Switchover Voltage
tDR(3)
Expected Data Retention Time
Min
Typ
Max
Unit
M48Z08
4.5
4.6
4.75
V
M48Z18
4.2
4.3
4.5
V
3.0
11
Note: 1. All voltages referenced to VSS.
2. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
3. At 25°C, VCC = 0V.
12/16
V
YEARS
M48Z08, M48Z18
PACKAGE MECHANICAL INFORMATION
Figure 11. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline
A2
A1
B1
B
A
L
C
e1
eA
e3
D
N
E
1
PCDIP
Note: Drawing is not to scale.
Table 11. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data
mm
inches
Symb
Typ
Min
Max
A
8.89
A1
Typ
Min
Max
9.65
0.350
0.380
0.38
0.76
0.015
0.030
A2
8.38
8.89
0.330
0.350
B
0.38
0.53
0.015
0.021
B1
1.14
1.78
0.045
0.070
C
0.20
0.31
0.008
0.012
D
39.37
39.88
1.550
1.570
E
17.83
18.34
0.702
0.722
e1
2.29
2.79
0.090
0.110
e3
29.72
36.32
1.170
1.430
eA
15.24
16.00
0.600
0.630
L
3.05
3.81
0.120
0.150
N
28
28
13/16
M48Z08, M48Z18
PART NUMBERING
Table 12. Ordering Information Scheme
Example:
M48Z
08
–100
PC
1
TR
Device Type
M48Z
Supply Voltage and Write Protect Voltage
08(1) = VCC = 4.75 to 5.5V; VPFD = 4.5 to 4.75V
18 = VCC = 4.5 to 5.5V; VPFD = 4.2 to 4.5V
Speed
–100 = 100ns
Package
PC = PCDIP28
Temperature Range
1 = 0 to 70°C
Shipping Method
blank = ECOPACK Package, Tubes
TR = ECOPACK Package, Tape & Reel
Note: 1. The M48Z08/18 part is offered with the PCDIP28 (e.g., CAPHAT™) package only.
For other options, or for more information on any aspect of this device, please contact the ST Sales Office
nearest you.
14/16
M48Z08, M48Z18
REVISION HISTORY
Table 13. Document Revision History
Date
Version
Revision Details
March 1999
1.0
First issue
19-Jul-01
2.0
2-socket SOH and 2-pin SH packages removed; reformatted; temperature information
added to tables (Table 7, 8, 3, 4, 9, 10)
19-Dec-01
2.1
Remove all references to “clock”
21-Dec-01
2.2
Changes to text to reflect addition of M48Z08Y option
20-May-02
2.3
Modify reflow time and temperature footnotes (Table 5)
10-Sep-02
2.4
Remove all references to “SNAPHAT” and M48Z08Y part (Figure 2; Table 5, 6, 3, 4, 10, 12)
01-Apr-03
3.0
v2.2 template applied; updated test condition (Table 10)
28-Aug-04
4.0
Reformatted; removed references to ‘crystal’ (Figure 1)
14-Dec-05
5.0
Updated template, Lead-free text, removed footnote (Table 8, 12)
15/16
M48Z08, M48Z18
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
16/16