FREESCALE DSP56725

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: DSP56724EC
Rev. 1, 12/2008
DSP56724/DSP56725
Symphony™ DSP56724/
DSP56725 Multi-Core Audio
Processors
DSP56724
144-Pin LQFP
20 mm × 20 mm
0.5 mm pitch
DSP56725
80-Pin LQFP
14 mm × 14 mm
0.65 mm pitch
See Table 19.
The Symphony DSP56724/DSP56725 Multi-Core Audio
Processors are part of the DSP5672x family of programmable
CMOS DSPs, designed using dual DSP56300 24-bit cores.
The DSP56724 is intended for consumer and professional
audio applications that require high performance for audio
processing. In addition, the DSP56724 is ideally suited for
applications that need the capability to expand memory
off-chip or to interface to external parallel peripherals.
Potential applications include A/V receivers, DVD Receivers,
Home Theater in a Box (HTIB), and professional audio
equipment including portable recording equipment, musical
instruments, guitar amplifiers and pedals. The DSP56724
offers customers flexibility in their designs by providing a
more cost-effective alternative to the DSP56720 while
maintaining pin compatibility.
The DSP56725 is intended for automotive and audio
applications that require high performance for audio
processing. Potential applications include A/V receivers,
DVD Receivers, Home Theater in a Box (HTIB), and
automotive amplifiers and entertainment systems. The
DSP56725 offers customers flexibility in their designs by
providing a more cost-effective alternative to the DSP56721
while maintaining pin compatibility.
meeting high MIPs requirements. Legacy peripherals from the
previous DSP5636x/37x families are included, as are a variety
of new modules available in the DSP5672x family. Modules
from the DSP56720 are included, such as an Asynchronous
Sample Rate Converter (ASRC), an Inter-Core
Communication (ICC) module, an External Memory
Controller (EMC) to support SDRAM (DSP56724 only), and
a Sony/Philips Digital Interface (S/PDIF) transceiver.
The DSP56724/DSP56725 devices offer up to 250 million
instructions per second (MIPs) per core using an internal
250 MHz clock. The DSP56724/ DSP56725 products are high
density CMOS devices with 3.3 V inputs and outputs.
The DSP56724 block diagram is shown in Figure 1; the
DSP56725 block diagram is shown in Figure 2.
NOTE
This document contains information on a new product.
Specifications and information herein are subject to change
without notice. Finalized specifications may be published
after further characterization and device qualifications are
completed.
The DSP56724/DSP56725 devices provide a wealth of
on-chip audio processing functions, via a plug and play
software architecture system that supports audio decoding
algorithms, various equalization algorithms, compression,
signal generator, tone control, fade/balance, level
meter/spectrum analyzer, among others. The
DSP56724/DSP56725 devices also support various matrix
decoders and sound field processing algorithms.
With two DSP56300 cores, a single DSP56724/ DSP56725
device can replace dual-DSP designs, saving costs while
This document contains information on a product under development. Freescale reserves the
right to change or discontinue this product without notice.
© Freescale Semiconductor, Inc., 2008. All rights reserved.
Table of Contents
1
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.1 Chip-Level Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . 7
1.1.5 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . 8
1.1.6 Internal Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.7 External Clock Operation. . . . . . . . . . . . . . . . . . . . . 9
1.1.8 Reset, Stop, Mode Select, and Interrupt Timing . . 10
1.2 Module-Level Specifications . . . . . . . . . . . . . . . . . . . . . . .13
1.2.1 Serial Host Interface SPI Protocol Timing . . . . . . . 14
1.2.2 Serial Host Interface (SHI) I2C Protocol Timing . . 20
1.2.3 Programming the SHI I2C Serial Clock . . . . . . . . . 22
1.2.4 Enhanced Serial Audio Interface Timing . . . . . . . . 23
1.2.5 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.6 JTAG Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2
3
4
5
6
1.2.7 Watchdog Timer Timing . . . . . . . . . . . . . . . . . . . . .
1.2.8 S/PDIF Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.9 EMC Timing Specifications—DSP56724 . . . . . . . .
Functional Description and Application Information . . . . . . .
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Pinout and Package Information . . . . . . . . . . . . . . . . .
4.1.1 Pinout for DSP56724 144-Pin Plastic
LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Pinout for DSP56725 80-Pin Plastic
LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.3 Pin Multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 144-Pin Package Outline Drawing . . . . . . . . . . . . . . . .
4.3 80-Pin Package Outline Drawing . . . . . . . . . . . . . . . . .
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
32
33
38
38
38
39
39
40
40
41
43
45
45
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
2
Freescale Semiconductor
DSP
Core-0
On-Chip
Memory
P
GPIO
WDT_1
ESAI_3
DSP
Core-1
ASRC
On-Chip
Memory
Arbiter 8
Shared Bus 0
Y
ESAI_2
TEC_1
SHI_1
Chip Config
GPIO
CGM
Arbiter 9
X
S/PDIF
EMC
GPIO
WDT
ESAI_1
ESAI
TEC
SHI
EXTAL/XTAL
P
X
Y
Shared Bus 1
Arbiters 0–7
PCU
/ AGU
/ ALU
DMA
OnCE
PCU
/ AGU
/ ALU
OnCE
Shared Memory 4 Kbytes
Blocks 0–7 (32 Kbytes total)
MODA0, MODB0,
MODC0, MODD0
DMA
MODA1, MODB1,
MODC1, MODD1
2 JTAGs
JTAG
Figure 1. DSP56724 Block Diagram
DSP
Core-0
CGM
On-Chip
Memory
ASRC
X
GPIO
WDT_1
ESAI_3
ESAI_2
TEC_1
DSP
Core-1
On-Chip
Memory
Arbiter 8
Shared Bus 0
P
SHI_1
Chip Config
GPIO
S/PDIF
GPIO
WDT
ESAI_1
ESAI
TEC
SHI
EXTAL/XTAL
Shared Bus 1
Y
P
X
Y
Arbiters 0–7
PCU
/ AGU
/ ALU
DMA
OnCE
OnCE
Shared Memory 4 Kbytes
Blocks 0–7 (32 Kbytes total)
MODA0, MODB0,
MODC0, MODD0
2 JTAGs
JTAG
PCU
/ AGU
/ ALU
DMA
MODA1, MODB1,
MODC1, MODD1
Figure 2. DSP56725 Block Diagram
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
3
1
Electrical Characteristics
1.1
Chip-Level Conditions
Table 1 provides a quick reference to the subsections in this section.
Table 1. Chip-Level Conditions
For
1.1.1
See
Section 1.1.1, “Maximum Ratings”
on page 4
Section 1.1.2, “Thermal Characteristics”
on page 6
Section 1.1.3, “Power Requirements”
on page 6
Section 1.1.4, “DC Electrical Characteristics”
on page 7
Section 1.1.5, “AC Electrical Characteristics”
on page 8
Section 1.1.6, “Internal Clocks”
on page 8
Section 1.1.7, “External Clock Operation”
on page 9
Section 1.1.8, “Reset, Stop, Mode Select, and Interrupt Timing”
on page 10
Maximum Ratings
CAUTION
This device contains circuitry protecting against damage due to high
static voltage or electrical fields. However, normal precautions
should be taken to avoid exceeding maximum voltage ratings.
Reliability of operation is enhanced if unused inputs are pulled to an
appropriate logic voltage level (for example, either GND or VDD).
The suggested value for a pull-up or pull-down resistor is 4.7 kΩ.
NOTE
In the calculation of timing requirements, adding a maximum value of one specification to
a minimum value of another specification does not yield a reasonable sum. A maximum
specification is calculated using a worst case variation of process parameter values in one
direction. The minimum specification is calculated using the worst case for the same
parameters in the opposite direction. Therefore, a “maximum” value for a specification will
never occur in the same device that has a “minimum” value for another specification;
adding a maximum to a minimum represents a condition that can never exist.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
4
Freescale Semiconductor
Table 2 lists the maximum ratings.
Table 2. Maximum Ratings
Rating1
Symbol
Value1, 2
Unit
VCORE_VDD, VPLLD_VDD
–0.3 to + 1.26
V
VPLLP_VDD, VIO_VDD,
VIO_VDD_25, VPLLA_VDD
–0.3 to + 4.0
V
Maximum CORE_VDD power supply ramp time
Tr
10
ms
Input Voltage per pin excluding VDD and GND
VIN
GND – 0.3 to 5.5 V
V
I
12
mA
Ilsync_out
5
mA
LCLK
Ilclk
5
mA
LALE
Iale
5
mA
TDO
IJTAG
12
mA
Supply Voltage
Current drain per pin excluding VDD and GND (Except for pads listed below)
LSYNC_OUT
Operating temperature range
• Fsys < 200 MHz
• Fsys < 250 MHz
°C
TJ
–40 to +100
0 to 90
TSTG
–65 to +150
°C
ESD protected voltage (Human Body Model)
—
2000
V
ESD protected voltage (Charged Device Model)
• All pins
• Corner pins
—
Storage temperature
V
500
750
Note:
1. GND = 0 V, TJ = –40° C to 100° C, CL = 50 pF
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond
the maximum rating may affect device reliability or cause permanent damage to the device.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
5
1.1.2
Thermal Characteristics
Table 3 lists the thermal characteristics.
Table 3. Thermal Characteristics
Characteristic
Symbol
Natural Convection, Junction-to-ambient thermal Single layer board
resistance1,2
(1s)
RθJA or θJA
Four layer board
(2s2p)
Junction-to-case thermal resistance3
—
RθJC or θJC
LQFP Values
Unit
57 for 80 QFP
49 for 144 QFP
°C/W
44 for 80 QFP
40 for 144 QFP
°C/W
10 for 80 QFP
9 for 144 QFP
°C/W
Note:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Thermal resistance between the die and the case top surface as measured by the cold plate method
(MIL SPEC-883 Method 1012.1).
1.1.3
Power Requirements
To prevent high current conditions due to possible improper sequencing of the power supplies, use an external Schottky diode
as shown in Figure 3, connected between the DSP56724/DSP56725 IO_VDD and Core_VDD power pins.
IO_VDD
External
Schottky
Diode
Core_VDD
Figure 3. Prevent High Current Conditions by Using External Schottky Diode
If an external Schottky diode is not used (to prevent a high current condition at power-up), then IO_VDD must be applied ahead
of Core_VDD, as shown in Figure 4.
Core_VDD
IO_VDD
Figure 4. Prevent High Current Conditions by Applying IO_VDD Before Core_VDD
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
6
Freescale Semiconductor
For correct operation of the internal power-on reset logic, the Core_VDD ramp rate (Tr) to full supply must be less than 10 ms,
as shown in Figure 4.
Tr
1.0 V
Core_VDD
0V
Tr must be < 10 ms
Figure 5. Ensure Correct Operation of Power-On Reset with Fast Ramp of Core_VDD
1.1.4
DC Electrical Characteristics
Table 4. DC Electrical Characteristics
Characteristics
Symbol
Min
Typ
Max
Unit
VCORE_VDD,
VPLLD_VDD
0.95
1.14
1.0
1.2
1.05
1.26
IO Supply voltages
VIO_VDD,
VPLLP_VDD,
VPLLA_VDD
3.14
3.3
3.45
V
Input high voltage
VIH
2.0
—
VIO_VDD + 2V
V
V
Core Supply voltages
• Fsys < 200 MHz
• Fsys < 250 MHz
Note: To avoid a high current condition and possible system damage, all 3.3-V and 2.5-V supplies must rise before the 1.0-V
supplies rise.
Input low voltage
VIL
–0.3
—
0.8
V
Input leakage current
IIN
—
—
± 80
μA
Clock pin Input Capacitance (EXTAL)
CIN
—
2.057
—
pF
High impedance (off-state) input current (@ 3.3 V or
0 V)
ITSI
–10
—
10
μA
Output high voltage
VOH
2.4
—
—
V
VOL
—
—
0.4
V
Internal pull-up resistor
RPU
63
92
142
kΩ
Internal pull-down resistor
RPD
57
91
159
kΩ
ICCI
—
90
280
ICCW
—
60
250
IOH = –12 mA
LSYNC_OUT, LALE, LCLK Pins IOH = –16 mA,
TDO Pin IOH = –24 mA
Output low voltage
IOL = 12 mA
LSYNC_OUT, LALE, LCLK Pins IOL = 16 mA,
TDO Pins IOL = 24 mA
current1
Internal supply
Fsys < 200 MHz
• In Normal mode
(core only) operating at
mA
• In Wait mode
mA
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
7
Table 4. DC Electrical Characteristics (Continued)
Characteristics
Symbol
Min
Typ
Max
Unit
ICCS
—
30
220
mA
ICCI
—
140
340
mA
ICCW
—
90
290
mA
• In Stop mode
ICCS
—
40
240
mA
Input capacitance
CIN
—
—
10
pF
• In Stop mode2
current1
Internal supply
Fsys < 250 MHz
• In Normal mode
(core only) operating at
• In Wait mode
2
Note:
1. The Current Consumption section provides a formula to compute the estimated current requirements in Normal mode. In
order to obtain these results, all inputs must be terminated (for example, not allowed to float). Measurements are based on
synthetic intensive DSP benchmarks. The power consumption numbers in this specification are 90% of the measured
results of this benchmark. This reflects typical DSP applications. Typical internal supply current with Fsys < 200 MHz is
measured with VCORE_VDD = 1.0 V, VDD_IO = 3.3 V at TJ = 25° C. Maximum internal supply current is measured with
VCORE_VDD = 1.05 V, VIO_VDD) = 3.6 V at TJ = 100° C. Typical internal supply current with Fsys < 250 MHz is measured with
VCORE_VDD = 1.2 V, VDD_IO = 3.3 V at TJ = 25° C. Maximum internal supply current is measured with VCORE_VDD = 1.26 V,
VIO_VDD) = 3.6 V at TJ = 90° C.
2. In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (that is, not allowed
to float).
1.1.5
AC Electrical Characteristics
The timing waveforms shown in the AC electrical characteristics section are tested with a V IL maximum of 0.8 V and a VIH
minimum of 2.0 V for all pins. AC timing specifications, which are referenced to a device input signal, are measured in
production with respect to the 50% point of the respective input signal’s transition. For all pins, output levels are measured with
the production test machine VOL and VOH reference levels set at 0.4 V and 2.4 V, respectively.
1.1.6
Internal Clocks
Table 5 lists the internal clocks.
Table 5. Internal Clocks
No.
Characteristics
Symbol
Min
Typ
Max
Unit
2
—
8
MHz
248
200
MHz
1
Comparison Frequency
Fref
2
Input Clock Frequency
• with PLL enabled
• with PLL disabled
Fin
Condition
Fref = Fin/NR
—
2
—
—
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
8
Freescale Semiconductor
Table 5. Internal Clocks (Continued)
No.
3
4
5
Characteristics
PLL VCO Frequency
Output Clock Frequency
• with PLL enabled
• with PLL disabled
[1] [2]
Symbol
Min
Typ
Max
Unit
Fvco
200
—
500
MHz
Fvco = (Fin * NF)/NR
200 or 250
200 or 250
MHz
Fout = Fvco/NO
Fout = Fin
200 or 250
200
MHz
Fsys = Fout/2DF
Fsys = Fout
—
Fout
25
—
System Clock Frequency
• with PLL enabled[2]
• with PLL disabled
Condition
—
Fsys
0.195
0
Note:
1. Fin = External frequency
NF = Multiplication Factor
NR = Predivision Factor
NO = Output Divider
DF = Division Factor
2. Maximum frequency of 200 MHz supported at 0.95 V < VVDD_CORE < 1.05 V and –40 < Tj < 100° C
Maximum frequency of 250 MHz supported at 1.14 V < VVDD_CORE < 1.26 V and 0 < Tj < 90° C
1.1.7
External Clock Operation
The DSP56724/DSP56725 system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip
oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; see Figure 6.
EXTAL
XTAL
Suggested component values:
fosc
= 24.576 MHz
R = 1 M ±10%
C (EXTAL)= 18 pF
C (XTAL) = 18 pF
R
XTAL1
C
Calculations are for a 5–30 MHz crystal with the following parameters:
• shunt capacitance (C0) of 10 pq–F12 pF
• series resistance 40 Ohm
• drive level of 10 μW
C
Figure 6. Using the On-Chip Oscillator
If the DSP56724/DSP56725 system clock is an externally supplied square wave voltage source, it is connected to EXTAL
(Figure 7). When the external square wave source is connected to EXTAL, the XTAL pin is not used.
VIH
Midpoint
EXTAL
VIL Eth
Etl
6
7
8
Note:
Etc
The midpoint is 0.5 (VIH + VIL).
Figure 7. External Clock Timing
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
9
Table 6 lists the clock operation.
Table 6. Clock Operation
No.
6
7
8
9
Characteristics
Symbol
Min
Max
Units
Eth
16.67
2.5
100
inf
ns
Etl
16.67
2.5
100
inf
ns
EXTAL cycle time
• With PLL disabled
• With PLL enabled
Etc
5
33.3
inf
500
ns
Instruction cycle time
• With PLL disabled
• With PLL enabled
Tc
5
44
inf
5120
ns
EXTAL input high 1
(40% to 60% duty cycle)
• Crystal oscillator
• Square wave input
EXTAL input low 1
(40% to 60% duty cycle)
• Crystal oscillator
• Square wave input
Note:
1. Measured at 50% of the input transition.
2. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time
required for correct operation, however, remains the same at lower operating frequencies; therefore, when a lower clock
frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low
time requirements are met.
3. Maximum frequency of 200 MHz supported at 0.95 V < VVDD_CORE < 1.05 V and –40 < Tj < 100° C
Maximum frequency of 250 MHz supported at 1.14 V < VVDD_CORE < 1.26 V and 0 < Tj < 90° C
4. PLLLOCK = 200 μs.
1.1.8
Reset, Stop, Mode Select, and Interrupt Timing
Table 7 lists the reset, stop, mode select, and interrupt timing.
Table 7. Reset, Stop, Mode Select, and Interrupt Timing
No.
Characteristics
10
Delay from RESET assertion to all pins at reset value3
11
Required RESET duration4
• Power on, external clock generator, PLL disabled
• Power on, external clock generator, PLL enabled
13
Syn reset deassert delay time
• Minimum
• Maximum (PLL enabled)
Expression
Min
Max
Unit
—
—
11
ns
2 × TC
10
—
ns
2 × TC
10
—
ns
2 × TC
10
—
ns
(2xTC)+PLLLOCK
200
—
us
14
Mode select setup time
—
10
—
ns
15
Mode select hold time
—
12
—
ns
16
Minimum edge-triggered interrupt request assertion width
—
7
—
ns
17
Minimum edge-triggered interrupt request deassertion width
—
4
—
ns
18
Delay from interrupt trigger to interrupt code execution
10 × TC + 4
54
—
ns
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
10
Freescale Semiconductor
Table 7. Reset, Stop, Mode Select, and Interrupt Timing (Continued)
No.
Characteristics
Expression
Min
Max
Unit
19
Duration of level sensitive IRQA assertion to ensure interrupt
service (when exiting Stop)1, 2, 3
• PLL is active during Stop and Stop delay is enabled (OMR Bit
6 = 0)
(128 Kbytes × TC)
655
—
μs
• PLL is active during Stop and Stop delay is not enabled (OMR
Bit 6 = 1)
25 × TC
125
—
ns
• PLL is not active during Stop and Stop delay is enabled (OMR
Bit 6 = 0)
(128KxTC) + PLLLOCK
855
—
μs
• PLL is not active during Stop and Stop delay is not enabled
(OMR Bit 6 = 1)
(25 × TC) + PLLLOCK
200
—
μs
20
• Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to
general-purpose transfer output valid caused by first interrupt
instruction execution 1
10 × TC + 3.8
—
53.8
ns
21
Interrupt Requests Rate1
• ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1, Timer, Timer_1
12 × TC
—
60.0
ns
• DMA
8 × TC
—
40.0
ns
• IRQ, NMI (edge trigger)
8 × TC
—
40.0
ns
• IRQ (level trigger)
12 × TC
—
60.0
ns
DMA Requests Rate
• Data read from ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1
6 × TC
—
30.0
ns
• Data write to ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1
7 × TC
—
35.0
ns
• Timer, Timer_1
2 × TC
—
10.0
ns
• IRQ, NMI (edge trigger)
3 × TC
—
15.0
ns
22
Note:
1. When using fast interrupts and when IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply
to prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is recommended when using
fast interrupts. Long interrupts are recommended when using Level-sensitive mode.
2. For PLL disable, if using an external clock (PCTL Bit 13 = 1), no stabilization delay is required and recovery time will be defined
by the OMR Bit 6 settings.
For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shut down during Stop. Recovering from Stop requires the PLL
to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 200 us.
3. Periodically sampled and not 100% tested.
4. RESET duration is measured during the time in which RESET is asserted, VDD is valid, and the EXTAL input is active and
valid. When VDD is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the
device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should
minimize this state to the shortest possible duration.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
11
Figure 8 shows the reset timing diagram.
VIH
RESET
11
13
10
All Pins
Reset Value
Figure 8. Reset Timing
Figure 9 shows external fast interrupt timing diagram.
a) First Interrupt Instruction Execution
IRQA, IRQB,
IRQC, IRQD,
NMI,
NMI_1
19
18
b) General Purpose I/O
General
Purpose
I/O
20
IRQA, IRQB,
IRQC, IRQD,
NMI,
NMI_1
Figure 9. External Fast Interrupt Timing
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
12
Freescale Semiconductor
Figure 10 shows external interrupt timing (negative edge-triggered).
IRQA, IRQB,
IRQC, IRQD,
NMI,
NMI_1
16
IRQA, IRQB,
IRQC, IRQD,
NMI,
NMI_1
17
Figure 10. External Interrupt Timing (Negative Edge-Triggered)
Figure 11 shows MODE select set-up and hold time diagram.
VIH
RESET
14
15
MODA, MODB,
MODC, MODD,
PINIT
VIH
VIH
VIL
VIL
IRQA, IRQB,
IRQC,IRQD, NMI
Figure 11. MODE Select Set-Up and Hold Time
1.2
Module-Level Specifications
Table 8 provides a quick reference to the subsections of this section.
Table 8. Module-Level Specifications
For
See
Section 1.2.1, “Serial Host Interface SPI Protocol Timing”
on page 4
Section 1.2.2, “Serial Host Interface (SHI) I2C Protocol Timing”
on page 6
Section 1.2.3, “Programming the SHI
I2C
Serial Clock”
on page 6
Section 1.2.4, “Enhanced Serial Audio Interface Timing”
on page 7
Section 1.2.5, “GPIO Timing”
on page 28
Section 1.2.6, “JTAG Timing”
on page 29
Section 1.2.7, “Watchdog Timer Timing”
on page 31
Section 1.2.8, “S/PDIF Timing”
on page 32
Section 1.2.9, “EMC Timing Specifications—DSP56724”
on page 33
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
13
1.2.1
Serial Host Interface SPI Protocol Timing
Table 9 lists the serial host interface SPI protocol timing.
Table 9. Serial Host Interface SPI Protocol Timing
No.
23
Characteristics1,3,4
Minimum serial clock cycle = tSPICC(min)
XX Tolerable Spike width on data or clock in.
24
Serial clock high period
Mode
Filter Mode
Expression
Min
Max
Unit
Master/Slave
Bypassed
10 × TC + 9
59.0
—
ns
Very Narrow
10 × TC + 9
59.0
—
ns
Narrow
10 × TC + 133
183.0
—
ns
Wide
10 × TC + 333
383.0
—
ns
Bypassed
—
—
0
ns
Very Narrow
—
—
10
ns
Narrow
—
—
50
ns
Wide
—
—
100
ns
Bypassed
0.5 × (tSPICC)
29.5
—
ns
Very Narrow
0.5 × (tSPICC)
29.5
—
ns
Narrow
0.5 × (tSPICC)
91.5
—
ns
Wide
0.5 × (tSPICC)
191
—
ns
Bypassed
2.5 × TC + 12
24
—
ns
Very Narrow
2.5 × TC + 12
24
—
ns
Narrow
2.5 × TC + 102
114.5
—
ns
Wide
2.5 × TC + 189
201.5
—
ns
Bypassed
0.5 × (tSPICC)
29.5
—
ns
Very Narrow
0.5 × (tSPICC)
29.5
—
ns
Narrow
0.5 × (tSPICC)
91.5
—
ns
Wide
0.5 × tSPICC)
191
—
ns
Bypassed
2.5 × TC + 12
24
—
ns
Very Narrow
2.5 × TC + 12
24
—
ns
Narrow
2.5 × TC + 102
114.5
—
ns
Wide
2.5 × TC + 189
201.5
—
ns
—
—
—
—
—
—
—
5
ns
ns
—
Master
Slave
25
Serial clock low period
Master
Slave
26
Serial clock rise/fall time
Master
Slave
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
14
Freescale Semiconductor
Table 9. Serial Host Interface SPI Protocol Timing (Continued)
Characteristics1,3,4
No.
27
SS assertion to first SCK edge
Mode
Filter Mode
Expression
Min
Max
Unit
Slave
Bypassed
3.5 × TC + 15
32.5
—
ns
Very Narrow
3.5 × TC + 5
22.5
—
ns
Narrow
—
0
—
ns
Wide
—
0
—
ns
Bypassed
—
10
—
ns
Very Narrow
—
0
—
ns
Narrow
—
0
—
ns
Wide
—
0
—
ns
Bypassed
—
12
—
ns
Very Narrow
—
22
—
ns
Narrow
—
100
—
ns
Wide
—
200
—
ns
Bypassed
—
0
—
ns
Very Narrow
—
0
—
ns
Narrow
—
0
—
ns
Wide
—
0
—
ns
Bypassed
2 × TC + 10
20
—
ns
Very Narrow
2 × TC + 30
40
—
ns
Narrow
2 × TC + 60
70
—
ns
Wide
—
100.0
—
ns
Slave
—
—
5
—
ns
Slave
—
—
—
9
ns
Master
/Slave
Bypassed
—
—
46.2
ns
Very Narrow
—
—
270
ns
Narrow
—
—
376
ns
Wide
—
—
521
ns
Bypassed
—
11.67
—
ns
Very Narrow
—
15
—
ns
Narrow
—
55
—
ns
Wide
—
105
—
ns
—
—
—
14.0
ns
CPHA = 0
CPHA = 1
28
29
30
31
Slave
Last SCK edge to SS not asserted
Data input valid to SCK edge (data input
set-up time)
SCK last sampling edge to data input not
valid
SS assertion to data out active
32
SS deassertion to data high
33
SCK edge to data out valid
(data out delay time)
34
35
impedance2
SCK edge to data out not valid
(data out hold time)
SS assertion to data out valid
(CPHA = 0)
Slave
Master
/Slave
Master
/Slave
Master
/Slave
Slave
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
15
Table 9. Serial Host Interface SPI Protocol Timing (Continued)
No.
Characteristics1,3,4
Mode
Filter Mode
Expression
Min
Max
Unit
36
First SCK sampling edge to HREQ output
deassertion
Slave
Bypassed
—
45
—
ns
Very Narrow
—
55
—
ns
Narrow
—
95
—
ns
Wide
—
145
—
ns
Bypassed
—
50.0
—
ns
Very Narrow
—
60.0
—
ns
Narrow
—
100.0
—
ns
Wide
—
150.0
—
ns
37
Last SCK sampling edge to HREQ output
not deasserted (CPHA = 1)
Slave
38
SS deassertion to HREQ output not
deasserted (CPHA = 0)
Slave
—
—
45.0
—
ns
39
SS deassertion pulse width (CPHA = 0)
Slave
—
TC + 6
11.0
—
ns
40
HREQ in assertion to first SCK edge
Master
—
0.5 × TSPICC
+ 3.0 × TC + 43
96.0
—
ns
41
HREQ in deassertion to last SCK sampling
edge (HREQ in set-up time) (CPHA = 1)
Master
—
—
0
—
ns
42
First SCK edge to HREQ in not asserted
(HREQ in hold time)
Master
—
—
0
—
ns
43
HREQ assertion width
Master
—
3.0 × TC
15
—
ns
Note:
1. 0.95 V < VVDD_CORE < 1.05 V and T J < 100° C, CL = 50 pF
2. Periodically sampled, not 100% tested
3. All times assume noise free inputs.
4. All times assume internal clock frequency of 200 MHz.
5. SHI_1 specs match those of SHI
6. Slave timings should equal the serial clock high period + the serial clock low period.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
16
Freescale Semiconductor
Figure 12 shows the SPI master timing (CPHA = 0).
SS
(Input)
25
23
24
26
26
SCK (CPOL = 0)
(Output)
23
24
26
25
26
SCK (CPOL = 1)
(Output)
29
30
MISO
(Input)
MSB
Valid
LSB
Valid
34
33
MOSI
(Output)
30
m29
MSB
LSB
40
42
HREQ
(Input)
43
Figure 12. SPI Master Timing (CPHA = 0)
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
17
Figure 13 shows the SPI master timing (CPHA = 1).
SS
(Input)
25
23
24
26
26
SCK (CPOL = 0)
(Output)
24
23
26
25
26
SCK (CPOL = 1)
(Output)
29
29
30
MISO
(Input)
30
MSB
Valid
LSB
Valid
33
MOSI
(Output)
34
MSB
LSB
40
41
42
HREQ
(Input)
43
Figure 13. SPI Master Timing (CPHA = 1)
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
18
Freescale Semiconductor
Figure 14 shows the SPI slave timing (CPHA = 0).
SS
(Input)
25
23
24
26
28
26
39
SCK (CPOL = 0)
(Input)
27
23
24
26
25
26
SCK (CPOL = 1)
(Input)
35
33
34
31
MISO
(Output)
34
32
MSB
LSB
29
29
30
MOSI
(Input)
MSB
Valid
30
LSB
Valid
36
38
HREQ
(Output)
Figure 14. SPI Slave Timing (CPHA = 0)
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
19
Figure 15 shows the SPI slave timing (CPHA = 1).
SS
(Input)
25
23
24
26
28
26
SCK (CPOL = 0)
(Input)
27
24
26
25
26
SCK (CPOL = 1)
(Input)
33
33
34
32
31
MISO
(Output)
MSB
LSB
29
29
30
30
MSB
Valid
MOSI
(Input)
LSB
Valid
37
36
HREQ
(Output)
Figure 15. SPI Slave Timing (CPHA = 1)
1.2.2
Serial Host Interface (SHI) I2C Protocol Timing
Table 10 lists the SHI I 2C protocol timing diagram.
Table 10. SHI I2C Protocol Timing
Standard I2C
Characteristics1,2,3,4,5
No.
XX Tolerable Spike Width on SCL or SDA
Filters Bypassed
Very Narrow Filters enabled
Narrow Filters enabled
Wide Filters enabled.
Symbol/
Expression
Standard
Fast-Mode
Unit
Min
Max
Min
Max
—
—
—
—
0
10
50
100
—
—
—
—
0
10
50
100
ns
ns
ns
ns
—
44
SCL clock frequency
FSCL
—
100
—
400
kHz
44
SCL clock cycle
TSCL
10
—
2.5
—
μs
45
Bus free time
TBUF
4.7
—
1.3
—
μs
46
Start condition set-up time
TSUSTA
4.7
—
0.6
—
μs
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
20
Freescale Semiconductor
Table 10. SHI I2C Protocol Timing (Continued)
Standard I2C
No.
Characteristics1,2,3,4,5
47
Start condition hold time
48
SCL low period
49
SCL high period
time 7
Symbol/
Expression
Standard
Fast-Mode
Unit
Min
Max
Min
Max
THD;STA
4.0
—
0.6
—
μs
TLOW
4.7
—
1.3
—
μs
THIGH
4.0
—
1.3
—
μs
TR
—
1000
—
300
ns
TF
—
5.0
—
5.0
ns
50
SCL and SDA rise
51
SCL and SDA fall time7
52
Data set-up time
TSU;DAT
250
—
100
—
ns
53
Data hold time
THD;DAT
0.0
—
0.0
0.9
μs
54
DSP clock frequency
• Filters bypassed
• Very Narrow filters enabled
• Narrow filters enabled
• Wide filters enabled
10.6
10.6
11.8
13.1
—
—
—
—
28.5
28.5
39.7
61.0
—
—
—
—
MHz
MHz
MHz
MHz
FOSC
55
SCL low to data out valid
TVD;DAT
—
3.4
—
0.9
μs
56
Stop condition setup time
TSU;STO
4.0
—
0.6
—
μs
57
HREQ in deassertion to last SCL edge (HREQ in
set-up time)
tSU;RQI
0.0
—
0.0
—
ns
58
First SCL sampling edge to HREQ output
deassertion2
• Filters bypassed
• Very Narrow filters enabled
• Narrow filters enabled
• Wide filters enabled
—
—
—
—
50.0
70.0
250.0
150.0
—
—
—
—
50.0
70.0
150.0
250.0
ns
ns
ns
ns
40
50
90
140
—
—
—
—
40
50
90
140
—
—
—
—
ns
ns
ns
ns
59
Last SCL edge to HREQ output not deasserted2
• Filters bypassed
• Very Narrow filters enabled
• Narrow filters enabled
• Wide filters enabled
TNG;RQO
4 × TC + 30
4 × TC + 50
4 × TC + 130
4 × TC + 230
TAS;RQO
2 × TC + 30
2 × TC + 40
2 × TC + 80
2 × TC + 130
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
21
Table 10. SHI I2C Protocol Timing (Continued)
Standard I2C
60
61
Symbol/
Expression
Characteristics1,2,3,4,5
No.
HREQ in assertion to first SCL edge
• Filters bypassed
• Very Narrow filters enabled
• Narrow filters enabled
• Wide filters enabled
TAS;RQI
First SCL edge to HREQ is not asserted
(HREQ in hold time.)
tHO;RQI
Standard
Fast-Mode
Unit
Min
Max
Min
Max
4327
4317
4282
4227
—
—
—
—
927
917
877
827
—
—
—
—
ns
ns
ns
ns
0.0
—
0.0
—
ns
Note:
1. VCORE_VDD = 1.00± 0.05 V; TJ = –40° C to 100° C, C L = 50 pF
2. Pull-up resistor: R P (min) = 1.5 kΩ
3. Capacitive load: C b (max) = 50 pF
5. All times assume noise free inputs
5. All times assume internal clock frequency of 200 MHz
6. SHI_1 specs match those of SHI
7. The numbers listed are based on the module/pad design and its characteristics during output. The module is compliant with
I2C standard, so the module should receive I2C bus compliant signal without any issue.
1.2.3
Programming the SHI I2C Serial Clock
The programmed serial clock cycle, T I2CCP, is specified by the value of the HDM[7:0] and HRS bits of the HCKR (SHI clock
control register).
The expression for T I2CCP is
T I2CCP = [TC × 2 × (HDM[7:0] + 1) × (7 × (1 – HRS) + 1)]
Eqn. 1
where
— HRS is the prescaler rate select bit. When HRS is cleared, the fixed
divide-by-eight prescaler is operational. When HRS is set, the prescaler is bypassed.
— HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256 (HDM[7:0] = $00 to $FF) may be
selected.
In I2C mode, the user may select a value for the programmed serial clock cycle from
6 × TC (if HDM[7:0] = $02 and HRS = 1)
Eqn. 2
4096 × TC (if HDM[7:0] = $FF and HRS = 0)
Eqn. 3
to
The programmed serial clock cycle (TI2CCP ) should be chosen in order to achieve the desired SCL serial clock cycle (TSCL), as
shown in next.
TI2CCP + 3 × TC + 45ns + TR
(Nominal, SCL Serial Clock Cycle (TSCL) generated as master)
Eqn. 4
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
22
Freescale Semiconductor
Figure 16 shows the I2C timing diagram.
44
46
49
48
SCL
50
53
51
45
52
SDA
Stop Start
MSB
47
LSB
58
61
ACK
Stop
55
56
57
60
59
HREQ
Figure 16. I2C Timing
1.2.4
Enhanced Serial Audio Interface Timing
Table 11 lists the enhanced serial audio interface timing.
Table 11. Enhanced Serial Audio Interface Timing
Characteristics1, 2, 3
No.
62
Clock cycle5
63
Symbol Expression3
Min
Max
Condition4 Unit
tSSICC
4 × Tc
4 × Tc
20.0
20.0
—
—
i ck
i ck
Clock high period
• For internal clock
—
2 × Tc
10
—
—
• For external clock
—
2 × Tc
10
—
—
Clock low period
• For internal clock
—
2 × Tc
10
—
—
• For external clock
—
2 × Tc
10
—
—
65
SCKR rising edge to FSR out (bl) high
—
—
—
—
17.0
7.0
x ck
i ck a
ns
66
SCKR rising edge to FSR out (bl) low
—
—
—
—
17.0
7.0
x ck
i ck a
ns
67
SCKR rising edge to FSR out (wr) high6
—
—
—
—
19.0
9.0
x ck
i ck a
ns
68
SCKR rising edge to FSR out (wr) low6
—
—
—
—
19.0
9.0
x ck
i ck a
ns
69
SCKR rising edge to FSR out (wl) high
—
—
—
—
16.0
6.0
x ck
i ck a
ns
70
SCKR rising edge to FSR out (wl) low
—
—
—
—
17.0
7.0
x ck
i ck a
ns
64
ns
ns
ns
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
23
Table 11. Enhanced Serial Audio Interface Timing (Continued)
No.
Characteristics1, 2, 3
Symbol Expression3
Min
Max
Condition4 Unit
71
Data in setup time before SCKR (SCK in synchronous
mode) falling edge
—
—
12.0
19.0
—
—
x ck
i ck
ns
72
Data in hold time after SCKR falling edge
—
—
3.5
9.0
—
—
x ck
i ck
ns
73
FSR input (bl, wr) high before SCKR falling edge 6
—
—
2.0
12.0
—
—
x ck
i ck a
ns
74
FSR input (wl) high before SCKR falling edge
—
—
2.0
12.0
—
—
x ck
i ck a
ns
75
FSR input hold time after SCKR falling edge
—
—
2.5
8.5
—
—
x ck
i ck a
ns
76
Flags input setup before SCKR falling edge
—
—
0.0
19.0
—
—
x ck
i ck s
ns
77
Flags input hold time after SCKR falling edge
—
—
6.0
0.0
—
—
x ck
i ck s
ns
78
SCKT rising edge to FST out (bl) high
—
—
—
—
18.0
8.0
x ck
i ck
ns
79
SCKT rising edge to FST out (bl) low
—
—
—
—
20.0
10.0
x ck
i ck
ns
80
SCKT rising edge to FST out (wr) high6
—
—
—
—
20.0
10.0
x ck
i ck
ns
81
SCKT rising edge to FST out (wr) low6
—
—
—
—
22.0
12.0
x ck
i ck
ns
82
SCKT rising edge to FST out (wl) high
—
—
—
—
15.0
9.0
x ck
i ck
ns
83
SCKT rising edge to FST out (wl) low
—
—
—
—
15.0
10.0
x ck
i ck
ns
84
SCKT rising edge to data out enable from high impedance
—
—
—
—
22.0
17.0
x ck
i ck
ns
85
SCKT rising edge to transmitter #0 drive enable assertion
—
—
—
—
17.0
11.0
x ck
i ck
ns
86
SCKT rising edge to data out valid
—
—
—
—
25.0
13.0
x ck
i ck
ns
87
SCKT rising edge to data out high impedance7
—
—
—
—
25.0
16.0
x ck
i ck
ns
88
SCKT rising edge to transmitter #0 drive enable
deassertion7
—
—
—
—
14.0
9.0
x ck
i ck
ns
89
FST input (bl, wr) setup time before SCKT falling edge6
—
—
2.0
18.0
—
—
x ck
i ck
ns
90
FST input (wl) setup time before SCKT falling edge
—
—
2.0
18.0
—
—
x ck
i ck
ns
91
FST input hold time after SCKT falling edge
—
—
4.0
5.0
—
—
x ck
i ck
ns
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
24
Freescale Semiconductor
Table 11. Enhanced Serial Audio Interface Timing (Continued)
Characteristics1, 2, 3
No.
Symbol Expression3
Min
Max
Condition4 Unit
92
FST input (wl) to data out enable from high impedance
—
—
—
21.0
—
ns
93
FST input (wl) to transmitter #0 drive enable assertion
—
—
—
14.0
—
ns
94
Flag output valid after SCKT rising edge
—
—
—
—
14.0
9.0
x ck
i ck
ns
95
HCKR/HCKT clock cycle
—
2 × TC
10
—
—
ns
96
HCKT input rising edge to SCKT output
—
—
—
18.0
—
ns
97
HCKR input rising edge to SCKR output
—
—
—
18.0
—
ns
Note:
1. 0.95 V < VVDD_CORE < 1.05 V and Tj < 100° C, CL = 50 pF
2. i ck = internal clock
x ck = external clock
i ck a = internal clock, asynchronous mode
(asynchronous implies that SCKT and SCKR are two different clocks)
i ck s = internal clock, synchronous mode
(synchronous implies that SCKT and SCKR are the same clock)
3. bl = bit length
wl = word length
wr = word length relative
4. SCKT(SCKT pin) = transmit clock
SCKR(SCKR pin) = receive clock
FST(FST pin) = transmit frame sync
FSR(FSR pin) = receive frame sync
HCKT(HCKT pin) = transmit high frequency clock
HCKR(HCKR pin) = receive high frequency clock
5. For the internal clock, the external clock cycle is defined by Tc and the ESAI control register.
6. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync
signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one
before last bit clock of the first word in frame.
7. Periodically sampled and not 100% tested.
8. ESAI_1, ESAI_2, ESAI_3 specs match those of ESAI.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
25
Figure 17 shows the ESAI transmitter timing diagram.
62
63
64
SCKT
(Input/Output)
78
79
FST (Bit)
Out
82
FST (Word)
Out
83
86
86
84
87
First Bit
Data Out
Last Bit
93
Transmitter #0
Drive Enable
(Internal Signal)
89
85
88
91
FST (Bit) In
92
91
90
FST (Word) In
94
See Note
Flags Out
Note: In network mode, output flag transitions can occur at the start of each time slot within the
frame. In normal mode, the output flag state is asserted for the entire frame period.
Figure 17. ESAI Transmitter Timing
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
26
Freescale Semiconductor
Figure 18 shows the ESAI receiver timing diagram.
62
63
SCKR
(Input/Output)
64
65
66
FSR (Bit)
Out
69
70
FSR (Word)
Out
72
71
Data In
First Bit
Last Bit
75
73
FSR (Bit)
In
74
75
FSR (Word)
In
76
77
Flags In
Figure 18. ESAI Receiver Timing
Figure 19 shows the ESAI HCKT timing diagram.
HCKT
SCKT(output)
95
96
Figure 19. ESAI HCKT Timing
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
27
Figure 20 shows the ESAI HCKR timing diagram.
HCKR
SCKR (output)
95
97
Figure 20. ESAI HCKR Timing
1.2.5
GPIO Timing
Table 12 lists the GPIO timing.
Table 12. GPIO Timing
Characteristics1
No.
100
Fsys edge to GPIO out valid (GPIO out delay time)2
2
Expression
Min
Max
Unit
—
—
7
ns
—
—
7
ns
Fsys In valid to EXTAL edge (GPIO in set-up
time)2
—
2
—
ns
103
Fsys edge to GPIO in not valid (GPIO in hold
time)2
—
0
—
ns
104
Minimum GPIO pulse high width
2 × TC
10
—
ns
105
Minimum GPIO pulse low width
2 × TC
10
—
ns
106
GPIO out rise time
—
—
13.0
ns
107
GPIO out fall time
—
—
13.0
ns
101
102
Fsys edge to GPIO out not valid (GPIO out hold time)
Note:
1. 0.95 V < VVDD_CORE < 1.05 V and Tj < 100° C, CL = 50 pF
2. Simulation numbers-subject to change.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
28
Freescale Semiconductor
Figure 21 shows the GPIO timing diagram.
Fsys
100
101
GPIO
(Output)
102
103
GPIO
(Input)
Valid
GPIO
(Output)
104
106
105
107
Figure 21. GPIO Timing
1.2.6
JTAG Timing
Table 13 lists the JTAG timing.
Table 13. JTAG Timing
All Frequencies
No.
Characteristics
Unit
Min
Max
—
10.0
MHz
108
TCK frequency of operation (1/(TC × 3); maximum 10 MHz)
109
TCK cycle time in Crystal mode
100.0
—
ns
110
TCK clock pulse width measured at 1.65 V
50.0
—
ns
111
TCK rise and fall times
—
3.0
ns
112
Boundary scan input data setup time
15.0
—
ns
113
Boundary scan input data hold time
24.0
—
ns
114
TCK low to output data valid
—
40.0
ns
115
TCK low to output high impedance
—
40.0
ns
116
TMS, TDI data setup time
5.0
—
ns
117
TMS, TDI data hold time
25.0
—
ns
118
TCK low to TDO data valid
—
44.0
ns
119
TCK low to TDO high impedance
—
44.0
ns
Note:
1. 0.95 V < VVDD_CORE < 1.05 V and Tj < 100° C, CL = 50 pF
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
29
Figure 22 shows the text clock input timing diagram.
109
VIH
TCK
(Input)
110
110
VM
VM
VIL
111
111
Figure 22. Test Clock Input Timing Diagram
Figure 23 shows the debugger port timing diagram.
TCK
(Input)
VIH
VIL
112
Data
Inputs
113
Input Data Valid
114
Data
Outputs
Output Data Valid
115
Data
Outputs
114
Data
Outputs
Output Data Valid
Figure 23. Debugger Port Timing Diagram
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
30
Freescale Semiconductor
Figure 24 shows the test access port timing diagram.
VIH
TCK
(Input)
VIL
117
116
TDI
TMS
(Input)
Input Data Valid
118
TDO
(Output)
Output Data Valid
119
TDO
(Output)
118
TDO
(Output)
Output Data Valid
Figure 24. Test Access Port Timing Diagram
1.2.7
Watchdog Timer Timing
Table 14 lists the watchdog timer timings.
Table 14. Watchdog Timer Timing
No.
Characteristics
Expression
Min
Max
Unit
120
Delay from time-out to fall of WDT, WDT_1
2 × Tc
10.0
—
ns
121
Delay from timer clear to rise of WDT, WDT_1
2 × Tc
10.0
—
ns
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
31
1.2.8
S/PDIF Timing
Table 15 lists the S/PDIF timing.
Table 15. S/PDIF Timing
All Frequency
Characteristics
Symbol
Unit
Min
Max
—
—
0.7
ns
SPDIFOUT1,SPDIFOUT2 output (Load = 50pf)
• Skew
• Transition Rising
• Transition Falling
—
—
—
—
—
—
1.5
24.2
31.3
ns
SPDIFOUT1, SPDIFOUT2 output (Load = 30pf)
• Skew
• Transition Rising
• Transition Falling
—
—
—
—
—
—
1.5
13.6
18.0
ns
SRCK period
srckp
40.0
—
ns
SRCK high period
srckph
16.0
—
ns
SRCK low period
srckpl
16.0
—
ns
STCLK period
stclkp
40.0
—
ns
STCLK high period
stclkph
16.0
—
ns
STCLK low period
stclkpl
16.0
—
ns
SPDIFIN1, SPDIFIN2, SPDIFIN3, SPDIFIN4 Skew:
asynchronous inputs, no specs apply
Figure 25 shows the SRCK timing diagram.
srckp
srckpl
srckph
VM
SRCK
(Output)
VM
Figure 25. SRCK Timing
Figure 26 shows the STCLK timing diagram.
stclkp
stclkpl
STCLK
(Input)
VM
stclkph
VM
Figure 26. STCLK Timing
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
32
Freescale Semiconductor
1.2.9
EMC Timing Specifications—DSP56724
Table 16 lists the EMC timing parameters with EMC PLL enabled.
NOTE
The DSP56725 device does not have an EMC module.
Table 16. EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2)
Parameter
Symbol
Min
Max
Unit
Tclk
2 × Tc
—
ns
Tclk_skew
—
160
ps
Input setup to LSYNC_IN (except LGTA/LUPWAIT)
Tin_s
3
—
ns
Input hold from LSYNC_IN (except LGTA/LUPWAIT)
Tin_h
2
—
ns
LGTA valid time
Tgta
12
—
ns
LUPWAIT valid time
Tupwait
12
—
ns
LALE negedge to LAD (address phase) invalid (address latch hold time)
Tale_h
3
—
ns
Tale
3.8
—
ns
Output setup from LSYNC_IN (except LAD[23:0] and LALE)
Tout_s
4
—
ns
Output hold from LSYNC_IN (except LAD[23:0] and LALE)
Tout_h
2
—
ns
LAD[23:0] output setup from LSYNC_IN
Tad_s
3.5
—
ns
LAD[23:0] output hold from LSYNC_IN
Tad_h
1.5
—
ns
LSYNC_IN to output high impedance for LAD[23:0]
Tad_z
—
4.3
ns
LCLK cycle time
LCLK skew to LSYNC_OUT
LALE valid time
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
33
Figure 27 shows the EMC signals diagram, with EMC PLL enabled.
Tclk
LCLK
Tclk_skew
LSYNC_OUT
Tsync_in_skew
LSYNC_IN
Tin_s
Tin_h
LAD[23:0] (data)
asynchronous input
Tgta
LGTA
Tupwait
asynchronous input
LUPWAIT
Tout_s
Output Signals
Tout_h
LA[2:0]/LBCTL/LCS[7:0]
LOE/LWE
LCKE/LSDA10/LSDDQM
LSDWE/LSDRAS/LSDCAS
LGPL[5:0]
Tad_z
Tad_s
Tad_h
LAD[23:0]
Tale
Tale_h
LALE
Figure 27. EMC Signals (EMC PLL Enabled; LCRR[CLKDIV] = 2)
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
34
Freescale Semiconductor
Table 17 lists the EMC timing parameters with EMC PLL bypassed.
Table 17. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4)
Parameter
Symbol
Min
Max
Unit
LCLK cycle time
Tclk
4 × Tc
—
ns
Input setup to LCLK (except LGTA/LUPWAIT)
Tin_s
8
—
ns
Input hold from LCLK (except LGTA/LUPWAIT)1
Tin_h
–1
—
ns
LGTA valid time
Tgta
22
—
ns
LUPWAIT valid time
Tupwait
22
—
ns
LALE negedge to LAD (address phase) invalid (address latch hold
time)
Tale_h
4
—
ns
Tale
14
—
ns
Output setup from LCLK (except LAD[23:0] and LALE)
Tout_s
9
—
ns
Output hold from LCLK (except LAD[23:0] and LALE)
Tout_h
8
—
ns
LAD[23:0] output setup from LCLK
Tad_s
8
—
ns
LAD[23:0] output hold from LCLK
Tad_h
7
—
ns
LCLK to output high impedance for LAD[23:0]
Tad_z
—
8.1
ns
LALE valid time
Note: Negative hold time means the signal could be invalid before LCLK rising edge.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
35
Figure 28 shows the EMC signals diagram, with EMC PLL bypassed.
Tclk
LCLK
Tin_s
Tin_h
LAD[23:0] (data)
asynchronous input
Tgta
LGTA
Tupwait
asynchronous input
LUPWAIT
Tout_s
Output Signals
Tout_h
LA[2:0]/LBCTL/LCS[7:0]
LOE/LWE
LCKE/LSDA10/LSDDQM
LSDWE/LSDRAS/LSDCAS
LGPL[5:0]
Tad_z
Tad_s
Tad_h
LAD[23:0]
Tale
Tale_h
LALE
Figure 28. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 4
Table 18 lists the EMC timing parameters with EMC PLL bypassed.
Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8)
Parameter
Symbol
Min
Max
Unit
Tclk
8 × Tc
—
ns
Tin_s
8
—
ns
Tin_h
–1
—
ns
Tgta
42
—
ns
LUPWAIT valid time
Tupwait
42
—
ns
LALE negedge to LAD (address phase) invalid (address latch hold time)
Tale_h
5
—
ns
Tale
34
—
ns
LCLK cycle time
Input setup to LCLK (except LGTA/LUPWAIT)
Input hold from LCLK (except
LGTA/LUPWAIT)1
LGTA valid time
LALE valid time
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
36
Freescale Semiconductor
Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8)
Parameter
Symbol
Min
Max
Unit
Output setup from LCLK (except LAD[23:0] and LALE)
Tout_s
19
—
ns
Output hold from LCLK (except LAD[23:0] and LALE)
Tout_h
18
—
ns
LAD[23:0] output setup from LCLK
Tad_s
18
—
ns
LAD[23:0] output hold from LCLK
Tad_h
17
—
ns
LCLK to output high impedance for LAD[23:0]
Tad_z
—
17.1
ns
Note:
1. Negative hold time means the signal could be invalid before LCLK raising edge.
Figure 29 shows the EMC signals diagram, with EMC PLL bypassed.
Tclk
LCLK
Tin_s
Tin_h
LAD[23:0] (data)
asynchronous input
Tgta
LGTA
Tupwait
asynchronous input
LUPWAIT
Tout_s
Output Signals
Tout_h
LA[2:0]/LBCTL/LCS[7:0]
LOE/LWE
LCKE/LSDA10/LSDDQM
LSDWE/LSDRAS/LSDCAS
LGPL[5:0]
Tad_z
Tad_s
Tad_h
LAD[23:0]
Tale
Tale_h
LALE
Figure 29. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 8)
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
37
2
Functional Description and Application Information
Refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual (DSP56724RM) for detailed
functional and applications information.
3
Ordering Information
Table 19 shows the ordering information for the DSP56724/DSP56725 devices.
Table 19. Ordering Information
Device
Device Marking
Ambient Temp.
Speed
Voltage
LQFP Package
DSP56724
DSPB56724AG
0° C–70° C
250 MHz
1.14–1.26 V
20 mm × 20 mm
DSP56724
DSPB56724CAG
–40° C–85° C
200 MHz
0.95–1.05 V
20 mm × 20 mm
DSP56725
DSPB56725AF
0° C–70° C
250 MHz
1.14–1.26 V
14 mm × 14 mm
DSP56725
DSPB56725CAF
–40° C–85° C
200 MHz
0.95–1.05 V
14 mm × 14 mm
Contact your local Freescale sales representative for ordering information.
4
Package Information
This section provides package and pinout information.
Table 20 is a quick reference to the package outline drawings.
Table 20. Package Outline Drawings
Device
Package
See
DSP56724
144-pin plastic LQFP See Section 4.2, “144-Pin Package Outline Drawing,” on page 41.
DSP56725
80-pin plastic LQFP
See Section 4.3, “80-Pin Package Outline Drawing,” on page 43.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
38
Freescale Semiconductor
4.1
Pinout and Package Information
This section provides information about the available package for DSP56724 and DSP56725 devices, including diagrams of the
package pinouts. See Figure 30 for the DSP56724 pin assignments and Figure 31 for the DSP56725 pin assignments. For more
detailed information about signals, refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference
Manual (DSP56724RM).
Pinout for DSP56724 144-Pin Plastic LQFP Package
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
SCAN
MODA0/IRQA
MODB0/IRQB
MODC0/PLOCK
MODD0/PG1
FSR_3
SCKR_3
HCKR_3
SCKT_3
FST_3
HCKT_3
IO_GND
IO_VDD
CORE_GND
CORE_VDD
MODA1/IRQC
MODB1/IRQD
MODC1/NMI_1
MODD1/PG2
SDO2_2/SDI3_2
SDO3_2/SDI2_2
SDO4_2/SDI1_2
SDO5_2/SDI0_2
SDO2_3/SDI3_3
SDO3_3/SDI2_3
SDO4_3/SDI1_3
SDO5_3/SDI0_3
SS/HA2
HREQ/PH4
SCK/SCL
MOSI/HA0
MISO/SDA
SS_1/HA2_1
RESET
CORE_GND
CORE_VDD
4.1.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
DSP56724
144-Pin
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
IO_GND
IO_VDD
WDT
PINIT/NMI
TDO
TDI
TCK
TMS
SDO2_1/SDI3_1
SDO3_1/SDI2_1
SDO4_1/SDI1_1
SDO5_1/SDI0_1
CORE_GND
CORE_VDD
FSR
SCKR
HCKR
SCKT
FST
HCKT
SDO2/SDI3
SDO3/SDI2
SDO4/SDI1
SDO5/SDI0
SPDIFOUT1
SPDIFIN1
IO_GND
IO_VDD
EXTAL
XTAL
PLLP_GND
PLLD_GND
PLLD_VDD
PLLA_GND
PLLA_VDD
PLLP_VDD
LSYNC_IN
LSYNC_OUT
LAD23
LAD22
LAD21
LAD20
LAD19
LAD18
LAD17
CORE_VDD
CORE_GND
IO_VDD
IO_GND
LAD16
LAD15
LAD14
LAD13
LAD12
LAD11
LAD10
LAD9
IO_VDD
IO_GND
CORE_VDD
CORE_GND
LAD8
LAD7
LAD6
LAD5
LAD4
LAD3
LAD2
LAD1
LAD0
IO_GND
IO_VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
CORE_VDD
CORE_GND
LALE
LCS0
LCS1
LCS2
LCS3
LCS4
LCS5
LCS6
LCS7
IO_VDD
IO_GND
CORE_VDD
CORE_GND
LWE
LOE
LGPL5
LSDA10
LCKE
LCLK
LBCTL
LSDWE
LSDCAS
LGTA
LA0
LA1
LA2
IO_VDD
IO_GND
PLLP1_GND
PLLP1_VDD
PLLD1_GND
PLLD1_VDD
PLLA1_GND
PLLA1_VDD
Figure 30. DSP56724 144-Pin Package Pinout
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
39
SCAN
MODA0/IRQA
MODB0/IRQB
MODC0/PLOCK
IO_GND
IO_VDD
CORE_GND
CORE_VDD
MODA1/IRQC
MODB1/IRQD
MODC1/NMI_1
SS/HA2
HREQ/PH4
SCK/SCL
MOSI/HA0
MISO/SDA
SS_1/HA2_1
RESET
CORE_GND
CORE_VDD
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
Pinout for DSP56725 80-Pin Plastic LQFP Package
SDO2_3/SDI3_3
1
60
WDT
SDO3_3/SDI2_3
2
59
PINIT/NMI
SDO4_3/SDI1_3
3
58
TDO
SDO5_3/SDI0_3
4
57
TDI
IO_VDD
5
56
TCK
IO_GND
6
55
TMS
CORE_VDD
7
54
CORE_GND
CORE_GND
8
53
CORE_VDD
52
SDO4/SDI1
SPDIFIN1/SDO2_2/SDI3_2
SPDIFOUT1/SDO3_2/SDI2_2
DSP56725
9
10
80-Pin
37
38
39
40
HCKT
SDO2/SDI3
SDO3/SDI2
36
CORE_GND
FST
35
PLLP_VDD
CORE_VDD
41
34
20
IO_GND
PLLA_VDD
GND
33
42
IO_VDD
19
32
PLLA_GND
GND
SCKT
43
31
PLLD_VDD
18
HCKR
44
GND
30
17
SCKR
PLLD_GND
GND
29
45
FSR
16
28
PLLP_GND
GND
SDO5_1/SDI0_1
46
27
15
SDO4_1/SDI1_1
XTAL
SCKT_3
26
47
CORE_GND
EXTAL
14
25
48
SCKR_3
CORE_VDD
13
24
IO_VDD
FSR_3
SDO3_1/SDI2_1
49
23
12
SDO2_1/SDI3_1
IO_GND
SDO5_2/SDI0_2
22
50
21
SDO5/SDI0
11
FST_3
51
SDO4_2/SDI1_2
HCKT_3
4.1.2
Figure 31. DSP56725 80-Pin Package
4.1.3
Pin Multiplexing
Many pins are multiplexed, and depending on the selected configuration, can be one of three possible signals. For more about
pin multiplexing, refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual
(DSP56724RM).
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
40
Freescale Semiconductor
4.2
144-Pin Package Outline Drawing
The 144-pin package outline drawing is shown in Figure 32 and Figure 33.
Figure 32. 144-Pin Package Outline Drawing
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
41
Figure 33. 144-Pin Package Outline Drawing (continued)
FIGURE NOTES:
1 All dimensions are in millimeters.
2
Interpret dimensions and tolerances per ASME Y.14.5M–1994
3 Datums B, C and D to be determined at datum plane H.
4
The top package body size may be smaller than the bottom package size by a maximum of 0.1 mm.
5 These dimensions do not include mold protrusions. The maximum allowable protrusion is 0.25 mm per side. These dimensions
are maximum body size dimensions including mold mismatch.
6 This dimension does not include dam bar protrusion. Protrusions shall not cause the lead width to exceed 0.35 mm. Minimum
space between protrusion and an adjacent lead shall be 0.07 mm.
7 These dimensions are determined at the seating plane, datum A.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
42
Freescale Semiconductor
4.3
80-Pin Package Outline Drawing
The 80-pin package outline drawing is shown in Figure 34 and Figure 35.
Figure 34. 80-Pin Package Outline Drawing
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
43
Figure 35. 80-Pin Package Outline Drawing (continued)
FIGURE NOTES:
1
Dimensioning and tolerancing per ASME Y.14.5M–1994.
2 Controlling dimension: millimeter.
3 Data plane H is located at the bottom of lead and is coincident with the lead where the lead exits the plastic body at the bottom
of the parting line.
4
Datum E, F and to be determined at datum plane H.
5 Dimensions to be determined at seating plane C.
6 Dimensions do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions include mold mismatch and
are determined at datum plane H.
7
Dimension does not include dambar protrusion Dambar protrusion shall not cause the lead width to exceed 0.46 mm. Minimum
space between protrusion and adjacent lead or protrusion is 0.07mm.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
44
Freescale Semiconductor
5
Product Documentation
Table 21 lists the documents that provide a complete description of the DSP56724/DSP56725 devices and are required to design
properly with the part. Documentation is available from a local Freescale Semiconductor, Inc. (formerly Motorola) distributor,
semiconductor sales office, Literature Distribution Center, or through the Freescale DSP home page on the Internet (the source
for the latest information).
Table 21. DSP56724 / DSP56725 Documentation
Document Name
DSP56300 Family Manual
Description
Order Number
Detailed description of the 56300-family architecture and the 24-bit DSP56300FM
core processor and instruction set
DSP56724/DSP56725 Reference Manual Detailed description of memory, peripherals, and interfaces
DSP56724RM
DSP56724 Product Brief
Brief description of the DSP56724 device
DSP56724PB
DSP56725 Product Brief
Brief description of the DSP56725 device
DSP56725PB
DSP56724/DSP56725 Data Sheet
Electrical and timing specifications; pin and package descriptions
(this document)
DSP56724
6
Revision History
Table 22 summarizes revisions to this document.
Table 22. Revision History
Revision
Date
Description
1
12/2008
• Modified values and removed rows in Table 4, “DC Electrical Characteristics.”
• Removed “IO_VDD_25” from Figure 4, “Prevent High Current Conditions by Applying
IO_VDD Before Core_VDD.”
• In Table 7, “Reset, Stop, Mode Select, and Interrupt Timing,” for No. 15, changed 10 to
12, and for No. 16, changed 4 to 7.
• In Table 9, “Serial Host Interface SPI Protocol Timing,” updated values.
• In Table 10, “SHI I2C Protocol Timing,” added note 7 and changed Max values for No. 50
to 1000 and 300; in addition, updated the values for note 1.
• In Table 11, “Enhanced Serial Audio Interface Timing,” for No. 82, changed 19 to 15; for
No. 83, changed 20 to 15; for No. 86, changed 18 to 25; for No. 87, changed 21 to 25.
• Removed Section 1.2.5, “Timer Timing.”
• In Table 16, “EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2),” for
“LSYNC_IN (except LGTA/LUPWAIT),” changed 2 to 3.
• In Table 17, “EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4),” for
“LCLK to output high impedance for LAD [23:0],” changed 9 to 8.1.
• In Table 18, “EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8),” for
LCLK to output high impedance for LAD [23:0],” changed 19 to 17.1
• In Table 19, “Ordering Information,” added rows for DSPB56724CAG and
DSPB56725CAF, and changed “DSPA56724AG” to “DSPB56724AG.”
0
6/2008
• Initial public release.
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
45
THIS PAGE INTENTIONALLY BLANK
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
46
Freescale Semiconductor
THIS PAGE INTENTIONALLY BLANK
Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1
Freescale Semiconductor
47
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Document Number: DSP56724EC
Rev. 1
12/2008
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
ARM is the registered trademark of ARM Limited. ARM7TDMI-S is the trademark of
ARM Limited.
© Freescale Semiconductor, Inc. 2008. All rights reserved.