TI OPA2365AID

OPA365
OPA2365
SBOS365D − JUNE 2006 − REVISED JUNE 2009
50MHz, Low-Distortion, High CMRR,
RRI/O, Single-Supply
OPERATIONAL AMPLIFIER
FEATURES
DESCRIPTION
D GAIN BANDWIDTH: 50MHz
D ZERO−CROSSOVER DISTORTION TOPOLOGY:
The OPAx365 zer∅-crossover series, rail-to-rail, highperformance, CMOS operational amplifiers are optimized for very low voltage, single-supply applications.
Rail-to-rail input/output, low-noise (4.5nV/√Hz) and
high-speed operation (50MHz Gain Bandwidth) make
these devices ideal for driving sampling analog-to-digital converters (ADCs). Applications incude audio, signal conditioning, and sensor amplification. The OPA365
family of op amps are also well-suited for cell phone
power amplifier control loops.
− Excellent THD+N: 0.0004%
− CMRR: 100dB (min)
− Rail-to-Rail Input and Output
− Input 100mV Beyond Supply Rail
D
D
D
D
D
LOW NOISE: 4.5nV//Hz at 100kHz
SLEW RATE: 25V/µs
FAST SETTLING: 0.3µs to 0.01%
PRECISION:
− Low Offset: 100µV
− Low Input Bias Current: 0.2pA
2.2V TO 5.5V OPERATION
Special features include an excellent common-mode
rejection ratio (CMRR), no input stage crossover distortion, high input impedance, and rail-to-rail input and output swing. The input common-mode range includes
both the negative and positive supplies. The output voltage swing is within 10mV of the rails.
APPLICATIONS
D
D
D
D
D
D
D
The OPA365 (single version) is available in the microSIZE SOT23-5 and SO-8 packages. The OPA2365
(dual version) is offered in the SO-8 package. All versions are specified for operation from −40°C to +125°C.
Single and dual versions have identical specifications
for maximum design flexibility.
SIGNAL CONDITIONING
DATA ACQUISITION
PROCESS CONTROL
ACTIVE FILTERS
TEST EQUIPMENT
AUDIO
WIDEBAND AMPLIFIERS
R2
2kΩ
C2
2.2pF
V−
V−
U1
U2
SD1
BAT17
OPA365
VOUT
OPA365
R1
7.5Ω
VIN
V+
C1
10nF
V+
Fast Settling Peak Detector
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments
semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
Copyright  2006−2009, Texas Instruments Incorporated
! ! www.ti.com
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
ABSOLUTE MAXIMUM RATINGS(1)
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5.5V
Signal Input Terminals, Voltage(2) . . . . (V−) −0.5V to (V+) + 0.5V
Signal Input Terminals, Current(2) . . . . . . . . . . . . . . . . . . . . ±10mA
Output Short-Circuit(3) . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
Operating Temperature . . . . . . . . . . . . . . . . . . . . . −40°C to +150°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . −65°C to +150°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C
ESD Rating
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000V
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000V
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400V
(1) Stresses above these ratings may cause permanent damage.
Exposure to absolute maximum conditions for extended periods
may degrade device reliability. These are stress ratings only, and
functional operation of the device at these or any other conditions
beyond those specified is not supported.
(2) Input terminals are diode-clamped to the power-supply rails.
Input signals that can swing more than 0.5V beyond the supply
rails should be current limited to 10mA or less.
(3) Short-circuit to ground, one amplifier per package.
This integrated circuit can be damaged by ESD. Texas
Instruments recommends that all integrated circuits be
handled with appropriate precautions. Failure to observe
proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to
complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could
cause the device not to meet its published specifications.
ORDERING INFORMATION(1)
PRODUCT
PACKAGE-LEAD
PACKAGE DESIGNATOR
SOT23-5
DBV
OAVQ
SO-8
D
O365A
OPA365
PACKAGE MARKING
OPA2365
SO-8
D
O2365A
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site
at www.ti.com.
PIN CONFIGURATIONS
Top View
OPA365
OPA365
VOUT
1
V−
2
+IN
3
5
4
V+
−IN
OPA2365
NC(1)
1
8
NC(1)
−IN
2
7
+IN
3
V−
4
VOUTA
1
8
V+
V+
−IN A
2
7
VOUTB
6
VOUT
+IN A
3
6
−IN B
5
NC(1)
V−
4
5
+IN B
SOT23−5
SO−8
(1) NC denotes no internal connection.
2
SO−8
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
ELECTRICAL CHARACTERISTICS: VS = +2.2V to +5.5V
Boldface limits apply over the specified temperature range, TA = −40°C to +125°C.
At TA = +25°C, RL = 10kΩ connected to VS/2, VCM = VS/2, and VOUT = VS/2, unless otherwise noted.
OPAx365
PARAMETER
OFFSET VOLTAGE
Input Offset Voltage
VOS
Drift
dVOS/dT
vs Power Supply
PSRR
Channel Separation, dc
INPUT BIAS CURRENT
Input Bias Current
IB
over Temperature
Input Offset Current
IOS
NOISE
Input Voltage Noise, f = 0.1Hz to 10Hz
en
Input Voltage Noise Density, f = 100kHz
en
Input Current Noise Density, f = 10kHz
in
INPUT VOLTAGE RANGE
Common-Mode Voltage Range
VCM
Common-Mode Rejection Ratio
CMRR
INPUT CAPACITANCE
Differential
Common-Mode
OPEN-LOOP GAIN
Open-Loop Voltage Gain
AOL
FREQUENCY RESPONSE
Gain-Bandwidth Product
Slew Rate
Settling Time, 0.1%
0.01%
Overload Recovery Time
Total Harmonic Distortion + Noise(1)
OUTPUT
Voltage Output Swing from Rail
over Temperature
Short-Circuit Current
Capacitive Load Drive
Open-Loop Output Impedance
POWER SUPPLY
Specified Voltage Range
Quiescent Current Per Amplifier
over Temperature
TEMPERATURE RANGE
Specified Range
Thermal Resistance
SOT23-5
SO-8
GBW
SR
tS
THD+N
TEST CONDITIONS
VS = +2.2V to +5.5V
TYP
MAX
UNIT
100
1
10
0.2
200
µV
µV/°C
µV/V
µV/V
100
±0.2
±10
See Typical Characteristics
±0.2
±10
(V−) − 0.1V 3 VCM 3 (V+) + 0.1V
RL = 10kΩ, 100mV < VO < (V+) − 100mV
RL = 600Ω, 200mV < VO < (V+) − 200mV
RL = 600Ω, 200mV < VO < (V+) − 200mV
VS = 5V
(V−) − 0.1
100
100
100
94
G = +1
4V Step, G = +1
4V Step, G = +1
VIN x Gain > VS
RL = 600Ω, VO = 4VPP, G = +1, f = 1kHz
RL = 10kΩ, VS = 5.5V
f = 1MHz, IO = 0
pA
120
(V+) + 0.1
V
dB
6
2
pF
pF
120
120
dB
dB
dB
50
25
200
300
< 0.1
0.0004
MHz
V/µs
ns
ns
µs
%
10
20
±65
See Typical Characteristics
30
2.2
IO = 0
pA
µVPP
nV/√Hz
fA/√Hz
5
4.5
4
ISC
CL
VS
IQ
MIN
4.6
−40
qJA
200
150
mV
mA
Ω
5.5
5
5
V
mA
mA
+125
°C
°C/W
°C/W
°C/W
(1) 3rd-order filter; bandwidth 80kHz at −3dB.
3
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
TYPICAL CHARACTERISTICS
At TA = +25°C, VS = +5V, and CL = 0pF, unless otherwise noted.
POWER SUPPLY AND COMMON−MODE
REJECTION RATIO vs FREQUENCY
OPEN−LOOP GAIN/PHASE vs FREQUENCY
140
0
140
CMRR
−45
100
Phase
80
−90
60
40
Gain
20
−135
PSRR, CMRR (dB)
120
Phase (_ )
Voltage Gain (dB)
120
100
80
PSRR
60
40
20
0
−180
100M
−20
10
100
1k
10k
100k
1M
10M
0
10
100
1k
10k
100k
1M
Frequency (Hz)
Frequency (Hz)
OFFSET VOLTAGE
PRODUCTION DISTRIBUTION
OFFSET VOLTAGE DRIFT
PRODUCTION DISTRIBUTION
10M
100M
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
−200
−180
−160
−140
−120
−100
−80
−60
−40
−20
0
20
40
60
80
100
120
140
160
180
200
Population
Population
VS = 5.5V
Offset Voltage Drift (µV/_ C)
Offset Voltage (µV)
INPUT BIAS CURRENT vs TEMPERATURE
INPUT BIAS CURRENT vs COMMON−MODE VOLTAGE
500
1000
900
400
700
300
600
IB (pA)
Input Bias (pA)
800
500
400
VCM Specified Range
300
100
200
100
0
−50
−25
0
25
50
Temperature (_C)
4
200
75
100
125
0
−25
−0.5 0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VCM (V)
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
TYPICAL CHARACTERISTICS (continued)
At TA = +25°C, VS = +5V, and CL = 0pF, unless otherwise noted.
OPA365 OUTPUT VOLTAGE
vs OUTPUT CURRENT
3
3
VS = ±1.1V
VS = ±2.75V
1
−40_ C
0
+25_ C
+125_C
+25_ C
VS = ±1.1V
VS = ±2.75V
2
Output Voltage (V)
2
Output Voltage (V)
OPA2365 OUTPUT VOLTAGE SWING
vs OUTPUT CURRENT
−40_ C
+125_ C
−1
−2
1
+25_ C
0
+125_C
+25_C −40_C
−1
−3
0
10
20
30
40
50
60
70
80
90
100
0
10
20
30
Output Current (mA)
40
50
60
70
80
90
100
Output Current (mA)
SHORT−CIRCUIT CURRENT vs TEMPERATURE
QUIESCENT CURRENT vs SUPPLY VOLTAGE
4.75
Dual
Quiescent Current (mA)
Short−Circuit Current (mA)
+125_ C
−2
−3
70
60
50
40
30
20
10
0
−10
−20
−30
−40
−50
−60
−70
−80
−40_C
Single
VS = ±2.75V
4.50
4.25
4.00
3.75
−50
−25
0
25
50
75
100
125
2.2 2.5
3.0
3.5
4.0
4.5
5.0
5.5
Supply Voltage (V)
Temperature (_ C)
0.1Hz to 10Hz
INPUT VOLTAGE NOISE
QUIESCENT CURRENT vs TEMPERATURE
4.74
4.68
2µV/div
Quiescent Current (mA)
4.80
4.62
4.56
4.50
−50
−25
0
25
50
75
100
125
1s/div
Temperature (_ C)
5
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
TYPICAL CHARACTERISTICS (continued)
At TA = +25°C, VS = +5V, and CL = 0pF, unless otherwise noted.
TOTAL HARMONIC DISTORTION + NOISE
vs FREQUENCY
INPUT VOLTAGE NOISE SPECTRAL DENSITY
1k
0.01
VO = 1VRMS
0.001
Voltage Noise (nV/√Hz)
THD+N (%)
G = 10, RL = 600Ω
VO = 1.448VRMS
100
10
VO = 1VRMS
G = +1, RL = 600Ω
1
0.0001
10
100
1k
10k
10
20k
100
1k
10k
Frequency (Hz)
Frequency (Hz)
OVERSHOOT vs CAPACITIVE LOAD
60
SMALL−SIGNAL STEP RESPONSE
G = +1
Output Voltage (50mV/div)
Overshoot (%)
50
40
G = −1
30
G = +10
20
10
G = −10
G=1
RL = 10kΩ
VS = ±2.5
0
0
100
1k
Capacitive Load (pF)
Time (50ns/div)
SMALL−SIGNAL STEP RESPONSE
Output Voltage (50mV/div)
Output Voltage (1V/div)
LARGE−SIGNAL STEP RESPONSE
G=1
RL = 10kΩ
VS = ±2.5
Time (250ns/div)
6
G=1
RL = 600Ω
VS = ±2.5
Time (50ns/div)
100k
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
TYPICAL CHARACTERISTICS (continued)
At TA = +25°C, VS = +5V, and CL = 0pF, unless otherwise noted.
Output Voltage (1V/div)
LARGE−SIGNAL STEP RESPONSE
G=1
RL = 600Ω
VS = ±2.5
Time (250ns/div)
7
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
APPLICATIONS INFORMATION
R2
10kΩ
OPERATING CHARACTERISTICS
The OPA365 amplifier parameters are fully specified
from +2.2V to +5.5V. Many of the specifications apply
from −40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or
temperature are presented in the Typical Characteristics.
+1.5V
R1
1kΩ
V+
OPA365
GENERAL LAYOUT GUIDELINES
The OPA365 is a wideband amplifier. To realize the full
operational performance of the device, good high-frequency printed circuit board (PCB) layout practices are
required. Low-loss, 0.1µF bypass capacitors must be
connected between each supply pin and ground as
close to the device as possible. The bypass capacitor
traces should be designed for minimum inductance.
C1
100nF
VIN
V−
C2
100nF
−1.5V
a) Dual Supply Connection
BASIC AMPLIFIER CONFIGURATIONS
As with other single-supply op amps, the OPA365 may
be operated with either a single supply or dual supplies.
A typical dual-supply connection is shown in Figure 1,
which is accompanied by a single-supply connection.
The OPA365 is configured as a basic inverting amplifier
with a gain of −10V/V. The dual-supply connection has
an output voltage centered on zero, while the single−
supply connection has an output centered on the common-mode voltage VCM. For the circuit shown, this voltage is 1.5V, but may be any value within the commonmode input voltage range. The OPA365 VCM range
extends 100mV beyond the power-supply rails.
VOUT
R2
10kΩ
+3V
R1
1kΩ
C1
100nF
V+
OPA365
VIN
V−
VCM = 1.5V
b) Single−Supply Connection
Figure 1. Basic Circuit Connections
8
VOUT
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
Figure 2 shows a single-supply, electret microphone
application where VCM is provided by a resistive divider.
The divider also provides the bias voltage for the electret element.
49kΩ
Clean 3.3V Supply
3.3V
4kΩ
INPUT AND ESD PROTECTION
The OPA365 incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the case
of input and output pins, this protection primarily consists of current steering diodes connected between the
input and power-supply pins. These ESD protection
diodes also provide in-circuit, input overdrive protection, provided that the current is limited to 10mA as
stated in the Absolute Maximum Ratings. Figure 3
shows how a series input resistor may be added to the
driven input to limit the input current. The added resistor
contributes thermal noise at the amplifier input and its
value should be kept to the minimum in noise-sensitive
applications.
VOUT
OPA365
Electret
Microphone
6kΩ
5kΩ
1µF
Figure 2. Microphone Preamplifier
V+
RAIL-TO-RAIL INPUT
I OVERLOAD
10mA max
The OPA365 product family features true rail-to-rail input operation, with supply voltages as low as ±1.1V
(2.2V). A unique zer∅-crossover input topology eliminates the input offset transition region typical of many
rail-to-rail, complementary stage operational amplifiers.
This topology also allows the OPA365 to provide superior common-mode performance over the entire input
range, which extends 100mV beyond both power-supply rails, as shown in Figure 4. When driving ADCs, the
highly linear VCM range of the OPA365 assures that the
op amp/ADC system linearity performance is not compromised.
VOUT
OPA365
VIN
5kΩ
Figure 3. Input Current Protection
OFFSET VOLTAGE vs COMMON−MODE VOLTAGE
200
VS = ±2.75V
150
100
VOS (µV)
OPA365
50
0
−50
−100
Competitors
−150
−200
−3
−2
−1
0
1
2
3
Common−Mode Voltage (V)
Figure 4. OPA365 has Linear Offset Over the
Entire Common-Mode Range
9
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
A simplified schematic illustrating the rail-to-rail input
circuitry is shown in Figure 5.
VS
Regulated
Charge Pump
VO U T = VC C +1.8V
CAPACITIVE LOADS
The OPA365 may be used in applications where driving
a capacitive load is required. As with all op amps, there
may be specific instances where the OPA365 can become unstable, leading to oscillation. The particular op
amp circuit configuration, layout, gain and output loading are some of the factors to consider when establishing whether an amplifier will be stable in operation. An
op amp in the unity-gain (+1V/V) buffer configuration
and driving a capacitive load exhibits a greater tendency to be unstable than an amplifier operated at a higher
noise gain. The capacitive load, in conjunction with the
op amp output resistance, creates a pole within the
feedback loop that degrades the phase margin. The
degradation of the phase margin increases as the capacitive loading increases.
VC C + 1.8V
Patent Pending
Very Low Ripple
Topology
IB IAS
IB IA S
IBI A S
VIN −
VO U T
VI N +
When operating in the unity-gain configuration, the
OPA365 remains stable with a pure capacitive load up
to approximately 1nF. The equivalent series resistance
(ESR) of some very large capacitors (CL > 1µF) is sufficient to alter the phase characteristics in the feedback
loop such that the amplifier remains stable. Increasing
the amplifier closed-loop gain allows the amplifier to
drive increasingly larger capacitance. This increased
capability is evident when observing the overshoot response of the amplifier at higher voltage gains. See the
typical characteristic graph, Small-Signal Overshoot
vs. Capacitive Load.
One technique for increasing the capacitive load drive
capability of the amplifier operating in unity gain is to insert a small resistor, typically 10Ω to 20Ω, in series with
the output; see Figure 6. This resistor significantly reduces the overshoot and ringing associated with large
capacitive loads. A possible problem with this technique
is that a voltage divider is created with the added series
resistor and any resistor connected in parallel with the
capacitive load. The voltage divider introduces a gain
error at the output that reduces the output swing. The
error contributed by the voltage divider may be insignificant. For instance, with a load resistance, RL = 10kΩ,
and RS = 20Ω, the gain error is only about 0.2%. However, when RL is decreased to 600Ω, which the OPA365
is able to drive, the error increases to 7.5%.
10
IB IA S
Figure 5. Simplified Schematic
V+
RS
VOUT
OPA365
VIN
10Ω to
20Ω
RL
CL
Figure 6. Improving Capacitive Load Drive
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
ACHIEVING AN OUTPUT LEVEL OF
ZERO VOLTS (0V)
V+ = +5V
Certain single-supply applications require the op amp
output to swing from 0V to a positive full-scale voltage
and have high accuracy. An example is an op amp
employed to drive a single-supply ADC having an input
range from 0V to +5V. Rail-to-rail output amplifiers with
very light output loading may achieve an output level
within millivolts of 0V (or +VS at the high end), but not
0V. Furthermore, the deviation from 0V only becomes
greater as the load current required increases. This increased deviation is a result of limitations of the CMOS
output stage.
OPA365
500µA
Note that this technique does not work with all op amps
and should only be applied to op amps such as the
OPA365 that have been specifically designed to operate in this manner. Also, operating the OPA365 output
at 0V changes the output stage operating conditions,
resulting in somewhat lower open-loop gain and bandwidth. Keep these precautions in mind when driving a
capacitive load because these conditions can affect circuit transient response and stability.
RP = 10kΩ
Op Amps
Negative
Supply
Grounded
When a pull-down resistor is connected from the amplifier output to a negative voltage source, the OPA365
can achieve an output level of 0V, and even a few millivolts below 0V. Below this limit, nonlinearity and limiting
conditions become evident. Figure 7 illustrates a circuit
using this technique.
A pull-down current of approximately 500µA is required
when OPA365 is connected as a unity-gain buffer.
A practical termination voltage (VNEG) is −5V, but
other convenient negative voltages also may be
used. The pull-down resistor RL is calculated from
RL = [(VO −VNEG)/(500µA)]. Using a minimum output
voltage (VO) of 0V, RL = [0V−(−5V)]/(500µA)] = 10kΩ.
Keep in mind that lower termination voltages result in
smaller pull-down resistors that load the output during
positive output voltage excursions.
VOUT
VIN
−V = −5V
(Additional
Negative Supply)
Figure 7. Swing-to-Ground
R3
549Ω
C2
150pF
V+
R1
549Ω
R2
1.24kΩ
VIN
OPA365
C1
1nF
VOUT
V−
Figure 8. Second-Order Butterworth 500kHz
Low-Pass Filter
ACTIVE FILTERING
The OPA365 is well-suited for active filter applications
requiring a wide bandwidth, fast slew rate, low-noise,
single-supply operational amplifier. Figure 8 shows a
500kHz, 2nd-order, low-pass filter utilizing the multiple−
feedback (MFB) topology. The components have been
selected to provide a maximally-flat Butterworth
response. Beyond the cutoff frequency, roll-off is
−40dB/dec. The Butterworth response is ideal for applications requiring predictable gain characteristics
such as the anti-aliasing filter used ahead of an ADC.
11
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
One point to observe when considering the MFB filter
is that the output is inverted, relative to the input. If this
inversion is not required, or not desired, a noninverting
output can be achieved through one of these options:
1) adding an inverting amplifier; 2) adding an additional
2nd-order MFB stage; or 3) using a noninverting filter
topology such as the Sallen-Key (shown in Figure 9).
MFB and Sallen-Key, low-pass and high-pass filter synthesis is quickly accomplished using TI’s FilterPro program. This software is available as a free download at
www.ti.com.
DRIVING AN ANALOG-TO-DIGITAL CONVERTER
Very wide common-mode input range, rail-to-rail input
and output voltage capability and high speed make the
OPA365 an ideal driver for modern ADCs. Also, because it is free of the input offset transition characteristics inherent to some rail-to-rail CMOS op amps, the
OPA365 provides low THD and excellent linearity
throughout the input voltage swing range.
Figure 10 shows the OPA365 driving an ADS8326,
16-bit, 250kSPS converter. The amplifier is connected
as a unity-gain, noninverting buffer and has an output
swing to 0V, making it directly compatible with the ADC
minus full-scale input level. The 0V level is achieved by
powering the OPA365 V− pin with a small negative voltage established by the diode forward voltage drop.
A small, signal-switching diode or Schottky diode
provides a suitable negative supply voltage of −0.3 to
−0.7V. The supply rail-to-rail is equal to V+, plus the
small negative voltage.
C3
220pF
R2
19.5kΩ
R1
1.8kΩ
R3
150kΩ
VIN = 1VRMS
C1
3.3nF
C2
47pF
OPA365
VOUT
Figure 9. Configured as a 3-Pole, 20kHz, Sallen-Key Filter
+5V
C1
100nF
+5V
R1(1)
100Ω
V+
+IN
OPA365
C3(1)
1nF
V−
VIN
0 to 4.096V
−IN
ADS8326
16−Bit
250kSPS
REF IN
+5V
Optional(2)
R2
500Ω
SD1
BAS40
−5V
C2
100nF
REF3240
4.096V
C4
100nF
NOTES: (1) Suggested value; may require adjustment based on specific application.
(2) Single−supply applications lose a small number of ADC codes near ground due
to op amp output swing limitation. If a negative power supply is available, this
simple circuit creates a −0.3V supply to allow output swing to true ground
potential.
Figure 10. Driving the ADS8326
12
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
One method for driving an ADC that negates the need
for an output swing down to 0V uses a slightly compressed ADC full-scale input range (FSR). For example, the 16-bit ADS8361 (shown in Figure 11) has a
maximum FSR of 0V to 5V, when powered by a +5V
supply and VREF of 2.5V. The idea is to match the ADC
input range with the op amp full linear output swing
range; for example, an output range of +0.1 to +4.9V.
The reference output from the ADS8361 ADC is divided
down from 2.5V to 2.4V using a resistive divider. The
ADC FSR then becomes 4.8VPP centered on a common-mode voltage of +2.5V. Current from the ADS8361
reference pin is limited to about ±10µA. Here, 5µA was
used to bias the divider. The resistors must be precise
to maintain the ADC gain accuracy. An additional benefit of this method is the elimination of the negative supply voltage; it requires no additional power-supply current.
An RC network, consisting of R1 and C1, is included between the op amp and the ADS8361. It not only provides a high-frequency filter function, but more importantly serves as a charge reservoir used for charging
the converter internal hold capacitance. This capability
assures that the op amp output linearity is maintained
as the ADC input characteristics change throughout the
conversion cycle. Depending on the particular application and ADC, some optimization of the R1 and C1 values may be required for best transient performance.
R2
10kΩ
+5V
R1
10kΩ
C1
100nF
V+
+5V
R3(1)
100Ω
−IN
OPA365
VIN
0.1V to 4.9V
C2(1)
V−
1nF
+IN
ADS8361
16−Bit
100kSPS
REF OUT REF IN
+2.5V
NOTE: (1) Suggested value; may require adjustment
based on specific application.
R4
20kΩ
+2.4V
R5
480kΩ
C3
1µF
Figure 11. Driving the ADS8361
13
"#$
%"#$
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
Figure 12 illustrates the OPA2365 dual op amp providing signal conditioning within an ADS1258 bridge sensor circuit. It follows the ADS1258 16:1 multiplexer and
is connected as a differential in/differential out amplifier.
The voltage gain for this stage is approximately 10V/V.
Driving the ADS1258 internal ADC in differential mode,
rather than in a single-ended, exploits the full linearity
performance capability of the converter. For best common-mode rejection the two R2 resistors should be
closely matched.
Note that in Figure 12, the amplifiers, bridges,
ADS1258 and internal reference are powered by the
same single +5V supply. This ratiometric connection
helps cancel excitation voltage drift effects and noise.
For best performance, the +5V supply should be as free
as possible of noise and transients.
When the ADS1258 data rate is set to maximum and
the chop feature enabled, this circuit yields 12 bits of
noise-free resolution with a 50mV full-scale input.
The chop feature is used to reduce the ADS1258 offset
and offset drift to very low levels. A 2.2nF capacitor is
required across the ADC inputs to bypass the sampling
currents. The 47Ω resistors provide isolation for the
OPA2365 outputs from the relatively large, 2.2nF capacitive load. For more information regarding the
ADS1258, see the product data sheet available for
down load at www.ti.com.
+5V
RFI
10µF
+
0.1µF
2kΩ
RFI
AIN0
AVSS
AVDD
2kΩ
REFP
AIN1
+
…
2kΩ
RFI
AINCOM
MUXOUTP
AIN15
MUXOUTN
2kΩ
RFI
ADS1258
AIN14
RFI
ADCINN
…
…
REFN
ADCINP
RFI
+5V
2.2nF
0.1µF
R3
47Ω
OPA2365
R2 = 10kΩ
R1 = 2.2kΩ
R2 = 10kΩ
R3
47Ω
OPA2365
NOTE: G = 1 + 2R2/R1. Match R2 resistors for optimum CMRR.
Figure 12. Conditioning Input Signals to the ADS1258 on a Single-Supply
14
10µF
0.1µF
www.ti.com
SBOS365D − JUNE 2006 − REVISED JUNE 2009
Revision History
DATE
REV
PAGE
SECTION
DESCRIPTION
Changed title.
Changed feature bullets.
6/09
D
1
Front Page
Changed drawing.
Deleted table.
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
15
PACKAGE OPTION ADDENDUM
www.ti.com
23-Feb-2011
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
OPA2365AID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA2365AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA2365AIDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA2365AIDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA365AID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA365AIDBVR
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA365AIDBVRG4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA365AIDBVT
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA365AIDBVTG4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA365AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA365AIDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
OPA365AIDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
(3)
Samples
(Requires Login)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
23-Feb-2011
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF OPA365 :
• Automotive: OPA365-Q1
NOTE: Qualified Version Definitions:
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
20-Jul-2010
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
OPA2365AIDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
OPA365AIDBVR
SOT-23
DBV
5
3000
179.0
8.4
3.2
3.2
1.4
4.0
8.0
Q3
OPA365AIDBVT
SOT-23
DBV
5
250
179.0
8.4
3.2
3.2
1.4
4.0
8.0
Q3
OPA365AIDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
20-Jul-2010
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
OPA2365AIDR
SOIC
D
8
2500
346.0
346.0
29.0
OPA365AIDBVR
SOT-23
DBV
5
3000
203.0
203.0
35.0
OPA365AIDBVT
SOT-23
DBV
5
250
203.0
203.0
35.0
OPA365AIDR
SOIC
D
8
2500
346.0
346.0
29.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and
Automotive
www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
Wireless
www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions
www.ti.com/lprf
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated