PIC32MX5XX/6XX/7XX Family Data Sheet High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers © 2009-2011 Microchip Technology Inc. DS61156G Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2009-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-61341-150-6 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS61156G-page 2 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers High-Performance 32-bit RISC CPU: Peripheral Features (Continued): • MIPS32® M4K® 32-bit core with 5-stage pipeline • 80 MHz maximum frequency • 1.56 DMIPS/MHz (Dhrystone 2.1) performance at zero Wait state Flash access • Single-cycle multiply and high-performance divide unit • MIPS16e® mode for up to 40% smaller code size • Two sets of 32 core register files (32-bit) to reduce interrupt latency • Prefetch Cache module to speed execution from Flash • Internal 8 MHz and 32 kHz oscillators • Six UART modules with: - RS-232, RS-485 and LIN support - IrDA® with on-chip hardware encoder and decoder • Up to four SPI modules • Up to five I2C™ modules • Separate PLLs for CPU and USB clocks • Parallel Master and Slave Port (PMP/PSP) with 8-bit and 16-bit data, and up to 16 address lines • Hardware Real-Time Clock and Calendar (RTCC) • Five 16-bit Timers/Counters (two 16-bit pairs combine to create two 32-bit timers) • Five Capture inputs • Five Compare/PWM outputs • Five external interrupt pins • High-speed I/O pins capable of toggling at up to 80 MHz • High-current sink/source (18 mA/18 mA) on all I/O pins • Configurable open-drain output on digital I/O pins Microcontroller Features: • Operating voltage range of 2.3V to 3.6V • 64K to 512K Flash memory (plus an additional 12 KB of Boot Flash) • 16K to 128K SRAM memory • Pin-compatible with most PIC24/dsPIC® DSC devices • Multiple power management modes • Multiple interrupt vectors with individually programmable priority • Fail-Safe Clock Monitor mode • Configurable Watchdog Timer with on-chip Low-Power RC oscillator for reliable operation Peripheral Features: • Atomic SET, CLEAR and INVERT operation on select peripheral registers • Up to 8-channels of hardware DMA with automatic data size detection • USB 2.0-compliant full-speed device and On-The-Go (OTG) controller: - Dedicated DMA channels • 10/100 Mbps Ethernet MAC with MII and RMII interface: - Dedicated DMA channels • CAN module: - 2.0B Active with DeviceNet™ addressing support - Dedicated DMA channels • 3 MHz to 25 MHz crystal oscillator © 2009-2011 Microchip Technology Inc. Debug Features: • Two programming and debugging Interfaces: - 2-wire interface with unintrusive access and real-time data exchange with application - 4-wire MIPS® standard enhanced Joint Test Action Group (JTAG) interface • Unintrusive hardware-based instruction trace • IEEE Standard 1149.2 compatible (JTAG) boundary scan Analog Features: • Up to 16-channel, 10-bit Analog-to-Digital Converter: - 1 Msps conversion rate - Conversion available during Sleep and Idle • Two Analog Comparators DS61156G-page 3 PIC32MX5XX/6XX/7XX TABLE 1: PIC32 USB AND CAN – FEATURES Device Pins Program Memory (KB) Data Memory (KB) USB CAN Timers/Capture/Compare DMA Channels (Programmable/ Dedicated) UART(2,3) SPI(3) I2C™(3) 10-bit 1 Msps ADC (Channels) Comparators PMP/PSP JTAG Trace Packages(4) USB and CAN PIC32MX534F064H 64 64 + 12(1) 16 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX564F064H 64 64 + 12(1) 32 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX564F128H 64 128 + 12(1) 32 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX575F256H 64 256 + 12(1) 64 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX575F512H 64 512 + 12(1) 64 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX534F064L 100 64 + 12(1) 16 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX564F064L 100 64 + 12(1) 32 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX564F128L 100 128 + 12(1) 32 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX575F256L 100 256 + 12(1) 64 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX575F512L 100 512 + 12(1) 64 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG Legend: Note 1: 2: 3: 4: PF, PT = TQFP MR = QFN BG = XBGA This device features 12 KB boot Flash memory. CTS and RTS pins may not be available for all UART modules. Refer to the “Pin Diagrams” section for more information. Some pins between the UART, SPI and I2C modules may be shared. Refer to the “Pin Diagrams” section for more information. Refer to Section 32.0 “Packaging Information” for more information. DS61156G-page 4 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 2: PIC32 USB AND ETHERNET – FEATURES Device Pins Program Memory (KB) Data Memory (KB) USB Ethernet Timers/Capture/Compare DMA Channels (Programmable/ Dedicated) UART(2,3) SPI(3) I2C™(3) 10-bit 1 Msps ADC (Channels) Comparators PMP/PSP JTAG Trace Packages(4) USB and Ethernet PIC32MX664F064H 64 64 + 12(1) 32 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX664F128H 64 128 + 12(1) 32 1 1 5/5/5 4/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX675F256H 64 256 + 12(1) 64 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX675F512H 64 512 + 12(1) 64 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX695F512H 64 512 + 12(1) 128 1 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX664F064L 100 64 + 12(1) 32 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX664F128L 100 128 + 12(1) 32 1 1 5/5/5 4/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX675F256L 100 256 + 12(1) 64 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX675F512L 100 512 + 12(1) 64 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX695F512L 100 128 1 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG Legend: Note 1: 2: 3: 4: 512 + 12(1) PF, PT = TQFP MR = QFN BG = XBGA This device features 12 KB boot Flash memory. CTS and RTS pins may not be available for all UART modules. Refer to the “Pin Diagrams” section for more information. Some pins between the UART, SPI and I2C modules may be shared. Refer to the “Pin Diagrams” section for more information. Refer to Section 32.0 “Packaging Information” for more information. © 2009-2011 Microchip Technology Inc. DS61156G-page 5 PIC32MX5XX/6XX/7XX TABLE 3: PIC32 USB, ETHERNET AND CAN – FEATURES Pins Program Memory (KB) Data Memory (KB) USB Ethernet CAN Timers/Capture/Compare DMA Channels (Programmable/ Dedicated) UART(2,3) SPI(3) I2C™(3) 10-bit 1 Msps ADC (Channels) Comparators JTAG Trace Packages(4) PIC32MX764F128H 64 128 + 12(1) 32 1 1 1 5/5/5 4/6 6 3 4 16 2 Yes Yes No PT, MR PIC32MX775F256H 64 256 + 12(1) 64 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No PT, MR PIC32MX775F512H 64 512 + 12(1) 64 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No PT, MR PIC32MX795F512H 64 512 + 12(1) 128 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No PT, MR PIC32MX764F128L 100 128 + 12(1) 32 1 1 1 5/5/5 4/6 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX775F256L 100 256 + 12(1) 64 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX775F512L 100 512 + 12(1) 64 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX795F512L 100 512 + 12(1) 128 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes PT, PF, BG Legend: Note 1: 2: 3: 4: PMP/PSP Device USB, Ethernet and CAN PF, PT = TQFP MR = QFN BG = XBGA This device features 12 KB boot Flash memory. CTS and RTS pins may not be available for all UART modules. Refer to the “Pin Diagrams” section for more information. Some pins between the UART, SPI and I2C modules may be shared. Refer to the “Pin Diagrams” section for more information. Refer to Section 32.0 “Packaging Information” for more information. DS61156G-page 6 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams 64-Pin QFN(1) PMD4/RE4 PMD3/RE3 PMD2/RE2 PMD1/RE1 PMD0/RE0 C1TX/RF1 C1RX/RF0 VDD VCAP/VCORE CN16/RD7 CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL3/SDO3/U1TX/OC4/RD3 SDA3/SDI3/U1RX/OC3/RD2 SCK3/U4TX/U1RTS/OC2/RD1 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PMD5/RE5 PMD6/RE6 PMD7/RE7 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIC32MX534F064H PIC32MX564F064H PIC32MX564F128H PIC32MX575F256H PIC32MX575F512H 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 IC4/PMCS1/PMA14/INT4/RD11 SCL1/IC3/PMCS2/PMA15/INT3/RD10 SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 RTCC/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/SS4/U5RX/U2CTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 AN15/OCFB/PMALL/PMA0/CN12/RB15 AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4 AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. © 2009-2011 Microchip Technology Inc. DS61156G-page 7 PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin QFN(1) ETXEN/PMD5/RE5 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 AETXD0/ERXD2/RF1 AETXD1/ERXD3/RF0 VDD VCAP/VCORE ETXCLK/AERXERR/CN16/RD7 AETXEN/ETXERR/CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL3/SDO3/U1TX/OC4/RD3 SDA3/SDI3/U1RX/OC3/RD2 EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1 ERXERR/PMD4/RE4 ERXCLK/EREFCLK/PMD3/RE3 ERXDV/ECRSDV/PMD2/RE2 ERXD0/PMD1/RE1 ERXD1/PMD0/RE0 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 PIC32MX664F064H 42 41 PIC32MX664F128H 40 PIC32MX675F256H 39 PIC32MX675F512H 38 PIC32MX695F512H 37 36 35 34 33 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/SS4/U5RX/U2CTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/SCK4/U5TX/U2RTSU2RTS/PMALH/PMA1/RB14 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 SDA5/SDI4/U2RX/PMA9/CN17/RF4 SCL5/SDO4/U2TX/PMA8/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS61156G-page 8 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin QFN(1) ETXEN/PMD5/RE5 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 PIC32MX775F256H 8 40 PIC32MX775F512H 9 39 PIC32MX795F512H 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/C2TX/SS4/U5RX/U2CTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/C2RX/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4 AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 C1TX/AETXD0/ERXD2/RF1 C1RX/AETXD1/ERXD3/RF0 VDD VCAP/VCORE ETXCLK/AERXERR/CN16/RD7 AETXEN/ETXERR/CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL3/SDO3/U1TX/OC4/RD3 SDA3/SDI3/U1RX/OC3/RD2 EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1 ERXERR/PMD4/RE4 ERXCLK/EREFCLKPMD3/RE3 ERXDV/ECRSDV/PMD2/RE2 ERXD0/PMD1/RE1 ERXD1/PMD0/RE0 = Pins are up to 5V tolerant Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. © 2009-2011 Microchip Technology Inc. DS61156G-page 9 PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin QFN(1) ETXEN/PMD5/RE5 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 PIC32MX764F128H 8 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/SS4/U5RX/U2CTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4 AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 C1TX/AETXD0/ERXD2/RF1 C1RX/AETXD1/ERXD3/RF0 VDD VCAP/VCORE ETXCLK/AERXERR/CN16/RD7 AETXEN/ETXERR/CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL3/SDO3/U1TX/OC4/RD3 SDA3/SDI3/U1RX/OC3/RD2 EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1 ERXERR/PMD4/RE4 ERXCLK/EREFCLKPMD3/RE3 ERXDV/ECRSDV/PMD2/RE2 ERXD0/PMD1/RE1 ERXD1/PMD0/RE0 = Pins are up to 5V tolerant Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS61156G-page 10 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) = Pins are up to 5V tolerant PMD4/RE4 PMD3/RE3 PMD2/RE2 PMD1/RE1 PMD0/RE0 C1TX/RF1 C1RX/RF0 VDD VCAP/VCORE CN16/RD7 CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL3/SDO3/U1TX/OC4/RD3 SDA3/SDI3/U1RX/OC3/RD2 SCK3/U4TX/U1RTS/OC2/RD1 64-Pin TQFP 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PMD5/RE5 PMD6/RE6 PMD7/RE7 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIC32MX534F064H PIC32MX564F064H PIC32MX564F128H PIC32MX575F256H PIC32MX575F512H 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 IC4/PMCS1/PMA14/INT4/RD11 SCL1/IC3/PMCS2/PMA15/INT3/RD10 SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 RTCC/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/SS4/U5RX/U2CTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 AN15/OCFB/PMALL/PMA0/CN12/RB15 AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4 AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 © 2009-2011 Microchip Technology Inc. DS61156G-page 11 PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin TQFP AETXD0/ERXD2/RF1 AETXD1/ERXD3/RF0 VDD VCAP/VCORE ETXCLK/AERXERR/CN16/RD7 AETXEN/ETXERR/CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL3/SDO3/U1TX/OC4/RD3 SDA3/SDI3/U1RX/OC3/RD2 EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1 ERXERR/PMD4/RE4 ERXCLK/EREFCLK/PMD3/RE3 ERXDV/ECRSDV/PMD2/RE2 ERXD0/PMD1/RE1 ERXD1/PMD0/RE0 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 ETXEN/PMD5/RE5 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/SS4/U5RX/U2CTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 SDA5/SDI4/U2RX/PMA9/CN17/RF4 SCL5/SDO4/U2TX/PMA8/CN18/RF5 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 1 2 3 4 5 6 PIC32MX664F064H 7 PIC32MX664F128H 8 PIC32MX675F256H 9 PIC32MX675F512H 10 PIC32MX695F512H 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DS61156G-page 12 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin TQFP ETXEN/PMD5/RE5 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 1 2 3 4 5 6 7 8 PIC32MX775F256H 9 PIC32MX775F512H 10 PIC32MX795F512H 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/C2TX/SS4/U5RX/U2CTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/C2RX/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4 AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 C1TX/AETXD0/ERXD2/RF1 C1RX/AETXD1/ERXD3/RF0 VDD VCAP/VCORE ETXCLK/AERXERR/CN16/RD7 AETXEN/ETXERR/CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL3/SDO3/U1TX/OC4/RD3 SDA3/SDI3/U1RX/OC3/RD2 EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1 ERXERR/PMD4/RE4 ERXCLK/EREFCLK/PMD3/RE3 ERXDV/ECRSDV/PMD2/RE2 ERXD0/PMD1/RE1 ERXD1/PMD0/RE0 = Pins are up to 5V tolerant © 2009-2011 Microchip Technology Inc. DS61156G-page 13 PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin TQFP ETXEN/PMD5/RE5 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 1 2 3 4 5 6 7 8 PIC32MX764F128H 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/SS4/U5RX/U2CTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4 AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 C1TX/AETXD0/ERXD2/RF1 C1RX/AETXD1/ERXD3/RF0 VDD VCAP/VCORE ETXCLK/AERXERR/CN16/RD7 AETXEN/ETXERR/CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL3/SDO3/U1TX/OC4/RD3 SDA3/SDI3/U1RXU1RX/OC3/RD2 EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1 ERXERR/PMD4/RE4 ERXCLK/EREFCLK/PMD3/RE3 ERXDV/ECRSDV/PMD2/RE2 ERXD0/PMD1/RE1 ERXD1/PMD0/RE0 = Pins are up to 5V tolerant DS61156G-page 14 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) = Pins are up to 5V tolerant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F512L PIC32MX575F256L 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VSS SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 SDO1/OC1/INT0/RD0 IC4/PMCS1/PMA14/RD11 SCK1/IC3/PMCS2/PMA15/RD10 SS1/IC2/RD9 RTCC/IC1/RD8 SDA1/INT4/RA15 SCL1/INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 D+/RG2 D-/RG3 VUSB VBUS SCL3/SDO3/U1TX/RF8 SDA3/SDI3/U1RX/RF2 USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 VREF-/CVREF-/PMA7/RA9 VREF+/CVREF+/PMA6/RA10 AVDD AVSS AN8/C1OUT/RB8 AN9/C2OUT/RB9 AN10/CVREFOUT/PMA13/RB10 AN11/PMA12/RB11 VSS VDD TCK/RA1 AC1TX/SCK4/U5TX/U2RTS/RF13 AC1RX/SS4/U5RX/U2CTS/RF12 AN12/PMA11/RB12 AN13/PMA10/RB13 AN14/PMALH/PMA1/RB14 AN15/OCFB/PMALL/PMA0/CN12/RB15 VSS VDD SS3/U4RX/U1CTS/CN20/RD14 SCK3/U4TX/U1RTS/CN21/RD15 SDA5/SDI4/U2RX/PMA9/CN17/RF4 SCL5/SDO4/U2TX/PMA8/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 RG15 VDD PMD5/RE5 PMD6/RE6 PMD7/RE7 T2CK/RC1 T3CK/RC2 T4CK/RC3 T5CK/SDI1/RC4 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 SDA4/SDI2/U3RX/PMA4/CN9/RG7 SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD TMS/RA0 INT1/RE8 INT2/RE9 AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/CN3/RB1 PGED1/AN0/CN2/RB0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PMD4/RE4 PMD3/RE3 PMD2/RE2 TRD0/RG13 TRD1/RG12 TRD2/RG14 PMD1/RE1 PMD0/RE0 TRD3/RA7 TRCLK/RA6 PMD8/RG0 PMD9/RG1 C1TX/PMD10/RF1 C1RX/PMD11/RF0 VDD VCAP/VCORE PMD15/CN16/RD7 PMD14/CN15/RD6 PMRD/CN14/RD5 OC5/PMWR/CN13/RD4 PMD13/CN19/RD13 IC5/PMD12/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP © 2009-2011 Microchip Technology Inc. DS61156G-page 15 PMD4/RE4 PMD3/RE3 PMD2/RE2 TRD0/RG13 TRD1/RG12 TRD2/RG14 PMD1/RE1 PMD0/RE0 TRD3/RA7 TRCLK/RA6 PMD8/RG0 ETXERR/PMD9/RG1 ETXD0/PMD10/RF1 ETXD1/PMD11/RF0 VDD VCAP/VDDCORE ETXCLK/PMD15/CN16/RD7 ETXEN/PMD14/CN15/RD6 PMRD/CN14/RD5 OC5/PMWR/CN13/RD4 ETXD3/PMD13/CN19/RD13 ETXD2/IC5/PMD12/RD12 OC4/RD3 OC3/RD2 OC2/RD1 PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 = Pins are up to 5V tolerant © 2009-2011 Microchip Technology Inc. PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 VREF-/CVREF-/AERXD2/PMA7/RA9 VREF+/CVREF+/AERXD3/PMA6/RA10 AVDD AVSS AN8/C1OUT/RB8 AN9/C2OUT/RB9 AN10/CVREFOUT/PMA13/RB10 AN11/ERXERR/AETXERR/PMA12/RB11 VSS VDD TCK/RA1 SCK4/U5TX/U2RTS/RF13 SS4/U5RX/U2CTS/RF12 AN12/ERXD0/AECRS/PMA11/RB12 AN13/ERXD1/AECOL/PMA10/RB13 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 VSS VDD AETXD0/SS3/U4RX/U1CTS/CN20/RD14 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 SDA5/SDI4/U2RX/PMA9/CN17/RF4 SCL5/SDO4/U2TX/PMA8/CN18/RF5 AERXERR/RG15 VDD PMD5/RE5 PMD6/RE6 PMD7/RE7 T2CK/RC1 T3CK/RC2 T4CK/RC3 T5CK/SDI1/RC4 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD TMS/RA0 AERXD0/INT1/RE8 AERXD1/INT2/RE9 AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/CN3/RB1 PGED1/AN0/CN2/RB0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 100-Pin TQFP VSS SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 SDO1/OC1/INT0/RD0 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 SCK1/IC3/PMCS2/PMA15/RD10 SS1/IC2/RD9 RTCC/EMDIO/AEMDIO/IC1/RD8 AETXEN/SDA1/INT4/RA15 AETXCLK/SCL1/INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 D+/RG2 D-/RG3 VUSB VBUS SCL3/SDO3/U1TX/RF8 SDA3/SDI3/U1RX/RF2 USBID/RF3 PIC32MX5XX/6XX/7XX DS61156G-page 16 Pin Diagrams (Continued) 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 DS61156G-page 17 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 VREF-/CVREF-/AERXD2/PMA7/RA9 VREF+/CVREF+/AERXD3/PMA6/RA10 AVDD AVSS AN8/C1OUT/RB8 AN9/C2OUT/RB9 AN10/CVREFOUT/PMA13/RB10 AN11/ERXERR/AETXERR/PMA12/RB11 VSS VDD TCK/RA1 AC1TX/SCK4/U5TX/U2RTS/RF13 AC1RX/SS4/U5RX/U2CTS/RF12 AN12/ERXD0/AECRS/PMA11/RB12 AN13/ERXD1/AECOL/PMA10/RB13 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 VSS VDD AETXD0/SS3/U4RX/U1CTS/CN20/RD14 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 SDA5/SDI4/U2RX/PMA9/CN17/RF4 SCL5/SDO4/U2TX/PMA8/CN18/RF5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 = Pins are up to 5V tolerant VSS SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 SDO1/OC1/INT0/RD0 EMDC/AEMDC/IC4/PMCS1/PMA14/RD1 SCK1/IC3/PMCS2/PMA15/RD10 SS1/IC2/RD9 RTCC/EMDIO/AEMDIO/IC1/RD8 AETXEN/SDA1/INT4/RA15 AETXCLK/SCL1/INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 D+/RG2 D-/RG3 VUSB VBUS SCL3/SDO3/U1TX/RF8 SDA3/SDI3/U1RX/RF2 USBID/RF3 PIC32MX5XX/6XX/7XX AERXERR/RG15 VDD PMD5/RE5 PMD6/RE6 PMD7/RE7 T2CK/RC1 T3CK/AC2TX/RC2 T4CK/AC2RX/RC3 T5CK/SDI1/RC4 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD TMS/RA0 AERXD0/INT1/RE8 AERXD1/INT2/RE9 AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/CN3/RB1 PGED1/AN0/CN2/RB0 PMD4/RE4 PMD3/RE3 PMD2/RE2 TRD0/RG13 TRD1/RG12 TRD2/RG14 PMD1/RE1 PMD0/RE0 TRD3/RA7 TRCLK/RA6 C2RX/PMD8/RG0 C2TX/ETXERR/PMD9/RG1 C1TX/ETXD0/PMD10/RF1 C1RX/ETXD1/PMD11/RF0 VDD VCAP/VDDCORE ETXCLK/PMD15/CN16/RD7 ETXEN/PMD14/CN15/RD6 PMRD/CN14/RD5 OC5/PMWR/CN13/RD4 ETXD3/PMD13/CN19/RD13 ETXD2/IC5/PMD12/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 © 2009-2011 Microchip Technology Inc. Pin Diagrams (Continued) PMD4/RE4 PMD3/RE3 PMD2/RE2 TRD0/RG13 TRD1/RG12 TRD2/RG14 PMD1/RE1 PMD0/RE0 TRD3/RA7 TRCLK/RA6 PMD8/RG0 ETXERR/PMD9/RG1 C1TX/ETXD0/PMD10/RF1 C1RX/ETXD1/PMD11/RF0 VDD VCAP/VDDCORE ETXCLK/PMD15/CN16/RD7 ETXEN/PMD14/CN15/RD6 PMRD/CN14/RD5 OC5/PMWR/CN13/RD4 ETXD3/PMD13/CN19/RD13 ETXD2/IC5/PMD12/RD12 OC4/RD3 OC3/RD2 OC2/RD1 PIC32MX764F128L 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 = Pins are up to 5V tolerant PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 VREF-/CVREF-/AERXD2/PMA7/RA9 VREF+/CVREF+/AERXD3/PMA6/RA10 AVDD AVSS AN8/C1OUT/RB8 AN9/C2OUT/RB9 AN10/CVREFOUT/PMA13/RB10 AN11/ERXERR/AETXERR/PMA12/RB11 VSS VDD TCK/RA1 AC1TX/SCK4/U5TX/U2RTS/RF13 AC1RX/SS4/U5RX/U2CTS/RF12 AN12/ERXD0/AECRS/PMA11/RB12 AN13/ERXD1/AECOL/PMA10/RB13 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 VSS VDD AETXD0/SS3/U4RX/U1CTS/CN20/RD14 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 SDA5/SDI4/U2RX/PMA9/CN17/RF4 SCL5/SDO4/U2TX/PMA8/CN18/RF5 © 2009-2011 Microchip Technology Inc. AERXERR/RG15 VDD PMD5/RE5 PMD6/RE6 PMD7/RE7 T2CK/RC1 T3CK/RC2 T4CK/RC3 T5CK/SDI1/RC4 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8 MCLR ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9 VSS VDD TMS/RA0 AERXD0/INT1/RE8 AERXD1/INT2/RE9 AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/CN3/RB1 PGED1/AN0/CN2/RB0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 100-Pin TQFP VSS SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 SDO1/OC1/INT0/RD0 EMDC/AEMDC/IC4/PMCS1/PMA14/RD1 SCK1/IC3/PMCS2/PMA15/RD10 SS1/IC2/RD9 RTCC/EMDIO/AEMDIO/IC1/RD8 AETXEN/SDA1/INT4/RA15 AETXCLK/SCL1/INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 D+/RG2 D-/RG3 VUSB VBUS SCL3/SDO3/U1TX/RF8 SDA3/SDI3/U1RX/RF2 USBID/RF3 PIC32MX5XX/6XX/7XX DS61156G-page 18 Pin Diagrams (Continued) PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 121-Pin XBGA(1) = Pins are up to 5V tolerant PIC32MX534F064L PIC32MX564F064L PIC32MX664F064L PIC32MX564F128L PIC32MX664F128L PIC32MX764F128L PIC32MX575F256L PIC32MX675F256L PIC32MX775F256L PIC32MX575F512L PIC32MX675F512L PIC32MX695F512L PIC32MX775F512L PIC32MX795F512L A B C D E F G H J K L 1 2 3 4 5 6 7 8 9 10 11 RE4 RE3 RG13 RE0 RG0 RF1 VDD VSS RD12 RD2 RD1 NC RG15 RE2 RE1 RA7 RF0 VCAP/ VCORE RD5 RD3 VSS RC14 RE6 VDD RG12 RG14 RA6 NC RD7 RD4 VDD RC13 RD11 RC1 RE7 RE5 VSS VSS NC RD6 RD13 RD0 NC RD10 RC4 RC3 RG6 RC2 VDD RG1 VSS RA15 RD8 RD9 RA14 MCLR RG8 RG9 RG7 VSS NC NC VDD RC12 VSS RC15 RE8 RE9 RA0 NC VDD VSS VSS NC RA5 RA3 RA4 RB5 RB4 VSS VDD NC VDD NC VBUS VUSB RG2 RA2 RB3 RB2 RB7 AVDD RB11 RA1 RB12 NC NC RF8 RG3 RB1 RB0 RA10 RB8 NC RF12 RB14 VDD RD15 RF3 RF2 RB6 RA9 AVSS RB9 RB10 RF13 RB13 RB15 RD14 RF4 RF5 Note 1: Refer to Table 4, Table 5 and Table 6 for full pin names. © 2009-2011 Microchip Technology Inc. DS61156G-page 19 PIC32MX5XX/6XX/7XX TABLE 4: PIN NAMES: PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L AND PIC32MX575F512L DEVICES Pin Number Full Pin Name Pin Number Full Pin Name A1 PMD4/RE4 E8 SDA1/INT4/RA15 A2 PMD3/RE3 E9 RTCC/IC1/RD8 A3 TRD0/RG13 E10 SS1/IC2/RD9 A4 PMD0/RE0 E11 SCL1/INT3/RA14 A5 PMD8/RG0 F1 MCLR A6 C1TX/PMD10/RF1 F2 SCL4/SDO2/U3TX/PMA3/CN10/RG8 A7 VDD F3 SS2/U6RX/U3CTS/PMA2/CN11/RG9 A8 VSS F4 SDA4/SDI2/U3RX/PMA4/CN9/RG7 A9 IC5/PMD12/RD12 F5 VSS A10 OC3/RD2 F6 No Connect (NC) A11 OC2/RD1 F7 No Connect (NC) B1 No Connect (NC) F8 VDD B2 RG15 F9 OSC1/CLKI/RC12 B3 PMD2/RE2 F10 VSS B4 PMD1/RE1 F11 OSC2/CLKO/RC15 B5 TRD3/RA7 G1 INT1/RE8 B6 C1RX/PMD11/RF0 G2 INT2/RE9 B7 VCAP/VCORE G3 TMS/RA0 B8 PMRD/CN14/RD5 G4 No Connect (NC) B9 OC4/RD3 G5 VDD B10 VSS G6 VSS B11 SOSCO/T1CK/CN0/RC14 G7 VSS C1 PMD6/RE6 G8 No Connect (NC) C2 VDD G9 TDO/RA5 C3 TRD1/RG12 G10 SDA2/RA3 C4 TRD2/RG14 G11 TDI/RA4 AN5/C1IN+/VBUSON/CN7/RB5 C5 TRCLK/RA6 H1 C6 No Connect (NC) H2 AN4/C1IN-/CN6/RB4 C7 PMD15/CN16/RD7 H3 VSS C8 OC5/PMWR/CN13/RD4 H4 VDD C9 VDD H5 No Connect (NC) C10 SOSCI/CN1/RC13 H6 VDD C11 IC4/PMCS1/PMA14/RD11 H7 No Connect (NC) D1 T2CK/RC1 H8 VBUS D2 PMD7/RE7 H9 VUSB D3 PMD5/RE5 H10 D+/RG2 D4 VSS H11 SCL2/RA2 D5 VSS J1 AN3/C2IN+/CN5/RB3 D6 No Connect (NC) J2 AN2/C2IN-/CN4/RB2 D7 PMD14/CN15/RD6 J3 PGED2/AN7/RB7 D8 PMD13/CN19/RD13 J4 AVDD D9 SDO1/OC1/INT0/RD0 J5 AN11/PMA12/RB11 D10 No Connect (NC) J6 TCK/RA1 D11 SCK1/IC3/PMCS2/PMA15/RD10 J7 AN12/PMA11/RB12 E1 T5CK/SDI1/RC4 J8 No Connect (NC) E2 T4CK/RC3 J9 No Connect (NC) E3 SCK2/U6TXU6TX/U3RTS/PMA5/CN8/RG6 J10 SCL3/SDO3/U1TX/RF8 E4 T3CK/RC2 J11 D-/RG3 E5 VDD K1 PGEC1/AN1/CN3/RB1 E6 PMD9/RG1 K2 PGED1/AN0/CN2/RB0 E7 VSS K3 VREF+/CVREF+/PMA6/RA10 DS61156G-page 20 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 4: PIN NAMES: PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L AND PIC32MX575F512L DEVICES (CONTINUED) Pin Number Full Pin Name Pin Number Full Pin Name K4 AN8/C1OUT/RB8 L3 AVSS K5 No Connect (NC) L4 AN9/C2OUT/RB9 K6 AC1RX/SS4/U5RX/U2CTS/RF12 L5 AN10/CVREFOUT/PMA13/RB10 K7 AN14/PMALH/PMA1/RB14 L6 AC1TX/SCK4/U5TX/U2RTS/RF13 K8 VDD L7 AN13/PMA10/RB13 K9 SCK3/U4TX/U1RTS/CN21/RD15 L8 AN15/OCFB/PMALL/PMA0/CN12/RB15 K10 USBID/RF3 L9 SS3/U4RX/U1CTS/CN20/RD14 K11 SDA3/SDI3/U1RX/RF2 L10 SDA5/SDI4/U2RX/PMA9/CN17/RF4 L1 PGEC2/AN6/OCFA/RB6 L11 SCL5/SDO4/U2TX/PMA8/CN18/RF5 L2 VREF-/CVREF-/PMA7/RA9 © 2009-2011 Microchip Technology Inc. DS61156G-page 21 PIC32MX5XX/6XX/7XX TABLE 5: PIN NAMES: PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES Pin Number Full Pin Name Pin Number Full Pin Name A1 PMD4/RE4 E8 A2 PMD3/RE3 E9 AETXEN/SDA1/INT4/RA15 RTCC/EMDIO/AEMDIO/IC1/RD8 A3 TRD0/RG13 E10 SS1/IC2/RD9 A4 PMD0/RE0 E11 AETXCLK/SCL1/INT3/RA14 A5 PMD8/RG0 F1 MCLR A6 ETXD0/PMD10/RF1 F2 ERXDV/AERXDV/ECRSDV/AECRSDV//SCL4/SDO2/ U3TX/PMA3/CN10/RG8 A7 VDD F3 ERXCLK/AERXCLK/EREFCLK/AEREFCLK//SS2/U6RX/ U3CTS/PMA2/CN11/RG9 A8 VSS F4 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 A9 ETXD2/IC5/PMD12/RD12 F5 VSS A10 OC3/RD2 F6 No Connect (NC) A11 OC2/RD1 F7 No Connect (NC) B1 No Connect (NC) F8 VDD B2 AERXERR/RG15 F9 OSC1/CLKI/RC12 B3 PMD2/RE2 F10 VSS B4 PMD1/RE1 F11 OSC2/CLKO/RC15 B5 TRD3/RA7 G1 AERXD0/INT1/RE8 B6 ETXD1/PMD11/RF0 G2 AERXD1/INT2/RE9 B7 VCAP/VCORE G3 TMS/RA0 B8 PMRD/CN14/RD5 G4 No Connect (NC) B9 OC4/RD3 G5 VDD B10 VSS G6 VSS B11 SOSCO/T1CK/CN0/RC14 G7 VSS C1 PMD6/RE6 G8 No Connect (NC) C2 VDD G9 TDO/RA5 C3 TRD1/RG12 G10 SDA2/RA3 C4 TRD2/RG14 G11 TDI/RA4 C5 TRCLK/RA6 H1 AN5/C1IN+/VBUSON/CN7/RB5 C6 No Connect (NC) H2 AN4/C1IN-/CN6/RB4 C7 ETXCLK/PMD15/CN16/RD7 H3 VSS C8 OC5/PMWR/CN13/RD4 H4 VDD C9 VDD H5 No Connect (NC) C10 SOSCI/CN1/RC13 H6 VDD C11 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 H7 No Connect (NC) D1 T2CK/RC1 H8 VBUS D2 PMD7/RE7 H9 VUSB D3 PMD5/RE5 H10 D+/RG2 SCL2/RA2 D4 VSS H11 D5 VSS J1 D6 No Connect (NC) J2 AN2/C2IN-/CN4/RB2 D7 ETXEN/PMD14/CN15/RD6 J3 PGED2/AN7/RB7 AN3/C2IN+/CN5/RB3 D8 ETXD3/PMD13/CN19/RD13 J4 AVDD D9 SDO1/OC1/INT0/RD0 J5 AN11/ERXERR/AETXERR/PMA12/RB11 D10 No Connect (NC) J6 TCK/RA1 D11 SCK1/IC3/PMCS2/PMA15/RD10 J7 AN12/ERXD0/AECRS/PMA11/RB12 E1 T5CK/SDI1/RC4 J8 No Connect (NC) E2 T4CK/RC3 J9 No Connect (NC) E3 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 J10 SCL3/SDO3/U1TX/RF8 E4 T3CK/RC2 J11 D-/RG3 E5 VDD K1 PGEC1/AN1/CN3/RB1 E6 ETXERR/PMD9/RG1 K2 PGED1/AN0/CN2/RB0 E7 VSS K3 VREF+/CVREF+/AERXD3/PMA6/RA10 DS61156G-page 22 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 5: PIN NAMES: PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES (CONTINUED) Pin Number Full Pin Name Pin Number Full Pin Name K4 AN8/C1OUT/RB8 L3 AVSS K5 No Connect (NC) L4 AN9/C2OUT/RB9 K6 SS4/U5RX/U2CTS/RF12 L5 AN10/CVREFOUT/PMA13/RB10 K7 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 L6 SCK4/U5TX/U2RTS/RF13 K8 VDD L7 AN13/ERXD1/AECOL/PMA10/RB13 K9 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 L8 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 AETXD0/SS3/U4RX/U1CTS/CN20/RD14 K10 USBID/RF3 L9 K11 SDA3/SDI3/U1RX/RF2 L10 SDA5/SDI4/U2RX/PMA9/CN17/RF4 L1 PGEC2/AN6/OCFA/RB6 L11 SCL5/SDO4/U2TX/PMA8/CN18/RF5 L2 VREF-/CVREF-/AERXD2/PMA7/RA9 © 2009-2011 Microchip Technology Inc. DS61156G-page 23 PIC32MX5XX/6XX/7XX TABLE 6: PIN NAMES: PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES Pin Number Full Pin Name Pin Number Full Pin Name A1 PMD4/RE4 E8 AETXEN/SDA1/INT4/RA15 A2 PMD3/RE3 E9 RTCC/EMDIO/AEMDIO/IC1/RD8 A3 TRD0/RG13 E10 SS1/IC2/RD9 A4 PMD0/RE0 E11 AETXCLK/SCL1/INT3/RA14 A5 C2RX/PMD8/RG0 F1 MCLR A6 C1TX/ETXD0/PMD10/RF1 F2 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/ U3TX/PMA3/CN10/RG8 A7 VDD F3 ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/ U3CTS/PMA2/CN11/RG9 A8 VSS F4 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 A9 ETXD2/IC5/PMD12/RD12 F5 VSS A10 OC3/RD2 F6 No Connect (NC) A11 OC2/RD1 F7 No Connect (NC) B1 No Connect (NC) F8 VDD B2 AERXERR/RG15 F9 OSC1/CLKI/RC12 B3 PMD2/RE2 F10 VSS B4 PMD1/RE1 F11 OSC2/CLKO/RC15 B5 TRD3/RA7 G1 AERXD0/INT1/RE8 B6 C1RX/ETXD1/PMD11/RF0 G2 AERXD1/INT2/RE9 B7 VCAP/VCORE G3 TMS/RA0 B8 PMRD/CN14/RD5 G4 No Connect (NC) B9 OC4/RD3 G5 VDD B10 VSS G6 VSS B11 SOSCO/T1CK/CN0/RC14 G7 VSS C1 PMD6/RE6 G8 No Connect (NC) TDO/RA5 C2 VDD G9 C3 TRD1/RG12 G10 SDA2/RA3 C4 TRD2/RG14 G11 TDI/RA4 C5 TRCLK/RA6 H1 AN5/C1IN+/VBUSON/CN7/RB5 C6 No Connect (NC) H2 AN4/C1IN-/CN6/RB4 C7 ETXCLK/PMD15/CN16/RD7 H3 VSS C8 OC5/PMWR/CN13/RD4 H4 VDD C9 VDD H5 No Connect (NC) C10 SOSCI/CN1/RC13 H6 VDD C11 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 H7 No Connect (NC) D1 T2CK/RC1 H8 VBUS D2 PMD7/RE7 H9 VUSB D3 PMD5/RE5 H10 D+/RG2 D4 VSS H11 SCL2/RA2 D5 VSS J1 AN3/C2IN+/CN5/RB3 D6 No Connect (NC) J2 AN2/C2IN-/CN4/RB2 D7 ETXEN/PMD14/CN15/RD6 J3 PGED2/AN7/RB7 D8 ETXD3/PMD13/CN19/RD13 J4 AVDD AN11/ERXERR/AETXERR/PMA12/RB11 D9 SDO1/OC1/INT0/RD0 J5 D10 No Connect (NC) J6 TCK/RA1 D11 SCK1/IC3/PMCS2/PMA15/RD10 J7 AN12/ERXD0/AECRS/PMA11/RB12 E1 T5CK/SDI1/RC4 J8 No Connect (NC) E2 T4CK/AC2RX/RC3 J9 No Connect (NC) E3 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 J10 SCL3/SDO3/U1TX/RF8 E4 T3CK/AC2TX/RC2 J11 D-/RG3 E5 VDD K1 PGEC1/AN1/CN3/RB1 E6 C2TX/ETXERR/PMD9/RG1 K2 PGED1/AN0/CN2/RB0 E7 VSS K3 VREF+/CVREF+/AERXD3/PMA6/RA10 DS61156G-page 24 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 6: PIN NAMES: PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED) Pin Number Full Pin Name Pin Number Full Pin Name K4 AN8/C1OUT/RB8 L3 K5 No Connect (NC) L4 AVSS AN9/C2OUT/RB9 K6 AC1RX/SS4/U5RX/U2CTS/RF12 L5 AN10/CVREFOUT/PMA13/RB10 K7 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 L6 AC1TX/SCK4/U5TX/U2RTS/RF13 K8 VDD L7 AN13/ERXD1/AECOL/PMA10/RB13 K9 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 L8 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 K10 USBID/RF3 L9 AETXD0/SS3/U4RX/U1CTS/CN20/RD14 K11 SDA3/SDI3/U1RX/RF2 L10 SDA5/SDI4/U2RX/PMA9/CN17/RF4 L1 PGEC2/AN6/OCFA/RB6 L11 SCL5/SDO4/U2TX/PMA8/CN18/RF5 L2 VREF-/CVREF-/AERXD2/PMA7/RA9 © 2009-2011 Microchip Technology Inc. DS61156G-page 25 PIC32MX5XX/6XX/7XX TABLE 7: PIN NAME: PIC32MX764F128L DEVICE Pin Number Full Pin Name Pin Number Full Pin Name A1 PMD4/RE4 E8 AETXEN/SDA1/INT4/RA15 A2 PMD3/RE3 E9 RTCC/EMDIO/AEMDIO/IC1/RD8 A3 TRD0/RG13 E10 SS1/IC2/RD9 A4 PMD0/RE0 E11 AETXCLK/SCL1/INT3/RA14 A5 PMD8/RG0 F1 MCLR A6 C1TX/ETXD0/PMD10/RF1 F2 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/ U3TX/PMA3/CN10/RG8 A7 VDD F3 ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/ U3CTS/PMA2/CN11/RG9 A8 VSS F4 ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7 A9 ETXD2/IC5/PMD12/RD12 F5 VSS A10 OC3/RD2 F6 No Connect (NC) A11 OC2/RD1 F7 No Connect (NC) B1 No Connect (NC) F8 VDD B2 AERXERR/RG15 F9 OSC1/CLKI/RC12 B3 PMD2/RE2 F10 VSS B4 PMD1/RE1 F11 OSC2/CLKO/RC15 B5 TRD3/RA7 G1 AERXD0/INT1/RE8 B6 C1RX/ETXD1/PMD11/RF0 G2 AERXD1/INT2/RE9 B7 VCAP/VCORE G3 TMS/RA0 B8 PMRD/CN14/RD5 G4 No Connect (NC) B9 OC4/RD3 G5 VDD B10 VSS G6 VSS B11 SOSCO/T1CK/CN0/RC14 G7 VSS C1 PMD6/RE6 G8 No Connect (NC) TDO/RA5 C2 VDD G9 C3 TRD1/RG12 G10 SDA2/RA3 C4 TRD2/RG14 G11 TDI/RA4 C5 TRCLK/RA6 H1 AN5/C1IN+/VBUSON/CN7/RB5 C6 No Connect (NC) H2 AN4/C1IN-/CN6/RB4 C7 ETXCLK/PMD15/CN16/RD7 H3 VSS C8 OC5/PMWR/CN13/RD4 H4 VDD C9 VDD H5 No Connect (NC) C10 SOSCI/CN1/RC13 H6 VDD C11 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 H7 No Connect (NC) D1 T2CK/RC1 H8 VBUS D2 PMD7/RE7 H9 VUSB D3 PMD5/RE5 H10 D+/RG2 D4 VSS H11 SCL2/RA2 D5 VSS J1 AN3/C2IN+/CN5/RB3 D6 No Connect (NC) J2 AN2/C2IN-/CN4/RB2 D7 ETXEN/PMD14/CN15/RD6 J3 PGED2/AN7/RB7 D8 ETXD3/PMD13/CN19/RD13 J4 AVDD AN11/ERXERR/AETXERR/PMA12/RB11 D9 SDO1/OC1/INT0/RD0 J5 D10 No Connect (NC) J6 TCK/RA1 D11 SCK1/IC3/PMCS2/PMA15/RD10 J7 AN12/ERXD0/AECRS/PMA11/RB12 E1 T5CK/SDI1/RC4 J8 No Connect (NC) E2 T4CK/RC3 J9 No Connect (NC) E3 ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6 J10 SCL3/SDO3/U1TX/RF8 E4 T3CK/RC2 J11 D-/RG3 E5 VDD K1 PGEC1/AN1/CN3/RB1 E6 ETXERR/PMD9/RG1 K2 PGED1/AN0/CN2/RB0 E7 VSS K3 VREF+/CVREF+/AERXD3/PMA6/RA10 DS61156G-page 26 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 7: PIN NAME: PIC32MX764F128L DEVICE (CONTINUED) Pin Number Full Pin Name Pin Number Full Pin Name K4 AN8/C1OUT/RB8 L3 K5 No Connect (NC) L4 AVSS AN9/C2OUT/RB9 K6 AC1RX/SS4/U5RX/U2CTS/RF12 L5 AN10/CVREFOUT/PMA13/RB10 K7 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 L6 AC1TX/SCK4/U5TX/U2RTS/RF13 K8 VDD L7 AN13/ERXD1/AECOL/PMA10/RB13 K9 AETXD1/SCK3/U4TX/U1RTS/CN21/RD15 L8 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 K10 USBID/RF3 L9 AETXD0/SS3/U4RX/U1CTS/CN20/RD14 K11 SDA3/SDI3/U1RX/RF2 L10 SDA5/SDI4/U2RX/PMA9/CN17/RF4 L1 PGEC2/AN6/OCFA/RB6 L11 SCL5/SDO4/U2TX/PMA8/CN18/RF5 L2 VREF-/CVREF-/AERXD2/PMA7/RA9 © 2009-2011 Microchip Technology Inc. DS61156G-page 27 PIC32MX5XX/6XX/7XX Table of Contents 1.0 Device Overview ........................................................................................................................................................................ 31 2.0 Guidelines for Getting Started with 32-bit Microcontrollers ........................................................................................................ 43 3.0 CPU............................................................................................................................................................................................ 49 4.0 Memory Organization ................................................................................................................................................................. 55 5.0 Flash Program Memory ............................................................................................................................................................ 117 6.0 Resets ...................................................................................................................................................................................... 119 7.0 Interrupt Controller ................................................................................................................................................................... 121 8.0 Oscillator Configuration ............................................................................................................................................................ 125 9.0 Prefetch Cache......................................................................................................................................................................... 127 10.0 Direct Memory Access (DMA) Controller ................................................................................................................................. 129 11.0 USB On-The-Go (OTG)............................................................................................................................................................ 131 12.0 I/O Ports ................................................................................................................................................................................... 133 13.0 Timer1 ...................................................................................................................................................................................... 135 14.0 Timer2/3, Timer4/5 ................................................................................................................................................................... 137 15.0 Input Capture............................................................................................................................................................................ 139 16.0 Output Compare....................................................................................................................................................................... 141 17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 143 18.0 Inter-Integrated Circuit™ (I2C™) .............................................................................................................................................. 145 19.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 147 20.0 Parallel Master Port (PMP)....................................................................................................................................................... 149 21.0 Real-Time Clock and Calendar (RTCC) ................................................................................................................................... 151 22.0 10-bit Analog-to-Digital Converter (ADC) ................................................................................................................................. 153 23.0 Controller Area Network (CAN) ................................................................................................................................................ 155 24.0 Ethernet Controller ................................................................................................................................................................... 157 25.0 Comparator .............................................................................................................................................................................. 159 26.0 Comparator Voltage Reference (CVREF).................................................................................................................................. 161 27.0 Power-Saving Features ........................................................................................................................................................... 163 28.0 Special Features ...................................................................................................................................................................... 165 29.0 Instruction Set .......................................................................................................................................................................... 177 30.0 Development Support............................................................................................................................................................... 179 31.0 Electrical Characteristics .......................................................................................................................................................... 183 32.0 Packaging Information.............................................................................................................................................................. 225 The Microchip Web Site ..................................................................................................................................................................... 253 Customer Change Notification Service .............................................................................................................................................. 253 Customer Support .............................................................................................................................................................................. 253 Reader Response .............................................................................................................................................................................. 254 Product Identification System............................................................................................................................................................. 255 DS61156G-page 28 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at [email protected] or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. © 2009-2011 Microchip Technology Inc. DS61156G-page 29 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 30 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 1.0 DEVICE OVERVIEW This document contains device-specific information for PIC32MX5XX/6XX/7XX devices. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX5XX/6XX/7XX family of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. BLOCK DIAGRAM(1,2) FIGURE 1-1: OSC2/CLKO OSC1/CLKI VCAP/VCORE OSC/SOSC Oscillators Power-up Timer FRC/LPRC Oscillators Voltage Regulator PLL Oscillator Start-up Timer PLL-USB Watchdog Timer USBCLK SYSCLK PBCLK Timing Generation Brown-out Reset Peripheral Bus Clocked by SYSCLK CN1-22 PORTA USB M4K® 32 CPU Core PORTC IS 32 DS 32 32 32 32 32 32 32 PORTD Bus Matrix 32 32 IC1-5 SPI1-4 I2C1-5 32 PORTE Prefetch Module PWM OC1-5 Peripheral Bus Clocked by PBCLK MIPS32® ICD INT PORTB DMAC EJTAG Timer1-5 ETHERNET Priority Interrupt Controller CAN1, CAN2 JTAG BSCAN MCLR Power-on Reset Precision Band Gap Reference Dividers VDD, VSS 32 Data RAM Peripheral Bridge PMP 10-bit ADC PORTF PORTG 128-bit Wide Program Flash Memory Flash Controller 128 UART1-6 RTCC Comparators Note 1: 2: Some features are not available on all device variants. BOR functionality is provided when the on-board voltage regulator is enabled. © 2009-2011 Microchip Technology Inc. DS61156G-page 31 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Number(1) Pin Type Buffer Type K2 K1 J2 J1 H2 H1 L1 J3 K4 L4 L5 I I I I I I I I I I I Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog 35 41 42 43 44 63 J5 J7 L7 K7 L8 F9 I I I I I I 40 64 F11 O OSC1 39 63 F9 I OSC2 40 64 F11 I/O SOSCI 47 73 C10 I Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 16 15 14 13 12 11 17 18 21 22 23 25 24 23 22 21 20 26 27 32 33 34 AN11 AN12 AN13 AN14 AN15 CLKI 24 27 28 29 30 39 CLKO Description Analog input channels. Analog Analog Analog Analog Analog ST/CMOS External clock source input. Always associated with OSC1 pin function. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. — 32.768 kHz low-power oscillator crystal output. Analog = Analog input P = Power O = Output I = Input SOSCO 48 74 B11 O Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156G-page 32 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name CN0 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13 CN14 CN15 CN16 CN17 CN18 CN19 CN20 CN21 IC1 IC2 IC3 IC4 IC5 OCFA OC1 OC2 OC3 OC4 OC5 OCFB INT0 INT1 INT2 INT3 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA 48 47 16 15 14 13 12 11 4 5 6 8 30 52 53 54 55 31 32 — — — 42 43 44 45 52 17 46 49 50 51 52 30 46 42 43 44 74 73 25 24 23 22 21 20 10 11 12 14 44 81 82 83 84 49 50 80 47 48 68 69 70 71 79 26 72 76 77 78 81 44 72 18 19 66 B11 C10 K2 K1 J2 J1 H2 H1 E3 F4 F2 F3 L8 C8 B8 D7 C7 L10 L11 D8 L9 K9 E9 E10 D11 C11 A9 L1 D9 A11 A10 B9 C8 L8 D9 G1 G2 E11 Pin Type Buffer Type I I I I I I I I I I I I I I I I I I I I I I I I I I I I O O O O O I I I I I ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST — — — — — ST ST ST ST ST Description Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. Capture Inputs 1-5 Output Compare Fault A Input Output Compare Output 1 Output Compare Output 2 Output Compare Output 3 Output Compare Output 4 Output Compare Output 5 Output Compare Fault B Input External Interrupt 0 External Interrupt 1 External Interrupt 2 External Interrupt 3 INT4 45 67 E8 I ST External Interrupt 4 Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. © 2009-2011 Microchip Technology Inc. DS61156G-page 33 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA Pin Type Buffer Type Description RA0 — 17 G3 I/O ST PORTA is a bidirectional I/O port RA1 — 38 J6 I/O ST RA2 — 58 H11 I/O ST RA3 — 59 G10 I/O ST RA4 — 60 G11 I/O ST RA5 — 61 G9 I/O ST RA6 — 91 C5 I/O ST RA7 — 92 B5 I/O ST RA9 — 28 L2 I/O ST RA10 — 29 K3 I/O ST RA14 — 66 E11 I/O ST RA15 — 67 E8 I/O ST RB0 16 25 K2 I/O ST PORTB is a bidirectional I/O port RB1 15 24 K1 I/O ST RB2 14 23 J2 I/O ST RB3 13 22 J1 I/O ST RB4 12 21 H2 I/O ST RB5 11 20 H1 I/O ST RB6 17 26 L1 I/O ST RB7 18 27 J3 I/O ST RB8 21 32 K4 I/O ST RB9 22 33 L4 I/O ST RB10 23 34 L5 I/O ST RB11 24 35 J5 I/O ST RB12 27 41 J7 I/O ST RB13 28 42 L7 I/O ST RB14 29 43 K7 I/O ST RB15 30 44 L8 I/O ST RC1 — 6 D1 I/O ST PORTC is a bidirectional I/O port RC2 — 7 E4 I/O ST RC3 — 8 E2 I/O ST RC4 — 9 E1 I/O ST RC12 39 63 F9 I/O ST RC13 47 73 C10 I/O ST RC14 48 74 B11 I/O ST RC15 40 64 F11 I/O ST Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156G-page 34 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA Pin Type Buffer Type Description RD0 46 72 D9 I/O ST PORTD is a bidirectional I/O port RD1 49 76 A11 I/O ST RD2 50 77 A10 I/O ST RD3 51 78 B9 I/O ST RD4 52 81 C8 I/O ST RD5 53 82 B8 I/O ST RD6 54 83 D7 I/O ST RD7 55 84 C7 I/O ST RD8 42 68 E9 I/O ST RD9 43 69 E10 I/O ST RD10 44 70 D11 I/O ST RD11 45 71 C11 I/O ST RD12 — 79 A9 I/O ST RD13 — 80 D8 I/O ST RD14 — 47 L9 I/O ST RD15 — 48 K9 I/O ST RE0 60 93 A4 I/O ST PORTE is a bidirectional I/O port RE1 61 94 B4 I/O ST RE2 62 98 B3 I/O ST RE3 63 99 A2 I/O ST RE4 64 100 A1 I/O ST RE5 1 3 D3 I/O ST RE6 2 4 C1 I/O ST RE7 3 5 D2 I/O ST RE8 — 18 G1 I/O ST RE9 — 19 G2 I/O ST RF0 58 87 B6 I/O ST PORTF is a bidirectional I/O port RF1 59 88 A6 I/O ST RF2 — 52 K11 I/O ST RF3 33 51 K10 I/O ST RF4 31 49 L10 I/O ST RF5 32 50 L11 I/O ST RF8 — 53 J10 I/O ST RF12 — 40 K6 I/O ST RF13 — 39 L6 I/O ST Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. © 2009-2011 Microchip Technology Inc. DS61156G-page 35 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Type Buffer Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I I I I I ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST L9 I ST UART1 clear to send K9 K11 O — UART1 ready to send I ST UART1 receive O — UART1 transmit I ST UART3 clear to send E3 F4 O — UART3 ready to send I ST UART3 receive 12 F2 O — UART3 transmit 21 40 K6 I ST UART2 clear to send 39 49 L6 L10 O — UART2 ready to send U2RX 29 31 I ST UART2 receive U2TX 32 50 L11 O — UART2 transmit U4RX 43 47 L9 I ST UART4 receive U4TX 49 48 K9 O — UART4 transmit U6RX 8 14 F3 I ST UART6 receive U6TX 4 10 E3 O — UART6 transmit Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA RG0 RG1 RG6 RG7 RG8 RG9 RG12 RG13 RG14 RG15 RG2 RG3 T1CK T2CK T3CK T4CK T5CK — — 4 5 6 8 — — — — 37 36 48 — — — — 90 89 10 11 12 14 96 97 95 1 57 56 74 6 7 8 9 A5 E6 E3 F4 F2 F3 C3 A3 C4 B2 H10 J11 B11 D1 E4 E2 E1 U1CTS 43 47 U1RTS U1RX 49 50 48 52 U1TX 51 53 J10 U3CTS 8 14 F3 U3RTS U3RX 4 5 10 11 U3TX 6 U2CTS U2RTS Description PORTG is a bidirectional I/O port PORTG input pins Timer1 external clock input Timer2 external clock input Timer3 external clock input Timer4 external clock input Timer5 external clock input U5RX 21 40 K6 I ST UART5 receive U5TX SCK1 SDI1 29 39 L6 — — 70 9 D11 E1 O I/O I — ST ST UART5 transmit Synchronous serial clock input/output for SPI1 SPI1 data in SDO1 — 72 D9 O — SPI1 data out Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156G-page 36 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Type Buffer Type Description E10 K9 K11 J10 I/O I/O I O ST ST ST — SPI1 slave synchronization or frame pulse I/O Synchronous serial clock input/output for SPI3 SPI3 data in SPI3 data out 47 10 11 12 L9 E3 F4 F2 I/O I/O I O ST ST ST — SPI3 slave synchronization or frame pulse I/O Synchronous serial clock input/output for SPI2 SPI2 data in SPI2 data out 8 29 31 32 14 39 49 50 F3 L6 L10 L11 I/O I/O I O ST ST ST — SPI2 slave synchronization or frame pulse I/O Synchronous serial clock input/output for SPI4 SPI4 data in SPI4 data out SS4 SCL1 SDA1 SCL3 SDA3 SCL2 SDA2 SCL4 SDA4 SCL5 SDA5 TMS TCK TDI TDO RTCC 21 44 43 51 50 — — 6 5 32 31 23 27 28 24 42 40 66 67 53 52 58 59 12 11 50 49 17 38 60 61 68 K6 E11 E8 J10 K11 H11 G10 F2 F4 L11 L10 G3 J6 G11 G9 E9 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I O O ST ST ST ST ST ST ST ST ST ST ST ST ST ST — — SPI4 slave synchronization or frame pulse I/O Synchronous serial clock input/output for I2C1 Synchronous serial data input/output for I2C1 Synchronous serial clock input/output for I2C3 Synchronous serial data input/output for I2C3 Synchronous serial clock input/output for I2C2 Synchronous serial data input/output for I2C2 Synchronous serial clock input/output for I2C4 Synchronous serial data input/output for I2C4 Synchronous serial clock input/output for I2C5 Synchronous serial data input/output for I2C5 JTAG Test mode select pin JTAG test clock input pin JTAG test data input pin JTAG test data output pin Real-Time Clock alarm output CVREFCVREF+ CVREFOUT 15 16 28 29 L2 K3 I I Analog Analog Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA SS1 SCK3 SDI3 SDO3 — 49 50 51 69 48 52 53 SS3 43 4 5 6 SCK4 SDI4 SDO4 SCK2 SDI2 SDO2 SS2 Comparator Voltage Reference (low) Comparator Voltage Reference (high) 23 34 L5 O Analog Comparator Voltage Reference output C1IN12 21 H2 I Analog Comparator 1 negative input C1IN+ 11 20 H1 I Analog Comparator 1 positive input C1OUT 21 32 K4 O — Comparator 1 output C2IN14 23 J2 I Analog Comparator 2 negative input C2IN+ 13 22 J1 I Analog Comparator 2 positive input C2OUT 22 33 L4 O — Comparator 2 output Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. © 2009-2011 Microchip Technology Inc. DS61156G-page 37 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name Pin Type Buffer Type L8 I/O TTL/ST 43 K7 I/O TTL/ST 14 12 11 10 29 28 50 49 42 41 35 34 71 70 71 70 F3 F2 F4 E3 K3 L2 L11 L10 L7 J7 J5 L5 C11 D11 C11 D11 O O O O O O O O O O O O O O O O — — — — — — — — — — — — — — — — 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA PMA0 30 44 PMA1 29 PMA2 PMA3 PMA4 PMA5 PMA6 PMA7 PMA8 PMA9 PMA10 PMA11 PMA12 PMA13 PMA14 PMA15 PMCS1 PMCS2 8 6 5 4 16 22 32 31 28 27 24 23 45 44 45 44 Description Parallel Master Port Address bit 0 input (Buffered Slave modes) and output (Master modes) Parallel Master Port Address bit 1 input (Buffered Slave modes) and output (Master modes) Parallel Master Port address (Demultiplexed Master modes) Parallel Master Port Chip Select 1 strobe Parallel Master Port Chip Select 2 strobe PMD0 60 93 A4 I/O TTL/ST Parallel Master Port data (Demultiplexed PMD1 61 94 B4 I/O TTL/ST Master mode) or address/data (Multiplexed Master modes) PMD2 62 98 B3 I/O TTL/ST PMD3 63 99 A2 I/O TTL/ST PMD4 64 100 A1 I/O TTL/ST PMD5 1 3 D3 I/O TTL/ST PMD6 2 4 C1 I/O TTL/ST PMD7 3 5 D2 I/O TTL/ST PMD8 — 90 A5 I/O TTL/ST PMD9 — 89 E6 I/O TTL/ST PMD10 — 88 A6 I/O TTL/ST PMD11 — 87 B6 I/O TTL/ST PMD12 — 79 A9 I/O TTL/ST PMD13 — 80 D8 I/O TTL/ST PMD14 — 83 D7 I/O TTL/ST PMD15 — 84 C7 I/O TTL/ST Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156G-page 38 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Type Buffer Type L8 O — 43 K7 O — 53 52 34 35 82 81 54 55 B8 C8 H8 H9 O O I P — — Analog — VBUSON D+ DUSBID C1RX C1TX AC1RX AC1TX C2RX C2TX AC2RX AC2TX ERXD0 ERXD1 ERXD2 11 37 36 33 58 59 32 31 29 21 — — 61 60 59 20 57 56 51 87 88 40 39 90 89 8 7 41 42 43 H1 H10 J11 K10 B6 A6 K6 L6 A5 E6 E2 E4 J7 L7 K7 O I/O I/O I I O I O I O 1 O I I I — Analog Analog ST ST — ST — ST — ST — ST ST ST ERXD3 ERXERR ERXDV ECRSDV ERXCLK EREFCLK ETXD0 ETXD1 ETXD2 ETXD3 ETXERR ETXEN ETXCLK 58 64 62 62 63 63 2 3 43 42 54 1 55 44 35 12 12 14 14 88 87 79 80 89 83 84 L8 J5 F2 F2 F3 F3 A6 B6 A9 D8 E6 D7 C7 I I I I I I O O O O O O I ST ST ST ST ST ST — — — — — — ST Ethernet Receive Data 3(2) Ethernet receive error input(2) Ethernet receive data valid(2) Ethernet carrier sense data valid(2) Ethernet receive clock(2) Ethernet reference clock(2) Ethernet Transmit Data 0(2) Ethernet Transmit Data 1(2) Ethernet Transmit Data 2(2) Ethernet Transmit Data 3(2) Ethernet transmit error(2) Ethernet transmit enable(2) Ethernet transmit clock(2) ECOL ECRS 44 45 10 11 E3 F4 I I ST ST Ethernet collision detect(2) Ethernet carrier sense(2) Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA PMALL 30 44 PMALH 29 PMRD PMWR VBUS VUSB Description Parallel Master Port address latch enable low byte (Multiplexed Master modes) Parallel Master Port address latch enable high byte (Multiplexed Master modes) Parallel Master Port read strobe Parallel Master Port write strobe USB bus power monitor USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD. USB Host and OTG bus power control output USB D+ USB DUSB OTG ID detect CAN1 bus receive pin CAN1 bus transmit pin Alternate CAN1 bus receive pin Alternate CAN1 bus transmit pin CAN2 bus receive pin CAN2 bus transmit pin Alternate CAN2 bus receive pin Alternate CAN2 bus transmit pin Ethernet Receive Data 0(2) Ethernet Receive Data 1(2) Ethernet Receive Data 2(2) Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. © 2009-2011 Microchip Technology Inc. DS61156G-page 39 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Type Buffer Type C11 O — Ethernet management data clock(2) 68 18 19 28 29 1 12 12 14 14 E9 G1 G2 L2 K3 B2 F2 F2 F3 F3 I/O I I I I I I I I I — ST ST ST ST ST ST ST ST ST Ethernet management data(2) Alternate Ethernet Receive Data 0(2) Alternate Ethernet Receive Data 1(2) Alternate Ethernet Receive Data 2(2) Alternate Ethernet Receive Data 3(2) Alternate Ethernet receive error input(2) Alternate Ethernet receive data valid(2) Alternate Ethernet carrier sense data valid(2) Alternate Ethernet receive clock(2) Alternate Ethernet reference clock(2) 59 58 — — — 54 — — — 30 49 — 47 48 44 43 35 67 66 42 41 71 68 91 L9 K9 L8 K7 J5 E8 E11 L7 J7 C11 E9 C5 O O O O O O I I I O I/O O — — — — — — ST ST ST — — — Alternate Ethernet Transmit Data 0(2) Alternate Ethernet Transmit Data 1(2) Alternate Ethernet Transmit Data 2(2) Alternate Ethernet Transmit Data 3(2) Alternate Ethernet transmit error(2) Alternate Ethernet transmit enable(2) Alternate Ethernet transmit clock(2) Alternate Ethernet collision detect(2) Alternate Ethernet carrier sense(2) Alternate Ethernet Management Data clock(2) Alternate Ethernet Management Data(2) Trace clock TRD0 TRD1 TRD2 TRD3 PGED1 — — — — 16 97 96 95 92 25 A3 C3 C4 B5 K2 O O O O I/O — — — — ST Trace Data bits 0-3 PGEC1 15 24 K1 I ST PGED2 18 27 J3 I/O ST PGEC2 17 26 L1 I ST MCLR 7 13 F1 I/P ST Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA EMDC 30 71 EMDIO AERXD0 AERXD1 AERXD2 AERXD3 AERXERR AERXDV AECRSDV AERXCLK AEREFCLK 49 43 42 — — 55 — 44 — 45 AETXD0 AETXD1 AETXD2 AETXD3 AETXERR AETXEN AETXCLK AECOL AECRS AEMDC AEMDIO TRCLK Description Data I/O pin for Programming/Debugging Communication Channel 1 Clock input pin for Programming/Debugging Communication Channel 1 Data I/O pin for Programming/Debugging Communication Channel 2 Clock input pin for Programming/Debugging Communication Channel 2 Master Clear (Reset) input. This pin is an active-low Reset to the device. Analog = Analog input P = Power O = Output I = Input Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156G-page 40 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name AVDD 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA 19 30 J4 Buffer Type P P Description Positive supply for analog modules. This pin must be connected at all times. Ground reference for analog modules Positive supply for peripheral logic and I/O pins L3 P P A7, C2, P — C9, E5, K8, F8, G5, H4, H6 56 85 B7 P — Capacitor for Internal Voltage Regulator VCAP/VCORE VSS 9, 25, 41 15, 36, 45, A8, B10, P — Ground reference for logic and I/O pins. This 65, 75 D4, D5, pin must be connected at all times. E7, F5, F10, G6, G7, H3 16 29 K3 I Analog Analog voltage reference (high) input VREF+ VREF15 28 L2 I Analog Analog voltage reference (low) input Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. AVSS VDD 20 31 10, 26, 38, 2, 16, 37, 57 46, 62, 86 Pin Type © 2009-2011 Microchip Technology Inc. DS61156G-page 41 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 42 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 2.1 Basic Connection Requirements Getting started with the PIC32MX5XX/6XX/7XX family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected: • All VDD and VSS pins (see Section 2.2 “Decoupling Capacitors”) • All AVDD and AVSS pins even if the ADC module is not used (see Section 2.2 “Decoupling Capacitors”) • VCAP/VCORE pin (see Section 2.3 “Capacitor on Internal Voltage Regulator (VCAP/VCORE)”) • MCLR pin (see Section 2.4 “Master Clear (MCLR) Pin”) • PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes 2.2 Decoupling Capacitors The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1. Consider the following criteria when using decoupling capacitors: • Value and type of capacitor: A value of 0.1 µF (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended to use ceramic capacitors. • Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length. • Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 µF to 0.001 µF. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 µF in parallel with 0.001 µF. • Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance. (see Section 2.5 “ICSP Pins”) • OSC1 and OSC2 pins when external oscillator source is used (see Section 2.8 “External Oscillator Pins”) The following pin may be required, as well: VREF+/VREF- pins used when external voltage reference for ADC module is implemented Note: The AVDD and AVSS pins must be connected, regardless of the ADC use and the ADC voltage reference source. © 2009-2011 Microchip Technology Inc. DS61156G-page 43 PIC32MX5XX/6XX/7XX FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION 0.1 µF Ceramic CBP R1 MCLR C VSS VCAP/VCORE R VDD CEFC VDD PIC32 VSS 10 Ω 2.2.1 VDD 0.1 µF Ceramic CBP VSS VDD AVSS VDD AVDD 0.1 µF Ceramic CBP VSS 0.1 µF Ceramic CBP 0.1 µF Ceramic CBP BULK CAPACITORS The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 µF to 47 µF. This capacitor should be located as close to the device as possible. 2.3 2.3.1 2.4 Master Clear (MCLR) Pin The MCLR functions: pin specific device Pulling The MCLR pin low generates a device Reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations. Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS VDD R R1 INTERNAL REGULATOR MODE DS61156G-page 44 two • Device Reset • Device Programming and Debugging Capacitor on Internal Voltage Regulator (VCAP/VCORE) A low-ESR (1 ohm) capacitor is required on the VCAP/VCORE pin, which is used to stabilize the internal voltage regulator output. The VCAP/VCORE pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to Section 31.0 “Electrical Characteristics” for additional information on CEFC specifications. provides JP MCLR PIC32 C Note 1: R ≤10 kΩ is recommended. A suggested starting value is 10 kΩ. Ensure that the MCLR pin VIH and VIL specifications are met. 2: R1 ≤ 470Ω will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met. 3: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during the POR. © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 2.5 ICSP Pins The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements. Ensure that the “Communication Channel Select” (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB® ICD 2, MPLAB® ICD 3 or MPLAB® REAL ICE™. For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site. • “MPLAB® ICD 2 In-Circuit Debugger User’s Guide” DS51331 • “Using MPLAB® ICD 2” (poster) DS51265 • “MPLAB® ICD 2 Design Advisory” DS51566 • “Using MPLAB® ICD 3” (poster) DS51765 • “MPLAB® ICD 3 Design Advisory” DS51764 • “MPLAB® REAL ICE™ In-Circuit Emulator User’s Guide” DS51616 • “Using MPLAB® REAL ICE™ Emulator” (poster) DS51749 © 2009-2011 Microchip Technology Inc. 2.6 JTAG The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements. 2.7 Trace The trace pins can be connected to a hardware-traceenabled programmer to provide a compress real time instruction trace. When used for trace the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22Ω series resistor between the trace pins and the trace connector. DS61156G-page 45 PIC32MX5XX/6XX/7XX 2.8 External Oscillator Pins Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. Refer to Section 8.0 “Oscillator Configuration” for details. The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3. FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT Oscillator Secondary Guard Trace Guard Ring Main Oscillator DS61156G-page 46 2.9 Configuration of Analog and Digital Pins During ICSP Operations If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as “digital” pins by setting all bits in the ADPCFG register. The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 2, ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. If your application needs to use certain ADC pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module. When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all ADC pins being recognized as analog input pins, resulting in the port value being read as a logic ‘0’, which may affect user application functionality. 2.10 Unused I/Os Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state. Alternatively, inputs can be reserved by connecting the pin to VSS through a 1k to 10k resistor and configuring the pin as an input. © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 2.11 Referenced Sources This device data sheet is based on the following individual chapters of the “PIC32 Family Reference Manual”. These documents should be considered as the general reference for the operation of a particular module or device feature. Note 1: To access the documents listed below, browse to the documentation section of the PIC32MX795F512L product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list. In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections. • • • • • • • • • • • • • • • • • • • • • • • • • • • • Section 1. “Introduction” (DS61127) Section 2. “CPU” (DS61113) Section 4. “Prefetch Cache” (DS61119) Section 3. “Memory Organization” (DS61115) Section 5. “Flash Program Memory” (DS61121) Section 6. “Oscillator Configuration” (DS61112) Section 7. “Resets” (DS61118) Section 8. “Interrupt Controller” (DS61108) Section 9. “Watchdog Timer and Power-up Timer (DS61114) Section 10. “Power-Saving Features” (DS61130) Section 12. “I/O Ports” (DS61120) Section 13. “Parallel Master Port (PMP)” (DS61128) Section 14. “Timers” (DS61105) Section 15. “Input Capture” (DS61122) Section 16. “Output Capture” (DS61111) Section 17. “10-bit Analog-to-Digital Converter (ADC)” (DS61104) Section 19. “Comparator” (DS61110) Section 20. “Comparator Voltage Reference (CVREF)” (DS61109) Section 21. “Universal Asynchronous Receiver Transmitter (UART)” (DS61107) Section 23. “Serial Peripheral Interface (SPI)” (DS61106) Section 24. “Inter-Integrated Circuit (I2C™)” (DS61116) Section 27. “USB On-The-Go (OTG)” (DS61126) Section 29. “Real-Time Clock and Calendar (RTCC)” (DS61125) Section 31. “Direct Memory Access (DMA) Controller” (DS61117) Section 32. “Configuration” (DS61124) Section 33. “Programming and Diagnostics” (DS61129) Section 34. “Controller Area Network (CAN)” (DS61154) Section 35. “Ethernet Controller” (DS61155) © 2009-2011 Microchip Technology Inc. DS61156G-page 47 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 48 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX CPU Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. “CPU” (DS61113) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). Resources for the MIPS32® M4K® Processor Core are available at http://www.mips.com. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The MIPS32® M4K® Processor core is the heart of the PIC32MX5XX/6XX/7XX family processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations. 3.1 • • • • Features • 5-stage pipeline • 32-bit address and data paths • MIPS32 Enhanced Architecture (Release 2) - Multiply-accumulate and multiply-subtract instructions - Targeted multiply instruction - Zero/One detect instructions - WAIT instruction - Conditional move instructions (MOVN, MOVZ) - Vectored interrupts - Programmable exception vector base FIGURE 3-1: • • - Atomic interrupt enable/disable - GPR shadow registers to minimize latency for interrupt handlers - Bit field manipulation instructions MIPS16e® code compression - 16-bit encoding of 32-bit instructions to improve code density - Special PC-relative instructions for efficient loading of addresses and constants - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines - Improved support for handling 8 and 16-bit data types Simple Fixed Mapping Translation (FMT) mechanism Simple dual bus interface - Independent 32-bit address and data busses - Transactions can be aborted to improve interrupt latency Autonomous multiply/divide unit - Maximum issue rate of one 32x16 multiply per clock - Maximum issue rate of one 32x32 multiply every other clock - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (rs) sign extension-dependent) Power control - Minimum frequency: 0 MHz - Low-Power mode (triggered by WAIT instruction) - Extensive use of local gated clocks EJTAG debug and instruction trace - Support for single stepping - Virtual instruction and data address/value - Breakpoints - PC tracing with trace compression MIPS® M4K® PROCESSOR CORE BLOCK DIAGRAM CPU EJTAG MDU Execution Core (RF/ALU/Shift) System Coprocessor © 2009-2011 Microchip Technology Inc. Trace TAP FMT Bus Interface Trace I/F Off-Chip Debug I/F Dual Bus I/F Bus Matrix 3.0 Power Management DS61156G-page 49 PIC32MX5XX/6XX/7XX 3.2 Architecture Overview The MIPS® M4K® processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core: • • • • • • • • Execution Unit Multiply/Divide Unit (MDU) System Control Coprocessor (CP0) Fixed Mapping Translation (FMT) Dual Internal Bus interfaces Power Management MIPS16e Support Enhanced JTAG (EJTAG) Controller 3.2.1 EXECUTION UNIT The MIPS M4K processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline. The execution unit includes: • 32-bit adder used for calculating the data address • Address unit for calculating the next instruction address • Logic for branch determination and branch target address calculation • Load aligner • Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results • Leading Zero/One detect unit for implementing the CLZ and CLO instructions • Arithmetic Logic Unit (ALU) for performing bitwise logical operations • Shifter and store aligner DS61156G-page 50 3.2.2 MULTIPLY/DIVIDE UNIT (MDU) MIPS M4K processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions. The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown (‘32’ of 32x16) represents the rs operand. The second number (‘16’ of 32x16) represents the rt operand. The PIC32 core only checks the value of the latter (rt) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice. The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU. Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (rs) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16 bit wide rs, 15 iterations are skipped and for a 24 bit wide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed. Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks. © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 3-1: MIPS® M4K® CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES Opcode Operand Size (mul rt) (div rs) Latency Repeat Rate MULT/MULTU, MADD/MADDU, MSUB/MSUBU 16 bits 1 1 32 bits 2 2 MUL 16 bits 2 1 DIV/DIVU 32 bits 3 2 8 bits 12 11 16 bits 19 18 24 bits 26 25 32 bits 33 32 The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and MoveFrom-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file. In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased. 3.2.3 SYSTEM CONTROL COPROCESSOR (CP0) In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor’s diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2. Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms. © 2009-2011 Microchip Technology Inc. DS61156G-page 51 PIC32MX5XX/6XX/7XX TABLE 3-2: Register Number 0-6 COPROCESSOR 0 REGISTERS Register Name Reserved Function Reserved. 7 HWREna Enables access via the RDHWR instruction to selected hardware registers. 8 BadVAddr(1) Reports the address for the most recent address-related exception. 9 Count(1) Processor cycle count. 10 Reserved (1) Reserved. 11 Compare 12 Status(1) Timer interrupt control. Processor status and control. 12 IntCtl(1) Interrupt system status and control. 12 SRSCtl(1) Shadow register set status and control. 12 SRSMap(1) Provides mapping from vectored interrupt to a shadow set. 13 Cause(1) Cause of last general exception. 14 EPC(1) Program counter at last exception. 15 PRId Processor identification and revision. 15 EBASE Exception vector base register. 16 Config Configuration register. 16 Config1 Configuration Register 1. 16 Config2 Configuration Register 2. Config3 Configuration Register 3. 17-22 16 Reserved Reserved. 23 Debug(2) Debug control and exception status. 24 DEPC(2) Program counter at last debug exception. 25-29 Reserved Reserved. 30 ErrorEPC(1) Program counter at last error. 31 DESAVE(2) Debug handler scratchpad register. Note 1: 2: Registers used in exception processing. Registers used during debug. DS61156G-page 52 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority. TABLE 3-3: PIC32MX5XX/6XX/7XX FAMILY CORE EXCEPTION TYPES Exception Reset Description Assertion MCLR or a Power-on Reset (POR). DSS EJTAG debug single step. DINT EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register. NMI Assertion of NMI signal. Interrupt Assertion of unmasked hardware or software interrupt signal. DIB EJTAG debug hardware instruction break matched. AdEL Fetch address alignment error. Fetch reference to protected address. IBE Instruction fetch bus error. DBp EJTAG breakpoint (execution of SDBBP instruction). Sys Execution of SYSCALL instruction. Bp Execution of BREAK instruction. RI Execution of a reserved instruction. CpU Execution of a coprocessor instruction for a coprocessor that is not enabled. CEU Execution of a CorExtend instruction when CorExtend is not enabled. Ov Execution of an arithmetic instruction that overflowed. Tr Execution of a trap (when trap condition is true). DDBL/DDBS EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value). AdEL Load address alignment error. Load reference to protected address. AdES Store address alignment error. Store to protected address. DBE Load or store bus error. DDBL EJTAG data hardware breakpoint matched in load data compare. © 2009-2011 Microchip Technology Inc. DS61156G-page 53 PIC32MX5XX/6XX/7XX 3.3 Power Management The MIPS M4K Processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods. 3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 “Power-Saving Features”. 3.3.2 LOCAL CLOCK GATING The majority of the power consumed by the PIC32MX5XX/6XX/7XX family core is in the clock tree and clocking registers. The PIC32 family uses extensive use of local gated clocks to reduce this dynamic power consumption. DS61156G-page 54 3.4 EJTAG Debug Support The MIPS M4K Processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the MIPS M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine. The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the MIPS M4K processor core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used. © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 4.0 Note: MEMORY ORGANIZATION This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. For detailed information, refer to Section 3. “Memory Organization” (DS61115) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX5XX/6XX/7XX microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX5XX/6XX/7XX devices to execute from data memory. Key features include: • 32-bit native data width • Separate User (KUSEG) and Kernel (KSEG0/KSEG1) mode address space • Flexible program Flash memory partitioning • Flexible data RAM partitioning for data and program space • Separate boot Flash memory for protected code • Robust bus exception handling to intercept runaway code • Simple memory mapping with Fixed Mapping Translation (FMT) unit • Cacheable (KSEG0) and non-cacheable (KSEG1) address regions © 2009-2011 Microchip Technology Inc. 4.1 PIC32MX5XX/6XX/7XX Memory Layout PIC32MX5XX/6XX/7XX microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU. The memory maps for the PIC32MX5XX/6XX/7XX devices are illustrated in Figure 4-1 through Figure 4-6. 4.1.1 PERIPHERAL REGISTERS LOCATIONS Table 4-1 through Table 4-44 contain the peripheral address maps for the PIC32MX5XX/6XX/7XX devices. Peripherals located on the PB bus are mapped to 512-byte boundaries. Peripherals on the FPB bus are mapped to 4-Kbyte boundaries. DS61156G-page 55 PIC32MX5XX/6XX/7XX FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX564F064H, PIC32MX564F064L, PIC32MX664F064H AND PIC32MX664F064L DEVICES(1) Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD010000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD00FFFF Program Flash(2) 0xBD000000 0xA0008000 Reserved 0xA0007FFF RAM(2) 0xA0000000 0x9FC03000 0x9FC02FFF 0x9FC02FF0 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x9D010000 0x9D00FFFF Program Flash(2) KSEG0 0x1F8FFFFF Reserved SFRs 0x1F800000 Reserved 0x9D000000 0x80008000 0x1D010000 Reserved 0x1D00FFFF Program Flash(2) 0x1D000000 0x80007FFF RAM(2) 0x80000000 0x00000000 Note 1: 2: DS61156G-page 56 Reserved Reserved RAM(2) 0x00008000 0x00007FFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX534F064H AND PIC32MX534F064L DEVICES(1) Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD010000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD00FFFF Program Flash(2) 0xBD000000 0xA0004000 Reserved 0xA0003FFF RAM(2) 0xA0000000 0x9FC03000 0x9FC02FFF 0x9FC02FF0 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x9D010000 0x9D00FFFF Program Flash(2) KSEG0 0x1F8FFFFF Reserved SFRs 0x1F800000 Reserved 0x9D000000 0x80004000 0x1D010000 Reserved 0x1D00FFFF Program Flash(2) 0x1D000000 0x80003FFF RAM(2) 0x80000000 0x00000000 Note 1: 2: Reserved Reserved RAM (2) 0x00004000 0x00003FFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). © 2009-2011 Microchip Technology Inc. DS61156G-page 57 PIC32MX5XX/6XX/7XX FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX564F128H, PIC32MX564F128L, PIC32MX664F128H, PIC32MX664F128L, PIC32MX764F128H AND PIC32MX764F128L DEVICES(1) Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD020000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD01FFFF Program Flash(2) 0xBD000000 0xA0008000 Reserved 0xA0007FFF RAM(2) 0xA0000000 0x9FC03000 0x9FC02FFF 0x9FC02FF0 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x9D020000 0x9D01FFFF Program Flash(2) KSEG0 0x1F8FFFFF Reserved SFRs 0x1F800000 Reserved 0x9D000000 0x80008000 0x1D020000 Reserved 0x1D01FFFF Program Flash(2) 0x1D000000 0x80007FFF RAM(2) 0x80000000 0x00000000 Note 1: 2: DS61156G-page 58 Reserved Reserved RAM(2) 0x00008000 0x00007FFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 4-4: MEMORY MAP ON RESET FOR PIC32MX575F256H, PIC32MX575F256L, PIC32MX675F256H, PIC32MX675F256L, PIC32MX775F256H AND PIC32MX775F256L DEVICES(1) Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD040000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD03FFFF Program Flash(2) 0xBD000000 0xA0010000 Reserved 0xA000FFFF RAM(2) 0xA0000000 0x9FC03000 0x9FC02FFF 0x9FC02FF0 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x9D040000 0x9D03FFFF Program Flash(2) KSEG0 0x1F8FFFFF Reserved SFRs 0x1F800000 Reserved 0x9D000000 0x80008000 0x1D040000 Reserved 0x1D03FFFF Program Flash(2) 0x1D000000 0x80007FFF RAM(2) 0x80000000 0x00000000 Note 1: 2: Reserved Reserved RAM (2) 0x00010000 0x0000FFFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). © 2009-2011 Microchip Technology Inc. DS61156G-page 59 PIC32MX5XX/6XX/7XX FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX575F512H, PIC32MX575F512L, PIC32MX675F512H, PIC32MX675F512L, PIC32MX775F512H AND PIC32MX775F512L DEVICES Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD080000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD07FFFF Program Flash(2) 0xBD000000 0xA0010000 Reserved 0xA000FFFF RAM(2) 0xA0000000 0x9FC03000 0x9FC02FFF 0x9FC02FF0 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x9D080000 0x9D07FFFF Program Flash(2) KSEG0 0x1F8FFFFF Reserved SFRs 0x1F800000 Reserved 0x9D000000 0x80010000 0x1D080000 Reserved 0x1D07FFFF Program Flash(2) 0x1D000000 0x8000FFFF RAM(2) 0x80000000 0x00000000 Note 1: 2: DS61156G-page 60 Reserved Reserved RAM (2) 0x00010000 0x0000FFFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX695F512H, PIC32MX695F512L, PIC32MX795F512H AND PIC32MX795F512L DEVICES Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD080000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD07FFFF Program Flash(2) 0xBD000000 0xA0020000 Reserved 0xA001FFFF RAM(2) 0xA0000000 0x9FC03000 0x9FC02FFF 0x9FC02FF0 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 0x9D080000 0x9D07FFFF KSEG0 0x1F8FFFFF Reserved Program Flash(2) SFRs 0x1F800000 Reserved 0x9D000000 0x80020000 0x1D080000 Reserved 0x1D07FFFF Program Flash(2) 0x1D000000 0x8001FFFF RAM(2) 0x80000000 0x00000000 Note 1: 2: Reserved Reserved RAM(2) 0x00020000 0x0001FFFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). © 2009-2011 Microchip Technology Inc. DS61156G-page 61 Bits 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 31:16 — — — — — BMXCHEDMA — — 15:0 — — — — — — — — 31:16 2010 BMXDKPBA(1) 15:0 — — — — — — — — 31:16 2020 BMXDUDBA(1) 15:0 — — — — — — — — 31:16 2030 BMXDUPBA(1) 15:0 — — — — — — — — 2040 BMXDRMSZ 2060 BMXPFMSZ 2070 BMXBOOTSZ 15:0 31:16 15:0 21/5 19/3 18/2 17/1 16/0 — — — — BMXWSDRM — — — — — — — — — — — 0000 — — — — — — 0000 — — — — — — 0000 BMXERRIXI BMXERRICD BMXERRDMA BMXERRDS BMXERRIS 001F BMXARB<2:0> 0041 — — 0000 BMXDUDBA<15:0> — — 0000 BMXDUPBA<15:0> 0000 xxxx BMXDRMSZ<31:0> 15:0 31:16 22/6 BMXDKPBA<15:0> 31:16 31:16 2050 BMXPUPBA(1) 15:0 20/4 — — — — — — — — All Resets Register Name BMXCON(1) Bit Range Virtual Address (BF88_#) 2000 BUS MATRIX REGISTER MAP — — BMXPUPBA<15:0> BMXPFMSZ<31:0> BMXBOOTSZ<31:0> xxxx — — BMXPUPBA<19:16> 0000 0000 xxxx xxxx 0000 3000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX DS61156G-page 62 TABLE 4-1: © 2009-2011 Microchip Technology Inc. INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES(1) INTCON 1010 INTSTAT(3) 1020 IPTMR 1030 IFS0 1040 IFS1 1050 IFS2 IEC0 1070 IEC1 1080 IEC2 1090 IPC0 DS61156G-page 63 10A0 IPC1 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — 25/9 24/8 23/7 22/6 21/5 — — — — — — — — — INT4EP — — — — — — TPC<2:0> — — — SRIPL<2:0> 31:16 31:16 I2C1MIF 17/1 16/0 — — — SS0 INT3EP INT2EP INT1EP INT0EP — — — — I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI3TXIF SPI3RXIF SPI3EIF I2C3MIF I2C3SIF I2C3BIF — — 0000 — OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF IC2EIF IC1EIF — — CAN1IF USBIF FCEIF U2TXIF U2RXIF U2EIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4BIF FSCMIF — — — DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) DMA3IF DMA2IF DMA1IF DMA0IF U3TXIF U3RXIF I2C4SIF CMP2IF CMP1IF PMPIF AD1IF — — — — — — — — — — — — — — — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF U1TXIE U1RXIE U1EIE SPI3TXIE SPI3RXIE SPI3EIE — — — OC5IE IC5IE T5IE INT4IE OC4IE I2C3MIE I2C3SIE I2C3BIE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE I2C1BIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE 31:16 IC3EIE IC2EIE IC1EIE — — CAN1IE USBIE FCEIE U2TXIE U2RXIE U2EIE SPI4TXIE SPI4RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE I2C5MIE I2C5SIE I2C5BIE I2C4MIE I2C4BIE RTCCIE FSCMIE — — — U3RXIE I2C4SIE CMP2IE CMP1IE — — — — — — — — — — — — — 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE 31:16 — — — — — — INT0IS<1:0> 0000 — 0000 IC4EIF 0000 IC4IE T4IE 0000 CS0IE CTIE 0000 PMPEIF IC5EIF 0000 U3EIE 31:16 INT0IP<2:0> CNIF DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) DMA3IE DMA2IE DMA1IE DMA0IE U3TXIE 0000 U3EIF — 31:16 I2C1MIE I2C1SIE 0000 0000 IC3EIF RTCCIF 0000 0000 0000 15:0 15:0 18/2 VEC<5:0> 31:16 31:16 15:0 19/3 IPTMR<31:0> 15:0 15:0 20/4 CS1IP<2:0> PMPIE AD1IE — — PMPEIE IC5EIE CNIE 0000 — 0000 IC4EIE 0000 CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX534/564/664/764 devices. This register does not have associated CLR, SET, and INV registers. 1: 2: 3: PIC32MX5XX/6XX/7XX 1060 31/15 All Resets 1000 Bit Range Register Name Bits Virtual Address (BF88_#) © 2009-2011 Microchip Technology Inc. TABLE 4-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES(1) (CONTINUED) IPC2 10C0 IPC3 10D0 IPC4 10E0 IPC5 10F0 IPC6 1100 IPC7 1110 IPC8 1120 IPC9 © 2009-2011 Microchip Technology Inc. 1130 IPC10 1140 IPC11 1150 IPC12 31/15 30/14 29/13 23/7 22/6 21/5 31:16 — — — INT2IP<2:0> 15:0 — — — IC2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — 15:0 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 31:16 — — 0000 — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 15:0 — 0000 — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 31:16 0000 — — — — — — OC5IP<2:0> OC5IS<1:0> 0000 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1IP<2:0> U1IS<1:0> SPI3IP<2:0> SPI3IS<1:0> I2C3IP<2:0> I2C3IS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 15:0 31:16 — — — — 28/12 — — 27/11 — 26/10 — I2C1IP<2:0> — 25/9 — 24/8 — I2C1IS<1:0> U3IP<2:0> U3IS<1:0> SPI2IP<2:0> SPI2IS<1:0> I2C4IP<2:0> I2C4IS<1:0> — — 20/4 — — — — 19/3 18/2 17/1 16/0 All Resets Register Name 10B0 Bit Range Virtual Address (BF88_#) Bits 0000 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U2IP<2:0> U2IS<1:0> SPI4IP<2:0> SPI4IS<1:0> I2C5IP<2:0> I2C5IS<1:0> 15:0 — — — — — — — — — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 — — — CAN1IP<2:0> CAN1IS<1:0> 0000 0000 DMA5IP<2:0>(2) 0000 15:0 — — — 31:16 — — — 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 15:0 — — — U4IP<2:0> U4IS<1:0> — — — — 0000 — — — — — — — — — Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX534/564/664/764 devices. This register does not have associated CLR, SET, and INV registers. 1: 2: 3: PIC32MX5XX/6XX/7XX DS61156G-page 64 TABLE 4-2: Virtual Address (BF88_#) Register Name 1000 INTCON 1010 INTSTAT(3) INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND PIC32MX695F512H DEVICES(1) 1020 IPTMR 1030 IFS0 1040 IFS1 1050 IFS2 IEC0 1070 IEC1 1080 IEC2 1090 IPC0 10A0 IPC1 10B0 IPC2 DS61156G-page 65 10C0 IPC3 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — 25/9 24/8 23/7 22/6 21/5 — — — — — — — — — SS0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — 0000 — — TPC<2:0> — — SRIPL<2:0> 31:16 18/2 17/1 16/0 VEC<5:0> I2C1MIF I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI3TXIF SPI3RXIF SPI3EIF I2C3MIF I2C3SIF I2C3BIF — — 0000 0000 — OC5IF IC5IF T5IF INT1IF OC1IF IC1IF T1IF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF IC3EIF IC2EIF IC1EIF ETHIF — — USBIF FCEIF U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF RTCCIF FSCMIF 31:16 — — 15:0 — — 31:16 I2C1MIE I2C1SIE — — I2C1BIE — — DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) CMP2IF INT4IF OC4IF IC4IF T4IF 0000 INT0IF CS1IF CS0IF CTIF 0000 DMA3IF DMA2IF DMA1IF DMA0IF 0000 CMP1IF PMPIF AD1IF CNIF 0000 — — — — — — — — — — — — 0000 — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 U1TXIE U1RXIE U1EIE — — — OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 INT1IE OC1IE IC1IE T1IE SPI3TXIE SPI3RXIE SPI3EIE I2C3MIE I2C3SIE I2C3BIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE 31:16 IC3EIE IC2EIE IC1EIE ETHIE — — USBIE FCEIE U2TXIE U2RXIE 15:0 RTCCIE FSCMIE — — — U2EIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) U3TXIE U3RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE I2C5MIE I2C5BIE I2C4MIE I2C4BIE I2C4SIE CS1IE CS0IE CTIE 0000 DMA2IE DMA1IE DMA0IE 0000 CMP1IE PMPIE AD1IE CNIE 0000 U3EIE SPI4TXIE SPI4RXIE I2C5SIE INT0IE DMA3IE CMP2IE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX664 devices. This register does not have associated CLR, SET, and INV registers. 1: 2: 3: 0000 0000 31:16 15:0 19/3 IPTMR<31:0> 15:0 31:16 — 20/4 PIC32MX5XX/6XX/7XX 1060 31/15 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-3: Virtual Address (BF88_#) Register Name 10D0 IPC4 10E0 IPC5 IPC6 1100 IPC7 1110 IPC8 1120 IPC9 1130 IPC10 1140 IPC11 1150 IPC12 Legend: 31/15 30/14 29/13 31:16 — — — INT4IP<2:0> 15:0 — — — IC4IP<2:0> 31:16 — — — 15:0 — — — IC5IP<2:0> 31:16 — — — AD1IP<2:0> 15:0 31:16 — — — — 28/12 — — 27/11 — 26/10 — I2C1IP<2:0> — 25/9 23/7 22/6 21/5 INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 — — — OC5IP<2:0> OC5IS<1:0> 0000 IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1IP<2:0> U1IS<1:0> SPI3IP<2:0> SPI3IS<1:0> I2C3IP<2:0> I2C3IS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 — 24/8 — I2C1IS<1:0> U3IP<2:0> U3IS<1:0> SPI2IP<2:0> SPI2IS<1:0> I2C4IP<2:0> I2C4IS<1:0> — — 20/4 — — — — 19/3 18/2 17/1 16/0 © 2009-2011 Microchip Technology Inc. 2: 3: 0000 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U2IP<2:0> U2IS<1:0> SPI4IP<2:0> SPI4IS<1:0> I2C5IP<2:0> I2C5IS<1:0> 15:0 — — — — — — — — — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 DMA5IS<1:0>(2) — — — — — — 15:0 — — — 31:16 — — — DMA5IP<2:0>(2) — — — — — DMA4IP<2:0>(2) — — DMA4IS<1:0>(2) — — — 0000 0000 0000 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 15:0 — — — U4IP<2:0> U4IS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 1: All Resets Bit Range Bits 10F0 Note INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND PIC32MX695F512H DEVICES(1) (CONTINUED) Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX664 devices. This register does not have associated CLR, SET, and INV registers. PIC32MX5XX/6XX/7XX DS61156G-page 66 TABLE 4-3: Virtual Address (BF88_#) Register Name 1000 INTCON INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 1010 INTSTAT(3) 1020 IPTMR 1030 IFS0 1040 IFS1 1050 IFS2 IEC0 1070 IEC1 1080 IEC2 1090 IPC0 10A0 IPC1 DS61156G-page 67 10B0 IPC2 IPC3 10C0 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — 25/9 24/8 23/7 22/6 21/5 — — — — — — — — — SS0 0000 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — 0000 — — TPC<2:0> — — 31:16 18/2 17/1 16/0 VEC<5:0> 0000 0000 I2C1MIF I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI3TXIF SPI3RXIF SPI3EIF I2C3MIF I2C3SIF I2C3BIF — — 0000 — OC5IF IC5IF T5IF INT1IF OC1IF IC1IF T1IF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF 31:16 IC3EIF IC2EIF IC1EIF ETHIF CAN2IF(2) CAN1IF USBIF FCEIF U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF 15:0 19/3 IPTMR<31:0> 15:0 31:16 — SRIPL<2:0> 20/4 RTCCIF FSCMIF — — — DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) CMP2IF INT4IF OC4IF IC4IF T4IF 0000 INT0IF CS1IF CS0IF CTIF 0000 DMA3IF DMA2IF DMA1IF DMA0IF 0000 CMP1IF PMPIF AD1IF CNIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 U1TXIE U1RXIE 31:16 I2C1MIE I2C1SIE I2C1BIE — — — OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 INT1IE OC1IE IC1IE T1IE U1EIE SPI3TXIE SPI3RXIE SPI3EIE I2C3MIE I2C3BIE I2C3SIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE 31:16 IC3EIE IC2EIE IC1EIE ETHIE CAN2IE(2) CAN1IE USBIE FCEIE U2TXIE U2RXIE 15:0 RTCCIE FSCMIE — — — U2EIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) U3TXIE U3RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE I2C5MIE I2C5BIE I2C4MIE I2C4BIE I2C4SIE CS1IE CS0IE CTIE 0000 DMA2IE DMA1IE DMA0IE 0000 CMP1IE PMPIE AD1IE CNIE 0000 U3EIE SPI4TXIE SPI4RXIE I2C5SIE INT0IE DMA3IE CMP2IE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. This bit is unimplemented on PIC32MX764F128H device. This register does not have associated CLR, SET, and INV registers. 1: 2: 3: PIC32MX5XX/6XX/7XX 1060 31/15 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-4: Virtual Address (BF88_#) Register Name 10D0 IPC4 10E0 IPC5 INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) (CONTINUED) 10F0 IPC6 1100 IPC7 1110 IPC8 1120 IPC9 1130 IPC10 1140 IPC11 1150 IPC12 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 31:16 — — — — — — OC5IP<2:0> OC5IS<1:0> 0000 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1IP<2:0> U1IS<1:0> SPI3IP<2:0> SPI3IS<1:0> I2C3IP<2:0> I2C3IS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 15:0 31:16 — — — — — — — — I2C1IP<2:0> — — — I2C1IS<1:0> U3IP<2:0> U3IS<1:0> SPI2IP<2:0> SPI2IS<1:0> I2C4IP<2:0> I2C4IS<1:0> — — — — — — 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U2IP<2:0> U2IS<1:0> SPI4IP<2:0> SPI4IS<1:0> I2C5IP<2:0> I2C5IS<1:0> 15:0 — — — — — — — — — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 15:0 — — — DMA5IP<2:0>(2) DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 31:16 — — — CAN2IP<2:0>(2) CAN2IS<1:0>(2) — — — CAN1IP<2:0> CAN1IS<1:0> 0000 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 15:0 — — — U4IP<2:0> U4IS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 © 2009-2011 Microchip Technology Inc. x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. This bit is unimplemented on PIC32MX764F128H device. This register does not have associated CLR, SET, and INV registers. 2: 3: 0000 31:16 Legend: 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX DS61156G-page 68 TABLE 4-4: Virtual Address (BF88_#) Register Name 1000 INTCON 1010 INTSTAT(3) INTERRUPT REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L PIC32MX575F512L AND PIC32MX575F256L DEVICES(1) 1020 IPTMR 1030 IFS0 1040 IFS1 1050 IFS2 IEC0 1070 IEC1 1080 IEC2 1090 IPC0 10A0 IPC1 DS61156G-page 69 10B0 IPC2 10C0 IPC3 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — 25/9 24/8 23/7 22/6 21/5 — — — — — — — — — SS0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — 0000 — — TPC<2:0> — — — SRIPL<2:0> 31:16 18/2 17/1 16/0 VEC<5:0> I2C1MIF I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI3TXIF SPI3RXIF SPI3EIF I2C3MIF I2C3SIF I2C3BIF SPI1TXIF SPI1RXIF 0000 0000 SPI1EIF OC5IF IC5IF T5IF INT1IF OC1IF IC1IF T1IF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF IC3EIF IC2EIF IC1EIF — — CAN1IF USBIF FCEIF U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) CMP2IF INT4IF OC4IF IC4IF T4IF 0000 INT0IF CS1IF CS0IF CTIF 0000 DMA3IF DMA2IF DMA1IF DMA0IF 0000 CMP1IF PMPIF AD1IF CNIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 U1TXIE U1RXIE U1EIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 INT1IE OC1IE IC1IE T1IE 31:16 I2C1MIE I2C1SIE I2C1BIE SPI3TXIE SPI3RXIE SPI3EIE I2C3MIE I2C3SIE I2C3BIE SPI1TXIE SPI1RXIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE 31:16 IC3EIE IC2EIE IC1EIE — — CAN1IE USBIE FCEIE U2TXIE U2RXIE 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE U2EIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) U3TXIE U3RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE I2C5MIE I2C5BIE I2C4MIE I2C4BIE I2C4SIE CS1IE CS0IE CTIE 0000 DMA2IE DMA1IE DMA0IE 0000 CMP1IE PMPIE AD1IE CNIE 0000 0000 U3EIE SPI4TXIE SPI4RXIE I2C5SIE INT0IE DMA3IE CMP2IE 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 31:16 — — — INT0IS<1:0> — — — INT0IP<2:0> CS1IP<2:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX534/564 devices. This register does not have associated CLR, SET, and INV registers. 2: 3: 0000 CS1IS<1:0> Legend: 1: 0000 0000 31:16 15:0 19/3 IPTMR<31:0> 15:0 31:16 20/4 PIC32MX5XX/6XX/7XX 1060 31/15 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-5: Virtual Address (BF88_#) Register Name 10D0 IPC4 INTERRUPT REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L PIC32MX575F512L AND PIC32MX575F256L DEVICES(1) (CONTINUED) 10E0 IPC5 10F0 IPC6 1100 IPC7 1110 IPC8 1120 IPC9 1130 IPC10 1140 IPC11 1150 IPC12 31/15 30/14 29/13 31:16 — — — INT4IP<2:0> 15:0 — — — IC4IP<2:0> 31:16 — — — 15:0 — — 31:16 — — 15:0 31:16 — — — — 28/12 23/7 22/6 21/5 INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1IP<2:0> U1IS<1:0> SPI3IP<2:0> SPI3IS<1:0> I2C3IP<2:0> I2C3IS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 — 27/11 26/10 I2C1IP<2:0> — 25/9 24/8 I2C1IS<1:0> U3IP<2:0> U3IS<1:0> SPI2IP<2:0> SPI2IS<1:0> I2C4IP<2:0> I2C4IS<1:0> — — 20/4 — — — — 19/3 18/2 17/1 16/0 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U2IP<2:0> U2IS<1:0> SPI4IP<2:0> SPI4IS<1:0> I2C5IP<2:0> I2C5IS<1:0> 15:0 — — — I2C2IP<2:0> I2C2IS<1:0> — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 — — — CAN1IP<2:0> CAN1IS<1:0> 0000 0000 DMA5IP<2:0>(2) 15:0 — — — 31:16 — — — 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 15:0 — — — U4IP<2:0> U4IS<1:0> — — — — — — — — — — — — — © 2009-2011 Microchip Technology Inc. x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX534/564 devices. This register does not have associated CLR, SET, and INV registers. 2: 3: 0000 31:16 Legend: 1: All Resets Bit Range Bits 0000 0000 0000 PIC32MX5XX/6XX/7XX DS61156G-page 70 TABLE 4-5: Virtual Address (BF88_#) Register Name 1000 INTCON 1010 INTSTAT(3) INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES(1) 1020 IPTMR 1030 IFS0 1040 IFS1 1050 IFS2 IEC0 1070 IEC1 1080 IEC2 1090 IPC0 10A0 IPC1 DS61156G-page 71 10B0 IPC2 10C0 IPC3 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — 25/9 24/8 23/7 22/6 21/5 — — — — — — — — — SS0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — 0000 — — TPC<2:0> — — SRIPL<2:0> 31:16 19/3 18/2 17/1 16/0 VEC<5:0> I2C1MIF I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI3TXIF SPI3RXIF SPI3EIF I2C3MIF I2C3SIF I2C3BIF SPI1TXIF SPI1RXIF 0000 0000 SPI1EIF OC5IF IC5IF T5IF INT1IF OC1IF IC1IF T1IF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF 31:16 IC3EIF IC2EIF IC1EIF ETHIF — — USBIF FCEIF U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF 15:0 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) CMP2IF INT4IF OC4IF IC4IF T4IF INT0IF CS1IF CS0IF CTIF 0000 DMA2IF DMA1IF DMA0IF 0000 CMP1IF PMPIF AD1IF CNIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 U1TXIE U1RXIE 31:16 I2C1MIE I2C1SIE I2C1BIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 INT1IE OC1IE IC1IE T1IE U1EIE SPI3TXIE SPI3RXIE SPI3EIE I2C3MIE I2C3SIE I2C3BIE SPI1TXIE SPI1RXIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE 31:16 IC3EIE IC2EIE IC1EIE ETHIE — — USBIE FCEIE U2TXIE U2RXIE 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE U2EIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) U3TXIE U3RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE I2C5MIE I2C5BIE I2C4MIE I2C4BIE I2C4SIE CS1IE CS0IE CTIE 0000 DMA2IE DMA1IE DMA0IE 0000 CMP1IE PMPIE AD1IE CNIE 0000 U3EIE SPI4TXIE SPI4RXIE I2C5SIE INT0IE DMA3IE CMP2IE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX664 devices. This register does note have associated CLR, SET, and INV registers. 2: 3: 0000 DMA3IF Legend: 1: 0000 0000 IPTMR<31:0> 15:0 31:16 — 20/4 PIC32MX5XX/6XX/7XX 1060 31/15 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-6: Virtual Address (BF88_#) Register Name 10D0 IPC4 10E0 IPC5 INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES(1) (CONTINUED) 10F0 IPC6 1100 IPC7 1110 IPC8 1120 IPC9 1130 IPC10 1140 IPC11 1150 IPC12 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 31:16 — — — SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1IP<2:0> U1IS<1:0> SPI3IP<2:0> SPI3IS<1:0> I2C3IP<2:0> I2C3IS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 15:0 31:16 — — — — — I2C1IP<2:0> — I2C1IS<1:0> U3IP<2:0> U3IS<1:0> SPI2IP<2:0> SPI2IS<1:0> I2C4IP<2:0> I2C4IS<1:0> — — — — — — 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U2IP<2:0> U2IS<1:0> SPI4IP<2:0> SPI4IS<1:0> I2C5IP<2:0> I2C5IS<1:0> 15:0 — — — I2C2IP<2:0> I2C2IS<1:0> — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 DMA5IS<1:0>(2) — — — — — — 15:0 — — — 31:16 — — — DMA5IP<2:0>(2) — — — — — DMA4IP<2:0>(2) — — DMA4IS<1:0>(2) — — — 0000 0000 0000 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 15:0 — — — U4IP<2:0> U4IS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 © 2009-2011 Microchip Technology Inc. x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX664 devices. This register does note have associated CLR, SET, and INV registers. 2: 3: 0000 31:16 Legend: 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX DS61156G-page 72 TABLE 4-6: Virtual Address (BF88_#) Register Name 1000 INTCON 1010 INTSTAT(3) INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 1020 IPTMR 1030 IFS0 1040 IFS1 1050 IFS2 IEC0 1070 IEC1 1080 IEC2 1090 IPC0 10A0 IPC1 DS61156G-page 73 10B0 IPC2 10C0 IPC3 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — 25/9 24/8 23/7 22/6 21/5 — — — — — — — — — SS0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — 0000 — — TPC<2:0> — — SRIPL<2:0> 31:16 18/2 17/1 16/0 VEC<5:0> I2C1MIF I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI3TXIF SPI3RXIF SPI3EIF I2C3MIF I2C3SIF I2C3BIF SPI1TXIF SPI1RXIF 0000 0000 SPI1EIF OC5IF IC5IF T5IF INT1IF OC1IF IC1IF T1IF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF IC3EIF IC2EIF IC1EIF ETHIF CAN2IF(2) CAN1IF USBIF FCEIF U2TXIF U2RXIF U2EIF U3TXIF U3RXIF U3EIF SPI4TXIF SPI4RXIF SPI4EIF SPI2TXIF SPI2RXIF SPI2EIF I2C5MIF I2C5SIF I2C5BIF I2C4MIF I2C4SIF I2C4BIF RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF DMA7IF(2) DMA6IF(2) DMA5IF(2) DMA4IF(2) CMP2IF INT4IF OC4IF IC4IF T4IF 0000 INT0IF CS1IF CS0IF CTIF 0000 DMA3IF DMA2IF DMA1IF DMA0IF 0000 CMP1IF PMPIF AD1IF CNIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U5TXIF U5RXIF U5EIF U6TXIF U6RXIF U6EIF U4TXIF U4RXIF U4EIF PMPEIF IC5EIF IC4EIF 0000 U1TXIE U1RXIE U1EIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 INT1IE OC1IE IC1IE T1IE 31:16 I2C1MIE I2C1SIE I2C1BIE SPI3TXIE SPI3RXIE SPI3EIE I2C3MIE I2C3BIE I2C3SIE SPI1TXIE SPI1RXIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE 31:16 IC3EIE IC2EIE IC1EIE ETHIE CAN2IE(2) CAN1IE USBIE FCEIE U2TXIE U2RXIE 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE U2EIE DMA7IE(2) DMA6IE(2) DMA5IE(2) DMA4IE(2) U3TXIE U3RXIE SPI4EIE SPI2TXIE SPI2RXIE SPI2EIE I2C5MIE I2C5BIE I2C4MIE I2C4BIE I2C4SIE CS1IE CS0IE CTIE 0000 DMA2IE DMA1IE DMA0IE 0000 CMP1IE PMPIE AD1IE CNIE 0000 0000 U3EIE SPI4TXIE SPI4RXIE I2C5SIE INT0IE DMA3IE CMP2IE 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — U5TXIE U5RXIE U5EIE U6TXIE U6RXIE U6EIE U4TXIE U4RXIE U4EIE PMPEIE IC5EIE IC4EIE 31:16 — — — INT0IS<1:0> — — — INT0IP<2:0> CS1IP<2:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. This bit is unimplemented on PIC32MX764F128L device. This register does not have associated CLR, SET, and INV registers. 2: 3: 0000 CS1IS<1:0> Legend: 1: 0000 0000 31:16 15:0 19/3 IPTMR<31:0> 15:0 31:16 — 20/4 PIC32MX5XX/6XX/7XX 1060 31/15 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-7: Virtual Address (BF88_#) Register Name 10D0 IPC4 10E0 IPC5 INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) 10F0 IPC6 1100 IPC7 1110 IPC8 1120 IPC9 1130 IPC10 1140 IPC11 1150 IPC12 31/15 30/14 29/13 31:16 — — — INT4IP<2:0> 15:0 — — — IC4IP<2:0> 31:16 — — — 15:0 — — 31:16 — — 15:0 31:16 — — — — 23/7 22/6 21/5 INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1IP<2:0> U1IS<1:0> SPI3IP<2:0> SPI3IS<1:0> I2C3IP<2:0> I2C3IS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 — — 28/12 27/11 I2C1IP<2:0> 26/10 25/9 24/8 I2C1IS<1:0> U3IP<2:0> U3IS<1:0> SPI2IP<2:0> SPI2IS<1:0> I2C4IP<2:0> I2C4IS<1:0> — — — — — — 20/4 19/3 18/2 17/1 16/0 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U2IP<2:0> U2IS<1:0> SPI4IP<2:0> SPI4IS<1:0> I2C5IP<2:0> I2C5IS<1:0> 15:0 — — — I2C2IP<2:0> I2C2IS<1:0> — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0>(2) DMA7IS<1:0>(2) — — — DMA6IP<2:0>(2) DMA6IS<1:0>(2) 0000 15:0 — — — DMA5IP<2:0>(2) DMA5IS<1:0>(2) — — — DMA4IP<2:0>(2) DMA4IS<1:0>(2) 0000 31:16 — — — CAN2IP<2:0>(2) CAN2IS<1:0>(2) — — — CAN1IP<2:0> CAN1IS<1:0> 0000 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U5IP<2:0> U5IS<1:0> — — — U6IP<2:0> U6IS<1:0> 0000 15:0 — — — U4IP<2:0> U4IS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 © 2009-2011 Microchip Technology Inc. x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. This bit is unimplemented on PIC32MX764F128L device. This register does not have associated CLR, SET, and INV registers. 2: 3: 0000 31:16 Legend: 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX DS61156G-page 74 TABLE 4-7: Virtual Address (BF80_#) 0600 T1CON 0610 TMR1 0620 TMR2 0820 TMR3 TMR5 PR5 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — — — 0000 FRZ SIDL TWDIS TWIP — — — TGATE — TCKPS<1:0> — TSYNC TCS — 0000 31:16 — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 15:0 TMR1<15:0> — — — — — — — — 31:16 — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — TGATE 31:16 — — — — — — — — — 15:0 — — — — — — — 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — — — TGATE 31:16 — — — — — — — — — T32 — TCS(2) — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 TCKPS<2:0> — 0000 PR2<15:0> 15:0 FFFF — — TCS(2) — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 TCKPS<2:0> TMR3<15:0> — — — — — — — — 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — — — TGATE 31:16 — — — — — — — — — — 0000 PR3<15:0> 15:0 FFFF T32 — TCS(2) — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 TCKPS<2:0> TMR4<15:0> — — — — — — — — 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — — — TGATE 31:16 — — — — — — — — — — 0000 PR4<15:0> 15:0 15:0 FFFF TMR2<15:0> — 31:16 0000 PR1<15:0> 15:0 0E00 T5CON 23/7 — 31:16 PR4 0E20 24/8 FFFF — — TCS(2) — 0000 — — — — — — — 0000 — — — — — — — 0000 TCKPS<2:0> TMR5<15:0> — — — — — — — — — 0000 PR5<15:0> DS61156G-page 75 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on 64-pin devices. 1: 2: FFFF PIC32MX5XX/6XX/7XX TMR4 0E10 25/9 15:0 0C00 T4CON 0C20 26/10 ON 31:16 PR3 0C10 27/11 15:0 0A00 T3CON 0A20 28/12 15:0 31:16 PR2 0A10 29/13 15:0 0800 T2CON 0810 30/14 31:16 31:16 PR1 31/15 All Resets Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. TIMER1-TIMER5 REGISTER MAP(1) TABLE 4-8: Virtual Address (BF80_#) Register Name 2000 IC1CON(1) 2010 IC1BUF 2200 IC2CON(1) 2210 IC2BUF 2400 IC3CON(1) 2410 IC3BUF 2600 IC4CON(1) 2610 IC4BUF 2800 IC5CON(1) 2810 IC5BUF INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 — — 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 31:16 15:0 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 31:16 18/2 — — — ICOV ICBNE 17/1 16/0 — — ICM<2:0> 15:0 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 31:16 0000 xxxx — — ICI<1:0> — — ICOV ICBNE — — — ICM<2:0> 15:0 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 31:16 0000 xxxx — — ICI<1:0> — — ICOV ICBNE — — — ICM<2:0> 15:0 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 0000 xxxx — — ICI<1:0> — — ICOV ICBNE — — — ICM<2:0> 0000 0000 xxxx xxxx — — ICI<1:0> — — ICOV ICBNE — — — ICM<2:0> IC5BUF<31:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 xxxx IC4BUF<31:0> 31:16 0000 xxxx IC3BUF<31:0> 31:16 0000 xxxx IC2BUF<31:0> 31:16 15:0 19/3 IC1BUF<31:0> 31:16 31:16 ICI<1:0> 20/4 All Resets Bit Range Bits 0000 0000 xxxx xxxx PIC32MX5XX/6XX/7XX DS61156G-page 76 TABLE 4-9: © 2009-2011 Microchip Technology Inc. Virtual Address (BF80_#) 3000 OC1CON 3010 OC1R 3020 OC1RS 3200 OC2CON 3210 OC2R 3220 OC2RS 3400 OC3CON 3410 OC3R 3420 OC3RS 3610 OC4R 3620 OC4RS 3800 OC5CON 3810 OC5R 3820 OC5RS 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 — 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL 31:16 31:16 xxxx xxxx — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL 31:16 — — — OCM<2:0> 31:16 xxxx xxxx xxxx OC2RS<31:0> 15:0 xxxx 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL 31:16 — — — OCM<2:0> 31:16 15:0 xxxx xxxx xxxx OC3RS<31:0> xxxx 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL 31:16 — — — OCM<2:0> 31:16 15:0 xxxx xxxx xxxx OC4RS<31:0> xxxx 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL — — — OCM<2:0> OC5R<31:0> OC5RS<31:0> DS61156G-page 77 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 OC4R<31:0> 15:0 0000 0000 OC3R<31:0> 15:0 0000 0000 OC2R<31:0> 15:0 0000 0000 xxxx — 15:0 — xxxx 31:16 31:16 — OCM<2:0> OC1RS<31:0> 15:0 15:0 16/0 OC1R<31:0> 15:0 31:16 17/1 All Resets 31/15 0000 0000 xxxx xxxx xxxx xxxx PIC32MX5XX/6XX/7XX 3600 OC4CON Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. OUTPUT COMPARE 1-OUTPUT COMPARE 5 REGISTER MAP(1) TABLE 4-10: Virtual Address (BF80_#) Register Name 5000 I2C3CON I2C3STAT 5020 I2C5DD 5030 I2C3MSK 5040 I2C3BRG 5050 I2C3TRN 5060 I2C3RCV 5100 I2C4CON © 2009-2011 Microchip Technology Inc. 5110 I2C4STAT 5120 I2C4ADD 5130 I2C4MSK 5140 I2C4BRG 5150 I2C4TRN 5160 I2C4RCV 5200 I2C5CON I2C5STAT 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets Bit Range Bits 5010 5210 I2C1, I2C3, I2C4 AND I2C5 REGISTER MAP(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — MSK<9:0> — — — — — — — — — — — — — — — 0000 0000 — — — — Transmit Register — 0000 0000 Baud Rate Generator Register — 0000 0000 — — 0000 0000 — — — Receive Register 0000 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — MSK<9:0> — — — — — — — — — — — — — — 0000 0000 — — — — — Transmit Register — 0000 0000 Baud Rate Generator Register — 0000 0000 — — 0000 0000 — — — Receive Register 0000 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156G-page 78 TABLE 4-11: Virtual Address (BF80_#) Register Name 5220 I2C5ADD 5230 I2C5MSK 5240 I2C5BRG 5250 I2C5TRN 5260 I2C5RCV 5300 I2C1CON I2C1, I2C3, I2C4 AND I2C5 REGISTER MAP(1) (CONTINUED) I2C1STAT 5320 I2C3DD 5330 I2C1MSK 5340 I2C1BRG 5350 I2C1TRN 5360 I2C1RCV 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — MSK<9:0> — — — — — — — — — — — — — — — 0000 0000 — — — — Transmit Register — 0000 0000 Baud Rate Generator Register — 0000 0000 — — 0000 0000 — — — Receive Register 0000 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — MSK<9:0> — — — — — — — — — — — — — — 0000 0000 — — — — — Transmit Register — 0000 0000 Baud Rate Generator Register — 0000 0000 — — Receive Register 0000 0000 — — — 0000 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: DS61156G-page 79 PIC32MX5XX/6XX/7XX 5310 31/15 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-11: Virtual Address (BF80_#) 5410 I2C2STAT I2C4DD 5430 I2C2MSK 5440 I2C2BRG 5450 I2C2TRN 5460 I2C2RCV 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 All Resets Bit Range Register Name Bits 5400 I2C2CON 5420 I2C2 REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 31:16 — — — — — — — — — — — — — — — — 0000 — — — — — — — — — 0000 — — — — — — — 0000 — — — — — 0000 — — — 0000 15:0 — — — — — — 31:16 — — — — — — ADD<9:0> 15:0 — — — — — — 31:16 — — — — — — — — — — — — — — — — 0000 MSK<9:0> 15:0 — — — — 31:16 — — — — — — — — 0000 Baud Rate Generator Register 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 0000 Transmit Register — — Receive Register 0000 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156G-page 80 TABLE 4-12: © 2009-2011 Microchip Technology Inc. Virtual Address (BF80_#) U1STA(1) 6010 U1TXREG 6030 U1RXREG 6040 U1BRG(1) 6200 U4MODE U4STA(1) 6210 6220 (1) U4TXREG U4RXREG 6240 U4BRG(1) 6400 U3MODE(1) 6410 U3STA(1) 6420 U3TXREG 6430 U3RXREG 6440 (1) U3BRG DS61156G-page 81 6600 U6MODE(1) 6610 U6STA(1) 6620 U6TXREG 30/14 29/13 28/12 27/11 26/10 25/9 24/8 — — 31:16 — — — — — — 15:0 ON FRZ SIDL IREN RTSMD — 31:16 — — 15:0 UTXISEL<1:0> 31:16 — UEN<1:0> — — — — — ADM_EN UTXINV URXEN UTXBRK UTXEN UTXBF TRMT — — — — — — — 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 15:0 23/7 22/6 21/5 20/4 19/3 18/2 17/1 — — 16/0 — — — — — WAKE LPBACK ABAUD RXINV BRGH ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 0000 PDSEL<1:0> — 0000 STSEL 0000 ADDR<7:0> URXISEL<1:0> 0000 — — — — — — — — — — — — — — — — — 0000 STSEL 0000 Transmit Register — — 0000 Receive Register 0000 BRG<15:0> 0000 31:16 15:0 — — — — — — — — — — — — — ON FRZ SIDL IREN — — — — WAKE LPBACK ABAUD RXINV BRGH 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 31:16 — — — — — — — — 15:0 ON FRZ SIDL IREN RTSMD — 31:16 — — 15:0 UTXISEL<1:0> 31:16 — 15:0 PDSEL<1:0> ADDR<7:0> URXISEL<1:0> 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 0000 — — — — — — — — — — — — — — — — — — — — — — 0000 WAKE LPBACK ABAUD RXINV BRGH STSEL 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 0000 Transmit Register — — 0000 Receive Register 0000 BRG<15:0> UEN<1:0> — — — — — ADM_EN UTXINV URXEN UTXBRK UTXEN UTXBF TRMT — — — — — — — 0000 ADDR<7:0> URXISEL<1:0> 0000 — — — — — — — — — — — — — — — — — 0000 STSEL 0000 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL IREN — — — — WAKE LPBACK ABAUD RXINV BRGH 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — 15:0 — — — — — — — TX8 15:0 PDSEL<1:0> Transmit Register — — 0000 Receive Register 0000 BRG<15:0> 0000 PDSEL<1:0> ADDR<7:0> URXISEL<1:0> — — 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — — 0000 Transmit Register Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 PIC32MX5XX/6XX/7XX 6230 31/15 All Resets Bit Range 6000 U1MODE(1) 6020 UART1 THROUGH UART6 REGISTER MAP Bits Register Name © 2009-2011 Microchip Technology Inc. TABLE 4-13: Virtual Address (BF80_#) Register Name 6630 U6RXREG 6640 U6BRG(1) UART1 THROUGH UART6 REGISTER MAP (CONTINUED) 6800 U2MODE(1) 6810 U2STA(1) 6820 U2TXREG 6830 U2RXREG 6840 U2BRG(1) 6A00 U5MODE(1) 6A10 U5STA(1) 6A20 U5TXREG 6A30 U5RXREG 6A40 U5BRG(1) 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — — 15:0 — — — — — — — — — — — — RX8 31:16 — — — — — — — — 31:16 — — — — — — — — 15:0 ON FRZ SIDL IREN RTSMD — 31:16 — — 15:0 UTXISEL<1:0> 31:16 — 15:0 20/4 19/3 18/2 17/1 16/0 — — — — — 0000 0000 Receive Register — 0000 — — — — — — — — — — — — — — — 0000 WAKE LPBACK ABAUD RXINV BRGH STSEL 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 0000 BRG<15:0> UEN<1:0> — — — — — ADM_EN UTXINV URXEN UTXBRK UTXEN UTXBF TRMT — — — — — — — 0000 PDSEL<1:0> ADDR<7:0> URXISEL<1:0> 0000 — — — — — — — — — — — — — — — — — 0000 STSEL 0000 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL IREN — — — — WAKE LPBACK ABAUD RXINV BRGH 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — 15:0 Transmit Register — — 0000 Receive Register 0000 BRG<15:0> 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 15:0 0000 PDSEL<1:0> ADDR<7:0> URXISEL<1:0> 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 — — — 0000 — — — — — — — — — Transmit Register — — 0000 Receive Register — — 0000 BRG<15:0> © 2009-2011 Microchip Technology Inc. Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Bits 0000 PIC32MX5XX/6XX/7XX DS61156G-page 82 TABLE 4-13: Virtual Address (BF80_#) 5800 SPI3CON 5810 SPI3STAT 5820 SPI3BUF 5830 SPI3BRG 5A00 SPI2CON 5A10 SPI2STAT 5A20 SPI2BUF 5A30 SPI2BRG 5C00 SPI4CON 5C20 SPI4BUF 5C30 SPI4BRG 30/14 29/13 31:16 FRMEN 15:0 ON FRMSYNC FRMPOL FRZ SIDL 31:16 — — — 15:0 — — — 28/12 27/11 26/10 MSSEN FRMSYPW DISSDO MODE32 25/9 24/8 23/7 — CKE SSEN — — — SRMT SPIROV SPIRBE FRMCNT<2:0> MODE16 SMP RXBUFELM<4:0> — SPIBUSY — — 31:16 SPITUR 22/6 21/5 20/4 19/3 18/2 17/1 — — CKP MSTEN — — — SPIFE — STXISEL<1:0> 16/0 ENHBUF 0000 SRXISEL<1:0> TXBUFELM<4:0> — SPITBE — 31:16 — — — — — — — 15:0 — — — — — — — 31:16 FRMEN MSSEN FRMSYPW 15:0 ON FRZ SIDL DISSDO MODE32 31:16 — — — 15:0 — — — FRMSYNC FRMPOL — SPITBF SPIRBF SMP CKE RXBUFELM<4:0> — SPIBUSY — — 31:16 SPITUR 0000 — — — — — — — — — — — — SSEN CKP MSTEN — STXISEL<1:0> — — — — SRMT SPIROV SPIRBE SPIFE ENHBUF 0000 SRXISEL<1:0> TXBUFELM<4:0> — 31:16 — — — — — — — 15:0 — — — — — — — 31:16 FRMEN MSSEN FRMSYPW 15:0 ON FRZ SIDL DISSDO MODE32 31:16 — — — 15:0 — — — FRMSYNC FRMPOL — SPITBE — SMP CKE RXBUFELM<4:0> — SPIBUSY — — 31:16 SPITUR SPITBF SPIRBF 31:16 — — — — — — — 15:0 — — — — — — — — 0000 — — — — — — — — — — — — CKP MSTEN — STXISEL<1:0> — — — — SRMT SPIROV SPIRBE SPIFE ENHBUF 0000 SRXISEL<1:0> TXBUFELM<4:0> — 0000 0000 SSEN — 0008 0000 SPITBE — 0000 0000 SPITBF SPIRBF 0008 0000 DATA<31:0> 15:0 0000 0000 BRG<8:0> FRMCNT<2:0> MODE16 — 0000 0000 DATA<31:0> 15:0 0008 0000 BRG<8:0> FRMCNT<2:0> MODE16 — 0000 0000 DATA<31:0> 15:0 All Resets 31/15 0000 — — — BRG<8:0> — — — — 0000 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: DS61156G-page 83 PIC32MX5XX/6XX/7XX 5C10 SPI4STAT Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. SPI2, SPI3 AND SPI4 REGISTER MAP(1) TABLE 4-14: 5E10 SPI1STAT SPI1BUF 5E30 SPI1BRG 31/15 30/14 29/13 31:16 FRMEN 15:0 ON FRMSYNC FRMPOL FRZ SIDL 31:16 — — — 15:0 — — — 28/12 27/11 26/10 MSSEN FRMSYPW DISSDO MODE32 25/9 24/8 23/7 — CKE SSEN — — — SRMT SPIROV SPIRBE FRMCNT<2:0> MODE16 SMP RXBUFELM<4:0> — SPIBUSY — — 31:16 SPITUR 22/6 21/5 20/4 19/3 18/2 17/1 — — CKP MSTEN — — — SPIFE — STXISEL<1:0> 16/0 ENHBUF 0000 SRXISEL<1:0> TXBUFELM<4:0> — SPITBE — 31:16 — — — — — — — 15:0 — — — — — — — — — 0000 0000 SPITBF SPIRBF 0008 0000 DATA<31:0> 15:0 All Resets Register Name Bit Range Virtual Address (BF80_#) Bits 5E00 SPI1CON 5E20 SPI1 REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 0000 — — — BRG<8:0> — — — — 0000 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156G-page 84 TABLE 4-15: © 2009-2011 Microchip Technology Inc. ADC REGISTER MAP Register Name 9000 AD1CON1(1) 9010 AD1CON2(1) 9020 AD1CON3(1) 9040 AD1CHS(1) 9060 AD1PCFG(1) 9050 AD1CSSL (1) 9070 ADC1BUF0 9080 ADC1BUF1 9090 ADC1BUF2 90B0 ADC1BUF4 90C0 ADC1BUF5 90D0 ADC1BUF6 90E0 ADC1BUF7 90F0 ADC1BUF8 9100 ADC1BUF9 DS61156G-page 85 9110 ADC1BUFA 9120 ADC1BUFB 30/14 29/13 28/12 27/11 26/10 — 25/9 24/8 23/7 — — — 22/6 21/5 — — 31:16 — — — — — 15:0 ON FRZ SIDL — — 31:16 — — — — — — — — — — FORM<2:0> 15:0 VCFG2 VCFG1 VCFG0 OFFCAL — CSCNA — — BUFS — — — — — — — — — — — 15:0 ADRC — — 31:16 CH0NB — — — 15:0 — — — — 17/1 16/0 — — — — — ASAM SAMP DONE 0000 — — — — — — 0000 BUFM ALTS 0000 — — — — SMPI<3:0> — — ADCS<7:0> CH0SB<3:0> — 18/2 — SAMC<4:0> — 19/3 CLRASAM SSRC<2:0> 31:16 20/4 — — CH0NA — — — — — — — — — 0000 — 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0 0000 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 ADC Result Word 0 (ADC1BUF0<31:0>) ADC Result Word 1 (ADC1BUF1<31:0>) ADC Result Word 2 (ADC1BUF2<31:0>) ADC Result Word 3 (ADC1BUF3<31:0>) ADC Result Word 4 (ADC1BUF4<31:0>) ADC Result Word 5 (ADC1BUF5<31:0>) ADC Result Word 6 (ADC1BUF6<31:0>) ADC Result Word 7 (ADC1BUF7<31:0>) ADC Result Word 8 (ADC1BUF8<31:0>) ADC Result Word 9 (ADC1BUF9<31:0>) ADC Result Word A (ADC1BUFA<31:0>) ADC Result Word B (ADC1BUFB<31:0>) Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 CH0SA<3:0> — 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 PIC32MX5XX/6XX/7XX 90A0 ADC1BUF3 31/15 All Resets Bits Bit Range Virtual Address (BF80_#) © 2009-2011 Microchip Technology Inc. TABLE 4-16: Register Name 9130 ADC1BUFC 9140 ADC1BUFD 9150 ADC1BUFE 9160 ADC1BUFF 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 ADC Result Word C (ADC1BUFC<31:0>) ADC Result Word D (ADC1BUFD<31:0>) ADC Result Word E (ADC1BUFE<31:0>) ADC Result Word F (ADC1BUFF<31:0>) Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bits Bit Range Virtual Address (BF80_#) ADC REGISTER MAP (CONTINUED) 0000 0000 0000 0000 0000 0000 0000 0000 PIC32MX5XX/6XX/7XX DS61156G-page 86 TABLE 4-16: © 2009-2011 Microchip Technology Inc. Virtual Address (BF88_#) 3000 DMACON(1) DMASTAT 3020 DMAADDR 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — 0000 — — — — — — — — — — — 0000 — — — 31:16 — — — 15:0 ON FRZ — 31:16 — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — RDWR SUSPEND DMABUSY 31:16 DMACH<2:0>(2) 0000 DMAADDR<31:0> 15:0 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. DMACH<3> bit is not available on PIC32MX534/564/664/764 devices. Virtual Address (BF88_#) TABLE 4-18: 0000 0000 Legend: 1: 2: All Resets Bit Range 31/15 DMA CRC REGISTER MAP(1) 3040 DCRCDATA 3050 DCRCXOR 31/15 30/14 31:16 — — 15:0 — — 31:16 15:0 31:16 15:0 29/13 28/12 BYTO<1:0> — 27/11 WBO 26/10 25/9 24/8 — — BITO PLEN<4:0> 23/7 22/6 21/5 20/4 19/3 18/2 — — — — — — CRCEN CRCAPP CRCTYP — — 17/1 16/0 — — CRCCH<2:0> DCRCDATA<31:0> DCRCXOR<31:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 0000 0000 0000 0000 DS61156G-page 87 PIC32MX5XX/6XX/7XX 3030 DCRCCON Bit Range Register Name Bits All Resets 3010 DMA GLOBAL REGISTER MAP Bits Register Name © 2009-2011 Microchip Technology Inc. TABLE 4-17: Virtual Address (BF88_#) 3070 DCH0ECON 3080 DCH0INT 3090 DCH0SSA 30A0 DCH0DSA 30B0 DCH0SSIZ 30C0 DCH0DSIZ 30D0 DCH0SPTR 30E0 DCH0DPTR 30F0 DCH0CSIZ 3100 DCH0CPTR DCH0DAT 3120 DCH1CON © 2009-2011 Microchip Technology Inc. 3130 DCH1ECON 3140 DCH1INT 3150 DCH1SSA 3160 DCH1DSA 3170 DCH1SSIZ 31/15 30/14 29/13 28/12 27/11 26/10 25/9 31:16 — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 15:0 CHSIRQ<7:0> 31:16 31:16 — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — — 18/2 17/1 16/0 — — CHCHN CHAEN — — — — — CHEDET CHPRI<1:0> CHAIRQ<7:0> — — — — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — 0000 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — 0000 — — — — — — — 0000 0000 0000 0000 0000 0000 0000 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 CHSIRQ<7:0> 15:0 31:16 31:16 CHPRI<1:0> CHAIRQ<7:0> — — — — — — — — — 0000 0000 00FF FF00 0000 0000 0000 CHDSA<31:0> 15:0 15:0 0000 CHSSA<31:0> 15:0 31:16 CHPDAT<7:0> 0000 — — — — — — — CHSSIZ<15:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. DMA channels 4-7 are note available on PIC32MX534/564/664/764 devices. 2: 0000 0000 Legend: 1: FF00 0000 CHCPTR<15:0> 31:16 0000 0000 CHCSIZ<15:0> — 0000 00FF CHDPTR<15:0> 15:0 31:16 19/3 CHSPTR<15:0> 15:0 31:16 20/4 CHDSIZ<15:0> 15:0 31:16 21/5 CHSSIZ<15:0> 15:0 31:16 22/6 CHDSA<31:0> 15:0 31:16 23/7 CHSSA<31:0> 15:0 31:16 24/8 All Resets Bit Range Register Name Bits 3060 DCH0CON 3110 DMA CHANNELS 0-7 REGISTER MAP(1,2) 0000 0000 PIC32MX5XX/6XX/7XX DS61156G-page 88 TABLE 4-19: Virtual Address (BF88_#) DMA CHANNELS 0-7 REGISTER MAP(1,2) (CONTINUED) 3180 DCH1DSIZ 3190 DCH1SPTR 31A0 DCH1DPTR 31B0 DCH1CSIZ 31C0 DCH1CPTR 31D0 DCH1DAT 31E0 DCH2CON 31F0 DCH2ECON DCH2INT 3210 DCH2SSA 3220 DCH2DSA 3230 DCH2SSIZ 3240 DCH2DSIZ 3250 DCH2SPTR 3260 DCH2DPTR 3270 DCH2CSIZ DS61156G-page 89 3280 DCH2CPTR 31:16 30/14 29/13 28/12 27/11 26/10 25/9 — — — — — — — 15:0 31:16 — — — — — — 15:0 31:16 — — — — — — — 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — — 15:0 — 0000 0000 CHCPTR<15:0> 31:16 — — — — — — — — 0000 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 CHSIRQ<7:0> 15:0 31:16 31:16 — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — 0000 0000 0000 0000 0000 0000 CHCPTR<15:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. DMA channels 4-7 are note available on PIC32MX534/564/664/764 devices. 2: 0000 0000 CHCSIZ<15:0> — FF00 0000 CHDPTR<15:0> 15:0 31:16 — 0000 0000 CHSPTR<15:0> 15:0 31:16 — 0000 00FF CHDSIZ<15:0> 15:0 31:16 CHAIRQ<7:0> CHSSIZ<15:0> 15:0 31:16 CHPRI<1:0> CHDSA<31:0> 15:0 31:16 0000 CHSSA<31:0> 15:0 31:16 CHPDAT<7:0> Legend: 1: 0000 0000 CHCSIZ<15:0> — 0000 0000 CHDPTR<15:0> 15:0 31:16 23/7 CHSPTR<15:0> 15:0 31:16 24/8 CHDSIZ<15:0> — All Resets 31/15 0000 0000 PIC32MX5XX/6XX/7XX 3200 Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. TABLE 4-19: Virtual Address (BF88_#) Register Name 3290 DCH2DAT 32B0 DCH3ECON DCH3INT 32D0 DCH3SSA 32E0 DCH3DSA 32F0 DCH3SSIZ 3300 DCH3DSIZ 3310 DCH3SPTR 3320 DCH3DPTR 3330 DCH3CSIZ 3340 DCH3CPTR 3350 DCH3DAT © 2009-2011 Microchip Technology Inc. 3360 DCH4CON 3370 DCH4ECON 3380 DCH4INT 3390 DCH4SSA 33A0 DCH4DSA 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 CHSIRQ<7:0> 15:0 31:16 31:16 — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — — — — — — — — — CHPRI<1:0> CHAIRQ<7:0> — — — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — 0000 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — 0000 — — — — — — — 0000 0000 0000 0000 0000 0000 0000 0000 0000 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 CHSIRQ<7:0> 15:0 31:16 15:0 31:16 15:0 CHPDAT<7:0> 0000 CHPRI<1:0> CHAIRQ<7:0> 0000 0000 00FF CHSSA<31:0> CHDSA<31:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. DMA channels 4-7 are note available on PIC32MX534/564/664/764 devices. 2: FF00 0000 Legend: 1: 0000 0000 CHCPTR<15:0> 31:16 0000 00FF CHCSIZ<15:0> — 0000 0000 CHDPTR<15:0> 15:0 31:16 — CHPDAT<7:0> CHSPTR<15:0> 15:0 31:16 16/0 CHDSIZ<15:0> 15:0 31:16 17/1 CHSSIZ<15:0> 15:0 31:16 18/2 CHDSA<31:0> 15:0 31:16 19/3 CHSSA<31:0> 15:0 31:16 20/4 All Resets Bit Range Bits 32A0 DCH3CON 32C0 DMA CHANNELS 0-7 REGISTER MAP(1,2) (CONTINUED) FF00 0000 0000 0000 0000 PIC32MX5XX/6XX/7XX DS61156G-page 90 TABLE 4-19: Virtual Address (BF88_#) 33B0 DCH4SSIZ 33C0 DCH4DSIZ 33D0 DCH4SPTR 33E0 DCH4DPTR 33F0 DCH4CSIZ 3400 DCH4CPTR 3410 DMA CHANNELS 0-7 REGISTER MAP(1,2) (CONTINUED) DCH4DAT 3420 DCH5CON 3430 DCH5ECON DCH5INT 3450 DCH5SSA 3460 DCH5DSA 3470 DCH5SSIZ 3480 DCH5DSIZ 3490 DCH5SPTR 34A0 DCH5DPTR DS61156G-page 91 34B0 DCH5CSIZ 34C0 DCH5CPTR 31:16 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — 0000 — — 15:0 31:16 CHSSIZ15:0> — — — — — — — — — — — — — — 15:0 31:16 — — — — — — — 0000 — — 0000 — — — — — — — — — — — — — — — — — — 0000 CHCSIZ<15:0> 15:0 — — 0000 CHCPTR<15:0> 31:16 — — — — — — — — 0000 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 CHSIRQ<7:0> 15:0 31:16 31:16 — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — 0000 0000 0000 0000 0000 0000 CHCPTR<15:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. DMA channels 4-7 are note available on PIC32MX534/564/664/764 devices. 2: 0000 0000 CHCSIZ<15:0> — FF00 0000 CHDPTR<15:0> 15:0 31:16 — 0000 0000 CHSPTR<15:0> 15:0 31:16 — 0000 00FF CHDSIZ<15:0> 15:0 31:16 CHAIRQ<7:0> CHSSIZ<15:0> 15:0 31:16 CHPRI<1:0> CHDSA<31:0> 15:0 31:16 0000 CHSSA<31:0> 15:0 31:16 CHPDAT<7:0> Legend: 1: 0000 0000 CHDPTR<15:0> 15:0 31:16 — CHSPTR<15:0> 15:0 31:16 — CHDSIZ<15:0> 15:0 31:16 All Resets 31/15 0000 0000 PIC32MX5XX/6XX/7XX 3440 Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. TABLE 4-19: Virtual Address (BF88_#) 34E0 DCH6CON 34F0 DCH6ECON 3500 DCH6INT 3510 DCH6SSA 3520 DCH6DSA 3530 DCH6SSIZ 3540 DCH6DSIZ 3550 DCH6SPTR 3560 DCH6DPTR 3570 DCH6CSIZ 3580 DCH6CPTR DCH6DAT © 2009-2011 Microchip Technology Inc. 35A0 DCH7CON 35B0 DCH7ECON 35C0 DCH7INT 35D0 DCH7SSA 35E0 DCH7DSA 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 CHSIRQ<7:0> 15:0 31:16 31:16 — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — — — — — — — — — CHPRI<1:0> CHAIRQ<7:0> — — — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — 0000 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — 0000 — — — — — — — 0000 0000 0000 0000 0000 0000 0000 0000 0000 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 CHSIRQ<7:0> 15:0 31:16 15:0 31:16 15:0 CHPDAT<7:0> 0000 CHPRI<1:0> CHAIRQ<7:0> 0000 0000 00FF CHSSA<31:0> CHDSA<31:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. DMA channels 4-7 are note available on PIC32MX534/564/664/764 devices. 2: FF00 0000 Legend: 1: 0000 0000 CHCPTR<15:0> 31:16 0000 00FF CHCSIZ<15:0> — 0000 0000 CHDPTR<15:0> 15:0 31:16 — CHPDAT<7:0> CHSPTR<15:0> 15:0 31:16 16/0 CHDSIZ<15:0> 15:0 31:16 17/1 CHSSIZ<15:0> 15:0 31:16 18/2 CHDSA<31:0> 15:0 31:16 19/3 CHSSA<31:0> 15:0 31:16 20/4 All Resets Bit Range Register Name Bits 34D0 DCH5DAT 3590 DMA CHANNELS 0-7 REGISTER MAP(1,2) (CONTINUED) FF00 0000 0000 0000 0000 PIC32MX5XX/6XX/7XX DS61156G-page 92 TABLE 4-19: Virtual Address (BF88_#) 35F0 DCH7SSIZ 3600 DCH7DSIZ 3610 DCH7SPTR 3620 DCH7DPTR 3630 DCH7CSIZ 3640 DCH7CPTR 3650 DMA CHANNELS 0-7 REGISTER MAP(1,2) (CONTINUED) DCH7DAT 31:16 31/15 30/14 29/13 28/12 27/11 26/10 25/9 — — — — — — — 15:0 31:16 — — — — — — 15:0 31:16 — — — — — — — — — — — — — — 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — — 15:0 — — — — — — — — — 0000 0000 0000 CHPDAT<7:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. DMA channels 4-7 are note available on PIC32MX534/564/664/764 devices. 1: 2: 0000 0000 CHCPTR<15:0> 31:16 0000 0000 CHCSIZ<15:0> — 0000 0000 CHDPTR<15:0> 15:0 31:16 22/6 CHSPTR<15:0> 15:0 31:16 23/7 CHDSIZ<15:0> 15:0 31:16 24/8 CHSSIZ<15:0> — All Resets Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. TABLE 4-19: 0000 PIC32MX5XX/6XX/7XX DS61156G-page 93 Virtual Address (BF80_#) A000 CM1CON A010 CM2CON A060 CMSTAT 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 — 31:16 — — — — — — — — 15:0 ON COE CPOL — — — — COUT 31:16 — — — — — — — — 15:0 ON COE CPOL — — — — COUT 31:16 — — — — — — — 15:0 — FRZ SIDL — — — — 20/4 19/3 18/2 17/1 16/0 — — — — — — — EVPOL<1:0> — CREF — — — CCH<1:0> — — All Resets Register Name Bit Range Bits 0000 00C3 — — — — — EVPOL<1:0> — CREF — — — — — — — — — — — 0000 — — — — — — — C2OUT C1OUT 0000 CCH<1:0> 0000 00C3 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. COMPARATOR VOLTAGE REFERENCE REGISTER MAP(1) Virtual Address (BF80_#) TABLE 4-21: 9800 CVRCON 31/15 30/14 29/13 28/12 27/11 26/10 31:16 — — — — — — 15:0 ON — — — — VREFSEL(2) 25/9 24/8 23/7 — — — — — CVROE BGSEL<1:0>(2) 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — CVRR CVRSS CVR<3:0> All Resets Register Name Bit Range Bits 0000 0100 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. These bits are not available on PIC32MX575/675/695/775 devices. On these devices, reset value for CVRCON is 0000. 1: 2: PIC32MX5XX/6XX/7XX DS61156G-page 94 COMPARATOR REGISTER MAP(1) TABLE 4-20: © 2009-2011 Microchip Technology Inc. Virtual Address (BF80_#) FLASH CONTROLLER REGISTER MAP F410 NVMKEY F420 NVMADDR(1) F430 NVMDATA F440 NVMSRC ADDR 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — 31:16 — — — — — — — — — — — — 15:0 WR WREN WRERR LVDERR LVDSTAT — — — — — — — 31:16 NVMOP<3:0> 0000 0000 NVMKEY<31:0> 15:0 31:16 0000 0000 NVMADDR<31:0> 15:0 31:16 0000 0000 NVMDATA<31:0> 15:0 31:16 0000 0000 NVMSRCADDR<31:0> 15:0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: SYSTEM CONTROL REGISTER MAP(1,2) F010 OSCTUN 0000 WDTCON F600 RCON F610 RSWRST DS61156G-page 95 F230 SYSKEY Bit Range Register Name Bits 31/15 30/14 31:16 — — 15:0 — 31:16 — — — — — — — 15:0 — — — — — — 31:16 — — — — — 15:0 ON — — — — 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — CMR VREGS EXTR SWR — WDTO SLEEP IDLE BOR POR 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — — — — — SWRST 0000 31:16 15:0 29/13 28/12 27/11 26/10 23/7 22/6 FRCDIV<2:0> — SOSCRDY — NOSC<2:0> CLKLOCK ULOCK SLOCK SLPEN CF UFRCEN SOSCEN OSWEN — — — — — — — — — — — — — — — — — — — — — — PLLODIV<2:0> COSC<2:0> — 25/9 24/8 21/5 20/4 19/3 18/2 PBDIV<1:0> 17/1 16/0 PLLMULT<2:0> 0000 TUN<5:0> — — — — SWDTPS<4:0> — — 0000 — WDTCLR 0000 SYSKEY<31:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset. 2: 0000 0000 Legend: 1: 0000 0000 0000 PIC32MX5XX/6XX/7XX Virtual Address (BF80_#) TABLE 4-23: F000 OSCCON 0000 All Resets(2) F400 NVMCON(1) 31/15 All Resets Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. TABLE 4-22: Virtual Address (BF88_#) Register Name 6000 TRISA 6010 PORTA 6020 LATA 6030 ODCA PORTA REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 TRISA15 TRISA14 — — — TRISA10 TRISA9 — TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 C6FF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RA15 RA14 — — — RA10 RA9 — RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATA15 LATA14 — — — LATA10 LATA9 — LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCA15 ODCA14 — — — ODCA10 ODCA9 — ODCA7 ODCA6 ODCA5 ODCA4 ODCA3 ODCA2 ODCA1 ODCA0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Virtual Address (BF88_#) Register Name TABLE 4-25: 6040 TRISB © 2009-2011 Microchip Technology Inc. 6050 All Resets Bit Range Bits PORTB REGISTER MAP(1) PORTB 6060 LATB 6070 ODCB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 FFFF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCB15 ODCB14 ODCB13 ODCB12 ODCB11 ODCB10 ODCB9 ODCB8 ODCB7 ODCB6 ODCB5 ODCB4 ODCB3 ODCB2 ODCB1 ODCB0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX DS61156G-page 96 TABLE 4-24: Virtual Address (BF88_#) Register Name 6080 TRISC PORTC 60A0 LATC 60B0 ODCC 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 TRISC15 TRISC14 TRISC13 TRISC12 — — — — — — — — — — — — F000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RC15 RC14 RC13 RC12 — — — — — — — — — — — — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATC15 LATC14 LATC13 LATC12 — — — — — — — — — — — — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCC15 ODCC14 ODCC13 ODCC12 — — — — — — — — — — — — 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Register Name TRISC PORTC REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) Bit Range Bits 6090 PORTC 60A0 LATC 60B0 ODCC DS61156G-page 97 Legend: 2: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 TRISC15 TRISC14 TRISC13 TRISC12 — — — — — — — TRISC4 TRISC3 TRISC2 TRISC1 — F00F 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RC15 RC14 RC13 RC12 — — — — — — — RC4 RC3 RC2 RC1 — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATC15 LATC14 LATC13 LATC12 — — — — — — — LATC4 LATC3 LATC2 LATC1 — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCC15 ODCC14 ODCC13 ODCC12 — — — — — — — ODCC4 ODCC3 ODCC2 ODCC1 — 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX Virtual Address (BF88_#) TABLE 4-27: 6080 All Resets 31/15 All Resets 6090 PORTC REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-26: Virtual Address (BF88_#) Register Name 60C0 TRISD 60D0 PORTD 60E0 LATD 60F0 ODCD PORTD REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31/15 30/14 29/13 28/12 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 0FFF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Register Name © 2009-2011 Microchip Technology Inc. Virtual Address (BF88_#) TABLE 4-29: 60C0 TRISD All Resets Bit Range Bits PORTD REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 60D0 PORTD 60E0 LATD 60F0 ODCD 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 FFFF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LAT15 LAT14 LAT13 LAT12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX DS61156G-page 98 TABLE 4-28: Virtual Address (BF88_#) Register Name 6100 TRISE PORTE REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 6110 PORTE 6120 LATE 6130 ODCE 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — — — TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 00FF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx — — — — — — — — — — — — — — — — 0000 xxxx 15:0 — — — — — — — — LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — ODCE7 0DCE6 ODCE5 ODCE4 ODCE3 ODCE2 ODCE1 ODCE0 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Register Name TRISE 6110 PORTE 6120 LATE 6130 ODCE PORTE REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31/15 30/14 29/13 28/12 27/11 26/10 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — TRISE9 TRISE8 TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 03FF 31:16 — — — — — — — — — — — — — — — — 0000 0000 15:0 — — — — — — RE9 RE8 RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 xxxx DS61156G-page 99 15:0 — — — — — — LATE9 LATE8 LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — ODCE9 ODCE8 ODCE7 0DCE6 ODCE5 ODCE4 ODCE3 ODCE2 ODCE1 ODCE0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX Virtual Address (BF88_#) TABLE 4-31: 6100 0000 31:16 Legend: 1: All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-30: Virtual Address (BF88_#) Register Name 6140 TRISF PORTF REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 6150 PORTF 6160 LATF 6170 ODCF 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — — — — — — — 15:0 — — — — — — — — — — TRISF5 31:16 — — — — — — — — — — — 20/4 17/1 16/0 19/3 18/2 — — — — — TRISF4 TRISF3 — TRISF1 TRISF0 003B — — — — — 0000 15:0 — — — — — — — — — — RF5 RF4 RF3 — RF1 RF0 xxxx — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — LATF5 LATF4 LATF3 — LATF1 LATF0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — ODCF5 ODCF4 ODCF3 — ODCF1 ODCF0 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Register Name © 2009-2011 Microchip Technology Inc. Virtual Address (BF88_#) TABLE 4-33: 6140 TRISF 6150 PORTF 6160 LATF 6170 ODCF 0000 31:16 Legend: 1: All Resets Bit Range Bits PORTF REGISTER MAP PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX764F128L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 31/15 30/14 31:16 — — 15:0 — — 31:16 — — 15:0 — — 31:16 — — 15:0 — — 31:16 — — 15:0 — — 29/13 28/12 27/11 26/10 25/9 — — — — TRISF13 TRISF12 — — — — — — RF13 RF12 — — — — — — LATF13 LATF12 — — — — — — ODCF13 ODCF12 — — 21/5 20/4 19/3 18/2 17/1 16/0 24/8 23/7 22/6 — — — — — — — — — — 0000 — TRISF8 — — TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 313F — — — — — — — — — — 0000 — RF8 — — RF5 RF4 RF3 RF2 RF1 RF0 xxxx — — — — — — — — — — 0000 — LATF8 — — LATF5 LATF4 LATF3 LATF2 LATF1 LATF0 xxxx — — — — — — — — — — 0000 — ODCF8 — — ODCF5 ODCF4 ODCF3 ODCF2 ODCF1 ODCF0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX DS61156G-page 100 TABLE 4-32: Virtual Address (BF88_#) Register Name 6180 TRISG 6190 PORTG 61A0 LATG ODCG 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 31:16 — — — — — — — — 15:0 — — — — — — TRISG9 TRISG8 — — — — TRISG7 TRISG6 — — 31:16 — — — — — — — — — — — — 15:0 — — — — — — RG9 RG8 RG7 RG6 — 31:16 — — — — — — — — — — 15:0 — — — — — — LATG9 LATG8 LATG7 31:16 — — — — — — — — 15:0 — — — — — — ODCG9 ODCG8 19/3 18/2 17/1 16/0 — — — — 0000 TRISG3 TRISG2 — — 03CC — — — — 0000 — RG3 RG2 — — xxxx — — — — — — 0000 LATG6 — — LATG3 LATG2 — — xxxx — — — — — — — — 0000 ODCG7 ODCG6 — — ODCG3 ODCG2 — — 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Register Name 6180 TRISG PORTG REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) Bit Range Bits 6190 PORTG DS61156G-page 101 61A0 LATG 61B0 ODCG 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 TRISG15 TRISG14 TRISG13 TRISG12 — — TRISG9 TRISG8 TRISG7 TRISG6 — — TRISG3 TRISG2 TRISG1 TRISG0 F3CF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RG15 RG14 RG13 RG12 — — RG9 RG8 RG7 RG6 — — RG3 RG2 RG1 RG0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATG15 LATG14 LATG13 LATG12 — — LATG9 LATG8 LATG7 LATG6 — — LATG3 LATG2 LATG1 LATG0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCG15 ODCG14 ODCG13 ODCG12 — — ODCG9 ODCG8 ODCG7 ODCG6 — — ODCG3 ODCG2 ODCG1 ODCG0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 PIC32MX5XX/6XX/7XX Virtual Address (BF88_#) TABLE 4-35: All Resets 31/15 All Resets 61B0 PORTG REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-34: Virtual Address (BF88_#) CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512 AND PIC32MX795F512L DEVICES(1) 61C0 CNCON 61D0 CNEN 61E0 CNPUE 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — — — — — — — 0000 31:16 — — — — — — — — — — CNEN21 CNEN20 CNEN19 CNEN18 CNEN17 CNEN16 0000 15:0 CNEN15 CNEN14 CNEN13 CNEN12 CNEN11 CNEN10 CNEN9 CNEN8 CNEN7 CNEN6 CNEN5 CNEN4 CNEN3 CNEN2 CNEN1 CNEN0 0000 31:16 — — — — — — — — — — CNPUE21 CNPUE20 CNPUE19 CNPUE18 CNPUE17 CNPUE16 0000 CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE2 CNPUE1 CNPUE0 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: TABLE 4-37: Virtual Address (BF88_#) All Resets Register Name Bit Range Bits 0000 0000 CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 61C0 CNCON 61D0 CNEN © 2009-2011 Microchip Technology Inc. 61E0 CNPUE 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — — — — — — — 0000 31:16 — — — — — — — — — — — — — CNEN18 CNEN17 CNEN16 0000 15:0 CNEN15 CNEN14 CNEN13 CNEN12 CNEN11 CNEN10 CNEN9 CNEN8 CNEN7 CNEN6 CNEN5 CNEN4 CNEN3 CNEN2 CNEN1 CNEN0 0000 31:16 — — — — — — — — — — — — — CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 0000 CNPUE18 CNPUE17 CNPUE16 0000 CNPUE2 CNPUE1 CNPUE0 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Register Name Bits 0000 PIC32MX5XX/6XX/7XX DS61156G-page 102 TABLE 4-36: Virtual Address (BF80_#) Register Name 7000 PMCON 7010 PMMODE 7020 PMADDR 7030 PMDOUT PMDIN 7050 PMAEN 7060 PMSTAT 30/14 29/13 31:16 — — — 15:0 ON FRZ SIDL 31:16 — — — 15:0 BUSY 31:16 — IRQM<1:0> — — 28/12 27/11 — — ADRMUX<1:0> — — INCM<1:0> — — 26/10 25/9 24/8 23/7 22/6 — — — — — PMPTTL PTWREN PTRDEN — — — MODE16 — — MODE<1:0> — — — — 20/4 19/3 18/2 17/1 16/0 — — — — — — ALP CS2P CS1P — WRSP RDSP 0000 — — — — — — 0000 — — — — WAITB<1:0> — 15:0 CS2EN/A15 CS1EN/A14 WAITM<3:0> — WAITE<1:0> — ADDR<13:0> 31:16 31:16 — — — — — — — 15:0 — — 0000 0000 — — — — — — — 0000 PTEN<15:0> 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 IBF IBOV — — IB3F IB2F IB1F IB0F OBE OBUF — — OB3E OB2E OB1E OB0E 008F x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. F200 DDPCON Bit Range Bits Register Name Virtual Address (BF80_#) PROGRAMMING AND DIAGNOSTICS REGISTER MAP 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 31:16 — — — — — — — — — — — — 15:0 — — — — — — — — — — — — x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 19/3 18/2 17/1 16/0 — — — — 0000 JTAGEN TROEN — TDOEN 0008 DS61156G-page 103 PIC32MX5XX/6XX/7XX TABLE 4-39: Legend: 0000 0000 Legend: 1: 0000 0000 DATAIN<31:0> 15:0 0000 0000 DATAOUT<31:0> 15:0 31:16 CSF<1:0> 21/5 All Resets 7040 31/15 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. PARALLEL MASTER PORT REGISTER MAP(1) TABLE 4-38: Virtual Address (BF88_#) 4010 CHEACC(1) CHETAG(1) 4030 CHEMSK(1) 4040 CHEW0 4050 CHEW1 4060 CHEW2 4070 CHEW3 4080 CHELRU 4090 CHEHIT 40A0 CHEMIS 40C0 CHEPFABT 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 31:16 — — — — — — — — — 15:0 — — — — — — — 31:16 CHEWEN — — — — — — — 15:0 — — — — — — — — — — — — — — — — — — — — 31:16 LTAGBOOT 15:0 31:16 DCSZ<1:0> — 15:0 15:0 31:16 15:0 15:0 — — — PREFEN<1:0> — — — — — — — — — — — — CHECOH 0000 PFMWS<2:0> — — 0007 — CHEIDX<3:0> — — — — — — — — — — 00xx LVALID LLOCK LTYPE — xxx2 — — — — — 0000 — — — — — 0000 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx CHELRU<24:16> CHELRU<15:0> CHEHIT<31:0> CHEMIS<31:0> CHEPFABT<31:0> © 2009-2011 Microchip Technology Inc. Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset value is dependent on DEVCFGx configuration. 1: 2: 0000 0000 LTAG<23:16> CHEW3<31:0> 15:0 31:16 — — 16/0 CHEW2<31:0> 15:0 15:0 — 17/1 CHEW1<31:0> 31:16 31:16 18/2 CHEW0<31:0> 31:16 15:0 19/3 LMASK<15:5> 31:16 31:16 20/4 LTAG<15:4> — 15:0 31:16 21/5 All Resets Bit Range Register Name Bits 4000 CHECON(1,2) 4020 PREFETCH REGISTER MAP 0000 0000 xxxx xxxx xxxx xxxx xxxx xxxx PIC32MX5XX/6XX/7XX DS61156G-page 104 TABLE 4-40: Virtual Address (BF80_#) Register Name 0200 RTCCON 0210 RTCALRM 0220 RTCTIME 0230 RTCDATE 0240 ALRMTIME 0250 ALRMDATE Legend: Note 1: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 31:16 — — — — — — 15:0 ON FRZ SIDL — — — — — — — — — 31:16 — — — — 15:0 ALRMEN CHIME PIV ALRMSYNC HR01<3:0> 15:0 SEC10<3:0> SEC01<3:0> 31:16 YEAR10<3:0> YEAR01<3:0> 15:0 DAY10<3:0> DAY01<3:0> 31:16 HR10<3:0> HR01<3:0> 15:0 SEC10<3:0> — — — DAY10<3:0> — — 20/4 19/3 18/2 17/1 16/0 RTSECSEL RTCCLKON — — — DAY01<3:0> 0000 — — — — RTCWREN RTCSYNC HALFSEC — — — RTCOE 0000 — 0000 ARPT<7:0> MIN10<3:0> — — — — — — — — — — — MONTH10<3:0> — — — — — xxxx — MONTH01<3:0> — MIN10<3:0> — 0000 MIN01<3:0> MONTH10<3:0> — SEC01<3:0> — 21/5 AMASK<3:0> HR10<3:0> 15:0 22/6 CAL<9:0> 31:16 31:16 23/7 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. RTCC REGISTER MAP(1) TABLE 4-41: — — xx00 xxxx WDAY01<3:0> xx00 MIN01<3:0> xxxx — — — xx00 MONTH01<3:0> 00xx WDAY01<3:0> xx0x x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX DS61156G-page 105 2FF0 DEVCFG3 2FF4 DEVCFG2 2FF8 DEVCFG1 2FFC DEVCFG0 Legend: 31/15 30/14 31:16 FVBUSIO FUSBIDIO 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 — — — FCANIO FETHIO FMIIEN — — — — — FSRSSEL<2:0> — — — — FPLLODIV<2:0> xxxx — FPLLIDIV<2:0> xxxx 15:0 18/2 17/1 16/0 xxxx USERID<15:0> 31:16 — — — — — 15:0 UPLLEN — — — — 31:16 — — — — — — 15:0 FCKSM<1:0> FPBDIV<1:0> — OSCIOFNC 31:16 — — — — — — — — 15:0 — All Resets Bit Range Bits Register Name CP PWP<3:0> — — — — UPLLIDIV<2:0> — xxxx — — FPLLMUL<2:0> FWDTEN — — IESO — FSOSCEN — BWP — — — — — — — — — 23/7 22/6 21/5 20/4 POSCMOD<1:0> WDTPS<4:0> — xxxx FNOSC<2:0> xxxx PWP<7:4> ICESEL — xxxx DEBUG<1:0> xxxx x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Virtual Address (BF80_#) Register Name TABLE 4-43: F220 DEVID DEVICE AND REVISION ID SUMMARY(1) Legend: Note 1: 31:16 15:0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 VER<3:0> 19/3 DEVID<27:16> DEVID<15:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values are dependent on the device variant. Refer to “PIC32MX5XX/6XX/7XX Family Silicon Errata and Data Sheet Clarification” (DS80480) for more information. 18/2 17/1 16/0 All Resets Bits Bit Range Virtual Address (BFC0_#) DEVCFG: DEVICE CONFIGURATION WORD SUMMARY xxxx xxxx PIC32MX5XX/6XX/7XX DS61156G-page 106 TABLE 4-42: © 2009-2011 Microchip Technology Inc. Virtual Address (BF88_#) Register Name 5040 U1OTGIR(2) 5050 U1OTGIE 5070 U1OTGCON 5080 U1PWRC 5200 U1IR(2) 5210 U1IE U1EIR(2) 5240 U1EIE U1STAT 5250 (3) U1CON DS61156G-page 107 5260 U1ADDR 5270 U1BDTP1 5280 (3) U1FRML Legend: Note 1: 2: 3: 4: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 22/6 21/5 — — 20/4 31:16 — — — — — — — — — 15:0 — — — — — — — — IDIF 31:16 — — — — — — — — — 15:0 — — — — — — — — IDIE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — ID — LSTATE — SESVD SESEND — VBUSVD 0000 31:16 — — — — — — — — — — — — — 15:0 — — — — — — — — DPPULUP 31:16 — — — — — — — — — — — 15:0 — — — — — — — — UACTPND(4) — — 31:16 — — — — — — — — — — — — — — — — — — — — STALLIF 31:16 — — — — — — — — — 15:0 — — — — — — — — STALLIE — — — — — — — — — ACTVIF — — — SESVDIF SESENDIF — ACTVIE — SESVDIE SESENDIE DMPULUP DPPULDWN DMPULDWN VBUSON — — — ATTACHIE RESUMEIE — — — — — — 0000 VBUSVDIF 0000 — 0000 VBUSVDIE 0000 — — — 0000 VBUSCHG VBUSDIS 0000 — — — — — 16/0 OTGEN — USLPGRD USBBUSY ATTACHIF RESUMEIF — 31:16 17/1 — T1MSECIE LSTATEIE 15:0 18/2 — T1MSECIF LSTATEIF — 19/3 — USUSPEND USBPWR — IDLEIF TRNIF SOFIF UERRIF — — — — IDLEIE TRNIE SOFIE UERRIE — — — — CRC5EF 0000 0000 — 0000 URSTIF 0000 DETACHIF 0000 — 0000 URSTIE 0000 DETACHIE 0000 — 0000 0000 15:0 — — — — — — — — BTSEF BMXEF DMAEF BTOEF DFN8EF CRC16EF 31:16 — — — — — — — — — — — — — — 15:0 — — — — — — — — BTSEE BMXEE DMAEE BTOEE DFN8EE CRC16EE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — DIR PPBI — — 0000 31:16 — — — — — — — — — — — — 0000 USBEN 0000 SOFEN 0000 ENDPT<3:0>(4) — — (4) 15:0 — — — — — — — — 31:16 — — — — — — — — — 15:0 — — — — — — — — LSPDEN 31:16 — — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — JSTATE (4) SE0 — — — PKTDIS TOKBUSY — EOFEF — CRC5EE EOFEE USBRST HOSTEN RESUME PPBRST — — — — — PIDEE — DEVADDR<6:0> — — — — — — — FRML<7:0> — 0000 0000 0000 0000 0000 0000 — — BDTPTRL<7:1> — PIDEF — — — 0000 — 0000 — 0000 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. Reset value for this bit is undefined. PIC32MX5XX/6XX/7XX 5230 23/7 All Resets Bits 5060 U1OTGSTAT(3) 5220 USB REGISTER MAP(1) Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-44: Virtual Address (BF88_#) Register Name 5290 U1FRMH(3) USB REGISTER MAP(1) (CONTINUED) 52A0 U1TOK © 2009-2011 Microchip Technology Inc. 52B0 U1SOF 52C0 U1BDTP2 52D0 U1BDTP3 52E0 U1CNFG1 5300 U1EP0 5310 U1EP1 5320 U1EP2 5330 U1EP3 5340 U1EP4 5350 U1EP5 5360 U1EP6 5370 U1EP7 5380 U1EP8 5390 U1EP9 53A0 U1EP10 Legend: Note 1: 2: 3: 4: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 31:16 — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — 31:16 — — — — — — — — — — — — — — — — — — — — 17/1 16/0 — — 0000 — — 0000 — — FRMH<2:0> PID<3:0> All Resets Bit Range Bits 0000 15:0 — — — — — — — — 31:16 — — — — — — — — EP<3:0> 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — — 15:0 — — — — — — — — UTEYE UOEMON USBFRZ USBSIDL — — — 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — LSPD RETRYDIS — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 0000 CNT<7:0> — — — — — — — — BDTPTRH<7:0> — — — — 0000 0000 — 0000 0000 — — — BDTPTRU<7:0> 0000 0000 — 0000 UASUSPND 0001 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. Reset value for this bit is undefined. PIC32MX5XX/6XX/7XX DS61156G-page 108 TABLE 4-44: Virtual Address (BF88_#) Register Name 53B0 U1EP11 53C0 U1EP12 53D0 U1EP13 53E0 U1EP14 53F0 U1EP15 USB REGISTER MAP(1) (CONTINUED) Legend: Note 1: 2: 3: 4: 20/4 19/3 18/2 17/1 16/0 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-44: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. Reset value for this bit is undefined. PIC32MX5XX/6XX/7XX DS61156G-page 109 Virtual Address (BF88_#) Register Name B000 C1CON C1CFG B020 C1INT B030 B050 B060 C1VEC C1TREC C1FSTAT C1RXOVF B070 C1TMR B080 C1RXM0 B090 C1RXM1 B0A0 © 2009-2011 Microchip Technology Inc. B0B0 C1RXM2 C1RXM3 B0C0 C1FLTCON0 B0D0 C1FLTCON1 B0E0 C1FLTCON2 B0F0 C1FLTCON3 Legend: Note 1: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 CANCAP — 31:16 — — — — ABAT 15:0 ON FRZ SIDLE — CANBUSY — — — — — — 31:16 — — — — — — — — — WAKFIL — — — 15:0 SEG2PHTS SAM REQOP<2:0> SEG1PH<2:0> OPMOD<2:0> PRSEG<2:0> 18/2 17/1 16/0 — — — DNCNT<4:0> SJW<1:0> All Resets Bit Range Bits B010 B040 CAN1 REGISTER SUMMARY FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 0480 0000 SEG2PH<2:0> 0000 BRP<5:0> 0000 31:16 IVRIE WAKIE CERRIE SERRIE RBOVIE — — — — — — — MODIE CTMRIE RBIE TBIE 15:0 IVRIF WAKIF CERRIF SERRIF RBOVIF — — — — — — — MODIF CTMRIF RBIF TBIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — 31:16 — — — — — — — — — — TXBO TXBP FIFOIP24 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16 0000 FIFOIP7 FIFOIP6 FIFOIP5 FIFOIP4 FIFOIP3 FIFOIP2 15:0 FILHIT<4:0> — ICODE<6:0> TERRCNT<7:0> 0040 TXWARN RXWARN EWARN 0000 RERRCNT<7:0> 31:16 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 15:0 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9 FIFOIP15 RXBP FIFOIP8 0000 0000 FIFOIP1 FIFOIP0 0000 31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 15:0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF8 RXOVF7 31:16 RXOVF9 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000 CANTS<15:0> 15:0 0000 CANTSPRE<15:0> 31:16 0000 SID<10:0> 15:0 -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> xxxx 31:16 FLTEN3 MSEL3<1:0> FSEL3<4:0> FLTEN2 MSEL2<1:0> FSEL2<4:0> 0000 15:0 FLTEN1 MSEL1<1:0> FSEL1<4:0> FLTEN0 MSEL0<1:0> FSEL0<4:0> 0000 31:16 FLTEN7 MSEL7<1:0> FSEL7<4:0> FLTEN6 MSEL6<1:0> FSEL6<4:0> 0000 15:0 FLTEN5 MSEL5<1:0> FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0> 0000 31:16 FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 0000 15:0 FLTEN9 MSEL9<1:0> FSEL9<4:0> FLTEN8 MSEL8<1:0> FSEL8<4:0> 0000 31:16 FLTEN15 MSEL15<1:0> FSEL15<4:0> FLTEN14 MSEL14<1:0> FSEL14<4:0> 0000 15:0 MSEL13<1:0> FSEL13<4:0> FLTEN12 MSEL12<1:0> FSEL12<4:0> 0000 FLTEN13 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX DS61156G-page 110 TABLE 4-45: Virtual Address (BF88_#) B100 C1FLTCON4 B110 C1FLTCON5 B120 C1FLTCON6 B130 C1FLTCON7 B140 B340 CAN1 REGISTER SUMMARY FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) C1RXFn (n = 0-31) C1FIFOBA 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 MSEL19<1:0> FSEL19<4:0> FLTEN18 MSEL18<1:0> FSEL18<4:0> 0000 15:0 FLTEN17 MSEL17<1:0> FSEL17<4:0> FLTEN16 MSEL16<1:0> FSEL16<4:0> 0000 31:16 FLTEN23 MSEL23<1:0> FSEL23<4:0> FLTEN22 MSEL22<1:0> FSEL22<4:0> 0000 15:0 FLTEN21 MSEL21<1:0> FSEL21<4:0> FLTEN20 MSEL20<1:0> FSEL20<4:0> 0000 31:16 FLTEN27 MSEL27<1:0> FSEL27<4:0> FLTEN26 MSEL26<1:0> FSEL26<4:0> 0000 15:0 FLTEN25 MSEL25<1:0> FSEL25<4:0> FLTEN24 MSEL24<1:0> FSEL24<4:0> 0000 31:16 FLTEN31 MSEL31<1:0> FSEL31<4:0> FLTEN30 MSEL30<1:0> FSEL30<4:0> 0000 15:0 MSEL29<1:0> FSEL29<4:0> FLTEN28 MSEL28<1:0> FSEL28<4:0> FLTEN29 31:16 SID<10:0> -— 15:0 EXID — 0000 EID<17:16> EID<15:0> 31:16 xxxx xxxx 0000 C1FIFOBA<31:0> 15:0 0000 — — — — — — — — — — — — FRESET UINC DONLY — — — — TXEN TXABAT TXLARB FSIZE<4:0> TXERR TXREQ RTREN 0000 TXPRI<1:0> 0000 31:16 — — — — — TXNFULLIE TXHALFIE TXEMPTYIE — — — — RXN RXOVFLIE RXFULLIE RXHALFIE 0000 EMPTYIE 15:0 — — — — — TXNFULLIF TXHALFIF TXEMPTYIF — — — — RXOVFLIF RXFULLIF RXHALFIF B370 C1FIFOUAn 31:16 (n = 0-31) 15:0 B380 C1FIFOCIn 31:16 (n = 0-31) 15:0 Legend: Note 1: 29/13 RXN 0000 EMPTYIF 0000 C1FIFOUA<31:0> 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — C1FIFOCI<4:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 0000 0000 DS61156G-page 111 PIC32MX5XX/6XX/7XX C1FIFOINTn (n = 0-31) 30/14 31:16 FLTEN19 C1FIFOCONn 31:16 B350 (n = 0-31) 15:0 B360 31/15 All Resets Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. TABLE 4-45: Virtual Address (BF88_#) Register Name C000 C2CON C010 C2CFG C040 C050 C060 C070 C080 C0A0 C0B0 © 2009-2011 Microchip Technology Inc. C0B0 C2INT C2VEC C2TREC C2FSTAT C2RXOVF C2TMR C2RXM0 C2RXM1 C2RXM2 C2RXM3 C0C0 C2FLTCON0 C0D0 C2FLTCON1 C0E0 C2FLTCON2 C0F0 C2FLTCON3 Legend: Note 1: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 21/5 31:16 — — — — ABAT 15:0 ON FRZ SIDLE — CANBUSY — — — — — — 31:16 — — — — — — — — — WAKFIL — 15:0 SEG2PHTS SAM REQOP<2:0> 22/6 SEG1PH<2:0> OPMOD<2:0> PRSEG<2:0> 20/4 19/3 CANCAP — 18/2 17/1 16/0 — — — DNCNT<4:0> — SJW<1:0> — All Resets Bit Range Bits C020 C030 CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 0480 0000 SEG2PH<2:0> 0000 BRP<5:0> 0000 31:16 IVRIE WAKIE CERRIE SERRIE RBOVIE — — — — — — — MODIE CTMRIE RBIE TBIE 0000 15:0 IVRIF WAKIF CERRIF SERRIF RBOVIF — — — — — — — MODIF CTMRIF RBIF TBIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — 31:16 — — — — — — — — TXBO TXBP TXWARN RXWARN EWARN 15:0 FILHIT<4:0> — — — ICODE<6:0> TERRCNT<7:0> 0040 RERRCNT<7:0> 31:16 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 15:0 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9 FIFOIP15 RXBP FIFOIP24 FIFOIP8 0000 0000 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16 0000 FIFOIP7 FIFOIP6 FIFOIP5 FIFOIP4 FIFOIP3 FIFOIP2 FIFOIP1 FIFOIP0 0000 31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 15:0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF8 RXOVF7 31:16 RXOVF9 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 CANTS<15:0> 15:0 0000 CANTSPRE<15:0> 31:16 0000 SID<10:0> 15:0 -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> 31:16 xxxx SID<10:0> 15:0 0000 EID<15:0> xxxx 31:16 FLTEN3 MSEL3<1:0> FSEL3<4:0> FLTEN2 MSEL2<1:0> FSEL2<4:0> 0000 15:0 FLTEN1 MSEL1<1:0> FSEL1<4:0> FLTEN0 MSEL0<1:0> FSEL0<4:0> 0000 31:16 FLTEN7 MSEL7<1:0> FSEL7<4:0> FLTEN6 MSEL6<1:0> FSEL6<4:0> 0000 15:0 FLTEN5 MSEL5<1:0> FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0> 0000 31:16 FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 0000 15:0 FLTEN9 MSEL9<1:0> FSEL9<4:0> FLTEN8 MSEL8<1:0> FSEL8<4:0> 0000 31:16 FLTEN15 MSEL15<1:0> FSEL15<4:0> FLTEN14 MSEL14<1:0> FSEL14<4:0> 0000 15:0 MSEL13<1:0> FSEL13<4:0> FLTEN12 MSEL12<1:0> FSEL12<4:0> 0000 FLTEN13 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX DS61156G-page 112 TABLE 4-46: Virtual Address (BF88_#) C100 C2FLTCON4 C110 C2FLTCON5 C120 C2FLTCON6 C130 C2FLTCON7 C140 C340 CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) C2RXFn (n = 0-31) C2FIFOBA C2FIFOINTn (n = 0-31) 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 MSEL19<1:0> FSEL19<4:0> FLTEN18 MSEL18<1:0> FSEL18<4:0> 0000 15:0 FLTEN17 MSEL17<1:0> FSEL17<4:0> FLTEN16 MSEL16<1:0> FSEL16<4:0: 0000 31:16 FLTEN23 MSEL23<1:0> FSEL23<4:0> FLTEN22 MSEL22<1:0> FSEL22<4:0> 0000 15:0 FLTEN21 MSEL21<1:0> FSEL21<4:0> FLTEN20 MSEL20<1:0> FSEL20<4:0> 0000 31:16 FLTEN27 MSEL27<1:0> FSEL27<4:0> FLTEN26 MSEL26<1:0> FSEL26<4:0> 0000 15:0 FLTEN25 MSEL25<1:0> FSEL25<4:0> FLTEN24 MSEL24<1:0> FSEL24<4:0> 0000 31:16 FLTEN31 MSEL31<1:0> FSEL31<4:0> FLTEN30 MSEL30<1:0> FSEL30<4:0> 0000 15:0 MSEL29<1:0> FSEL29<4:0> FLTEN28 MSEL28<1:0> FSEL28<4:0> FLTEN29 31:16 -— SID<10:0> 15:0 EXID — 0000 EID<17:16> EID<15:0> 31:16 xxxx xxxx 0000 C2FIFOBA<31:0> 15:0 0000 — — — — — — — — — — — — FRESET UINC DONLY — — — — TXEN TXABAT TXLARB FSIZE<4:0> TXERR TXREQ RTREN 0000 TXPRI<1:0> 0000 — — — — — TXNFULLIE TXHALFIE TXEMPTYIE — — — — 15:0 — — — — — TXNFULLIF TXHALFIF TXEMPTYIF — — — — RXOVFLIF RXFULLIF RXHALFIF C2FIFOUAn 31:16 (n = 0-31) 15:0 C380 C2FIFOCIn 31:16 (n = 0-31) 15:0 RXN 0000 EMPTYIF 0000 C2FIFOUA<31:0> 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — C2FIFOCI<4:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 0000 0000 DS61156G-page 113 PIC32MX5XX/6XX/7XX 31:16 RXN 0000 RXOVFLIE RXFULLIE RXHALFIE EMPTYIE C370 Legend: Note 1: 30/14 31:16 FLTEN19 C2FIFOCONn 31:16 C350 (n = 0-31) 15:0 C360 31/15 All Resets Bit Range Bits Register Name © 2009-2011 Microchip Technology Inc. TABLE 4-46: Virtual Address (BF88_#) Register Name 9000 ETHCON1 9010 ETHCON2 9020 9030 9040 9050 9060 9070 9080 9090 90A0 ETHTXST ETHRXST ETHHT0 ETHHT1 ETHPMM0 ETHPMM1 ETHPMCS ETHPMO ETHRXFC © 2009-2011 Microchip Technology Inc. 90D0 ETHIEN ETHIRQ Legend: Note 1: 2: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 15:0 ON FRZ SIDL — — — TXRTS RXEN 31:16 — — — — — — — — 15:0 — — — — — 31:16 21/5 20/4 19/3 18/2 17/1 AUTOFC — — MANFC — — — 16/0 — — — — — — — — 0000 — — — — 0000 — — — — 0000 RXBUFSZ<6:0> BUFCDEC 0000 TXSTADDR<31:16> 15:0 0000 TXSTADDR<15:2> 31:16 RXSTADDR<31:16> 15:0 31:16 0000 0000 HT<63:32> 15:0 31:16 0000 0000 PMM<31:0> 15:0 31:16 0000 0000 PMM<63:32> 15:0 — — — — — — — 15:0 — — 0000 — — — — — — — — — — — — — — — — — — — — — — 0000 CRC ERREN CRC OKEN RUNT ERREN RUNTEN UCEN NOT MEEN MCEN BCEN 0000 PMCS<15:0> — — — — — — — 15:0 — — — — — — — — — 15:0 HTEN MPEN — NOTPM 31:16 — — — — — — — — RXFWM<7:0> 15:0 — — — — — — — — RXEWM<7:0> 31:16 — — — — — — — — — — — RX BUSEIE FW MARKIE RX DONEIE PK TPENDIE 0000 0000 — — — — RX ACTIE — TX DONEIE TX ABORTIE RX BUFNAIE 15:0 — TX BUSEIE — — — EW MARKIE 31:16 — — — — — — — — — — — — — — — 15:0 — TXBUSE RXBUSE — — — EWMARK FWMARK RXDONE PKTPEND RXACT — TXDONE TXABORT RXBUFNA x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0000 0000 31:16 PMMODE<3:0> 0000 0000 PMO<15:0> — 0000 0000 HT<31:0> 15:0 0000 0000 RXSTADDR<15:2> 31:16 31:16 22/6 PTV<15:0> 31:16 31:16 23/7 All Resets Bit Range Bits 90B0 ETHRXWM 90C0 ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128H, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) — 0000 RX 0000 OVFLWIE — 0000 RXOVFLW 0000 All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset values default to the factory programmed value. PIC32MX5XX/6XX/7XX DS61156G-page 114 TABLE 4-47: Virtual Address (BF88_#) Register Name 90E0 ETHSTAT ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128H, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 31:16 — — — — — — — — 15:0 — — — — — — — 31:16 ETH 9100 RXOVFLOW 15:0 — — — — — — — 9110 31:16 ETH FRMTXOK 15:0 — 9120 31:16 ETH SCOLFRM 15:0 — 9130 31:16 ETH MCOLFRM 15:0 — 9140 31:16 ETH FRMRXOK 15:0 — 31:16 — 9150 9160 ETH FCSERR 23/7 22/6 21/5 20/4 — BUSY TXBUSY RXBUSY — — — — — — 18/2 17/1 16/0 — — — — 0000 — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RXPAUSE PASSALL — — BUFCNT<7:0> — — — — — — — — 0000 FRMTXOKCNT<15:0> — — — — — — — — SCOLFRMCNT<15:0> — — — — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — — — — — — — — 15:0 SOFT RESET SIM RESET — — RESET RMCS RESET RFUN RESET TMCS RESET TFUN — — — 31:16 — — — — — — — — — — — — 15:0 — EXCESS DFR BP NOBKOFF NOBKOFF — — LONGPRE PUREPRE AUTOPAD VLANPAD PAD ENABLE CRC ENABLE — — — DS61156G-page 115 EMAC1 CFG2 9220 EMAC1 IPGT 31:16 — — — — — — — — — 15:0 — — — — — — — — — 9230 EMAC1 IPGR 31:16 — — — — — — — — — 15:0 — 9240 EMAC1 CLRT 31:16 — — 15:0 — — 9250 EMAC1 MAXF 31:16 — — 1: 2: NB2BIPKTGP1<6:0> — — — — — CWINDOW<5:0> — — — 0000 LOOPBACK TXPAUSE — — 15:0 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — — — — — — — — — — — — — — 0000 DELAYCRC HUGEFRM LENGTHCK FULLDPLX 4082 — — — — — — — — — — — — 0000 0C12 RETX<3:0> — 0000 0012 NB2BIPKTGP2<6:0> — MACMAXF<15:0> — 0000 RXENABLE 800D B2BIPKTGP<6:0> — — 0000 — — 0000 370F — 0000 05EE All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset values default to the factory programmed value. PIC32MX5XX/6XX/7XX 31:16 ALGNERRCNT<15:0> 9210 0000 0000 — EMAC1 CFG1 0000 0000 FCSERRCNT<15:0> — 0000 0000 FRMRXOKCNT<15:0> — 0000 0000 MCOLFRMCNT<15:0> — 0000 0000 31:16 ETH ALGNERR 15:0 Legend: 0000 RXOVFLWCNT<15:0> 9200 Note 19/3 All Resets Bits Bit Range © 2009-2011 Microchip Technology Inc. TABLE 4-47: Register Name © 2009-2011 Microchip Technology Inc. Virtual Address (BF88_#) ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128H, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) 9260 EMAC1 SUPP 9270 EMAC1 TEST 9280 EMAC1 MCFG 9290 EMAC1 MCMD 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — — — — SCAN READ 0000 92A0 EMAC1 MADR 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — 92B0 EMAC1 MWTD 31:16 — — — — — — — — — — — 92C0 EMAC1 MRDD 31:16 — — — — — — — 92D0 EMAC1 MIND 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — LINKFAIL NOTVALID SCAN 9300 EMAC1 SA0(2) 31:16 — — — — — — — — — — — — — — — — 9310 EMAC1 SA1(2) 31:16 — — — 9320 EMAC1 SA2(2) 31:16 — — — Legend: Note 1: 2: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 31:16 — — — 15:0 — — — — — — — RESET RMII — 31:16 — — 15:0 — — — — — — — — 31:16 — 15:0 RESET MGMT — — — — — — 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — 0000 — SPEED RMII — — — — — — — — 1000 — — — — — — — — — — — 0000 — — — — — — — — TESTBP — — — — — — — — — — — — — — — — PHYADDR<4:0> — — — — 15:0 — — — — — — 15:0 CLKSEL<3:0> — NOPRE — — — REGADDR<4:0> 0100 — — 15:0 — — — — — — — STNADDR4<7:0> — — — — — — — — STNADDR2<7:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — — — — STNADDR1<7:0> 0000 MIIMBUSY 0000 xxxx xxxx STNADDR3<7:0> — 0000 0000 STNADDR5<7:0> — 0000 0000 STNADDR6<7:0> — 0000 SCANINC 0020 MRDD<15:0> 15:0 15:0 — TESTPAUSE SHRTQNTA 0000 MWTD<15:0> — All Resets Bit Range Bits xxxx xxxx xxxx xxxx All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset values default to the factory programmed value. PIC32MX5XX/6XX/7XX DS61156G-page 116 TABLE 4-47: PIC32MX5XX/6XX/7XX 5.0 FLASH PROGRAM MEMORY Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. “Flash Program Memory” (DS61121) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. PIC32MX5XX/6XX/7XX devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory: 1. 2. 3. Run-Time Self-Programming (RTSP) EJTAG Programming In-Circuit Serial Programming™ (ICSP™) RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in Section 5. “Flash Program Memory” (DS61121) in the “PIC32 Family Reference Manual”. EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP. The EJTAG and ICSP methods are described in the “PIC32 Flash Programming Specification” (DS61145), which can be downloaded from the Microchip web site. © 2009-2011 Microchip Technology Inc. DS61156G-page 117 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 118 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 6.0 RESETS Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. “Resets” (DS61118) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 6-1: The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources: • • • • • • POR: Power-on Reset MCLR: Master Clear Reset pin SWR: Software Reset WDTR: Watchdog Timer Reset BOR: Brown-out Reset CMR: Configuration Mismatch Reset A simplified block diagram of the Reset module is illustrated in Figure 6-1. SYSTEM RESET BLOCK DIAGRAM MCLR Glitch Filter Sleep or Idle WDTR WDT Time-out Voltage Regulator Enabled VDD MCLR Power-up Timer POR Brown-out Reset BOR SYSRST VDD Rise Detect Configuration Mismatch Reset Software Reset © 2009-2011 Microchip Technology Inc. CMR SWR DS61156G-page 119 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 120 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 7.0 INTERRUPT CONTROLLER Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. “Interrupts” (DS61108) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. PIC32MX5XX/6XX/7XX devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU. • • • • • • • • • • • • Up to 96 interrupt sources Up to 64 interrupt vectors Single and multi-vector mode operations Five external interrupts with edge polarity control Interrupt proximity timer Module freeze in Debug mode Seven user-selectable priority levels for each vector Four user-selectable subpriority levels within each priority Dedicated shadow set for user-selectable priority level Software can generate any interrupt User-configurable interrupt vector table location User-configurable interrupt vector spacing A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1. INTERRUPT CONTROLLER MODULE Interrupt Requests FIGURE 7-1: The PIC32MX5XX/6XX/7XX interrupt module includes the following features: Vector Number Interrupt Controller Priority Level CPU Core Shadow Set Number © 2009-2011 Microchip Technology Inc. DS61156G-page 121 PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION Interrupt Source(1) IRQ Vector Number Interrupt Bit Location Flag Enable Priority Sub-Priority Highest Natural Order Priority CT – Core Timer Interrupt 0 0 IFS0<0> IEC0<0> IPC0<4:2> IPC0<1:0> CS0 – Core Software Interrupt 0 1 1 IFS0<1> IEC0<1> IPC0<12:10> IPC0<9:8> CS1 – Core Software Interrupt 1 2 2 IFS0<2> IEC0<2> IPC0<20:18> IPC0<17:16> INT0 – External Interrupt 0 3 3 IFS0<3> IEC0<3> IPC0<28:26> IPC0<25:24> T1 – Timer1 4 4 IFS0<4> IEC0<4> IPC1<4:2> IPC1<1:0> IC1 – Input Capture 1 5 5 IFS0<5> IEC0<5> IPC1<12:10> IPC1<9:8> OC1 – Output Compare 1 6 6 IFS0<6> IEC0<6> IPC1<20:18> IPC1<17:16> INT1 – External Interrupt 1 7 7 IFS0<7> IEC0<7> IPC1<28:26> IPC1<25:24> T2 – Timer2 8 8 IFS0<8> IEC0<8> IPC2<4:2> IPC2<1:0> IC2 – Input Capture 2 9 9 IFS0<9> IEC0<9> IPC2<12:10> IPC2<9:8> OC2 – Output Compare 2 10 10 IFS0<10> IEC0<10> IPC2<20:18> IPC2<17:16> INT2 – External Interrupt 2 11 11 IFS0<11> IEC0<11> IPC2<28:26> IPC2<25:24> T3 – Timer3 12 12 IFS0<12> IEC0<12> IPC3<4:2> IPC3<1:0> IC3 – Input Capture 3 13 13 IFS0<13> IEC0<13> IPC3<12:10> IPC3<9:8> OC3 – Output Compare 3 14 14 IFS0<14> IEC0<14> IPC3<20:18> IPC3<17:16> INT3 – External Interrupt 3 15 15 IFS0<15> IEC0<15> IPC3<28:26> IPC3<25:24> T4 – Timer4 16 16 IFS0<16> IEC0<16> IPC4<4:2> IPC4<1:0> IC4 – Input Capture 4 17 17 IFS0<17> IEC0<17> IPC4<12:10> IPC4<9:8> OC4 – Output Compare 4 18 18 IFS0<18> IEC0<18> IPC4<20:18> IPC4<17:16> INT4 – External Interrupt 4 19 19 IFS0<19> IEC0<19> IPC4<28:26> IPC4<25:24> T5 – Timer5 20 20 IFS0<20> IEC0<20> IPC5<4:2> IPC5<1:0> IC5 – Input Capture 5 21 21 IFS0<21> IEC0<21> IPC5<12:10> IPC5<9:8> OC5 – Output Compare 5 22 22 IFS0<22> IEC0<22> IPC5<20:18> IPC5<17:16> SPI1E – SPI1 Fault 23 23 IFS0<23> IEC0<23> IPC5<28:26> IPC5<25:24> SPI1RX – SPI1 Receive Done 24 23 IFS0<24> IEC0<24> IPC5<28:26> IPC5<25:24> SPI1TX – SPI1 Transfer Done 25 23 IFS0<25> IEC0<25> IPC5<28:26> IPC5<25:24> 26 24 IFS0<26> IEC0<26> IPC6<4:2> IPC6<1:0> 27 24 IFS0<27> IEC0<27> IPC6<4:2> IPC6<1:0> 28 24 IFS0<28> IEC0<28> IPC6<4:2> IPC6<1:0> I2C1B – I2C1 Bus Collision Event 29 25 IFS0<29> IEC0<29> IPC6<12:10> IPC6<9:8> I2C1S – I2C1 Slave Event 30 25 IFS0<30> IEC0<30> IPC6<12:10> IPC6<9:8> I2C1M – I2C1 Master Event 31 25 IFS0<31> IEC0<31> IPC6<12:10> IPC6<9:8> U1E – UART1 Error SPI3E – SPI3 Fault I2C3B – I2C3 Bus Collision Event U1RX – UART1 Receiver SPI3RX – SPI3 Receive Done I2C3S – I2C3 Slave Event U1TX – UART1 Transmitter SPI3TX – SPI3 Transfer Done I2C3M – I2C3 Master Event CN – Input Change Interrupt 32 26 IFS1<0> IEC1<0> IPC6<20:18> IPC6<17:16> AD1 – ADC1 Convert Done 33 27 IFS1<1> IEC1<1> IPC6<28:26> IPC6<25:24> Note 1: Not all interrupt sources are available on all devices. See Table 1, Table 2 and Table 3 for the list of available peripherals. DS61156G-page 122 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED) Interrupt Bit Location IRQ Vector Number Flag Enable Priority Sub-Priority PMP – Parallel Master Port 34 28 IFS1<2> IEC1<2> IPC7<4:2> IPC7<1:0> CMP1 – Comparator Interrupt 35 29 IFS1<3> IEC1<3> IPC7<12:10> IPC7<9:8> CMP2 – Comparator Interrupt 36 30 IFS1<4> IEC1<4> IPC7<20:18> IPC7<17:16> U3E – UART2A Error SPI2E – SPI2 Fault I2C4B – I2C4 Bus Collision Event 37 31 IFS1<5> IEC1<5> IPC7<28:26> IPC7<25:24> U3RX – UART2A Receiver SPI2RX – SPI2 Receive Done I2C4S – I2C4 Slave Event 38 31 IFS1<6> IEC1<6> IPC7<28:26> IPC7<25:24> U3TX – UART2A Transmitter SPI2TX – SPI2 Transfer Done IC4M – I2C4 Master Event 39 31 IFS1<7> IEC1<7> IPC7<28:26> IPC7<25:24> U2E – UART3A Error SPI4E – SPI4 Fault I2C5B – I2C5 Bus Collision Event 40 32 IFS1<8> IEC1<8> IPC8<4:2> IPC8<1:0> U2RX – UART3A Receiver SPI4RX – SPI4 Receive Done I2C5S – I2C5 Slave Event 41 32 IFS1<9> IEC1<9> IPC8<4:2> IPC8<1:0> U2TX – UART3A Transmitter SPI4TX – SPI4 Transfer Done IC5M – I2C5 Master Event 42 32 IFS1<10> IEC1<10> IPC8<4:2> IPC8<1:0> I2C2B – I2C2 Bus Collision Event 43 33 IFS1<11> IEC1<11> IPC8<12:10> IPC8<9:8> I2C2S – I2C2 Slave Event 44 33 IFS1<12> IEC1<12> IPC8<12:10> IPC8<9:8> Interrupt Source(1) I2C2M – I2C2 Master Event 45 33 IFS1<13> IEC1<13> IPC8<12:10> IPC8<9:8> FSCM – Fail-Safe Clock Monitor 46 34 IFS1<14> IEC1<14> IPC8<20:18> IPC8<17:16> RTCC – Real-Time Clock and Calendar 47 35 IFS1<15> IEC1<15> IPC8<28:26> IPC8<25:24> DMA0 – DMA Channel 0 48 36 IFS1<16> IEC1<16> IPC9<4:2> IPC9<1:0> DMA1 – DMA Channel 1 49 37 IFS1<17> IEC1<17> IPC9<12:10> IPC9<9:8> DMA2 – DMA Channel 2 50 38 IFS1<18> IEC1<18> IPC9<20:18> IPC9<17:16> DMA3 – DMA Channel 3 51 39 IFS1<19> IEC1<19> IPC9<28:26> IPC9<25:24> DMA4 – DMA Channel 4 52 40 IFS1<20> IEC1<20> IPC10<4:2> IPC10<1:0> DMA5 – DMA Channel 5 53 41 IFS1<21> IEC1<21> IPC10<12:10> DMA6 – DMA Channel 6 54 42 IFS1<22> IEC1<22> IPC10<20:18> IPC10<17:16> IPC10<9:8> DMA7 – DMA Channel 7 55 43 IFS1<23> IEC1<23> IPC10<28:26> IPC10<25:24> FCE – Flash Control Event 56 44 IFS1<24> IEC1<24> USB – USB Interrupt 57 45 IFS1<25> IEC1<25> IPC11<12:10> CAN1 – Control Area Network 1 58 46 IFS1<26> IEC1<26> IPC11<20:18> IPC11<17:16> CAN2 – Control Area Network 2 59 47 IFS1<27> IEC1<27> IPC11<28:26> IPC11<25:24> ETH – Ethernet Interrupt 60 48 IFS1<28> IEC1<28> IPC12<4:2> IPC12<1:0> IC1E – Input Capture 1 Error 61 5 IFS1<29> IEC1<29> IPC1<12:10> IPC1<9:8> IC2E – Input Capture 2 Error 62 9 IFS1<30> IEC1<30> IPC2<12:10> IPC2<9:8> IC3E – Input Capture 3 Error 63 13 IFS1<31> IEC1<31> IPC3<12:10> IPC3<9:8> IC4E – Input Capture 4 Error 64 17 IFS2<0> IEC2<0> IPC4<12:10> IPC4<9:8> Note 1: IPC11<4:2> IPC11<1:0> IPC11<9:8> Not all interrupt sources are available on all devices. See Table 1, Table 2 and Table 3 for the list of available peripherals. © 2009-2011 Microchip Technology Inc. DS61156G-page 123 PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED) Interrupt Bit Location IRQ Vector Number Flag Enable Priority Sub-Priority IC4E – Input Capture 5 Error 65 21 IFS2<1> IEC2<1> IPC5<12:10> IPC5<9:8> PMPE – Parallel Master Port Error 66 28 IFS2<2> IEC2<2> IPC7<4:2> IPC7<1:0> U4E – UART4 Error 67 49 IFS2<3> IEC2<3> IPC12<12:10> IPC12<9:8> U4RX – UART4 Receiver 68 49 IFS2<4> IEC2<4> IPC12<12:10> IPC12<9:8> U4TX – UART4 Transmitter 69 49 IFS2<5> IEC2<5> IPC12<12:10> IPC12<9:8> U6E – UART6 Error 70 50 IFS2<6> IEC2<6> IPC12<20:18> IPC12<17:16> U6RX – UART6 Receiver 71 50 IFS2<7> IEC2<7> IPC12<20:18> IPC12<17:16> U6TX – UART6 Transmitter 72 50 IFS2<8> IEC2<8> IPC12<20:18> IPC12<17:16> IPC12<28:26> IPC12<25:24> Interrupt Source(1) U5E – UART5 Error 73 51 IFS2<9> IEC2<9> U5RX – UART5 Receiver 74 51 IFS2<10> IEC2<10> IPC12<28:26> IPC12<25:24> U5TX – UART5 Transmitter 75 51 IFS2<11> IEC2<11> IPC12<28:26> IPC12<25:24> (Reserved) — — — — — — Lowest Natural Order Priority Note 1: Not all interrupt sources are available on all devices. See Table 1, Table 2 and Table 3 for the list of available peripherals. DS61156G-page 124 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 8.0 OSCILLATOR CONFIGURATION The PIC32MX5XX/6XX/7XX oscillator system has the following modules and features: • A total of four external and internal oscillator options as clock sources • On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources • On-Chip user-selectable divisor postscaler on select oscillator sources • Software-controllable switching between various clock sources • A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. “Oscillator” (DS61112) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 8-1: • Dedicated On-Chip PLL for USB peripheral Figure 8-1shows the Oscillator module block diagram. PIC32MX5XX/6XX/7XX FAMILY OSCILLATOR BLOCK DIAGRAM USB PLL UFIN div x OSC1 C1(3) XTAL C2(3) XT, HS, EC To Internal Logic 4 MHz ≤FIN ≤5 MHz FIN div x PLL Enable RS(1) OSC2(4) UFRCEN UPLLEN UFIN = 4 MHz UPLLIDIV<2:0> Primary Oscillator (POSC) RF(2) USB Clock (48 MHz) div 2 PLL x24 div 2 PLL Input Divider FPLLIDIV<2:0> ADC FRC Oscillator 8 MHz typical COSC<2:0> div y div 16 Postscaler LPRC Oscillator FRCDIV<2:0> Peripherals Postscaler div x PBCLK PBDIV<1:0> PLL Output Divider PLLODIV<2:0> PLL Multiplier PLLMULT<2:0> TUN<5:0> XTPLL, HSPLL, ECPLL, FRCPLL FRC CPU and Select Peripherals SYSCLK FRC/16 FRCDIV LPRC 31.25 kHz typical Secondary Oscillator (SOSC) SOSCO 32.768 kHz SOSCEN and FSOSCEN 1. 2. 3. 4. Clock Control Logic Fail-Safe Clock Monitor SOSCI Notes: SOSC A series resistor, RS, may be required for AT strip cut crystals. The internal feedback resistor, RF, is typically in the range of 2 to 10 MΩ. Refer to Section 6. “Oscillator ” (DS61112) in the “PIC32 Family Reference Manual” for help in determining the best oscillator components. The PBCLK out is available on the OSC2 pin in certain clock modes. © 2009-2011 Microchip Technology Inc. FSCM INT FSCM Event NOSC<2:0> COSC<2:0> FSCMEN<1:0> OSWEN WDT, PWRT Timer1, RTCC DS61156G-page 125 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 126 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX PREFETCH CACHE Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. “Prefetch Cache” (DS61119) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 9-1: BMX/CPU 9.1 • • • • • • • • Features 16 fully associative lockable cache lines 16-byte cache lines Up to four cache lines allocated to data Two cache lines with address mask to hold repeated instructions Pseudo LRU replacement policy All cache lines are software writable 16-byte parallel memory fetch Predictive instruction prefetch A simplified block diagram of the Prefetch Cache module is illustrated in Figure 9-1. PREFETCH CACHE MODULE BLOCK DIAGRAM FSM CTRL Tag Logic CTRL Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching. Cache Line Bus Ctrl BMX/CPU 9.0 Cache Ctrl Prefetch Ctrl Cache Line Address Encode Hit LRU Miss LRU RDATA Hit Logic PreFetch Prefetch Pre-Fetch CTRL RDATA PreFetch Prefetch Pre-Fetch Tag PFM © 2009-2011 Microchip Technology Inc. DS61156G-page 127 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 128 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. “Direct Memory Access (DMA) Controller” (DS61117) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself. Following are some of the key features of the DMA controller module: • Four identical channels, each featuring: - Auto-increment source and destination address registers - Source and destination pointers - Memory to memory and memory to peripheral transfers FIGURE 10-1: INT Controller Peripheral Bus • Automatic word-size detection: - Transfer granularity, down to byte level - Bytes need not be word-aligned at source and destination • Fixed priority channel arbitration • Flexible DMA channel operating modes: - Manual (software) or automatic (interrupt) DMA requests - One-Shot or Auto-Repeat Block Transfer modes - Channel-to-channel chaining • Flexible DMA requests: - A DMA request can be selected from any of the peripheral interrupt sources - Each channel can select any (appropriate) observable interrupt as its DMA request source - A DMA transfer abort can be selected from any of the peripheral interrupt sources - Pattern (data) match transfer termination • Multiple DMA channel status interrupts: - DMA channel block transfer complete - Source empty or half empty - Destination full or half full - DMA transfer aborted due to an external event - Invalid DMA address generated • DMA debug support features: - Most recent address accessed by a DMA channel - Most recent DMA channel to transfer data • CRC Generation module: - CRC module can be assigned to any of the available channels - CRC module is highly configurable DMA BLOCK DIAGRAM System IRQ Address Decoder SE Channel 0 Control I0 Channel 1 Control I1 L Y Bus Interface Device Bus + Bus Arbitration I2 Global Control (DMACON) Channel n Control In SE L Channel Priority Arbitration © 2009-2011 Microchip Technology Inc. DS61156G-page 129 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 130 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 11.0 USB ON-THE-GO (OTG) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. “USB OnThe-Go (OTG)” (DS61126) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller. The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1. © 2009-2011 Microchip Technology Inc. The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32 USB module includes the following features: • • • • • • • • • USB Full-speed support for host and device Low-speed host support USB OTG support Integrated signaling resistors Integrated analog comparators for VBUS monitoring Integrated USB transceiver Transaction handshaking performed by hardware Endpoint buffering anywhere in system RAM Integrated DMA to access system RAM and Flash Note: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations. DS61156G-page 131 PIC32MX5XX/6XX/7XX FIGURE 11-1: PIC32MX5XX/6XX/7XX FAMILY USB INTERFACE DIAGRAM USBEN FRC Oscillator 8 MHz Typical USB Suspend CPU Clock Not POSC Sleep TUN<5:0>(4) Primary Oscillator (POSC) Div x OSC1 UFIN(5) PLL UPLLEN(6) UPLLIDIV(6) USB Suspend OSC2 (PB Out)(1) Div 2 UFRCEN(3) To Clock Generator for Core and Peripherals Sleep or Idle USB Module SRP Charge Bus SRP Discharge USB Voltage Comparators 48 MHz USB Clock(7) Full Speed Pull-up D+(2) Registers and Control Interface Host Pull-down SIE Transceiver Low Speed Pull-up D-(2) DMA System RAM Host Pull-down ID Pull-up ID(8) VBUSON(8) Transceiver Power 3.3V VUSB Note 1: 2: 3: 4: 5: 6: 7: 8: PB clock is only available on this pin for select EC modes. Pins can be used as digital inputs when USB is not enabled. This bit field is contained in the OSCCON register. This bit field is contained in the OSCTRM register. USB PLL UFIN requirements: 4 MHz. This bit field is contained in the DEVCFG2 register. A 48 MHz clock is required for proper USB operation. Pins can be used as GPIO when the USB module is disabled. DS61156G-page 132 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 12.0 I/O PORTS General purpose I/O pins are the simplest of peripherals. They allow the PIC® MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. “I/O Ports” (DS61120) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). Following are some of the key features of this module: • Individual output pin open-drain enable/disable • Individual input pin weak pull-up enable/disable • Monitor selective inputs and generate interrupt when change in pin state is detected • Operation during CPU Sleep and Idle modes • Fast bit manipulation using CLR, SET and INV registers Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 12-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE Peripheral Module Peripheral Module Enable Peripheral Output Enable Peripheral Output Data PIO Module RD ODC Data Bus D SYSCLK Q ODC CK EN Q WR ODC 1 RD TRIS 0 0 I/O Cell 1 D Q 1 TRIS CK EN Q WR TRIS 0 Output Multiplexers D Q I/O Pin LAT CK EN Q WR LAT WR PORT RD LAT 1 RD PORT 0 Sleep Q Q D CK Q Q D CK SYSCLK Synchronization Peripheral Input Legend: Note: R Peripheral Input Buffer R = Peripheral input buffer types may vary. Refer to Table 1-1 for peripheral details. This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The actual structure for any specific port/peripheral combination may be different than it is shown here. © 2009-2011 Microchip Technology Inc. DS61156G-page 133 PIC32MX5XX/6XX/7XX 12.1 Parallel I/O (PIO) Ports All port pins have three registers (TRIS, LAT and PORT) that are directly associated with their operation. TRIS is a Data Direction or Tri-State Control register that determines whether a digital pin is an input or an output. Setting a TRISx register bit = 1, configures the corresponding I/O pin as an input; setting a TRISx register bit = 0, configures the corresponding I/O pin as an output. All port I/O pins are defined as inputs after a device Reset. Certain I/O pins are shared with analog peripherals and default to analog inputs after a device Reset. PORT is a register used to read the current state of the signal applied to the port I/O pins. Writing to a PORTx register performs a write to the port’s latch, LATx register, latching the data to the port’s I/O pins. LAT is a register used to write data to the port I/O pins. The LATx Latch register holds the data written to either the LATx or PORTx registers. Reading the LATx Latch register reads the last value written to the corresponding PORT or Latch register. Not all port I/O pins are implemented on some devices, therefore, the corresponding PORTx, LATx and TRISx register bits will read as zeros. 12.1.1 CLR, SET AND INV REGISTERS Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as ‘1’ are modified. Bits specified as ‘0’ are not modified. Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read. Note: 12.1.2 The maximum input voltage allowed on the input pins is the same as the maximum VIH specification. Refer to Section 31.0 “Electrical Characteristics” for VIH specification details. Note: 12.1.3 12.1.4 DIGITAL OUTPUTS Pins are configured as digital outputs by setting the corresponding TRIS register bits = 0. When configured as digital outputs, these pins are CMOS drivers or can be configured as open-drain outputs by setting the corresponding bits in the Open-Drain Configuration (ODCx) register. The open-drain feature allows generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification. See the “Pin Diagrams” section for the available pins and their functionality. 12.1.5 DIGITAL INPUTS 12.1.6 DS61156G-page 134 ANALOG INPUTS Certain pins can be configured as analog inputs used by the ADC and comparator modules. Setting the corresponding bits in the AD1PCFG register = 0 enables the pin as an analog input pin and must have the corresponding TRIS bit set = 1 (input). If the TRIS bit is cleared = 0 (output), the digital output level (VOH or VOL) will be converted. Any time a port I/O pin is configured as analog, its digital input is disabled and the corresponding PORTx register bit will read ‘0’. The AD1PCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default. Using a PORTxINV register to toggle a bit is recommended because the operation is performed in hardware atomically, using fewer instructions, as compared to the traditional read-modify-write method shown below: PORTC ^ = 0x0001; Pins are configured as digital inputs by setting the corresponding TRIS register bits = 1. When configured as inputs, they are either TTL buffers or Schmitt Triggers. Several digital pins share functionality with analog inputs and default to the analog inputs at POR. Setting the corresponding bit in the AD1PCFG register = 1 enables the pin as a digital pin. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications. ANALOG OUTPUTS Certain pins can be configured as analog outputs, such as the CVREF output voltage used by the comparator module. Configuring the comparator reference module to provide this output will present the analog output voltage on the pin, independent of the TRIS register setting for the corresponding pin. INPUT CHANGE NOTIFICATION The input change notification function of the I/O ports (CNx) allows devices to generate interrupt requests in response to change-of-state on selected pin. Each CNx pin also has a weak pull-up, which acts as a current source connected to the pin. The pull-ups are enabled by setting the corresponding bit in the CNPUE register. © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 13.0 TIMER1 This family of PIC32 devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (SOSC) for Real-Time Clock (RTC) applications. The following modes are supported: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. “Timers” (DS61105) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). • • • • 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. Synchronous Internal Timer Synchronous Internal Gated Timer Synchronous External Timer Asynchronous External Timer 13.1 Additional Supported Features • Selectable clock prescaler • Timer operation during CPU Idle and Sleep mode • Fast bit manipulation using CLR, SET and INV registers • Asynchronous mode can be used with the SOSC to function as a Real-Time Clock (RTC) A simplified block diagram of the Timer1 module is illustrated in Figure 13-1. TIMER1 BLOCK DIAGRAM(1) FIGURE 13-1: PR1 Equal 16-bit Comparator TSYNC (T1CON<2>) 1 Reset T1IF Event Flag Sync TMR1 0 0 1 Q TGATE (T1CON<7>) D Q TGATE (T1CON<7>) TCS (T1CON<1>) ON (T1CON<15>) SOSCO/T1CK x1 SOSCEN SOSCI Gate Sync PBCLK 10 00 Prescaler 1, 8, 64, 256 2 TCKPS<1:0> (T1CON<5:4>) Note 1: The default state of the SOSCEN (OSCCON<1>) during a device Reset is controlled by the FSOSCEN bit in Configuration Word, DEVCFG1. © 2009-2011 Microchip Technology Inc. DS61156G-page 135 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 136 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 14.0 TIMER2/3, TIMER4/5 Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. “Timers” (DS61105) of the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). • Synchronous internal 32-bit timer • Synchronous internal 32-bit gated timer • Synchronous external 32-bit timer Note: 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 14.1 In this chapter, references to registers, TxCON, TMRx and PRx, use ‘x’ to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, ‘x’ represents Timer2 or 4; ‘y’ represents Timer3 or 5. Additional Supported Features • Selectable clock prescaler • Timers operational during CPU idle • Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only) • ADC event trigger (Timer3 only) • Fast bit manipulation using CLR, SET and INV registers This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported: • Synchronous internal 16-bit timer • Synchronous internal 16-bit gated timer • Synchronous external 16-bit timer FIGURE 14-1: TIMER2/3, 4/5 BLOCK DIAGRAM (16-BIT) Sync TMRx ADC Event Trigger(1) Equal Comparator x 16 PRx Reset TxIF Event Flag 0 1 TGATE (TxCON<7>) Q TGATE (TxCON<7>) D Q TCS (TxCON<1>) ON (TxCON<15>) TxCK(2) x1 Gate Sync PBCLK 10 00 Prescaler 1, 2, 4, 8, 16, 32, 64, 256 3 TCKPS (TxCON<6:4>) Note 1: ADC event trigger is available on Timer3 only. 2: TxCK pins are not available on 64-pin devices. © 2009-2011 Microchip Technology Inc. DS61156G-page 137 PIC32MX5XX/6XX/7XX FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)(1) Reset TMRy MS Half Word ADC Event Trigger(3) Equal Sync LS Half Word 32-bit Comparator PRy TyIF Event Flag TMRx PRx 0 1 TGATE (TxCON<7>) Q D TGATE (TxCON<7>) Q TCS (TxCON<1>) ON (TxCON<15>) TxCK(2) x1 Gate Sync PBCLK 10 00 Prescaler 1, 2, 4, 8, 16, 32, 64, 256 3 TCKPS (TxCON<6:4>) Note 1: In this diagram, the use of ‘x’ in registers, TxCON, TMRx, PRx and TxCK, refers to either Timer2 or Timer4; the use of ‘y’ in registers, TyCON, TMRy, PRy, TyIF, refers to either Timer3 or Timer5. 2: TxCK pins are not available on 64-pin devices. 3: ADC event trigger is available only on the Timer2/3 pair. DS61156G-page 138 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 15.0 INPUT CAPTURE 1. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. “Input Capture” (DS61122) of the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2. 3. 4. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events: FIGURE 15-1: Simple capture event modes - Capture timer value on every falling edge of input at ICx pin - Capture timer value on every rising edge of input at ICx pin Capture timer value on every edge (rising and falling) Capture timer value on every edge (rising and falling), specified edge first. Prescaler capture event modes - Capture timer value on every 4th rising edge of input at ICx pin - Capture timer value on every 16th rising edge of input at ICx pin Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock. Other operational features include: • Device wake-up from capture pin during CPU Sleep and Idle modes • Interrupt on input capture event • 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled • Input capture can also be used to provide additional sources of external interrupts INPUT CAPTURE BLOCK DIAGRAM ICx Input Timer3 Timer2 ICTMR 0 1 C32 FIFO Control ICxBUF<31:16> Prescaler 1, 4, 16 ICM<2:0> ICxBUF<15:0> Edge Detect ICM<2:0> FEDGE ICBNE ICOV ICxCON ICI<1:0> Interrupt Event Generation Data Space Interface Interrupt © 2009-2011 Microchip Technology Inc. Peripheral Data Bus DS61156G-page 139 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 140 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 16.0 OUTPUT COMPARE The Output Compare module (OCMP) is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the OCMP module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the OCMP module generates an event based on the selected mode of operation. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. “Output Compare” (DS61111) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). The following are some of the key features: • Multiple Output Compare Modules in a device • Programmable interrupt generation on compare event • Single and Dual Compare modes • Single and continuous output pulse generation • Pulse-Width Modulation (PWM) mode • Hardware-based PWM Fault detection and automatic output disable • Programmable selection of 16-bit or 32-bit time bases • Can operate from either of two available 16-bit time bases or a single 32-bit time base 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 16-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM Set Flag bit OCxIF(1) OCxRS(1) Output Logic OCxR(1) 3 OCM<2:0> Mode Select Comparator 0 16 OCTSEL 1 0 S R Output Enable Q OCx(1) Output Enable Logic OCFA or OCFB(2) 1 16 TMR Register Inputs from Time Bases(3) Period Match Signals from Time Bases(3) Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels, 1 through 5. 2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel. 3: Each output compare channel can use one of two selectable 16-bit time bases or a single 32-bit timer base. © 2009-2011 Microchip Technology Inc. DS61156G-page 141 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 142 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 17.0 SERIAL PERIPHERAL INTERFACE (SPI) The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, etc. The PIC32 SPI module is compatible with Motorola® SPI and SIOP interfaces. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. “Serial Peripheral Interface (SPI)” (DS61106) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). Following are some of the key features of this module: • • • • 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. • • • • FIGURE 17-1: Master and Slave modes support Four different clock formats Enhanced Framed SPI protocol support User-configurable 8-bit, 16-bit and 32-bit data width Separate SPI FIFO buffers for receive and transmit - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer Operation during CPU Sleep and Idle mode Fast bit manipulation using CLR, SET and INV registers SPI MODULE BLOCK DIAGRAM Internal Data Bus SPIxBUF Read Write SPIxRXB FIFO FIFOs Share Address SPIxBUF SPIxTXB FIFO Transmit Receive SPIxSR SDIx bit 0 SDOx SSx/FSYNC Slave Select and Frame Sync Control Shift Control Clock Control Edge Select SCKx Baud Rate Generator PBCLK Enable Master Clock Note: Access SPIxTXB and SPIxRXB FIFOs via SPIxBUF register. © 2009-2011 Microchip Technology Inc. DS61156G-page 143 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 144 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 18.0 INTER-INTEGRATED CIRCUIT™ (I2C™) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. “InterIntegrated Circuit™ (I2C™)” (DS61116) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. © 2009-2011 Microchip Technology Inc. The I2C module provides complete hardware support for both Slave and Multi-Master modes of the I2C serial communication standard. Figure 18-1 illustrates the I2C module block diagram. Each I2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data. Each I2C module offers the following key features: • I2C interface supporting both master and slave operation • I2C Slave mode supports 7-bit and 10-bit addressing • I2C Master mode supports 7-bit and 10-bit addressing • I2C port allows bidirectional transfers between master and slaves • Serial clock synchronization for the I2C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control) • I2C supports multi-master operation; detects bus collision and arbitrates accordingly • Provides support for address bit masking DS61156G-page 145 PIC32MX5XX/6XX/7XX FIGURE 18-1: I2C™ BLOCK DIAGRAM Internal Data Bus I2CxRCV SCLx Read Shift Clock I2CxRSR LSB SDAx Address Match Match Detect Write I2CxMSK Write Read I2CxADD Read Start and Stop Bit Detect Write Start and Stop Bit Generation Control Logic I2CxSTAT Collision Detect Read Write I2CxCON Acknowledge Generation Read Clock Stretching Write I2CxTRN LSB Read Shift Clock Reload Control BRG Down Counter Write I2CxBRG Read PBCLK DS61156G-page 146 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. “Universal Asynchronous Receiver Transmitter (UART)” (DS61107) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The UART module is one of the serial I/O modules available in PIC32MX5XX/6XX/7XX family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN 1.2 and IrDA®. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder. FIGURE 19-1: The primary features of the UART module are: • • • • • • • • • • • • • Full-duplex, 8-bit or 9-bit data transmission Even, Odd or No Parity options (for 8-bit data) One or two Stop bits Hardware auto-baud feature Hardware flow control option Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler Baud rates ranging from 76 bps to 20 Mbps at 80 MHz 8-level deep First-In-First-Out (FIFO) transmit data buffer 8-level deep FIFO receive data buffer Parity, framing and buffer overrun error detection Support for interrupt-only on address detect (9th bit = 1) Separate transmit and receive interrupts Loopback mode for diagnostic support • LIN 1.2 Protocol support • IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support Figure 19-1 illustrates a simplified block diagram of the UART. UART SIMPLIFIED BLOCK DIAGRAM Baud Rate Generator IrDA® Hardware Flow Control Note: BCLKx UxRTS UxCTS UARTx Receiver UxRX UARTx Transmitter UxTX Not all pins are available for all UART modules. Refer to the device-specific pin diagram for more information. © 2009-2011 Microchip Technology Inc. DS61156G-page 147 PIC32MX5XX/6XX/7XX Figure 19-2 and Figure 19-3 illustrate typical receive and transmit timing for the UART module. FIGURE 19-2: UART RECEPTION Char 1 Char 2-4 Char 5-10 Char 11-13 Read to UxRXREG UxRX Start 1 Stop Start 2 Start 5 Stop 4 Stop 10 Start 11 Stop 13 RIDLE Cleared by Software OERR Cleared by Software UxRXIF URXISEL = 00 Cleared by Software UxRXIF URXISEL = 01 UxRXIF URXISEL = 10 FIGURE 19-3: TRANSMISSION (8-BIT OR 9-BIT DATA) 8 into TxBUF Write to UxTXREG TSR Pull from Buffer BCLK/16 (Shift Clock) UxTX Start Bit 0 Bit 1 Stop Start Bit 1 UxTXIF UTXISEL = 00 UxTXIF UTXISEL = 01 UxTXIF UTXISEL = 10 DS61156G-page 148 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 20.0 PARALLEL MASTER PORT (PMP) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. “Parallel Master Port (PMP)” (DS61128) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Figure 20-1 shows the PMP module pinout and its connections to external devices. FIGURE 20-1: Key features of the PMP module include: • • • • • • • • • • • • 8-bit, 16-bit interface Up to 16 programmable address lines Up to two Chip Select lines Programmable strobe options - Individual read and write strobes, or - Read/write strobe with enable strobe Address auto-increment/auto-decrement Programmable address/data multiplexing Programmable polarity on control signals Parallel Slave Port support - Legacy addressable - Address support - 4-byte deep auto-incrementing buffer Programmable wait states Operates during CPU Sleep and Idle modes Fast bit manipulation using CLR, SET and INV registers Freeze option for in-circuit debugging Note: On 64-pin devices, the PMD<15:8> data pins are not available. PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES Address Bus Data Bus PIC32MX5XX/6XX/7XX Parallel Master Port Control Lines PMA<0> PMALL PMA<1> PMALH Flash EEPROM SRAM Up to 16-bit Address PMA<13:2> PMA<14> PMCS1 PMA<15> PMCS2 PMRD PMRD/PMWR PMWR PMENB PMD<7:0> PMD<15:8>(1) Note 1: Microcontroller LCD FIFO Buffer 16/8-bit Data (with or without multiplexed addressing) On 64-pin devices, data pins, PMD<15:8>, are not available in 16-bit Master modes. © 2009-2011 Microchip Technology Inc. DS61156G-page 149 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 150 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 21.0 REAL-TIME CLOCK AND CALENDAR (RTCC) Following are some of the key features of this module: • • • • Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. “Real-Time Clock and Calendar (RTCC)” (DS61125) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). • • • • • • • • • 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. A simplified block diagram of the RTCC module is illustrated in Figure 21-1. FIGURE 21-1: • • • • Time: hours, minutes and seconds 24-hour format (military time) Visibility of one-half second period Provides calendar: Weekday, date, month and year Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year Alarm repeat with decrementing counter Alarm with indefinite repeat: Chime Year range: 2000 to 2099 Leap year correction BCD format for smaller firmware overhead Optimized for long-term battery operation Fractional second synchronization User calibration of the clock crystal frequency with auto-adjust Calibration range: ±0.66 seconds error per month Calibrates up to 260 ppm of crystal error Requirements: External 32.768 kHz clock crystal Alarm pulse or seconds clock output on RTCC pin RTCC BLOCK DIAGRAM 32.768 kHz Input from Secondary Oscillator (SOSC) RTCC Prescalers 0.5s YEAR, MTH, DAY RTCVAL RTCC Timer Alarm Event WKDAY HR, MIN, SEC Comparator MTH, DAY Compare Registers with Masks ALRMVAL WKDAY HR, MIN, SEC Repeat Counter RTCC Interrupt RTCC Interrupt Logic Alarm Pulse Seconds Pulse RTCC Pin RTCOE © 2009-2011 Microchip Technology Inc. DS61156G-page 151 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 152 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. “10-bit Analog-to-Digital Converter (ADC)” (DS61104) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The PIC32MX5XX/6XX/7XX 10-bit Analog-to-Digital Converter (ADC) includes the following features: • Successive Approximation Register (SAR) conversion • Up to 1 Msps conversion speed • Up to 16 analog input pins • External voltage reference input pins FIGURE 22-1: • One unipolar, differential Sample and Hold Amplifier (SHA) • Automatic Channel Scan mode • Selectable conversion trigger source • 16-word conversion result buffer • Selectable buffer fill modes • Eight conversion result format options • Operation during CPU Sleep and Idle modes A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has up to 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references. The analog inputs are connected through two multiplexers (MUXs) to one SHA. The analog input MUXs can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 22-1). The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence. The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight 32-bit output formats when it is read from the result buffer. ADC1 MODULE BLOCK DIAGRAM VREF+(1) AVDD VREF-(1) AVSS VCFG<2:0> AN0 ADC1BUF0 ADC1BUF1 AN15 S/H Channel Scan VREFH VREFL ADC1BUF2 + CH0SB<4:0> CH0SA<4:0> - SAR ADC CSCNA AN1 ADC1BUFE VREFL ADC1BUFF CH0NA CH0NB Alternate Input Selection Note 1: VREF+ and VREF- inputs can be multiplexed with other analog inputs. © 2009-2011 Microchip Technology Inc. DS61156G-page 153 PIC32MX5XX/6XX/7XX FIGURE 22-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM ADRC FRC Div 2 1 TAD ADCS<7:0> 0 8 TPB ADC Conversion Clock Multiplier 2, 4,..., 512 DS61156G-page 154 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 23.0 CONTROLLER AREA NETWORK (CAN) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. “Controller Area Network (CAN)” (DS61154) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Controller Area Network (CAN) module supports the following key features: • Standards Compliance: - Full CAN 2.0B compliance - Programmable bit rate up to 1 Mbps • Message Reception and Transmission: - 32 message FIFOs - Each FIFO can have up to 32 messages for a total of 1024 messages - FIFO can be a transmit message FIFO or a receive message FIFO - User-defined priority levels for message FIFOs used for transmission - 32 acceptance filters for message filtering - Four acceptance filter mask registers for message filtering - Automatic response to remote transmit request - DeviceNet™ addressing support • Additional Features: - Loopback, Listen All Messages and Listen Only modes for self-test, system diagnostics and bus monitoring - Low-power operating modes - CAN module is a bus master on the PIC32 system bus - Use of DMA is not required - Dedicated time-stamp timer - Dedicated DMA channels - Data-only Message Reception mode Figure 23-1 illustrates the general structure of the CAN module. FIGURE 23-1: PIC32 CAN MODULE BLOCK DIAGRAM CxTX 32 Filters 4 Masks CPU CxRX CAN Module Up to 32 Message Buffers System Bus Message Buffer Size 2 or 4 Words System RAM Message Buffer 31 Message Buffer 31 Message Buffer 31 Message Buffer 1 Message Buffer 1 Message Buffer 1 Message Buffer 0 Message Buffer 0 Message Buffer 0 FIFO1 FIFO31 FIFO0 CAN Message FIFO (up to 32 FIFOs) © 2009-2011 Microchip Technology Inc. DS61156G-page 155 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 156 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 24.0 ETHERNET CONTROLLER Following are some of the key features of this module: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. “Ethernet Controller” (DS61155) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). • • • • • • • • 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system. Figure 24-1 illustrates a block diagram of the Ethernet controller. ETHERNET CONTROLLER BLOCK DIAGRAM TX FIFO FIGURE 24-1: • • Supports 10/100 Mbps data transfer rates Supports full-duplex and half-duplex operation Supports RMII and MII PHY interface Supports MIIM PHY management interface Supports both manual and automatic flow control RAM descriptor-based DMA operation for both receive and transmit path Fully configurable interrupts Configurable receive packet filtering - CRC check - 64-byte pattern match - Broadcast, multicast and unicast packets - Magic Packet™ - 64-bit hash table - Runt packet Supports packet payload checksum calculation Supports various hardware statistics counters TX DMA TX BM TX Bus Master TX Function TX Flow Control System Bus RX DMA RX FIFO MII/RMII IF RX Flow Control RX BM External PHY MAC RX Bus Master RX Filter RX Function Checksum Fast Peripheral Bus DMA Control Registers Ethernet DMA MIIM IF MAC Control and Configuration Registers Host IF Ethernet Controller © 2009-2011 Microchip Technology Inc. DS61156G-page 157 PIC32MX5XX/6XX/7XX Table 24-1, Table 24-2, Table 24-3 and Table 24-4 show four interfaces and the associated pins that can be used with the Ethernet Controller. TABLE 24-1: MII MODE DEFAULT INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 1) Pin Name EMDC Description TABLE 24-3: Pin Name MII MODE ALTERNATE INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 0)(1) Description AEMDC Management Clock AEMDIO Management I/O AETXCLK Transmit Clock Management Clock AETXEN Transmit Enable Transmit Data Management I/O AETXD0 ETXCLK Transmit Clock AETXD1 Transmit Data ETXEN Transmit Enable AETXD2 Transmit Data ETXD0 Transmit Data AETXD3 Transmit Data ETXD1 Transmit Data AETXERR Transmit Error ETXD2 Transmit Data AERXCLK Receive Clock ETXD3 Transmit Data AERXDV Receive Data Valid ETXERR Transmit Error AERXD0 Receive Data ERXCLK Receive Clock AERXD1 Receive Data ERXDV Receive Data Valid AERXD2 Receive Data ERXD0 Receive Data AERXD3 Receive Data ERXD1 Receive Data AERXERR Receive Error ERXD2 Receive Data AECRS Carrier Sense ERXD3 Receive Data AECOL ERXERR Receive Error Note 1: ECRS Carrier Sense ECOL Collision Indication EMDIO TABLE 24-2: RMII MODE DEFAULT INTERFACE SIGNALS (FMIIEN = 0, FETHIO = 1) Pin Name Description EMDC Management Clock EMDIO Management I/O ETXEN Transmit Enable ETXD0 Transmit Data ETXD1 Transmit Data EREFCLK Reference Clock ECRSDV Carrier Sense – Receive Data Valid ERXD0 Receive Data ERXD1 Receive Data ERXERR Receive Error Note: Collision Indication MII Alternate Interface is not available on 64-pin devices. TABLE 24-4: Pin Name RMII MODE ALTERNATE INTERFACE SIGNALS (FMIIEN = 0, FETHIO = 0) Description AEMDC Management Clock AEMDIO Management I/O AETXEN Transmit Enable AETXD0 Transmit Data AETXD1 Transmit Data AEREFCLK Reference Clock AECRSDV Carrier Sense – Receive Data Valid AERXD0 Receive Data AERXD1 Receive Data AERXERR Receive Error Ethernet controller pins that are not used by selected interface can be used by other peripherals. DS61156G-page 158 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 25.0 COMPARATOR The Analog Comparator module contains two comparators that can be configured in a variety of ways. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. “Comparator” (DS61110) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 25-1: Following are some of the key features of this module: • Selectable inputs available include: - Analog inputs multiplexed with I/O pins - On-chip internal absolute voltage reference (IVREF) - Comparator voltage reference (CVREF) • Outputs can be Inverted • Selectable interrupt generation A block diagram of the Comparator module is illustrated in Figure 25-1. COMPARATOR BLOCK DIAGRAM Comparator 1 CREF ON C1IN+(1) CPOL COUT (CM1CON<8>) C1OUT (CMSTAT<0>) CVREF(2) C1OUT CCH<1:0> C1 C1IN- COE C1IN+ C2IN+ IVREF(2) Comparator 2 CREF ON C2IN+ CPOL COUT (CM2CON<8>) C2OUT (CMSTAT<1>) CVREF(2) C2OUT CCH<1:0> C2 C2IN- COE C2IN+ C1IN+ IVREF(2) Note 1: 2: On devices with a USB module, and when the module is enabled, this pin is controlled by the USB module, and therefore, is not available as a comparator input. Internally connected. See Section 26.0 “Comparator Voltage Reference (CVREF)”. © 2009-2011 Microchip Technology Inc. DS61156G-page 159 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 160 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 26.0 COMPARATOR VOLTAGE REFERENCE (CVREF) The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. “Comparator Voltage Reference (CVREF)” (DS61109) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). A block diagram of the module is illustrated in Figure 26-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module’s supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 26-1: The comparator voltage reference has the following features: • High and low range selection • Sixteen output levels available for each range • Internally connected to comparators to conserve device pins • Output can be connected to a pin COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM BGSEL<1:0>(1) 1.2V IVREF 0.6V VREFSEL(1) VREF+ AVDD CVRSS = 1 CVRSRC CVREF 8R CVRSS = 0 CVR<3:0> R CVREN R R 16-to-1 MUX R 16 Steps R CVREFOUT CVROE (CVRCON<6>) R R CVRR VREFAVSS 8R CVRSS = 1 CVRSS = 0 Note 1: This bit is not available on PIC32MX575/675/695/775 devices. On these devices CVREF is generated by the Register network and IVREF is connected to 0.6V. © 2009-2011 Microchip Technology Inc. DS61156G-page 161 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 162 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 27.0 POWER-SAVING FEATURES Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. “PowerSaving Features” (DS61130) in the “PIC32 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. This section describes power-saving features for the PIC32MX5XX/6XX/7XX family of devices. These devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software. 27.1 Power-Saving with CPU Running When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories: • FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers. • LPRC Run mode: the CPU is clocked from the LPRC clock source. • SOSC Run mode: the CPU is clocked from the SOSC clock source. In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK). 27.2 CPU Halted Methods The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below: • POSC Idle mode: the system clock is derived from the POSC. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled. • FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled. • SOSC Idle mode: the system clock is derived from the SOSC. Peripherals continue to operate, but can optionally be individually disabled. © 2009-2011 Microchip Technology Inc. • LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running. • Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device. 27.3 Power-Saving Operation Peripherals and the CPU can be halted or disabled to further reduce power consumption. 27.3.1 SLEEP MODE Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep. Sleep mode includes the following characteristics: • The CPU is halted • The system clock source is typically shutdown. See Section 27.3.3 “Peripheral Bus Scaling Method” for specific information. • There can be a wake-up delay based on the oscillator selection • The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode • The BOR circuit, if enabled, remains operative during Sleep mode • The WDT, if enabled, is not automatically cleared prior to entering Sleep mode • Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture). • I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep • Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption DS61156G-page 163 PIC32MX5XX/6XX/7XX The processor will exit, or ‘wake-up’, from Sleep on one of the following events: The processor will wake or exit from Idle mode on the following events: • On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority. • On any form of device Reset • On a WDT time-out If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode. • On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode. • On any form of device Reset • On a WDT time-out interrupt 27.3.2 27.3.3 IDLE MODE In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active. Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a POSC of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio. 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from POSC to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to POSC, the appropriate PLL and/or oscillator start-up/lock delays would be applied. PERIPHERAL BUS SCALING METHOD Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as USB, interrupt controller, DMA, bus matrix and prefetch cache are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes. Changing the PBCLK divisor affects: • The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs. • The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals. To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value. The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed. DS61156G-page 164 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 28.0 Note: SPECIAL FEATURES This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. “Watchdog Timer and Power-up Timer” (DS61114), Section 24. “Configuration” (DS61124) and Section 33. “Programming and Diagnostics” (DS61129) in the “PIC32 Family Reference Manual” (DS61132), which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX5XX/6XX/7XX devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are: • • • • Flexible device configuration Watchdog Timer (WDT) Joint Test Action Group (JTAG) interface In-Circuit Serial Programming™ (ICSP™) 28.1 Configuration Bits The Configuration bits can be programmed using the following registers to select various device configurations. • • • • • DEVCFG0: Device Configuration Word 0 DEVCFG1: Device Configuration Word 1 DEVCFG2: Device Configuration Word 2 DEVCFG3: Device Configuration Word 3 DEVID: Device and Revision ID Register © 2009-2011 Microchip Technology Inc. DS61156G-page 165 PIC32MX5XX/6XX/7XX REGISTER 28-1: Bit Range 31:24 23:16 15:8 7:0 DEVCFG0: DEVICE CONFIGURATION WORD 0 Bit 31/23/15/7 Bit 30/22/14/6 Bit 29/21/13/5 Bit 28/20/12/4 Bit 27/19/11/3 Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8/0 r-0 r-1 r-1 R/P r-1 r-1 r-1 R/P — — — CP — — — BWP R/P R/P R/P R/P r-1 r-1 r-1 r-1 — — — — R/P R/P R/P R/P PWP<3:0> PWP<7:4> r-1 r-1 r-1 r-1 — — — — R/P R/P r-1 r-1 r-1 r-1 R/P r-1 — — — — ICESEL — DEBUG<1:0> Legend: R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit U = Unimplemented bit ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31 Reserved: Write ‘0’ bit 30-29 Reserved: Write ‘1’ bit 28 CP: Code-Protect bit Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled 0 = Protection is enabled bit 27-25 Reserved: Write ‘1’ bit 24 BWP: Boot Flash Write-Protect bit Prevents boot Flash memory from being modified during code execution. 1 = Boot Flash is writable 0 = Boot Flash is not writable bit 23-20 Reserved: Write ‘1’ bit 19-12 PWP<7:0>: Program Flash Write-Protect bits Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the 1’s complement of the number of write-protected program Flash memory pages. 11111111 = Disabled 11111110 = 0xBD00_0FFF 11111101 = 0xBD00_1FFF 11111100 = 0xBD00_2FFF 11111011 = 0xBD00_3FFF 11111010 = 0xBD00_4FFF 11111001 = 0xBD00_5FFF 11111000 = 0xBD00_6FFF 11110111 = 0xBD00_7FFF 11110110 = 0xBD00_8FFF 11110101 = 0xBD00_9FFF 11110100 = 0xBD00_AFFF 11110011 = 0xBD00_BFFF 11110010 = 0xBD00_CFFF 11110001 = 0xBD00_DFFF 11110000 = 0xBD00_EFFF 11101111 = 0xBD00_FFFF • • • 01111111 = 0xBD07_FFFF DS61156G-page 166 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED) bit 11-4 Reserved: Write ‘1’ bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit 1 = PGEC2/PGED2 pair is used 0 = PGEC1/PGED1 pair is used bit 2 Reserved: Write ‘1’ bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to ‘11’ if code-protect is enabled) 11 = Debugger is disabled 10 = Debugger is enabled 01 = Reserved (same as ‘11’ setting) 00 = Reserved (same as ‘11’ setting) © 2009-2011 Microchip Technology Inc. DS61156G-page 167 PIC32MX5XX/6XX/7XX REGISTER 28-2: Bit Range 31:24 23:16 15:8 7:0 DEVCFG1: DEVICE CONFIGURATION WORD 1 Bit 31/23/15/7 Bit 30/22/14/6 Bit 29/21/13/5 Bit 28/20/12/4 Bit 27/19/11/3 Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8/0 r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1 — — — — — — — — R/P R/P R/P R/P R/P R/P R/P R/P r-1 r-1 FWDTEN — — R/P R/P R/P FCKSM<1:0> WDTPS<4:0> R/P FPBDIV<1:0> r-1 R/P — OSCIOFNC R/P R/P r-1 R/P r-1 r-1 IESO — FSOSCEN — — POSCMOD<1:0> R/P R/P FNOSC<2:0> Legend: R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit U = Unimplemented bit ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-24 Reserved: Write ‘1’ bit 23 FWDTEN: Watchdog Timer Enable bit 1 = The WDT is enabled and cannot be disabled by software 0 = The WDT is not enabled; it can be enabled in software bit 22-21 Reserved: Write ‘1’ bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits 10100 = 1:1048576 10011 = 1:524288 10010 = 1:262144 10001 = 1:131072 10000 = 1:65536 01111 = 1:32768 01110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:2048 01010 = 1:1024 01001 = 1:512 01000 = 1:256 00111 = 1:128 00110 = 1:64 00101 = 1:32 00100 = 1:16 00011 = 1:8 00010 = 1:4 00001 = 1:2 00000 = 1:1 All other combinations not shown result in operation = 10100 bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled Note 1: Do not disable the POSC (POSCMOD = 11) when using this oscillator source. DS61156G-page 168 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED) bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits 11 = PBCLK is SYSCLK divided by 8 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1 bit 11 Reserved: Write ‘1’ bit 10 OSCIOFNC: CLKO Enable Configuration bit 1 = CLKO output disabled 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00) bit 9-8 POSCMOD<1:0>: Primary Oscillator Configuration bits 11 = Primary Oscillator disabled 10 = HS Oscillator mode selected 01 = XT Oscillator mode selected 00 = External Clock mode selected bit 7 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled) bit 6 Reserved: Write ‘1’ bit 5 FSOSCEN: Secondary Oscillator Enable bit 1 = Enable Secondary Oscillator 0 = Disable Secondary Oscillator bit 4-3 Reserved: Write ‘1’ bit 2-0 FNOSC<2:0>: Oscillator Selection bits 111 = Fast RC Oscillator with divide-by-N (FRCDIV) 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator (POSC) with PLL module (XT+PLL, HS+PLL, EC+PLL) 010 = Primary Oscillator (XT, HS, EC)(1) 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL) 000 = Fast RC Oscillator (FRC) Note 1: Do not disable the POSC (POSCMOD = 11) when using this oscillator source. © 2009-2011 Microchip Technology Inc. DS61156G-page 169 PIC32MX5XX/6XX/7XX REGISTER 28-3: Bit Range 31:24 23:16 15:8 7:0 DEVCFG2: DEVICE CONFIGURATION WORD 2 Bit 31/23/15/7 Bit 30/22/14/6 Bit 29/21/13/5 Bit 28/20/12/4 Bit 27/19/11/3 Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8/0 r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1 — — — — — — — — R/P R/P R/P r-1 r-1 r-1 r-1 r-1 — — — — — R/P r-1 r-1 r-1 r-1 UPLLEN — — — — r-1 R/P-1 R/P R/P-1 — Legend: R = Readable bit U = Unimplemented bit FPLLMUL<2:0> W = Writable bit ‘1’ = Bit is set r-1 FPLLODIV<2:0> R/P R/P R/P UPLLIDIV<2:0> R/P — R/P R/P FPLLIDIV<2:0> P = Programmable bit ‘0’ = Bit is cleared r = Reserved bit x = Bit is unknown bit 31-19 Reserved: Write ‘1’ bit 18-16 FPLLODIV<2:0>: Default Postscaler for PLL bits 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1 bit 15 UPLLEN: USB PLL Enable bit 1 = Disable and bypass USB PLL 0 = Enable USB PLL bit 14-11 Reserved: Write ‘1’ bit 10-8 UPLLIDIV<2:0>: PLL Input Divider bits 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider Reserved: Write ‘1’ bit 7 bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier 011 = 18x multiplier 010 = 17x multiplier 001 = 16x multiplier 000 = 15x multiplier bit 3 Reserved: Write ‘1’ FPLLIDIV<2:0>: PLL Input Divider bits bit 2-0 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider DS61156G-page 170 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX REGISTER 28-4: Bit Range 31:24 23:16 15:8 7:0 DEVCFG3: DEVICE CONFIGURATION WORD 3 Bit 31/23/15/7 Bit 30/22/14/6 R/P R/P FVBUSONIO FUSBIDIO Bit 29/21/13/5 Bit 28/20/12/4 Bit 27/19/11/3 Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8/0 r-1 r-1 r-1 R/P R/P R/P — — — FCANIO(1) FETHIO(2) FMIIEN(2) R/P R/P R/P r-1 r-1 r-1 r-1 r-1 — — — — — R/P R/P R/P R/P R/P FSRSSEL<2:0> R/P R/P R/P R/P R/P R/P USERID<15:8> R/P R/P R/P R/P R/P USERID<7:0> Legend: R = Readable bit U = Unimplemented bit W = Writable bit ‘1’ = Bit is set P = Programmable bit ‘0’ = Bit is cleared r = Reserved bit x = Bit is unknown bit 31 FVBUSONIO: USB VBUS_ON Selection bit 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function FUSBIDIO: USB USBID Selection bit bit 30 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function bit 29-27 Reserved: Write ‘1’ FCANIO: CAN I/O Pin Selection bit(1) bit 26 1 = Default CAN I/O Pins 0 = Alternate CAN I/O Pins FETHIO: Ethernet I/O Pin Selection bit(2) bit 25 1 = Default Ethernet I/O Pins 0 = Alternate Ethernet I/O Pins FMIIEN: Ethernet MII Enable bit(2) bit 24 1 = MII is enabled 0 = RMII is enabled bit 23-19 Reserved: Write ‘1’ bit 18-16 FSRSSEL<2:0>: SRS Select bits 111 = Assign Interrupt Priority 7 to a shadow register set 110 = Assign Interrupt Priority 6 to a shadow register set • • • 001 = Assign Interrupt Priority 1 to a shadow register set 000 = All interrupt priorities are assigned to a shadow register set bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG Note 1: 2: This bit is Reserved and reads ‘1’ on PIC32MX664/675/695 devices. This bit is Reserved and reads ‘1’ on PIC32MX534/564/575 devices. © 2009-2011 Microchip Technology Inc. DS61156G-page 171 PIC32MX5XX/6XX/7XX REGISTER 28-5: Bit Range 31:24 23:16 15:8 7:0 DEVID: DEVICE AND REVISION ID REGISTER Bit 31/23/15/7 Bit 30/22/14/6 Bit 29/21/13/5 Bit 28/20/12/4 Bit 27/19/11/3 R R R R R VER<3:0>(1) R R Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8/0 R R R DEVID<27:24>(1) R R R R R R R R R R R R DEVID<23:16>(1) R R R R R DEVID<15:8>(1) R R R R R DEVID<7:0>(1) Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-28 VER<3:0>: Revision Identifier bits(1) bit 27-0 DEVID<27:0>: Device ID(1) Note 1: See the “PIC32 Flash Programming Specification” (DS61145) for a list of Revision and Device ID values. DS61156G-page 172 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 28.2 Watchdog Timer (WDT) This section describes the operation of the WDT and Power-up Timer of the PIC32MX5XX/6XX/7XX. The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode. FIGURE 28-1: The following are some of the key features of the WDT module: • Configuration or software controlled • User-configurable time-out period • Can wake the device from Sleep or Idle WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM PWRT Enable WDT Enable LPRC Control PWRT Enable 1:64 Output LPRC Oscillator PWRT 1 Clock 25-bit Counter WDTCLR = 1 WDT Enable Wake WDT Enable Reset Event 25 0 1 WDT Counter Reset Device Reset NMI (Wake-up) Power Save Decoder FWDTPS<4:0> (DEVCFG1<20:16>) © 2009-2011 Microchip Technology Inc. DS61156G-page 173 PIC32MX5XX/6XX/7XX 28.3 On-Chip Voltage Regulator 28.3.3 POWER-UP REQUIREMENTS All PIC32MX5XX/6XX/7XX devices’ core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX5XX/6XX/7XX family incorporate an on-chip regulator providing the required core logic voltage from VDD. The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, strict power-up conditions must be adhered to. While powering up, VCORE must never exceed VDD by 0.3V. A low-ESR capacitor (such as tantalum) must be connected to the VCAP/VCORE pin (see Figure 28-2). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Section 31.1 “DC Characteristics”. FIGURE 28-2: Note: CONNECTIONS FOR THE ON-CHIP REGULATOR 3.3V(1) PIC32 VDD It is important that the low-ESR capacitor is placed as close as possible to the VCAP/VCORE pin. VCAP/VCORE 28.3.1 ON-CHIP REGULATOR AND POR It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode. 28.3.2 ON-CHIP REGULATOR AND BOR PIC32MX5XX/6XX/7XX devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specified in Section 31.1 “DC Characteristics”. DS61156G-page 174 CEFC(2) (10 μF typ) Note 1: 2: VSS These are typical operating voltages. Refer to Section 31.1 “DC Characteristics” for the full operating ranges of VDD and VCORE. It is important that the low-ESR capacitor is placed as close as possible to the VCAP/VCORE pin. © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 28.4 Programming and Diagnostics PIC32MX5XX/6XX/7XX devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include: • Simplified field programmability using two-wire In-Circuit Serial Programming™ (ICSP™) interfaces • Debugging using ICSP • Programming and debugging capabilities using the EJTAG extension of JTAG • JTAG boundary scan testing for device and board diagnostics FIGURE 28-3: PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer. BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS PGEC1 PGED1 ICSP™ Controller PGEC2 PGED2 ICESEL TDI TDO JTAG Controller TCK Core TMS JTAGEN DEBUG<1:0> TRCLK TRD0 TRD1 Instruction Trace Controller TRD2 TRD3 DEBUG<1:0> © 2009-2011 Microchip Technology Inc. DS61156G-page 175 PIC32MX5XX/6XX/7XX REGISTER 28-6: Bit Range 31:24 23:16 15:8 7:0 DDPCON: DEBUG DATA PORT CONTROL REGISTER Bit 31/23/15/7 Bit 30/22/14/6 Bit 29/21/13/5 Bit 28/20/12/4 Bit 27/19/11/3 Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — U-0 U-0 U-0 U-0 R/W-1 R/W-0 U-0 R/W-0 — — — — JTAGEN TROEN — TDOEN Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 31-4 Unimplemented: Read as ‘0’ bit 3 JTAGEN: JTAG Port Enable bit 1 = Enable the JTAG port 0 = Disable the JTAG port bit 2 TROEN: Trace Output Enable bit 1 = Enable the trace port 0 = Disable the trace port bit 1 Unimplemented: Read as ‘0’ bit 0 TDOEN: TDO Enable for 2-Wire JTAG 1 = 2-wire JTAG protocol uses TDO 0 = 2-wire JTAG protocol does not use TDO DS61156G-page 176 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 29.0 INSTRUCTION SET The PIC32MX5XX/6XX/7XX family instruction set complies with the MIPS32 Release 2 instruction set architecture. The PIC32 device family does not support the following features: • Core extend instructions • Coprocessor 1 instructions • Coprocessor 2 instructions Note: Refer to “MIPS32® Architecture for Programmers Volume II: The MIPS32® Instruction Set” at www.mips.com for more information. © 2009-2011 Microchip Technology Inc. DS61156G-page 177 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 178 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 30.0 DEVELOPMENT SUPPORT The PIC® microcontrollers and dsPIC® digital signal controllers are supported with a full range of software and hardware development tools: • Integrated Development Environment - MPLAB® IDE Software • Compilers/Assemblers/Linkers - MPLAB C Compiler for Various Device Families - HI-TECH C for Various Device Families - MPASMTM Assembler - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families • Simulators - MPLAB SIM Software Simulator • Emulators - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debuggers - MPLAB ICD 3 - PICkit™ 3 Debug Express • Device Programmers - PICkit™ 2 Programmer - MPLAB PM3 Device Programmer • Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits 30.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: • A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - In-Circuit Emulator (sold separately) - In-Circuit Debugger (sold separately) • A full-featured editor with color-coded context • A multiple project manager • Customizable data windows with direct edit of contents • High-level source code debugging • Mouse over variable inspection • Drag and drop variables from source to watch windows • Extensive on-line help • Integration of select third party tools, such as IAR C Compilers The MPLAB IDE allows you to: • Edit your source files (either C or assembly) • One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information) • Debug using: - Source files (C or assembly) - Mixed C and assembly - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. © 2009-2011 Microchip Technology Inc. DS61156G-page 179 PIC32MX5XX/6XX/7XX 30.2 MPLAB C Compilers for Various Device Families The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 30.3 HI-TECH C for Various Device Families The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms. 30.4 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: 30.5 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 30.6 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command line interface Rich directive set Flexible macro language MPLAB IDE compatibility • Integration into MPLAB IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multi-purpose source files • Directives that allow complete control over the assembly process DS61156G-page 180 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 30.7 MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. 30.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC® Flash MCUs and dsPIC® Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. © 2009-2011 Microchip Technology Inc. 30.9 MPLAB ICD 3 In-Circuit Debugger System MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC® Flash microcontrollers and dsPIC® DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE). The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. 30.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express The MPLAB PICkit 3 allows debugging and programming of PIC® and dsPIC® Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming™. The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user’s guide, lessons, tutorial, compiler and MPLAB IDE software. DS61156G-page 181 PIC32MX5XX/6XX/7XX 30.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express 30.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits The PICkit™ 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip’s Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip’s powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified. A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user’s guide, lessons, tutorial, compiler and MPLAB IDE software. 30.12 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications. DS61156G-page 182 The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits. © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 31.0 ELECTRICAL CHARACTERISTICS This section provides an overview of the PIC32MX5XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the PIC32MX5XX/6XX/7XX devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied. Absolute Maximum Ratings (Note 1) Ambient temperature under bias.............................................................................................................-40°C to +105°C Storage temperature .............................................................................................................................. -65°C to +150°C Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V Voltage on any pin that is not 5V tolerant, with respect to VSS (Note 3) ......................................... -0.3V to (VDD + 0.3V) Voltage on any 5V tolerant pin with respect to VSS when VDD ≥ 2.3V (Note 3) ........................................ -0.3V to +5.5V Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V (Note 3) ........................................ -0.3V to +3.6V Voltage on VBUS with respect to VSS ....................................................................................................... -0.3V to +5.5V Voltage on VCORE with respect to VSS ....................................................................................................... -0.3V to 2.0V Maximum current out of VSS pin(s) .......................................................................................................................300 mA Maximum current into VDD pin(s) (Note 2)............................................................................................................300 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin ....................................................................................................25 mA Maximum current sunk by all ports .......................................................................................................................200 mA Maximum current sourced by all ports (Note 2) ....................................................................................................200 mA Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2). 3: See the “Pin Diagrams” section for the 5V tolerant pins. © 2009-2011 Microchip Technology Inc. DS61156G-page 183 PIC32MX5XX/6XX/7XX 31.1 DC Characteristics TABLE 31-1: OPERATING MIPS VS. VOLTAGE Max. Frequency VDD Range (in Volts) Temp. Range (in °C) PIC32MX5XX/6XX/7XX DC5 2.3-3.6V -40°C to +85°C 80 MHz DC5b 2.3-3.6V -40°C to +105°C 80 MHz Characteristic TABLE 31-2: THERMAL OPERATING CONDITIONS Rating Symbol Min. Typical Max. Unit TJ TA -40 -40 — — +125 +85 °C °C TJ TA -40 -40 — — +140 +105 °C °C Industrial Temperature Devices Operating Junction Temperature Range Operating Ambient Temperature Range V-Temp Temperature Devices Operating Junction Temperature Range Operating Ambient Temperature Range Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH) I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL)) Maximum Allowed Power Dissipation TABLE 31-3: PD PINT + PI/O W PDMAX (TJ – TA)/θJA W THERMAL PACKAGING CHARACTERISTICS Characteristics Symbol Typical Max. Unit See Note Package Thermal Resistance, 121-Pin XBGA (10x10x1.1 mm) θJA 40 — °C/W 1 Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm) θJA 43 — °C/W 1 Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm) θJA 43 — °C/W 1 Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm) θJA 47 — °C/W 1 Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm) θJA 28 — °C/W 1 Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations. TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Param. Symbol No. Characteristics Operating Voltage DC10 VDD Supply Voltage RAM Data Retention Voltage(1) DC12 VDR DC16 VPOR VDD Start Voltage to Ensure Internal Power-on Reset Signal VDD Rise Rate to Ensure DC17 SVDD Internal Power-on Reset Signal Note 1: Min. Typical Max. Units Conditions 2.3 1.75 1.75 — — — 3.6 — 2.1 V V V — — — 0.00005 — 0.115 V/μs — This is the limit to which VDD can be lowered without losing RAM data. DS61156G-page 184 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) DC CHARACTERISTICS Param. Typical(3) No. Max. Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Units Conditions Operating Current (IDD)(1,2) for PIC32MX575/675/695/775 Family Devices DC20 6 9 mA DC20b 7 Code executing from Flash 10 4 — Code executing from SRAM DC21 37 40 Code executing from Flash DC21a 25 — DC22 64 70 DC22a 61 — DC23 85 98 mA mA mA 90 120 DC23a 85 — DC25a 125 150 — 4 MHz — — 25 MHz (Note 4) — — 60 MHz (Note 4) -40ºC, +25ºC, +85ºC — 80 MHz 3.3V LPRC (31 kHz) (Note 4) +105ºC DC20a DC23b -40ºC, +25ºC, +85ºC Code executing from SRAM Code executing from Flash Code executing from SRAM Code executing from Flash — +105ºC µA Code executing from SRAM — — +25°C Operating Current (IDD)(1,2,5) for PIC32MX534/564/664/764 Family Devices DC20b 6 9 mA Code executing from Flash — — DC20c 2 — mA Code executing from SRAM — — DC21b 19 40 mA Code executing from Flash — — DC21c 14 — mA Code executing from SRAM — — DC22b 31 70 mA Code executing from Flash — — DC22c 29 — mA Code executing from SRAM — — DC23b 39 98 mA Code executing from Flash — — DC23c 39 — mA Code executing from SRAM — — DC25b 100 150 µA — +25°C 3.3V Note 1: 2: 3: 4: 5: 4 MHz 25 MHz (Note 4) 60 MHz (Note 4) 80 MHz LPRC (31 kHz) (Note 4) A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption. The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by external square wave from rail-to-rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data memory are operational, program Flash memory Wait states = 7, program cache and prefetch are disabled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to VSS. MCLR = VDD. Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested. This parameter is characterized, but not tested in manufacturing. This information is preliminary. © 2009-2011 Microchip Technology Inc. DS61156G-page 185 PIC32MX5XX/6XX/7XX TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Parameter No. Typical(2) Max. Units Conditions Idle Current (IIDLE): Core Off, Clock on Base Current(1) for PIC32MX575/675/695/775 Family Devices DC30 4.5 6.5 mA -40ºC, +25ºC, +85ºC DC30b 5 7 mA +105°C DC31 13 15 mA DC32 28 30 mA — 4 MHz -40ºC, +25ºC, +85ºC — 25 MHz (Note 3) -40ºC, +25ºC, +85ºC — 60 MHz (Note 3) — 80 MHz DC33 36 42 mA -40ºC, +25ºC, +85ºC DC33b 39 45 mA +105°C DC34 — 40 µA -40°C DC34a — 75 µA +25°C DC34b — 800 µA +85°C DC34c — 1000 µA +105°C DC35 35 — µA -40°C DC35a 65 — µA +25°C DC35b 600 — µA +85°C DC35c 800 — µA +105°C DC36 — 43 µA -40°C DC36a — 106 µA +25°C DC36b — 800 µA +85°C DC36c — 1000 µA +105°C Idle Current (IIDLE): Core Off, Clock on Base DC30a Current(1,4) 2.3V 3.3V LPRC (31 kHz) (Note 3) 3.6V for PIC32MX534/564/664/764 Family Devices 1.5 6.5 mA -40ºC, +25ºC, +85ºC DC31a 7 15 mA -40ºC, +25ºC, +85ºC — 25 MHz (Note 3) DC32a 13 30 mA -40ºC, +25ºC, +85ºC — 60 MHz (Note 3) DC33a 17 42 mA -40ºC, +25ºC, +85ºC — 80 MHz DC34c — 40 µA -40°C DC34d — 75 µA +25°C DC34e — 800 µA +85°C DC35c 30 — µA -40°C DC35d 55 — µA +25°C DC35e 230 — µA +85°C DC36c — 43 µA -40°C DC36d — 106 µA +25°C DC36e — 800 µA +85°C Note 1: 2: 3: 4: — 4 MHz 2.3V 3.3V LPRC (31 kHz) (Note 3) 3.6V The test conditions for base IDLE current measurements are as follows: System clock is enabled and PBCLK divisor = 1:8. CPU in Idle mode (CPU core Halted). Only digital peripheral modules are enabled (ON bit = 1) and being clocked. WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to VSS. MCLR = VDD. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. This parameter is characterized, but not tested in manufacturing. This information is preliminary. DS61156G-page 186 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) DC CHARACTERISTICS Param. Typical(2) No. Max. Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Units Conditions Power-Down Current (IPD)(1) for PIC32MX575/675/695/775 Family Devices DC40 10 40 μA -40°C DC40a 36 100 μA +25°C DC40b 400 720 μA +85°C DC40h 900 1800 µA +105°C DC40c 41 120 μA +25°C DC40d 22 80 μA -40°C DC40e 42 120 μA +25°C DC40g 315 400(5) μA +70°C DC40f 410 800 μA +85°C DC40i 1000 2000 µA +105°C 2.3V Base Power-Down Current (Note 6) 3.3V Base Power-Down Current 3.6V Base Power-Down Current Module Differential Current for PIC32MX575/675/695/775 Family Devices DC41 — 10 μA — 2.3V Watchdog Timer Current: ΔIWDT (Notes 3,6) DC41a 5 — μA — 3.3V Watchdog Timer Current: ΔIWDT (Note 3) DC41b — 20 μA — 3.6V Watchdog Timer Current: ΔIWDT (Note 3) DC42 — 40 μA — 2.3V RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6) DC42a 23 — μA — 3.3V RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3) DC42b — 50 μA — 3.6V RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3) DC43 — 1300 μA — 2.5V ADC: ΔIADC (Notes 3,4,6) DC43a 1100 — μA — 3.3V ADC: ΔIADC (Notes 3,4) DC43b — 1300 μA — 3.6V ADC: ΔIADC (Notes 3,4) PD)(1,7) Power-Down Current (I DC40g 12 for PIC32MX534/564/664/764 Family Devices 40 μA -40°C DC40h 20 100 μA +25°C DC40i 210 720 μA +85°C DC40j 20 120 μA +25°C DC40k 15 80 μA -40°C DC40l 20 120 μA +25°C DC40m 113 400(5) μA +70°C 210 800 μA +85°C DC40n Note 1: 2: 3: 4: 5: 6: 7: 2.3V Base Power-Down Current (Note 6) 3.3V Base Power-Down Current 3.6V Base Power-Down Current Base IPD is measured with all digital peripheral modules and being clocked, CPU clock is disabled. All I/Os are configured as inputs and pulled low. WDT and FSCM are disabled. Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled. Data is characterized at +70°C and not tested. Parameter is for design guidance only. This parameter is characterized, but not tested in manufacturing. This information is preliminary. © 2009-2011 Microchip Technology Inc. DS61156G-page 187 PIC32MX5XX/6XX/7XX TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED) DC CHARACTERISTICS Param. Typical(2) No. Max. Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Units Conditions Module Differential Current(7) for PIC32MX534/564/664/764 Family Devices DC41c — 10 μA — 2.5V Watchdog Timer Current: ΔIWDT (Notes 3,6) DC41d 5 — μA — 3.3V Watchdog Timer Current: ΔIWDT (Note 3) DC41e — 20 μA — 3.6V Watchdog Timer Current: ΔIWDT (Note 3) DC42c — 40 μA — 2.5V RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6) DC42d 23 — μA — 3.3V RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3) DC42e — 50 μA — 3.6V RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3) DC43c — 1300 μA — 2.5V ADC: ΔIADC (Notes 3,4,6) DC43d 1100 — μA — 3.3V ADC: ΔIADC (Notes 3,4) — 1300 μA — 3.6V ADC: ΔIADC (Notes 3,4) DC43e Note 1: 2: 3: 4: 5: 6: 7: Base IPD is measured with all digital peripheral modules and being clocked, CPU clock is disabled. All I/Os are configured as inputs and pulled low. WDT and FSCM are disabled. Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled. Data is characterized at +70°C and not tested. Parameter is for design guidance only. This parameter is characterized, but not tested in manufacturing. This information is preliminary. DS61156G-page 188 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Param. Symbol No. VIL DI10 Characteristics Min. Typical(1 ) Max. Units Conditions Input Low Voltage I/O Pins: with TTL Buffer VSS — 0.15 VDD V with Schmitt Trigger Buffer VSS — 0.2 VDD V MCLR VSS — 0.2 VDD V (2) DI15 DI16 OSC1 (XT mode) VSS — 0.2 VDD V (Note 4) DI17 OSC1 (HS mode) VSS — 0.2 VDD V (Note 4) DI18 SDAx, SCLx VSS — 0.3 VDD V SMBus disabled (Note 4) DI19 SDAx, SCLx VSS — 0.8 V SMBus enabled (Note 4) 0.8 VDD — VDD V (Note 4) VIH DI20 Input High Voltage I/O Pins: with Analog Functions Digital Only with TTL Buffer with Schmitt Trigger Buffer (2) 0.8 VDD — 0.25 VDD + 0.8V — 5.5 V V 0.8 VDD — 5.5 V (Note 4) DI25 MCLR 0.8 VDD — VDD V DI26 OSC1 (XT mode) 0.7 VDD — VDD V DI27 OSC1 (HS mode) 0.7 VDD — VDD V (Note 4) DI28 SDAx, SCLx 0.7 VDD — 5.5 V SMBus disabled (Note 4) DI29 SDAx, SCLx 2.1 — 5.5 V SMBus enabled, 2.3V ≤VPIN ≤5.5 (Note 4) 50 250 400 μA VDD = 3.3V, VPIN = VSS DI30 ICNPU IIL CNxx Pull up Current Input Leakage (Note 4) Current(3) DI50 I/O Ports — — +1 μA VSS ≤VPIN ≤VDD, Pin at high-impedance DI51 Analog Input Pins — — +1 μA VSS ≤VPIN ≤VDD, Pin at high-impedance DI55 MCLR(2) — — +1 μA VSS ≤VPIN ≤VDD DI56 OSC1 — — +1 μA VSS ≤VPIN ≤VDD, XT and HS modes Note 1: 2: 3: 4: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. This parameter is characterized, but not tested in manufacturing. © 2009-2011 Microchip Technology Inc. DS61156G-page 189 PIC32MX5XX/6XX/7XX TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Param. Symbol No. VOL DO10 Characteristics Min. Typical Max. Units — — 0.4 V IOL = 7 mA, VDD = 3.6V — — 0.4 V IOL = 6 mA, VDD = 2.3V — — 0.4 V IOL = 3.5 mA, VDD = 3.6V — — 0.4 V IOL = 2.5 mA, VDD = 2.3V — — V IOH = -12 mA, VDD = 3.6V Output Low Voltage I/O Ports DO16 OSC2/CLKO VOH Conditions Output High Voltage DO20 I/O Ports 2.4 1.4 — — V IOH = -12 mA, VDD = 2.3V DO26 OSC2/CLKO 2.4 — — V IOH = -12 mA, VDD = 3.6V 1.4 — — V IOH = -12 mA, VDD = 2.3V TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Param. No. Symbol Characteristics Min.(1) Typical Max. Units Conditions BOR Event on VDD transition high-to-low 2.0 — 2.3 V — BO10 VBOR Note 1: Parameters are for design guidance only and are not tested in manufacturing. DS61156G-page 190 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-11: DC CHARACTERISTICS: PROGRAM MEMORY(3) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Param. Symbol No. Characteristics Min. Typical(1) Max. Units Conditions — E/W — E/W See Note 4 Program Flash Memory D130 EP Cell Endurance 1000 — D130a EP Cell Endurance 20,000 — — D131 VPR VDD for Read 2.3 — 3.6 V D132 VPEW VDD for Erase or Write 3.0 — 3.6 V D132a VPEW VDD for Erase or Write 2.3 — 3.6 V D134 TRETD Characteristic Retention 20 — — Year Provided no other specifications are violated D135 IDDP Supply Current during Programming — 10 — mA — TWW Word Write Cycle Time 20 — 40 μs — 3 4.5 — ms — Time(2) — — See Note 4 D136 TRW Row Write Cycle (128 words per row) D137 TPE Page Erase Cycle Time 20 — — ms — TCE Chip Erase Cycle Time 80 — — ms — Note 1: 2: 3: 4: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority). Refer to “PIC32 Flash Programming Specification” (DS61145) for operating conditions during programming and erase cycles. This parameter applies to PIC32MX534/564/664/764 devices only. This information is preliminary. © 2009-2011 Microchip Technology Inc. DS61156G-page 191 PIC32MX5XX/6XX/7XX TABLE 31-12: PROGRAM FLASH MEMORY WAIT STATE CHARACTERISTICS DC CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Required Flash Wait States SYSCLK Units Comments 0 Wait State 0 to 30 MHz — 1 Wait State 31 to 60 2 Wait States 61 to 80 TABLE 31-13: COMPARATOR SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Param. Symbol No. Characteristics Min. Typical Max. Units Comments D300 VIOFF Input Offset Voltage — ±7.5 ±25 mV AVDD = VDD, AVSS = VSS D301 VICM Input Common Mode Voltage 0 — VDD V AVDD = VDD, AVSS = VSS (Note 2) D302 CMRR Common Mode Rejection Ratio 55 — — dB Max VICM = (VDD - 1)V (Note 2) D303 TRESP Response Time — 150 400 ns AVDD = VDD, AVSS = VSS (Notes 1, 2) D304 ON2OV Comparator Enabled to Output Valid — — 10 μs Comparator module is configured before setting the comparator ON bit (Note 2) D305 IVREF Internal Voltage Reference 0.57 0.6 0.63 V For devices without BGSEL<1:0> 1.14 1.2 1.26 V BGSEL<1:0> = 00 0.57 0.6 0.63 V BGSEL<1:0> = 01 Note 1: 2: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from VSS to VDD. These parameters are characterized but not tested. DS61156G-page 192 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-14: VOLTAGE REFERENCE SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Param. Symbol No. D310 Characteristics VRES Resolution Min. Typical Max. Units Comments VDD/24 — VDD/32 LSb — D311 VRAA Absolute Accuracy — — 1/2 LSb — D312 TSET Settling Time(1) — — 10 μs — D313 VIREF Internal Voltage Reference — 0.6 — V — Note 1: Settling time measured while CVRR = 1 and CVR<3:0> transitions from ‘0000’ to ‘1111’. This parameter is characterized, but not tested in manufacturing. TABLE 31-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp DC CHARACTERISTICS Param. No. Symbol Characteristics Min. Typical Max. Units Comments D320 VCORE Regulator Output Voltage 1.62 1.80 1.98 V — D321 CEFC External Filter Capacitor Value 8 10 — μF Capacitor must be low series resistance (1 ohm) D322 TPWRT Power-up Timer Period — 64 — ms — © 2009-2011 Microchip Technology Inc. DS61156G-page 193 PIC32MX5XX/6XX/7XX 31.2 AC Characteristics and Timing Parameters The information contained in this section defines PIC32MX5XX/6XX/7XX AC characteristics and timing parameters. FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2 VDD/2 RL CL Pin VSS CL Pin RL = 464Ω CL = 50 pF for all pins 50 pF for OSC2 pin (EC mode) VSS TABLE 31-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS AC CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Param. Symbol No. Min. Typical(1) Max. Units Characteristics Conditions DO56 CIO All I/O pins and OSC2 — — 50 pF EC mode DO58 CB SCLx, SDAx — — 400 pF In I2C™ mode Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. FIGURE 31-2: EXTERNAL CLOCK TIMING OS20 OS30 OS31 OSC1 OS30 DS61156G-page 194 OS31 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-17: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. OS10 FOSC OS11 Min. Typical(1) Max. Units Conditions External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) DC 4 — — 50 50 MHz MHz EC (Note 4) ECPLL (Note 3) Oscillator Crystal Frequency Characteristics 3 — 10 MHz XT (Note 4) OS12 4 — 10 MHz XTPLL (Notes 3,4) OS13 10 — 25 MHz HS (Note 5) OS14 10 — 25 MHz HSPLL (Notes 3,4) 32 32.768 100 kHz SOSC (Note 4) — — — — See parameter OS10 for FOSC value OS15 TCY(2) OS20 TOSC TOSC = 1/FOSC = OS30 TOSL, TOSH External Clock In (OSC1) High or Low Time 0.45 x TOSC — — ns EC (Note 4) OS31 TOSR, TOSF External Clock In (OSC1) Rise or Fall Time — — 0.05 x TOSC ns EC (Note 4) OS40 TOST Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and SOSC Clock Oscillator modes) — 1024 — TOSC (Note 4) OS41 TFSCM Primary Clock Fail Safe Time-out Period — 2 — ms (Note 4) OS42 GM External Oscillator Transconductance — 12 — Note 1: 2: 3: 4: mA/V VDD = 3.3V, TA = +25°C (Note 4) Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested. Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. PLL input requirements: 4 MHZ ≤ FPLLIN ≤ 5 MHZ (use PLL prescaler to reduce FOSC). This parameter is characterized, but tested at 10 MHz only at manufacturing. This parameter is characterized, but not tested in manufacturing. © 2009-2011 Microchip Technology Inc. DS61156G-page 195 PIC32MX5XX/6XX/7XX TABLE 31-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical Max. Units Conditions OS50 FPLLI PLL Voltage Controlled Oscillator (VCO) Input Frequency Range 4 — 5 MHz OS51 FSYS On-Chip VCO System Frequency 60 — 120 MHz — OS52 TLOCK PLL Start-up Time (Lock Time) — — 2 ms — (2) -0.25 — +0.25 % OS53 Note 1: 2: DCLK CLKO Stability (Period Jitter or Cumulative) ECPLL, HSPLL, XTPLL, FRCPLL modes Measured over 100 ms period These parameters are characterized, but not tested in manufacturing. This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula: D CLK EffectiveJitter = -------------------------------------------------------------SYSCLK --------------------------------------------------------CommunicationClock For example, if SYSCLK = 80 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows: D CLK D CLK EffectiveJitter = ------------- = ------------2 80 -----20 TABLE 31-19: INTERNAL FRC ACCURACY AC CHARACTERISTICS Param. No. Characteristics Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Min. Typical Max. Units Conditions Internal FRC Accuracy @ 8.00 MHz(1) for PIC32MX575/675/695/775 Family Devices F20a FRC Internal FRC Accuracy @ 8.00 F20b Note 1: 2: FRC -2 MHz(1,2) — +2 % — for PIC32MX534/564/664/764 Family Devices -0.9 — +0.9 % — Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift. This information is preliminary. DS61156G-page 196 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-20: INTERNAL RC ACCURACY Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. Characteristics Min. Typical Max. Units Conditions -15 — +15 % — LPRC @ 31.25 kHz(1) F21 LPRC Note 1: Change of LPRC frequency as VDD changes. FIGURE 31-3: I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin (Output) Note: Refer to Figure 31-1 for load conditions. DO31 DO32 TABLE 31-21: I/O TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. DO31 DO32 Symbol TIOR TIOF Characteristics(2) Port Output Rise Time Port Output Fall Time Min. Typical(1) Max. Units — 5 15 ns VDD < 2.5V — 5 10 ns VDD > 2.5V — 5 15 ns VDD < 2.5V — 5 10 ns VDD > 2.5V Conditions DI35 TINP INTx Pin High or Low Time 10 — — ns — DI40 TRBP CNx High or Low Time (input) 2 — — TSYSCLK — Note 1: 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. This parameter is characterized, but not tested in manufacturing. © 2009-2011 Microchip Technology Inc. DS61156G-page 197 PIC32MX5XX/6XX/7XX FIGURE 31-4: POWER-ON RESET TIMING CHARACTERISTICS Internal Voltage Regulator Enabled Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) VDD VPOR (TSYSDLY) SY02 Power-up Sequence (Note 2) CPU Starts Fetching Code SY00 (TPU) (Note 1) Internal Voltage Regulator Enabled Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC) VDD VPOR (TSYSDLY) SY02 Power-up Sequence (Note 2) SY00 (TPU) (Note 1) Note 1: 2: SY10 (TOST) CPU Starts Fetching Code The power-up period will be extended if the power-up sequence completes before the device exits from BOR (VDD < VDDMIN). Includes interval voltage regulator stabilization delay. DS61156G-page 198 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-5: EXTERNAL RESET TIMING CHARACTERISTICS Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) MCLR TMCLR (SY20) BOR TBOR (SY30) (TSYSDLY) SY02 Reset Sequence CPU Starts Fetching Code Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC) (TSYSDLY) SY02 Reset Sequence CPU Starts Fetching Code TOST (SY10) TABLE 31-22: RESETS TIMING Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical(2) Max. Units Conditions SY00 TPU Power-up Period Internal Voltage Regulator Enabled — 400 600 μs -40°C to +85°C SY01 TPWRT Power-up Period External VCORE Applied (Power-up timer active) 48 64 80 ms -40°C to +85°C SY02 TSYSDLY System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched. — 1 μs + 8 SYSCLK cycles — — -40°C to +85°C SY20 TMCLR MCLR Pulse Width (low) — 2 — μs -40°C to +85°C SY30 TBOR BOR Pulse Width (low) — 1 — μs -40°C to +85°C Note 1: 2: These parameters are characterized, but not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested. © 2009-2011 Microchip Technology Inc. DS61156G-page 199 PIC32MX5XX/6XX/7XX FIGURE 31-6: TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx11 Tx10 Tx15 Tx20 OS60 TMRx Note: Refer to Figure 31-1 for load conditions. TABLE 31-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. TA10 TA11 TA15 Symbol TTXH TTXL TTXP Characteristics(2) TxCK High Time TxCK Low Time Typical Max. Units Conditions Synchronous, with prescaler [(12.5 ns or 1 TPB)/N] + 25 ns — — ns Must also meet parameter TA15 Asynchronous, with prescaler 10 — — ns — Synchronous, with prescaler [(12.5 ns or 1 TPB)/N] + 25 ns — — ns Must also meet parameter TA15 Asynchronous, with prescaler 10 — — ns — [(Greater of 25 ns or 2 TPB)/N] + 30 ns — — ns VDD > 2.7V [(Greater of 25 ns or 2 TPB)/N] + 50 ns — — ns VDD < 2.7V 20 — — ns VDD > 2.7V (Note 3) 50 — — ns VDD < 2.7V (Note 3) 32 — 100 kHz — 1 TPB — TxCK Synchronous, Input Period with prescaler Asynchronous, with prescaler OS60 FT1 TA20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment Note 1: 2: 3: Min. SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit (T1CON<1>)) — Timer1 is a Type A. This parameter is characterized, but not tested in manufacturing. N = Prescale Value (1, 8, 64, 256). DS61156G-page 200 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Max. Units Conditions TB10 TTXH TxCK Synchronous, with High Time prescaler [(12.5 ns or 1 TPB)/N] + 25 ns — ns Must also meet N = prescale parameter value TB15 (1, 2, 4, 8, Must also meet 16, 32, 64, 256) parameter TB11 TTXL TxCK Synchronous, with Low Time prescaler [(12.5 ns or 1 TPB)/N] + 25 ns — ns TB15 TTXP TxCK Input Period [(Greater of [(25 ns or 2 TPB)/N] + 30 ns — ns VDD > 2.7V [(Greater of [(25 ns or 2 TPB)/N] + 50 ns — ns VDD < 2.7V — 1 TPB TB15 TB20 Synchronous, with prescaler TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment Note 1: — These parameters are characterized, but not tested in manufacturing. FIGURE 31-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS ICx IC10 IC11 IC15 Note: Refer to Figure 31-1 for load conditions. TABLE 31-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS AC CHARACTERISTICS Param. Symbol No. Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Characteristics(1) Min. Max. Units Conditions IC10 TCCL ICx Input Low Time [(12.5 ns or 1 TPB)/N] + 25 ns — ns Must also meet parameter IC15. IC11 TCCH ICx Input High Time [(12.5 ns or 1 TPB)/N] + 25 ns — ns Must also meet parameter IC15. IC15 TCCP ICx Input Period [(25 ns or 2 TPB)/N] + 50 ns — ns Note 1: These parameters are characterized, but not tested in manufacturing. © 2009-2011 Microchip Technology Inc. N = prescale value (1, 4, 16) — DS61156G-page 201 PIC32MX5XX/6XX/7XX FIGURE 31-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS OCx (Output Compare or PWM mode) OC10 OC11 Note: Refer to Figure 31-1 for load conditions. TABLE 31-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical(2) Max. Units Conditions OC10 TCCF OCx Output Fall Time — — — ns See parameter DO32 OC11 TCCR OCx Output Rise Time — — — ns See parameter DO31 Note 1: 2: These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. FIGURE 31-9: OCx/PWM MODULE TIMING CHARACTERISTICS OC20 OCFA/OCFB OC15 OCx OCx is tri-stated Note: Refer to Figure 31-1 for load conditions. TABLE 31-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param No. Symbol Characteristics(1) Min Typical(2) Max Units Conditions OC15 TFD Fault Input to PWM I/O Change — — 50 ns — OC20 TFLT Fault Input Pulse Width 50 — — ns — Note 1: 2: These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. DS61156G-page 202 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 SP31 SDIx LSb SP30 MSb In LSb In Bit 14 - - - -1 SP40 SP41 Note: Refer to Figure 31-1 for load conditions. TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typical(2 ) Max. Units Conditions SP10 TSCL SCKx Output Low Time(3) TSCK/2 — — ns — SP11 TSCH SCKx Output High Time(3) TSCK/2 — — ns — — — — ns See parameter DO32 — ns See parameter DO31 See parameter DO32 Time(4) SP20 TSCF SCKx Output Fall SP21 TSCR SCKx Output Rise Time(4) — SP30 TDOF SDOx Data Output Fall Time(4) — — — ns SP31 TDOR SDOx Data Output Rise Time(4) — — — ns See parameter DO31 SP35 TSCH2DOV, SDOx Data Output Valid after TSCL2DOV SCKx Edge — — 15 ns VDD > 2.7V — — 20 ns VDD < 2.7V SP40 TDIV2SCH, TDIV2SCL Setup Time of SDIx Data Input to SCKx Edge 10 — — ns — SP41 TSCH2DIL, TSCL2DIL Hold Time of SDIx Data Input to SCKx Edge 10 — — ns — Note 1: 2: 3: 4: — These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. © 2009-2011 Microchip Technology Inc. DS61156G-page 203 PIC32MX5XX/6XX/7XX FIGURE 31-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS SP36 SCKX (CKP = 0) SP11 SCKX (CKP = 1) SP10 SP21 SP20 SP20 SP21 SP35 LSb Bit 14 - - - - - -1 MSb SDOX SP30,SP31 SDIX Bit 14 - - - -1 MSb In SP40 LSb In SP41 Note: Refer to Figure 31-1 for load conditions. TABLE 31-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typ.(2) Max. Units Conditions SP10 TSCL SCKx Output Low Time(3) TSCK/2 — — ns — SP11 TSCH SCKx Output High Time(3) TSCK/2 — — ns — — — — ns See parameter DO32 — — — ns See parameter DO31 — — — ns See parameter DO32 — — — ns See parameter DO31 Time(4) SP20 TSCF SCKx Output Fall SP21 TSCR SCKx Output Rise Time(4) Time(4) SP30 TDOF SDOx Data Output Fall SP31 TDOR SDOx Data Output Rise Time(4) SP35 TSCH2DOV, SDOx Data Output Valid after TSCL2DOV SCKx Edge — — 15 ns VDD > 2.7V — — 20 ns VDD < 2.7V SP36 TDOV2SC, SDOx Data Output Setup to TDOV2SCL First SCKx Edge 15 — — ns SP40 TDIV2SCH, Setup Time of SDIx Data Input to TDIV2SCL SCKx Edge 15 — — ns VDD > 2.7V 20 — — ns VDD < 2.7V 15 — — ns VDD > 2.7V 20 — — ns VDD < 2.7V TSCH2DIL, TSCL2DIL SP41 Note 1: 2: 3: 4: Hold Time of SDIx Data Input to SCKx Edge — These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. DS61156G-page 204 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS SSX SP52 SP50 SCKX (CKP = 0) SP71 SP70 SP73 SP72 SP72 SP73 SCKX (CKP = 1) SP35 MSb SDOX LSb Bit 14 - - - - - -1 SP51 SP30,SP31 SDIX MSb In SP40 Bit 14 - - - -1 LSb In SP41 Note: Refer to Figure 31-1 for load conditions. TABLE 31-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for VTemp AC CHARACTERISTICS Param. No. Symbol Characteristics(1) SP70 SP71 SP72 SP73 SP30 SP31 SP35 TSCL TSCH TSCF TSCR TDOF TDOR TSCH2DOV, TSCL2DOV SCKx Input Low Time(3) SCKx Input High Time(3) SCKx Input Fall Time SCKx Input Rise Time SDOx Data Output Fall Time(4) SDOx Data Output Rise Time(4) SDOx Data Output Valid after SCKx Edge SP40 TDIV2SCH, TDIV2SCL TSCH2DIL, TSCL2DIL Setup Time of SDIx Data Input to SCKx Edge Hold Time of SDIx Data Input to SCKx Edge SP41 Min. Typ.(2) Max. Units Conditions TSCK/2 TSCK/2 — — — — — — 10 — — — — — — — — — — — — — — — 15 20 — ns ns ns ns ns ns ns ns ns — — See parameter DO32 See parameter DO31 See parameter DO32 See parameter DO31 VDD > 2.7V VDD < 2.7V — 10 — — ns — 175 — — ns — 5 — 25 ns — SP50 TSSL2SCH, SSx ↓ to SCKx ↑ or SCKx Input TSSL2SCL SP51 TSSH2DOZ SSx ↑ to SDOx Output High-Impedance(3) SP52 TSCH2SSH SSx after SCKx Edge TSCK + 20 — — ns — TSCL2SSH These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Assumes 50 pF load on all SPIx pins. Note 1: 2: 3: 4: © 2009-2011 Microchip Technology Inc. DS61156G-page 205 PIC32MX5XX/6XX/7XX FIGURE 31-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP71 SP70 SP73 SP72 SP72 SP73 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 LSb SP30,SP31 SDIx SDI MSb In SP40 SP51 Bit 14 - - - -1 LSb In SP41 Note: Refer to Figure 31-1 for load conditions. TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions SP70 TSCL SCKx Input Low Time(3) TSCK/2 — — ns — SP71 TSCH SCKx Input High Time(3) TSCK/2 — — ns — SP72 TSCF SCKx Input Fall Time — 5 10 ns — SP73 TSCR SCKx Input Rise Time — 5 10 ns — — — — ns See parameter DO32 — — — ns See parameter DO31 Time(4) SP30 TDOF SDOx Data Output Fall SP31 TDOR SDOx Data Output Rise Time(4) SP35 TSCH2DOV, SDOx Data Output Valid after TSCL2DOV SCKx Edge — — 20 ns VDD > 2.7V — — 30 ns VDD < 2.7V SP40 TDIV2SCH, Setup Time of SDIx Data Input TDIV2SCL to SCKx Edge 10 — — ns — SP41 TSCH2DIL, TSCL2DIL 10 — — ns — SP50 TSSL2SCH, SSx ↓ to SCKx ↓ or SCKx ↑ Input TSSL2SCL 175 — — ns — Note 1: 2: 3: 4: Hold Time of SDIx Data Input to SCKx Edge These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Assumes 50 pF load on all SPIx pins. DS61156G-page 206 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions SP51 TSSH2DOZ SSx ↑ to SDOX Output High-Impedance(4) 5 — 25 ns — SP52 TSCH2SSH SSx ↑ after SCKx Edge TSCL2SSH TSCK + 20 — — ns — SP60 TSSL2DOV SDOx Data Output Valid after SSx Edge — — 25 ns — Note 1: 2: 3: 4: These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Assumes 50 pF load on all SPIx pins. © 2009-2011 Microchip Technology Inc. DS61156G-page 207 PIC32MX5XX/6XX/7XX FIGURE 31-14: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCLx IM31 IM34 IM30 IM33 SDAx Stop Condition Start Condition Note: Refer to Figure 31-1 for load conditions. FIGURE 31-15: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM21 IM11 IM10 SCLx IM11 IM26 IM10 IM25 IM33 SDAx In IM40 IM40 IM45 SDAx Out Note: Refer to Figure 31-1 for load conditions. DS61156G-page 208 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. IM10 Min.(1) Max. Units Conditions TLO:SCL Clock Low Time 100 kHz mode TPB * (BRG + 2) — μs — 400 kHz mode TPB * (BRG + 2) — μs — mode(2) TPB * (BRG + 2) — μs — Clock High Time 100 kHz mode TPB * (BRG + 2) — μs — 400 kHz mode TPB * (BRG + 2) — μs — 1 MHz mode(2) TPB * (BRG + 2) — μs — — 300 ns 20 + 0.1 CB 300 ns Characteristics 1 MHz IM11 IM20 IM21 IM25 IM26 IM30 IM31 IM33 THI:SCL TF:SCL TR:SCL SDAx and SCLx 100 kHz mode Fall Time 400 kHz mode 1 MHz mode(2) — 100 ns SDAx and SCLx 100 kHz mode Rise Time 400 kHz mode — 1000 ns TSU:DAT Data Input Setup Time THD:DAT Data Input Hold Time TSU:STA Start Condition Setup Time THD:STA Start Condition Hold Time TSU:STO Stop Condition Setup Time 20 + 0.1 CB 300 ns 1 MHz mode(2) — 300 ns 100 kHz mode 250 — ns 400 kHz mode 100 — ns 1 MHz mode(2) 100 — ns 100 kHz mode 0 — μs 400 kHz mode 0 0.9 μs 1 MHz mode(2) 0 0.3 μs 100 kHz mode TPB * (BRG + 2) — ns 400 kHz mode TPB * (BRG + 2) — ns 1 MHz mode(2) TPB * (BRG + 2) — ns 100 kHz mode TPB * (BRG + 2) — ns 400 kHz mode TPB * (BRG + 2) — ns 1 MHz mode(2) TPB * (BRG + 2) — ns 100 kHz mode TPB * (BRG + 2) — ns 400 kHz mode THD:STO Stop Condition Hold Time IM40 TAA:SCL Output Valid from Clock IM50 IM51 Note 1: 2: TBF:SDA Bus Free Time CB TPGD — Only relevant for Repeated Start condition After this period, the first clock pulse is generated — — ns TPB * (BRG + 2) — ns 100 kHz mode TPB * (BRG + 2) — ns 400 kHz mode TPB * (BRG + 2) — ns 1 MHz mode(2) TPB * (BRG + 2) — ns 100 kHz mode — 3500 ns — 400 kHz mode — 1000 ns — (2) — 350 ns — 100 kHz mode 4.7 — μs 400 kHz mode 1.3 — μs 1 MHz mode(2) 0.5 — μs The amount of time the bus must be free before a new transmission can start — 400 pF — 52 312 ns — Bus Capacitive Loading Pulse Gobbler — TPB * (BRG + 2) 1 MHz mode IM45 CB is specified to be from 10 to 400 pF mode(2) 1 MHz IM34 CB is specified to be from 10 to 400 pF Delay(3) — BRG is the value of the I2C™ Baud Rate Generator. Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). © 2009-2011 Microchip Technology Inc. DS61156G-page 209 PIC32MX5XX/6XX/7XX FIGURE 31-16: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCLx IS34 IS31 IS30 IS33 SDAx Stop Condition Start Condition Note: Refer to Figure 31-1 for load conditions. FIGURE 31-17: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS21 IS11 IS10 SCLx IS30 IS26 IS31 IS25 IS33 SDAx In IS40 IS40 IS45 SDAx Out Note: Refer to Figure 31-1 for load conditions. DS61156G-page 210 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. IS10 IS11 IS20 IS21 IS25 IS26 IS30 IS31 IS33 IS34 IS40 IS45 IS50 Note 1: Symbol TLO:SCL THI:SCL TF:SCL TR:SCL TSU:DAT THD:DAT TSU:STA THD:STA TSU:STO THD:STO TAA:SCL TBF:SDA CB Characteristics Clock Low Time Clock High Time SDAx and SCLx Fall Time SDAx and SCLx Rise Time Data Input Setup Time Data Input Hold Time Start Condition Setup Time Start Condition Hold Time Stop Condition Setup Time Stop Condition Hold Time Min. Max. Units 100 kHz mode 4.7 — μs PBCLK must operate at a minimum of 800 kHz 400 kHz mode 1.3 — μs PBCLK must operate at a minimum of 3.2 MHz 1 MHz mode(1) 0.5 — μs 100 kHz mode 4.0 — μs PBCLK must operate at a minimum of 800 kHz 400 kHz mode 0.6 — μs PBCLK must operate at a minimum of 3.2 MHz 1 MHz mode(1) 0.5 — μs 100 kHz mode — 300 ns 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(1) — 100 ns 100 kHz mode — 1000 ns 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(1) — 300 ns 100 kHz mode 250 — ns 400 kHz mode 100 — ns 1 MHz mode(1) 100 — ns 100 kHz mode 0 — ns 400 kHz mode 0 0.9 μs 1 MHz mode(1) 0 0.3 μs 100 kHz mode 4700 — ns 400 kHz mode 600 — ns 1 MHz mode(1) 250 — ns 100 kHz mode 4000 — ns 400 kHz mode 600 — ns 1 MHz mode(1) 250 — ns 100 kHz mode 4000 — ns 400 kHz mode 600 — ns 1 MHz mode(1) 600 — ns 100 kHz mode 4000 — ns 400 kHz mode 600 — ns 1 MHz mode(1) 250 Output Valid from 100 kHz mode Clock 400 kHz mode Bus Free Time Conditions — CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF — — Only relevant for Repeated Start condition After this period, the first clock pulse is generated — — ns 0 3500 ns 0 1000 ns 1 MHz mode(1) 0 350 ns 100 kHz mode 4.7 — μs 400 kHz mode 1.3 — μs 1 MHz mode(1) 0.5 — μs — 400 pF Bus Capacitive Loading — — The amount of time the bus must be free before a new transmission can start — Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). © 2009-2011 Microchip Technology Inc. DS61156G-page 211 PIC32MX5XX/6XX/7XX FIGURE 31-18: CiTx Pin (output) CAN MODULE I/O TIMING CHARACTERISTICS New Value Old Value CA10 CA11 CiRx Pin (input) CA20 TABLE 31-34: CAN MODULE I/O TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units — — — ns See parameter D032 See parameter D031 CA10 TioF Port Output Fall Time CA11 TioR Port Output Rise Time — — — ns CA20 Tcwf Pulse Width to Trigger CAN Wake-up Filter 700 — — ns Note 1: 2: Conditions — These parameters are characterized but not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. DS61156G-page 212 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-35: ETHERNET MODULE SPECIFICATIONS AC CHARACTERISTICS Param. No. Characteristic Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Min. Typical Max. Units Conditions MIIM Timing Requirements ET1 MDC Duty Cycle 40 — 60 % — ET2 MDC Period 400 — — ns — ET3 MDIO Output Delay 10 — 10 ns — ET4 MDIO Input Delay 0 — 300 ns — TX Clock Frequency — 25 — MHz — ET6 TX Clock Duty Cycle 35 — 65 % — ET7 ETXDx, ETEN, ETXERR Delay 0 — 25 ns — MII Timing Requirements ET5 ET8 RX Clock Frequency — 25 — MHz — ET9 RX Clock Duty Cycle 35 — 65 % — ET10 ERXDx, ERXDV, ERXERR Delay 10 — 30 ns — RMII Timing Requirements ET11 Reference Clock Frequency — 50 — MHz — ET12 Reference Clock Duty Cycle 35 — 65 % — ET13 ETXDx, ETEN, Delay 2 — 16 ns — ET14 ERXDx, ERXDV, ERXERR Delay 2 — 16 ns — © 2009-2011 Microchip Technology Inc. DS61156G-page 213 PIC32MX5XX/6XX/7XX TABLE 31-36: ADC MODULE SPECIFICATIONS(5) AC CHARACTERISTICS Param. No. Symbol Characteristics Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Min. Typical Max. Units Conditions Greater of VDD – 0.3 or 2.5 — Lesser of VDD + 0.3 or 3.6 V VSS — VSS + 0.3 V AVSS + 2.0 — AVDD V (Note 1) 2.5 — 3.6 V VREFH = AVDD (Note 3) Device Supply AD01 AD02 AVDD AVSS Module VDD Supply Module VSS Supply — — Reference Inputs AD05 VREFH Reference Voltage High AD05a AD06 VREFL Reference Voltage Low AVSS — VREFH – 2.0 V (Note 1) AD07 VREF Absolute Reference Voltage (VREFH – VREFL) 2.0 — AVDD V (Note 3) AD08 IREF Current Drain — 250 — 400 3 μA μA ADC operating ADC off Analog Input AD12 VINH-VINL Full-Scale Input Span AD13 VINL AD14 VIN AD15 AD17 RIN VREFL — VREFH V — Absolute VINL Input Voltage AVSS – 0.3 — AVDD/2 V — Absolute Input Voltage AVSS – 0.3 — AVDD + 0.3 V — Leakage Current — +/- 0.001 +/-0.610 μA VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V Source Impedance = 10 kΩ Recommended Impedance of Analog Voltage Source — — 5K Ω (Note 1) ADC Accuracy – Measurements with External VREF+/VREF- AD20c Nr Resolution AD21c INL Integral Nonlinearity > -1 — <1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V AD22c DNL Differential Nonlinearity > -1 — <1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2) AD23c GERR Gain Error > -1 — <1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V AD24n EOFF Offset Error > -1 — <1 LSb VINL = AVSS = 0V, AVDD = 3.3V AD25c Monotonicity — — — Note 1: 2: 3: 4: 5: — 10 data bits bits — — Guaranteed These parameters are not characterized or tested in manufacturing. With no missing codes. These parameters are characterized, but not tested in manufacturing. Characterized with a 1 kHz sinewave. For PIC32MX534/564/664/764 devices, data provided in this table is preliminary. DS61156G-page 214 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-36: ADC MODULE SPECIFICATIONS(5) (CONTINUED) AC CHARACTERISTICS Param. No. Symbol Characteristics Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp Min. Typical Max. Units Conditions ADC Accuracy – Measurements with Internal VREF+/VREF- AD20d Nr Resolution AD21d INL Integral Nonlinearity > -1 — <1 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD22d DNL Differential Nonlinearity > -1 — <1 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3) AD23d GERR Gain Error > -4 — <4 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD24d EOFF Offset Error > -2 — <2 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD25d Monotonicity — — — — Guaranteed — 10 data bits bits (Note 3) Dynamic Performance AD31b SINAD Signal to Noise and Distortion 55 58.5 — dB (Notes 3,4) AD34b ENOB Effective Number of Bits 9.0 9.5 — bits (Notes 3,4) Note 1: 2: 3: 4: 5: These parameters are not characterized or tested in manufacturing. With no missing codes. These parameters are characterized, but not tested in manufacturing. Characterized with a 1 kHz sinewave. For PIC32MX534/564/664/764 devices, data provided in this table is preliminary. © 2009-2011 Microchip Technology Inc. DS61156G-page 215 PIC32MX5XX/6XX/7XX TABLE 31-37: 10-BIT ADC CONVERSION RATE PARAMETERS(2) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp ADC Speed TAD Minimum 1 Msps to 400 ksps(1) 65 ns Sampling RS Time Maximum Mininum 132 ns 500Ω ADC Channels Configuration VDD 3.0V to 3.6V VREF- VREF+ ANx Up to 400 ksps 200 ns 200 ns 5.0 kΩ CHX SHA ADC 2.5V to 3.6V VREF- VREF+ or or AVSS AVDD ANx CHX SHA ADC ANx or VREF- Up to 300 ksps 200 ns 200 ns 5.0 kΩ 2.5V to 3.6V VREF- VREF+ or or AVSS AVDD ANx CHX SHA ADC ANx or VREF- Note 1: 2: External VREF- and VREF+ pins must be used for correct operation. These parameters are characterized, but not tested in manufacturing. DS61156G-page 216 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-38: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. Characteristics Min. Typical(1) Max. Units Analog-to-Digital Clock Period(2) 65 — — ns Conditions Clock Parameters AD50 TAD See Table 31-37 Conversion Rate AD55 TCONV Conversion Time — 12 TAD — — AD56 FCNV Throughput Rate (Sampling Speed) — — 1000 ksps AVDD = 3.0V to 3.6V — — 400 ksps AVDD = 2.5V to 3.6V 1 TAD — — — TSAMP must be ≥ 132 ns — 1.0 TAD — — Auto-Convert Trigger (SSRC<2:0> = 111) not selected 0.5 TAD — 1.5 TAD — — AD57 TSAMP Sample Time — Timing Parameters AD60 TPCS Conversion Start from Sample Trigger(3) AD61 TPSS Sample Start from Setting Sample (SAMP) bit AD62 TCSS Conversion Completion to Sample Start (ASAM = 1)(3) — 0.5 TAD — — — AD63 TDPU Time to Stabilize Analog Stage from Analog-to-Digital Off to Analog-to-Digital On(3) — — 2 μs — Note 1: 2: 3: These parameters are characterized, but not tested in manufacturing. Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. Characterized by design but not tested. © 2009-2011 Microchip Technology Inc. DS61156G-page 217 PIC32MX5XX/6XX/7XX FIGURE 31-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000) AD50 ADCLK Instruction Execution Set SAMP Clear SAMP SAMP ch0_dischrg ch0_samp eoc AD61 AD60 AD55 TSAMP AD55 CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 7 8 5 6 7 8 1 – Software sets ADxCON. SAMP to start sampling. 2 – Sampling starts after discharge period. TSAMP is described in Section 17. “10-bit A/D Converter” (DS61104) of the “PIC32 Family Reference Manual”. 3 – Software clears ADxCON. SAMP to start conversion. 4 – Sampling ends, conversion sequence starts. 5 – Convert bit 9. 6 – Convert bit 8. 7 – Convert bit 0. 8 – One TAD for end of conversion. DS61156G-page 218 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-20: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001) AD50 ADCLK Instruction Execution Set ADON SAMP ch0_dischrg ch0_samp eoc TSAMP AD55 TSAMP AD55 TCONV CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 7 3 4 5 6 8 3 4 1 – Software sets ADxCON. ADON to start AD operation. 5 – Convert bit 0. 2 – Sampling starts after discharge period. TSAMP is described in Section 17. “10-bit A/D Converter” (DS61104) of the “PIC32 Family Reference Manual . 6 – One TAD for end of conversion. 3 – Convert bit 9. 8 – Sample for time specified by SAMC<4:0>. 7 – Begin conversion of next channel. 4 – Convert bit 8. © 2009-2011 Microchip Technology Inc. DS61156G-page 219 PIC32MX5XX/6XX/7XX FIGURE 31-21: PARALLEL SLAVE PORT TIMING CS PS5 RD PS6 WR PS4 PS7 PMD<7:0> PS1 PS3 PS2 TABLE 31-39: PARALLEL SLAVE PORT REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typical Max. Units Conditions PS1 TdtV2wrH Data In Valid before WR or CS Inactive (setup time) 20 — — ns — PS2 TwrH2dtI WR or CS Inactive to Data-In Invalid (hold time) 40 — — ns — PS3 TrdL2dtV RD and CS Active to Data-Out Valid — — 60 ns — PS4 TrdH2dtI RD Active or CS Inactive to Data-Out Invalid 0 — 10 ns — PS5 Tcs CS Active Time TPB + 40 — — ns — PS6 TWR WR Active Time TPB + 25 — — ns — PS7 TRD RD Active Time TPB + 25 — — ns — Note 1: These parameters are characterized, but not tested in manufacturing. DS61156G-page 220 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-22: PARALLEL MASTER PORT READ TIMING DIAGRAM TPB TPB TPB TPB TPB TPB TPB TPB PB Clock PM4 Address PMA<13:18> PM6 PMD<7:0> Data Data Address<7:0> Address<7:0> PM2 PM7 PM3 PMRD PM5 PMWR PM1 PMALL/PMALH PMCS<2:1> TABLE 31-40: PARALLEL MASTER PORT READ TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical Max. Units Conditions PM1 TLAT PMALL/PMALH Pulse Width — 1 TPB — — — PM2 TADSU Address Out Valid to PMALL/PMALH Invalid (address setup time) — 2 TPB — — — PM3 TADHOLD PMALL/PMALH Invalid to Address Out Invalid (address hold time) — 1 TPB — — — PM4 TAHOLD PMRD Inactive to Address Out Invalid (address hold time) 5 — — ns — PM5 TRD PMRD Pulse Width — 1 TPB — — — PM6 TDSU PMRD or PMENB Active to Data In Valid (data setup time) 15 — — ns — PM7 TDHOLD PMRD or PMENB Inactive to Data In Invalid (data hold time) — 80 — ns — Note 1: These parameters are characterized, but not tested in manufacturing. © 2009-2011 Microchip Technology Inc. DS61156G-page 221 PIC32MX5XX/6XX/7XX FIGURE 31-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM TPB TPB TPB TPB TPB TPB TPB TPB PB Clock Address PMA<13:18> PM2 + PM3 Address<7:0> PMD<7:0> Data PM12 PM13 PMRD PM11 PMWR PM1 PMALL/PMALH PMCS<2:1> TABLE 31-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical Max. Units Conditions PM11 TWR PMWR Pulse Width — 1 TPB — — — PM12 TDVSU Data Out Valid before PMWR or PMENB goes Inactive (data setup time) — 2 TPB — — — PM13 TDVHOLD PMWR or PMEMB Invalid to Data Out Invalid (data hold time) — 1 TPB — — — Note 1: These parameters are characterized, but not tested in manufacturing. DS61156G-page 222 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-42: OTG ELECTRICAL SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. Symbol No. Characteristics(1) USB313 VUSB USB Voltage Min. Typical Max. Units 3.0 — 3.6 V Conditions Voltage on VUSB must be in this range for proper USB operation USB315 VILUSB Input Low Voltage for USB Buffer — — 0.8 V — USB316 VIHUSB Input High Voltage for USB Buffer 2.0 — — V — USB318 VDIFS Differential Input Sensitivity — — 0.2 V The difference between D+ and Dmust exceed this value while VCM is met USB319 VCM Differential Common Mode Range 0.8 — 2.5 V — USB320 ZOUT Driver Output Impedance 28.0 — 44.0 Ω — USB321 VOL Voltage Output Low 0.0 — 0.3 V 14.25 kΩ load connected to 3.6V USB322 VOH Voltage Output High 2.8 — 3.6 V 14.25 kΩ load connected to ground Note 1: These parameters are characterized, but not tested in manufacturing. © 2009-2011 Microchip Technology Inc. DS61156G-page 223 PIC32MX5XX/6XX/7XX FIGURE 31-24: EJTAG TIMING CHARACTERISTICS TTCKeye TTCKhigh TTCKlow Trf TCK Trf TMS TDI TTsetup TThold Trf Trf TDO TRST* TTRST*low TTDOout TTDOzstate Defined Trf Undefined TABLE 31-43: EJTAG TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp AC CHARACTERISTICS Param. No. Symbol Description(1) Min. Max. Units Conditions EJ1 TTCKCYC TCK Cycle Time 25 — ns — EJ2 TTCKHIGH TCK High Time 10 — ns — EJ3 TTCKLOW TCK Low Time 10 — ns — EJ4 TTSETUP TAP Signals Setup Time Before Rising TCK 5 — ns — EJ5 TTHOLD TAP Signals Hold Time After Rising TCK 3 — ns — EJ6 TTDOOUT TDO Output Delay Time from Falling TCK — 5 ns — EJ7 TTDOZSTATE TDO 3-State Delay Time from Falling TCK — 5 ns — EJ8 TTRSTLOW TRST Low Time 25 — ns — EJ9 TRF TAP Signals Rise/Fall Time, All Input and Output — — ns — Note 1: These parameters are characterized, but not tested in manufacturing. DS61156G-page 224 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 32.0 PACKAGING INFORMATION 32.1 Package Marking Information 64-Lead TQFP (10x10x1 mm) PIC32MX575F 512H-80I/PT XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN e3 0510017 100-Lead TQFP (14x14x1 mm) XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN 100-Lead TQFP (12x12x1 mm) XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN Legend: XX...X Y YY WW NNN * Note: Example Example PIC32MX575F 512L-80I/PF e3 0510017 Example PIC32MX575F 512L-80I/PT e3 0510017 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e) 3 can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. © 2009-2011 Microchip Technology Inc. DS61156G-page 225 PIC32MX5XX/6XX/7XX 32.1 Package Marking Information (Continued) 64-Lead QFN (9x9x0.9 mm) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN 121-Lead XBGA (10x10x1.1 mm) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN DS61156G-page 226 Example PIC32MX575F 512H-80I/MR e3 0510017 Example PIC32MX575F 512H-80I/BG e3 0510017 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 32.2 Package Details The following sections give the technical details of the packages. /HDG3ODVWLF7KLQ4XDG)ODWSDFN37±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 E e E1 N b NOTE 1 123 NOTE 2 α A φ c A2 β A1 L L1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$; /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $ 6WDQGRII $ ± )RRW/HQJWK / )RRWSULQW / 5() )RRW$QJOH 2YHUDOO:LGWK ( %6& 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& /HDG7KLFNQHVV F ± /HDG:LGWK E 0ROG'UDIW$QJOH7RS 0ROG'UDIW$QJOH%RWWRP 1RWHV 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\ 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% © 2009-2011 Microchip Technology Inc. DS61156G-page 227 PIC32MX5XX/6XX/7XX /HDG3ODVWLF7KLQ4XDG)ODWSDFN37±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ DS61156G-page 228 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX /HDG3ODVWLF7KLQ4XDG)ODWSDFN3)±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 e E1 E b N α NOTE 1 1 23 A NOTE 2 φ c β A2 A1 L L1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$; /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $ 6WDQGRII $ ± )RRW/HQJWK / )RRWSULQW / 5() )RRW$QJOH 2YHUDOO:LGWK ( %6& 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& /HDG7KLFNQHVV F ± /HDG:LGWK E 0ROG'UDIW$QJOH7RS 0ROG'UDIW$QJOH%RWWRP 1RWHV 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\ 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% © 2009-2011 Microchip Technology Inc. DS61156G-page 229 PIC32MX5XX/6XX/7XX /HDG3ODVWLF7KLQ4XDG)ODWSDFN3)±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ DS61156G-page 230 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX /HDG3ODVWLF7KLQ4XDG)ODWSDFN37±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 e E E1 N b NOTE 1 1 23 NOTE 2 α c A φ L β A1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV A2 L1 0,//,0(7(56 0,1 1 120 0$; /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $ 6WDQGRII $ ± )RRW/HQJWK / )RRWSULQW / 5() )RRW$QJOH 2YHUDOO:LGWK ( %6& 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& /HDG7KLFNQHVV F ± /HDG:LGWK E 0ROG'UDIW$QJOH7RS 0ROG'UDIW$QJOH%RWWRP 1RWHV 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\ 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% © 2009-2011 Microchip Technology Inc. DS61156G-page 231 PIC32MX5XX/6XX/7XX /HDG3ODVWLF7KLQ4XDG)ODWSDFN37±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ DS61156G-page 232 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging © 2009-2011 Microchip Technology Inc. DS61156G-page 233 PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS61156G-page 234 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging © 2009-2011 Microchip Technology Inc. DS61156G-page 235 PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS61156G-page 236 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging © 2009-2011 Microchip Technology Inc. DS61156G-page 237 PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS61156G-page 238 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX APPENDIX A: MIGRATING FROM PIC32MX3XX/4XX TO PIC32MX5XX/6XX/7XX DEVICES This appendix provides an overview of considerations for migrating from PIC32MX3XX/4XX devices to the PIC32MX5XX/6XX/7XX family of devices. The code developed for the PIC32MX3XX/4XX devices can be ported to the PIC32MX5XX/6XX/7XX devices after making the appropriate changes outlined below. A.1 Table A-1 outlines the peripherals and associated interrupts that are implemented differently on PIC32MX5XX/6XX/7XX versus PIC32MX3XX/4XX devices. In addition, on the SPI module, the IRQ numbers for the receive done interrupts were changed from 25 to 24 and the transfer done interrupts were changed from 24 to 25. DMA PIC32MX5XX/6XX/7XX devices do stopping DMA transfers in Idle mode. A.2 not support Interrupts PIC32MX5XX/6XX/7XX devices have persistent interrupts for some of the peripheral modules. This means that the interrupt condition for these peripherals must be cleared before the interrupt flag can be cleared. For example, to clear a UART receive interrupt, the user application must first read the UART Receive register to clear the interrupt condition and then clear the associated UxIF flag to clear the pending UART interrupt. In other words, the UxIF flag cannot be cleared by software until the UART Receive register is read. TABLE A-1: PIC32MX3XX/4XX VERSUS PIC32MX5XX/6XX/7XX INTERRUPT IMPLEMENTATION DIFFERENCES Module Interrupt Implementation Input Capture To clear an interrupt source, read the Buffer Result (ICxBUF) register to obtain the number of capture results in the buffer that are below the interrupt threshold (specified by ICI<1:0> bits). SPI Receive and transmit interrupts are controlled by the SRXISEL<1:0> and STXISEL<1:0> bits, respectively. To clear an interrupt source, data must be written to, or read from, the SPIxBUF register to obtain the number of data to receive/transmit below the level specified by the SRXISEL<1:0> and STXISEL<1:0> bits. UART TX interrupt will be generated as soon as the UART module is enabled. Receive and transmit interrupts are controlled by the URXISEL<1:0> and UTXISEL<1:0> bits, respectively. To clear an interrupt source, data must be read from, or written to, the UxRXREG or UxTXREG registers to obtain the number of data to receive/transmit below the level specified by the URXISEL<1:0> and UTXISEL<1:0> bits. ADC All samples must be read from the result registers (ADC1BUFx) to clear the interrupt source. PMP To clear an interrupt source, read the Parallel Master Port Data Input/Output (PMDIN/PMDOUT) register. © 2009-2011 Microchip Technology Inc. DS61156G-page 239 PIC32MX5XX/6XX/7XX APPENDIX B: REVISION HISTORY Revision B (November 2009) The revision includes the following global update: Revision A (August 2009) This is the initial released version of this document. • Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits. Other major changes are referenced by their respective chapter/section in Table B-1. TABLE B-1: MAJOR SECTION UPDATES Section Name Update Description “High-Performance, USB, CAN and Added the following devices: Ethernet 32-bit Flash - PIC32MX575F256L Microcontrollers” - PIC32MX695F512L - PIC32MX695F512H The 100-pin TQFP pin diagrams have been updated to reflect the current pin name locations (see the “Pin Diagrams” section). Added the 121-pin Ball Grid Array (XBGA) pin diagram. Updated Table 1: “PIC32 USB and CAN – Features” Added the following tables: - Table 4: “Pin Names: PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L and PIC32MX575F512L Devices” - Table 5: “Pin Names: PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L and PIC32MX695F512L Devices” - Table 6: “Pin Names: PIC32MX775F256L, PIC32MX775F512L and PIC32MX795F512L Devices” Updated the following pins as 5V tolerant: - 64-pin QFN: Pin 36 (D-/RG3) and Pin 37 (D+/RG2) - 64-pin TQFP: Pin 36 (D-/RG3) and Pin 37 (D+/RG2) - 100-pin TQFP: Pin 56 (D-/RG3) and Pin 57 (D+/RG2) 2.0 “Guidelines for Getting Started with 32-bit Microcontrollers” DS61156G-page 240 Removed the last sentence of 2.3.1 “Internal Regulator Mode”. Removed Section 2.3.2 “External Regulator Mode” © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE B-1: MAJOR SECTION UPDATES (CONTINUED) Section Name 4.0 “Memory Organization” Update Description Updated all register tables to include the Virtual Address and All Resets columns. Updated the title of Figure 4-4 to include the PIC32MX575F256L device. Updated the title of Figure 4-6 to include the PIC32MX695F512L and PIC32MX695F512H devices. Also changed PIC32MX795F512L to PIC32MX795F512H. Updated the title of Table 4-3 to include the PIC32MX695F512H device. Updated the title of Table 4-5 to include the PIC32MX575F5256L device. Updated the title of Table 4-6 to include the PIC32MX695F512L device. Reversed the order of Table 4-11 and Table 4-12. Reversed the order of Table 4-14 and Table 4-15. Updated the title of Table 4-15 to include the PIC32MX575F256L and PIC32MX695F512L devices. Updated the title of Table 4-45 to include the PIC32MX575F256L device. Updated the title of Table 4-47 to include the PIC32MX695F512H and PIC32MX695F512L devices. 12.0 “I/O Ports” Updated the second paragraph of 12.1.2 “Digital Inputs” and removed Table 12-1. 22.0 “10-bit Analog-to-Digital Converter (ADC)” Updated the ADC Conversion Clock Period Block Diagram (see Figure 22-2). 28.0 “Special Features” Removed references to the ENVREG pin in 28.3 “On-Chip Voltage Regulator”. Updated the first sentence of 28.3.1 “On-Chip Regulator and POR” and 28.3.2 “On-Chip Regulator and BOR”. Updated the Connections for the On-Chip Regulator (see Figure 28-2). 31.0 “Electrical Characteristics” Updated the Absolute Maximum Ratings and added Note 3. Added Thermal Packaging Characteristics for the 121-pin XBGA package (see Table 31-3). Updated the Operating Current (IDD) DC Characteristics (see Table 31-5). Updated the Idle Current (IIDLE) DC Characteristics (see Table 31-6). Updated the Power-Down Current (IPD) DC Characteristics (see Table 31-7). Removed Note 1 from the Program Flash Memory Wait State Characteristics (see Table 31-12). Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics, changing SP52 to SP35 between the MSb and Bit 14 on SDOx (see Figure 31-13). 32.0 “Packaging Information” Added the 121-pin XBGA package marking information and package details. “Product Identification System” Added the definition for BG (121-lead 10x10x1.1 mm, XBGA). Added the definition for Speed. © 2009-2011 Microchip Technology Inc. DS61156G-page 241 PIC32MX5XX/6XX/7XX Revision C (February 2010) The revision includes the following updates, as described in Table B-2: TABLE B-2: MAJOR SECTION UPDATES Section Name “High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers” Update Description Added the following devices: • • • • • • PIC32MX675F256H PIC32MX775F256H PIC32MX775F512H PIC32MX675F256L PIC32MX775F256L PIC32MX775F512L Added the following pins: • • • • 1.0 “Device Overview” EREFCLK ECRSDV AEREFCLK AECRSDV Added the EREFCLK and ECRSDV pins to Table 5 and Table 6. Updated the pin number pinout I/O descriptions for the following pin names in Table 1-1: • SCL3 • SCL5 • RTCC • C1OUT • SDA3 • SDA5 • CVREF- • C2IN- • SCL2 • TMS • CVREF+ • C2IN+ • SDA2 • TCK • CVREFOUT • C2OUT • SCL4 • TDI • C1IN- • PMA0 • SDA4 • TDO • C1IN+ • PMA1 Added the following pins to the Pinout I/O Descriptions table (Table 1-1): 4.0 “Memory Organization” • EREFCLK • ECRSDV • AEREFCLK • AECRSDV Added new devices and updated the virtual and physical memory map values in Figure 4-4. Added new devices to Figure 4-5. Added new devices to the following register maps: • • • • • • • • 28.0 “Special Features” Appendix A: “Migrating from PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX Devices” DS61156G-page 242 Table 4-3, Table 4-4, Table 4-6 and Table 4-7 (Interrupt Register Maps) Table 4-12 (I2C2 Register Map) Table 4-15 (SPI1 Register Map) Table 4-24 through Table 4-35 (PORTA-PORTG Register Maps) Table 4-36 and Table 4-37 (Change Notice and Pull-up Register Maps) Table 4-45 (CAN1 Register Map) Table 4-46 (CAN2 Register Map) Table 4-47 (Ethernet Controller Register Map) Changed the bits named POSCMD to POSCMOD in Table 4-42 (Device Configuration Word Summary). Changed all references of POSCMD to POSCMOD in the Device Configuration Word 1 register (see Register 28-2). Added the new section Appendix . © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Revision D (May 2010) The revision includes the following updates, as described in Table B-3: TABLE B-3: MAJOR SECTION UPDATES Section Name “High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers” Update Description Updated the initial Flash memory range to 64K. Updated the initial SRAM memory range to 16K. Added the following devices (see Table 1, Table 2, Table 3 and the Pin Diagrams): • • • • • • • • • • • • 4.0 “Memory Organization” PIC32MX534F064H PIC32MX564F064H PIC32MX664F064H PIC32MX564F128H PIC32MX664F128H PIC32MX764F128H PIC32MX534F064L PIC32MX564F064L PIC32MX664F064L PIC32MX564F128L PIC32MX664F128L PIC32MX764F128L Added new Memory Maps (Figure 4-1, Figure 4-2 and Figure 4-3). The bit named I2CSIF was changed to I2C1SIF and the bit named I2CBIF was changed to I2C1BIF in the Interrupt Register Map tables (Table 4-2, Table 4-3, Table 4-4, Table 4-5, Table 4-6 and Table 4-7) Added the following devices to the Interrupt Register Map (Table 4-2): • PIC32MX534F064H • PIC32MX564F064H • PIC32MX564F128H Added the following devices to the Interrupt Register Map (Table 4-3): • PIC32MX664F064H • PIC32MX664F128H Added the following device to the Interrupt Register Map (Table 4-4): • PIC32MX764F128H Added the following devices to the Interrupt Register Map (Table 4-5): • PIC32MX534F064L • PIC32MX564F064L • PIC32MX564F128L Added the following devices to the Interrupt Register Map (Table 4-6): • PIC32MX664F064L • PIC32MX664F128L Added the following device to the Interrupt Register Map (Table 4-7): • PIC32MX764F128L © 2009-2011 Microchip Technology Inc. DS61156G-page 243 PIC32MX5XX/6XX/7XX TABLE B-3: MAJOR SECTION UPDATES (CONTINUED) Section Name 4.0 “Memory Organization” (Continued) Update Description Made the following bit name changes in the I2C1, I2C3, I2C4 and I2C5 Register Map (Table 4-11): • • • • • • • I2C3BRG SFR: I2C1BRG was changed to I2C3BRG I2C4BRG SFR: I2C1BRG was changed to I2C4BRG I2C5BRG SFR: I2C1BRG was changed to I2C5BRG I2C4TRN SFR: I2CT1DATA was changed to I2CT2ADATA I2C4RCV SFR: I2CR2DATA was changed to I2CR2ADATA I2C5TRN SFR: I2CT1DATA was changed to I2CT3ADATA I2C5RCV SFR: I2CR1DATA was changed to I2CR3ADATA Added the RTSMD bit and UEN<1:0> bits to the UART1A, UART1B, UART2A, UART2B, UART3A and UART3B Register Map (Table 4-13) Added the SIDL bit to the DMA Global Register Map (Table 4-17). Changed the CM bit to CMR in the System Control Register Map (Table 4-23). Added the following devices to the I2C2, SPI1, PORTA, PORTC, PORTD, PORTE, PORTF, PORTG, Change Notice and Pull-up Register Maps (Table 4-12, Table 4-14, Table 4-24, Table 4-27, Table 4-29, Table 4-31, Table 4-33, Table 4-35 and Table 4-36): • • • • • • PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX664F064L PIC32MX664F128L PIC32MX764F128L Added the following devices to the PORTC, PORTD, PORTE, PORTF, PORTG, Change Notice and Pull-up Register Maps (Table 4-26, Table 4-28, Table 4-30, Table 4-32, Table 4-34 and Table 4-37): • • • • • • PIC32MX534F064H PIC32MX564F064H PIC32MX564F128H PIC32MX664F064H PIC32MX664F128H PIC32MX764F128H Added the following devices to the CAN1 Register Map (Table 4-45): • • • • • • • • PIC32MX534F064H PIC32MX564F064H PIC32MX564F128H PIC32MX764F128H PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX764F128L Added the following devices to the Ethernet Controller Register Map (Table 4-47): • • • • • • DS61156G-page 244 PIC32MX664F064H PIC32MX664F128H PIC32MX764F128H PIC32MX664F064L PIC32MX664F128L PIC32MX764F128L © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE B-3: MAJOR SECTION UPDATES (CONTINUED) Section Name 31.0 “Electrical Characteristics” Update Description Updated the Typical and Maximum DC Characteristics: Operating Current (IDD) in Table 31-5. Updated the Typical and Maximum DC Characteristics: Idle Current (IIDLE) in Table 31-6. Updated the Typical and Maximum DC Characteristics: Power-Down Current (IPD) in Table 31-7. Added DC Characteristics: Program Memory parameters D130a and D132a in Table 31-11. Added the Internal Voltage Reference parameter (D305) to the Comparator Specifications in Table 31-13. © 2009-2011 Microchip Technology Inc. DS61156G-page 245 PIC32MX5XX/6XX/7XX Revision E (July 2010) Revision F (December 2010) Minor corrections were incorporated throughout the document. The revision includes the following global update: VCAP/VDDCORE has been changed to: VCAP/VCORE Other major changes are referenced by their respective chapter/section in Table B-4: TABLE B-4: SECTION UPDATES Section Name Update Description Removed the following Analog Feature: FV tolerant input pins High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers (digital pins only) 1.0 “Device Overview” 4.0 “Memory Organization” Updated the term LIN 1.2 support as LIN support for the peripheral feature: Six UART modules with: RS-232, RS-485, and LIN support Updated the value of 64-pin QFN/TQFP pin number for the following pin names: PMA0, PMA1 and ECRSDV The following register map tables were updated: • Table 4-2: - Changed bits 24/8 to I2C5BIF in IFS1 - Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT - Changed bits 25/9/-24/8 to U5IS<1:0> in IPC12 - Added note 2 • Table 4-3 through Table 4-7: - Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT - Changed bits 25/9-24/8 to U5IS<1:0> in IPC12 • Table 4-3: - Changed bits 24/8 to I2C5BIF in IFS1 - Added note 2 • Table 4-4: - Changed bits 24/8 to I2C5BIF in IFS1 - Changed bits 24/8 to I2C5BIE in IEC1 - Added note 2 references • Table 4-5: - Changed bits 24/8 to I2C5BIF in IFS1 - Changed bits 24/8 to I2C5BIE in IEC1 - Added note 2 references • Table 4-6: - Changed bit 24/8 to I2C5BIF in IFS1 - Updated the bit value of bit 24/8 as I2C5BIE for the IEC1 register. - Added note 2 • Table 4-7: - Changed bit 25/9 to I2C5SIF in IFS1 - Changed bit 24/8 as I2C5BIF in IFS1 - Changed bit 25/9 as I2C5SIE in IEC1 - Changed bit 24/8 as I2C5BIE in IEC1 - Added note 2 references • Added note 2 to Table 4-8 • Updated the All Resets values for the following registers in Table 4-11: I2C3CON, I2C4CON, I2C5CON and I2C1CON. • Updated the All Resets values for the I2C2CON register in Table 4-12 DS61156G-page 246 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE B-4: SECTION UPDATES (CONTINUED) Section Name 4.0 “Memory Organization” (Continued) © 2009-2011 Microchip Technology Inc. Update Description • Table 4-13: - Changed register U4RG to U1BRG - Changed register U5RG to U3BRG - Changed register U6RG to U2BRG • Table 4-14: - Updated the All Resets values for the following registers: SPI3STAT, SPI2STAT and SPI4STAT • Table 4-15: Updated the All Resets values for the SPI1STAT register • Table 4-17: Added note 2 • Table 4-19: Added note 2 • Table 4-20: Updated the All Resets values for the CM1CON and CM2CON registers • Table 4-21: - Updated the All Resets values as 0000 for the CVRCON register - Updated note 2 • Table 4-38: Updated the All Resets values for the PMSTAT register • Table 4-40: Updated the All Resets values for the CHECON and CHETAG registers • Table 4-42: Updated the bit value of bit 29/13 as ‘—’ for the DEVCFG3 register • Table 4-44: - Updated the note references in the entire table - Changed existing note 1 to note 4 - Added notes 1, 2 and 3 - Changed bits 23/7 in U1PWRC to UACTPND - Changed register U1DDR to U1ADDR - Changed register U4DTP1 to U1BDTP1 - Changed register U4DTP2 to U1BDTP2 - Changed register U4DTP3 to U1BDTP3 • Table 4-45: - Updated the All Resets values for the C1CON and C1VEC registers - Changed bits 30/14 in C1CON to FRZ - Changed bits 27/11 in C1CON to CANBUSY - Changed bits 22/6-16/0 in C1VEC to ICODE<6:0> - Changed bits 22/6-16/0 in C1TREC to RERRCNT<7:0> - Changed bits 31/15-24/8 in C1TREC to TERRCNT<7:0> • Table 4-46: - Updated the All Resets values for the C2CON and C2VEC registers - Changed bits 30/14 in C1CON to FRZ - Changed bits 27/11 in C1CON to CANBUSY - Changed bits 22/6-16/0 in C1VEC register to ICODE<6:0> - Changed bits 22/6-16/0 in C1TREC register to RERRCNT<7:0> - Changed bits 31/15-24/8 in C1TREC to TERRCNT<7:0> DS61156G-page 247 PIC32MX5XX/6XX/7XX TABLE B-4: SECTION UPDATES (CONTINUED) Section Name 7.0 “Interrupt Controller” 8.0 “Oscillator Configuration” 16.0 “Output Compare” 24.0 “Ethernet Controller” 26.0 “Comparator Voltage Reference (CVREF)” 28.0 “Special Features” 31.0 “Electrical Characteristics” Update Description • Updated the following Interrupt Sources in Table 7-1: - Changed IC2AM – I2C4 Master Event to: IC4M – I2C4 Master Event - Changed IC3AM – I2C5 Master Event to: IC5M – I2C4 Master Event - Changed U1E – UART1A Error to: U1E – UART1 Error - Changed U4E – UART1B Error to: U4E – UART4 Error - Changed U1RX – UART1A Receiver to: U1RX – UART1 Receiver - Changed U4RX – UART1B Receiver to: U4RX – UART4 Receiver - Changed U1TX – UART1A Transmitter to: U1TX – UART1 Transmitter - Changed U4TX – UART1B Transmitter to: U4TX – UART4 Transmitter - Changed U6E – UART2B Error to: U6E – UART6 Error - Changed U6RX – UART2B Receiver to: U6RX – UART6 Receiver - Changed U6TX – UART2B Transmitter to: U6TX – UART6 Transmitter - Changed U5E – UART3B Error to: U5E – UART5 Error - Changed U5RX – UART3B Receiver to: U5RX – UART5 Receiver - Changed U5TX – UART3B Transmitter to: U5TX – UART5 Transmitter Updated Figure 8-1 Updated Figure 16-1 Added a note on using the Ethernet controller pins (see note above Table 24-3) Updated the note in Figure 26-1 Updated the bit description for bit 10 in Register 28-2 Added notes 1 and 2 to Register 28-4 Updated the Absolute Maximum Ratings: • Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V 0.3V to +3.6V was updated • Voltage on VBUS with respect to VSS - 0.3V to +5.5V was added Updated the maximum value of DC16 as 2.1 in Table 31-4 Updated the Typical values for the following parameters: DC20b, DC20c, DC21c, DC22c and DC23c (see Table 31-5) Updated Table 31-11: • Removed the following DC Characteristics: Programming temperature 0°C ≤TA ≤+70°C (25°C recommended) • Updated the Minimum value for the Parameter number D131 as 2.3 • Removed the Conditions for the following Parameter numbers: D130, D131, D132, D135, D136 and D137 • Updated the condition for the parameter number D130a and D132a Updated the Minimum, Typical and Maximum values for parameter D305 in Table 31-13 Added note 2 to Table 31-18 Updated the Minimum and Maximum values for parameter F20b (see Table 31-19) Updated the following figures: Appendix A: “Migrating from PIC32MX3XX/4XX to PIC32MX5XX/ 6XX/7XX Devices” DS61156G-page 248 • Figure 31-4 • Figure 31-9 • Figure 31-19 • Figure 31-20 Removed the A.3 Pin Assignments sub-section. © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Revision G (May 2011) The revision includes the following global update: • All references to VDDCORE/VCAP have been changed to: VCORE/VCAP • Added references to the new V-Temp temperature range: -40ºC to +105ºC TABLE B-5: This revision also includes minor typographical and formatting changes throughout the data sheet text. Major updates are referenced by their respective section in the following table. MAJOR SECTION UPDATES Section Name Update Description High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers Removed the shading for all D- and D+ pins in all pin diagrams. 1.0 “Device Overview” Updated the VBUS description in Table 1-1. 2.0 “Guidelines for Getting Started with Added 2.11 “Referenced Sources”. 32-bit Microcontrollers” 4.0 “Memory Organization” Added Note 3 to the Interrupt Register Map tables (see Table 4-2 through Table 4-7. 22.0 “10-bit Analog-to-Digital Converter Updated the ADC Conversion Clock Period Block Diagram (see Figure 22-2). (ADC)” 26.0 “Comparator Voltage Reference (CVREF)” Updated the Comparator Voltage Reference Block Diagram (see Figure 26-1). 28.0 “Special Features” Removed the second paragraph from 28.3.1 “On-Chip Regulator and POR”. 31.0 “Electrical Characteristics” Added the new V-Temp temperature range (-40ºC to +105ºC) to the heading of all specification tables. Updated the Ambient temperature under bias, updated the Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V, and added Voltage on VBUS with respect to Vss in Absolute Maximum Ratings. Added the characteristic, DC5a to Operating MIPS vs. Voltage (see Table 31-1). Updated or added the following parameters to the Operating Current (IDD) DC Characteristics: DC20, DC20b, DC23, and DC23b (see Table 31-5). Added the following parameters to the Idle Current (IIDLE) DC Characteristics: DC30b, DC33b, DC34c, DC35c, and DC36c (see Table 31-6). Added the following parameters to the Power-down Current (IPD) DC Characteristics: DC40g, DC40h, DC40i, and DC41g, (see Table 31-7). Added parameter IM51 and Note 3 to the I2Cx Bus Data Timing Requirements (Master Mode) (see Table 31-32). Updated the 10-bit ADC Conversion Rate Parameters (see Table 31-37). Updated parameter AD57 (TSAMP) in the Analog-to-Digital Conversion Timing Requirements (see Table 31-38). 32.0 “Packaging Information” Updated the 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] packing diagram. Product Identification System Added the new V-Temp (V) temperature information. © 2009-2011 Microchip Technology Inc. DS61156G-page 249 PIC32MX5XX/6XX/7XX NOTES: DS61156G-page 250 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX INDEX A D AC Characteristics ............................................................ 194 10-bit Conversion Rate Parameters.......................... 216 ADC Specifications ................................................... 214 Analog-to-Digital Conversion Requirements............. 217 EJTAG Timing Requirements ................................... 224 Ethernet .................................................................... 213 Internal FRC Accuracy.............................................. 196 Internal RC Accuracy ................................................ 197 OTG Electrical Specifications ................................... 223 Parallel Master Port Read Requirements ................. 221 Parallel Master Port Write ......................................... 222 Parallel Master Port Write Requirements.................. 222 Parallel Slave Port Requirements ............................. 220 PLL Clock Timing...................................................... 196 Analog-to-Digital Converter (ADC).................................... 153 Assembler MPASM Assembler................................................... 180 DC Characteristics............................................................ 184 I/O Pin Input Specifications ...................................... 189 I/O Pin Output Specifications.................................... 190 Idle Current (IIDLE) .................................................... 186 Operating Current (IDD) ............................................ 185 Power-Down Current (IPD)........................................ 187 Program Memory...................................................... 191 Temperature and Voltage Specifications.................. 184 Development Support ....................................................... 179 Direct Memory Access (DMA) Controller.......................... 129 B Block Diagrams ADC Module.............................................................. 153 Comparator I/O Operating Modes............................. 159 Comparator Voltage Reference ................................ 161 Connections for On-Chip Voltage Regulator............. 174 Core and Peripheral Modules ..................................... 31 DMA .......................................................................... 129 Ethernet Controller.................................................... 157 I2C Circuit ................................................................. 146 Input Capture ............................................................ 139 Interrupt Controller .................................................... 121 JTAG Programming, Debugging and Trace Ports .... 175 MCU............................................................................ 49 Output Compare Module........................................... 141 PIC32 CAN Module................................................... 155 PMP Pinout and Connections to External Devices ... 149 Prefetch Module........................................................ 127 Reset System............................................................ 119 RTCC ........................................................................ 151 SPI Module ............................................................... 143 Timer1....................................................................... 135 Timer2/3/4/5 (16-Bit) ................................................. 137 Typical Multiplexed Port Structure ............................ 133 UART ........................................................................ 147 WDT and Power-up Timer ........................................ 173 Brown-out Reset (BOR) and On-Chip Voltage Regulator................................ 174 C C Compilers MPLAB C18 .............................................................. 180 Clock Diagram .................................................................. 125 Comparator Specifications............................................................ 192 Comparator Module .......................................................... 159 Comparator Voltage Reference (CVref ............................. 161 Configuration Bit ............................................................... 165 Controller Area Network (CAN)......................................... 155 CPU Module........................................................................ 43 Customer Change Notification Service ............................. 253 Customer Notification Service........................................... 253 Customer Support ............................................................. 253 E Electrical Characteristics .................................................. 183 AC............................................................................. 194 Errata .................................................................................. 29 Ethernet Controller............................................................ 157 External Clock Timer1 Timing Requirements ................................... 200 Timer2, 3, 4, 5 Timing Requirements ....................... 201 Timing Requirements ............................................... 195 F Flash Program Memory .................................................... 117 RTSP Operation ....................................................... 117 I I/O Ports ........................................................................... 133 Parallel I/O (PIO) ...................................................... 134 Instruction Set................................................................... 177 Inter-Integrated Circuit (I2C) ............................................. 145 Internal Voltage Reference Specifications........................ 193 Internet Address ............................................................... 253 Interrupt Controller............................................................ 121 IRG, Vector and Bit Location .................................... 122 M MCU Architecture Overview ................................................ 50 Coprocessor 0 Registers ............................................ 52 Core Exception Types ................................................ 53 EJTAG Debug Support............................................... 54 Power Management ................................................... 54 MCU Module....................................................................... 49 Memory Map....................................................................... 60 Memory Maps ............................................. 56, 57, 58, 59, 61 Memory Organization ......................................................... 55 Layout......................................................................... 55 Microchip Internet Web Site.............................................. 253 Migration PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX......... 239 MPLAB ASM30 Assembler, Linker, Librarian ................... 180 MPLAB Integrated Development Environment Software.. 179 MPLAB PM3 Device Programmer .................................... 182 MPLAB REAL ICE In-Circuit Emulator System ................ 181 MPLINK Object Linker/MPLIB Object Librarian ................ 180 O Open-Drain Configuration................................................. 134 Oscillator Configuration .................................................... 125 Output Compare ............................................................... 141 P Packaging ......................................................................... 225 © 2009-2011 Microchip Technology Inc. DS61156G-page 251 PIC32MX5XX/6XX/7XX Details ....................................................................... 227 Marking ..................................................................... 225 Parallel Master Port (PMP) ............................................... 149 PIC32 Family USB Interface Diagram............................... 132 Pinout I/O Descriptions (table) ............................................ 32 Power-on Reset (POR) and On-Chip Voltage Regulator ................................ 174 Power-Saving Features..................................................... 163 CPU Halted Methods ................................................ 163 Operation .................................................................. 163 with CPU Running..................................................... 163 Prefetch Cache ................................................................. 127 Program Flash Memory Wait State Characteristics......................................... 192 R Reader Response ............................................................. 254 Real-Time Clock and Calendar (RTCC)............................ 151 Register Maps ............................................................. 62–116 Registers DDPCON (Debug Data Port Control)........................ 176 DEVCFG0 (Device Configuration Word 0 ................. 166 DEVCFG1 (Device Configuration Word 1 ................. 168 DEVCFG2 (Device Configuration Word 2 ................. 170 DEVCFG3 (Device Configuration Word 3 ................. 171 DEVID (Device and Revision ID) .............................. 172 Resets ............................................................................... 119 Revision History ................................................................ 240 S Serial Peripheral Interface (SPI) ....................................... 143 Software Simulator (MPLAB SIM)..................................... 181 Special Features ............................................................... 165 T Timer1 Module .................................................................. 135 Timer2/3, Timer4/5 Modules ............................................. 137 Timing Diagrams 10-bit Analog-to-Digital Conversion (ASAM = 0, SSRC<2:0> = 000) ................................................ 218 10-bit Analog-to-Digital Conversion (CHPS<1:0> = 01, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)............................................................... 219 CAN I/O..................................................................... 212 EJTAG ...................................................................... 224 External Clock ........................................................... 194 DS61156G-page 252 I/O Characteristics .................................................... 197 I2Cx Bus Data (Master Mode) .................................. 208 I2Cx Bus Data (Slave Mode) .................................... 210 I2Cx Bus Start/Stop Bits (Master Mode)................... 208 I2Cx Bus Start/Stop Bits (Slave Mode)..................... 210 Input Capture (CAPx) ............................................... 201 OCx/PWM................................................................. 202 Output Compare (OCx)............................................. 202 Parallel Master Port Read......................................... 221 Parallel Master Port Write......................................... 222 Parallel Slave Port .................................................... 220 SPIx Master Mode (CKE = 0) ................................... 203 SPIx Master Mode (CKE = 1) ................................... 204 SPIx Slave Mode (CKE = 0) ..................................... 205 SPIx Slave Mode (CKE = 1) ..................................... 206 Timer1, 2, 3, 4, 5 External Clock .............................. 200 UART Reception....................................................... 148 UART Transmission (8-bit or 9-bit Data) .................. 148 Timing Requirements CLKO and I/O ........................................................... 197 Timing Specifications CAN I/O Requirements ............................................. 212 I2Cx Bus Data Requirements (Master Mode)........... 209 I2Cx Bus Data Requirements (Slave Mode)............. 211 Input Capture Requirements..................................... 201 Output Compare Requirements................................ 202 Simple OCx/PWM Mode Requirements ................... 202 SPIx Master Mode (CKE = 0) Requirements............ 203 SPIx Master Mode (CKE = 1) Requirements............ 204 SPIx Slave Mode (CKE = 1) Requirements.............. 206 SPIx Slave Mode Requirements (CKE = 0).............. 205 U UART ................................................................................ 147 USB On-The-Go (OTG) .................................................... 131 V VCAP/VCORE pin ................................................................ 174 Voltage Reference Specifications..................................... 193 Voltage Regulator (On-Chip) ............................................ 174 W Watchdog Timer (WDT).................................................... 173 WWW Address ................................................................. 253 WWW, On-Line Support ..................................................... 29 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: Users of Microchip products can receive assistance through several channels: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives • • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://microchip.com/support CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions. © 2009-2011 Microchip Technology Inc. DS61156G-page 253 PIC32MX5XX/6XX/7XX READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. TO: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ FAX: (______) _________ - _________ Application (optional): Would you like a reply? Y N Device: PIC32MX5XX/6XX/7XX Literature Number: DS61156G Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS61156G-page 254 © 2009-2011 Microchip Technology Inc. PIC32MX5XX/6XX/7XX PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PIC32 MX 5XX F 512 H T - 80 I / PT - XXX Example: PIC32MX575F256H-80I/PT: General purpose PIC32, 32-bit RISC MCU, 256 KB program memory, 64-pin, Industrial temperature, TQFP package. Microchip Brand Architecture Product Groups Flash Memory Family Program Memory Size (KB) Pin Count Tape and Reel Flag (if applicable) Speed Temperature Range Package Pattern Flash Memory Family Architecture MX = 32-bit RISC MCU core Product Groups 5XX = General purpose microcontroller family 6XX = General purpose microcontroller family 7XX = General purpose microcontroller family Flash Memory Family F = Flash program memory Program Memory Size 256 = 256K 512 = 512K Pin Count H L = 64-pin = 100-pin Speed 80 = 80 MHz Temperature Range I V = -40°C to +85°C (Industrial) = -40°C to +105°C (V-Temp) Package PT PT PF MR BG = = = = = Pattern Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat) 121-Lead (10x10x1.1 mm) XBGA (Plastic Thin Profile Ball Grid Array) © 2009-2011 Microchip Technology Inc. DS61156G-page 255 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 DS61156G-page 256 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 05/02/11 © 2009-2011 Microchip Technology Inc.