FREESCALE MC9328MX1

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MC9328MX1
Rev. 7, 12/2006
MC9328MX1
Package Information
Plastic Package
Case 1304B-01
(MAPBGA–225)
MC9328MX1
Ordering Information
See Table 1 on page 3
1
Introduction
The i.MX Family of applications processors provides a
leap in performance with an ARM9™ microprocessor
core and highly integrated system functions. The i.MX
family specifically addresses the requirements of the
personal, portable product market by providing
intelligent integrated peripherals, an advanced processor
core, and power management capabilities.
Contents
1
2
3
4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Signals and Connections . . . . . . . . . . . . . . . 4
Electrical Characteristics . . . . . . . . . . . . . . 22
Functional Description and Application
Information . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Pin-Out and Package Information . . . . . . . . 96
6 Product Documentation . . . . . . . . . . . . . . . . 98
Contact Information . . . . . . . . . . . . . . . Last Page
The MC9328MX1 (i.MX1) processor features the
advanced and power-efficient ARM920T™ core that
operates at speeds up to 200 MHz. Integrated modules,
which include a USB device, an LCD controller, and an
MMC/SD host controller, support a suite of peripherals
to enhance portable products seeking to provide a rich
multimedia experience. It is packaged in a 256-contact
Mold Array Process-Ball Grid Array (MAPBGA).
Figure 1 shows the functional block diagram of the
i.MX1 processor.
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its
products.
© Freescale Semiconductor, Inc., 2004, 2005, 2006. All rights reserved.
Introduction
System Control
JTAG/ICE
Bootstrap
Power
Control
CGM
(DPLLx2)
Standard
System I/O
GPIO
Connectivity
PWM
MC9328MX1
MMC/SD
RTC
ARM9TDMI™
SPI 1 and
SPI 2
UART 1
Timer 1 & 2
CPU Complex
Memory Stick®
Host Controller
Watchdog
D Cache
I Cache
UART 2 & 3
SSI/I2S 1 & 2
AIPI 1
Interrupt
Controller
VMMU
I2C
USB Device
AIPI 2
DMAC
(11 Chnl)
Bus
Control
SmartCard I/F
Bluetooth
Accelerator
EIM &
SDRAMC
eSRAM
(128K)
Multimedia
Multimedia
Accelerator
Video Port
Human Interface
Analog Signal
Processor
LCD Controller
Figure 1. i.MX1 Functional Block Diagram
1.1
Features
To support a wide variety of applications, the processor offers a robust array of features, including the following:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
ARM920T™ Microprocessor Core
AHB to IP Bus Interfaces (AIPIs)
External Interface Module (EIM)
SDRAM Controller (SDRAMC)
DPLL Clock and Power Control Module
Three Universal Asynchronous Receiver/Transmitters (UART 1, UART 2, and UART3)
Two Serial Peripheral Interfaces (SPI1 and SPI2)
Two General-Purpose 32-bit Counters/Timers
Watchdog Timer
Real-Time Clock/Sampling Timer (RTC)
LCD Controller (LCDC)
Pulse-Width Modulation (PWM) Module
Universal Serial Bus (USB) Device
Multimedia Card and Secure Digital (MMC/SD) Host Controller Module
Memory Stick® Host Controller (MSHC)
Direct Memory Access Controller (DMAC)
Two Synchronous Serial Interfaces and an Inter-IC Sound (SSI1 and SSI2/I2S) Module
Inter-IC (I2C) Bus Module
Video Port
MC9328MX1 Technical Data, Rev. 7
2
Freescale Semiconductor
Introduction
•
•
•
•
•
•
•
•
1.2
General-Purpose I/O (GPIO) Ports
Bootstrap Mode
Analog Signal Processing (ASP) Module
Bluetooth™ Accelerator (BTA)
Multimedia Accelerator (MMA)
Power Management Features
Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O
256-pin MAPBGA Package
Target Applications
The i.MX1 processor is targeted for advanced information appliances, smart phones, Web browsers, based
on the popular Palm OS platform, and messaging applications such as wireless cellular products, including the
AccompliTM 008 GSM/GPRS interactive communicator.
1.3
Ordering Information
Table 1 provides ordering information.
Table 1. Ordering Information
Package Type
Frequency
Temperature
Solderball Type
Order Number
256-lead MAPBGA
200 MHz
0°C to 70°C
Pb-free
MC9328MX1VM20(R2)
-30°C to 70°C
Pb-free
MC9328MX1DVM20(R2)
0°C to 70°C
Pb-free
MC9328MX1VM15(R2)
-30°C to 70°C
Pb-free
MC9328MX1DVM15(R2)
-40°C to 85°C
Pb-free
MC9328MX1CVM15(R2)
150 MHz
1.4
Conventions
This document uses the following conventions:
•
•
•
•
•
•
•
•
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.
Logic level one is a voltage that corresponds to Boolean true (1) state.
Logic level zero is a voltage that corresponds to Boolean false (0) state.
To set a bit or bits means to establish logic level one.
To clear a bit or bits means to establish logic level zero.
A signal is an electronic construct whose state conveys or changes in state convey information.
A pin is an external physical connection. The same pin can be used to connect a number of signals.
Asserted means that a discrete signal is in active logic state.
— Active low signals change from logic level one to logic level zero.
— Active high signals change from logic level zero to logic level one.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
3
Signals and Connections
•
•
•
2
Negated means that an asserted discrete signal changes logic state.
— Active low signals change from logic level zero to logic level one.
— Active high signals change from logic level one to logic level zero.
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to
low and high bytes or words are spelled out.
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x
are hexadecimal.
Signals and Connections
Table 2 identifies and describes the i.MX1 processor signals that are assigned to package pins. The signals
are grouped by the internal module that they are connected to.
Table 2. i.MX1 Signal Descriptions
Signal Name
Function/Notes
External Bus/Chip-Select (EIM)
A[24:0]
Address bus signals
D[31:0]
Data bus signals
EB0
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24].
EB1
Byte Strobe—Active low external enable byte signal that controls D [23:16].
EB2
Byte Strobe—Active low external enable byte signal that controls D [15:8].
EB3
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0].
OE
Memory Output Enable—Active low output enables external data bus.
CS [5:0]
Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the
Function Multiplexing Control Register (FMCR). By default CSD [1:0] is selected.
ECB
Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an
on-going burst sequence and initiate a new (long first access) burst sequence.
LBA
Active low signal sent by a flash device causing the external burst device to latch the starting burst
address.
BCLK (burst clock)
Clock signal sent to external synchronous memories (such as burst flash) during burst mode.
RW
RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE input
signal by external DRAM.
DTACK
DTACK signal—The external input data acknowledge signal. When using the external DTACK signal
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not
terminated by the external DTACK signal after 1022 clock counts have elapsed.
Bootstrap
BOOT [3:0]
System Boot Mode Select—The operational system boot mode of the i.MX1 processor upon system
reset is determined by the settings of these pins.
SDRAM Controller
SDBA [4:0]
SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals
are logically equivalent to core address p_addr [25:21] in SDRAM cycles.
MC9328MX1 Technical Data, Rev. 7
4
Freescale Semiconductor
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name
Function/Notes
SDIBA [3:0]
SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These
signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.
MA [11:10]
SDRAM address signals
MA [9:0]
SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on
SDRAM cycles.
DQM [3:0]
SDRAM data enable
CSD0
SDRAM Chip-select signal which is multiplexed with the CS2 signal. These two signals are selectable
by programming the system control register.
CSD1
SDRAM Chip-select signal which is multiplexed with CS3 signal. These two signals are selectable by
programming the system control register. By default, CSD1 is selected, so it can be used as boot
chip-select by properly configuring BOOT [3:0] input pins.
RAS
SDRAM Row Address Select signal
CAS
SDRAM Column Address Select signal
SDWE
SDRAM Write Enable signal
SDCKE0
SDRAM Clock Enable 0
SDCKE1
SDRAM Clock Enable 1
SDCLK
SDRAM Clock
RESET_SF
Not Used
Clocks and Resets
EXTAL16M
Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut
down.
XTAL16M
Crystal output
EXTAL32K
32 kHz crystal input
XTAL32K
32 kHz crystal output
CLKO
Clock Out signal selected from internal clock signals.
RESET_IN
Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all
modules (except the reset module and the clock control module) are reset.
RESET_OUT
Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the
following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.
POR
Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally
generated by an external RC circuit designed to detect a power-up event.
JTAG
TRST
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.
TDO
Serial Output for test instructions and data. Changes on the falling edge of TCK.
TDI
Serial Input for test instructions and data. Sampled on the rising edge of TCK.
TCK
Test Clock to synchronize test logic and control register access through the JTAG port.
TMS
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge of
TCK.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
5
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name
Function/Notes
DMA
DMA_REQ
DMA Request—external DMA request signal. Multiplexed with SPI1_SPI_RDY.
BIG_ENDIAN
Big Endian—Input signal that determines the configuration of the external chip-select space. If it is
driven logic-high at reset, the external chip-select space will be configured to big endian. If it is driven
logic-low at reset, the external chip-select space will be configured to little endian. This input must not
change state after power-on reset negates or during chip operation.
ETM
ETMTRACESYNC
ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.
ETMTRACECLK
ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.
ETMPIPESTAT [2:0]
ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM
mode.
ETMTRACEPKT [7:0] ETM packet signals which are multiplexed with ECB, LBA, BCLK (burst clock), PA17, A [19:16].
ETMTRACEPKT [7:0] are selected in ETM mode.
CMOS Sensor Interface
CSI_D [7:0]
Sensor port data
CSI_MCLK
Sensor port master clock
CSI_VSYNC
Sensor port vertical sync
CSI_HSYNC
Sensor port horizontal sync
CSI_PIXCLK
Sensor port data latch clock
LCD Controller
LD [15:0]
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.
FLM/VSYNC
Frame Sync or Vsync—This signal also serves as the clock signal output for the gate
driver (dedicated signal SPS for Sharp panel HR-TFT).
LP/HSYNC
Line pulse or H sync
LSCLK
Shift clock
ACD/OE
Alternate crystal direction/output enable.
CONTRAST
This signal is used to control the LCD bias voltage as contrast control.
SPL_SPR
Program horizontal scan direction (Sharp panel dedicated signal).
PS
Control signal output for source driver (Sharp panel dedicated signal).
CLS
Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated
signal).
REV
Signal for common electrode driving signal preparation (Sharp panel dedicated signal).
SIM
SIM_CLK
SIM Clock
SIM_RST
SIM Reset
SIM_RX
Receive Data
MC9328MX1 Technical Data, Rev. 7
6
Freescale Semiconductor
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name
Function/Notes
SIM_TX
Transmit Data
SIM_PD
Presence Detect Schmitt trigger input
SIM_SVEN
SIM Vdd Enable
SPI 1 and SPI 2
SPI1_MOSI
Master Out/Slave In
SPI1_MISO
Slave In/Master Out
SPI1_SS
Slave Select (Selectable polarity)
SPI1_SCLK
Serial Clock
SPI1_SPI_RDY
Serial Data Ready
SPI2_TXD
SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as a primary or
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in
the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.
SPI2_RXD
SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a primary or
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in
the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.
SPI2_SS
SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative
signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the
MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.
SPI2_SCLK
SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative
signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the
MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.
General Purpose Timers
TIN
Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers
simultaneously.
TMR2OUT
Timer 2 Output
USB Device
USBD_VMO
USB Minus Output
USBD_VPO
USB Plus Output
USBD_VM
USB Minus Input
USBD_VP
USB Plus Input
USBD_SUSPND
USB Suspend Output
USBD_RCV
USB Receive Data
USBD_ROE
USB OE
USBD_AFE
USB Analog Front End Enable
Secure Digital Interface
SD_CMD
SD Command—If the system designer does not wish to make use of the internal pull-up, via the Pull-up
enable register, a 4.7K–69K external pull up resistor must be added.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
7
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name
Function/Notes
SD_CLK
MMC Output Clock
SD_DAT [3:0]
Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable
register, a 50K–69K external pull up resistor must be added.
Memory Stick Interface
MS_BS
Memory Stick Bus State (Output)—Serial bus control signal
MS_SDIO
Memory Stick Serial Data (Input/Output)
MS_SCLKO
Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider
MS_SCLKI
Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test
purposes, not for use in application mode.
MS_PI0
General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect
MS_PI1
General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect
UARTs – IrDA/Auto-Bauding
UART1_RXD
Receive Data
UART1_TXD
Transmit Data
UART1_RTS
Request to Send
UART1_CTS
Clear to Send
UART2_RXD
Receive Data
UART2_TXD
Transmit Data
UART2_RTS
Request to Send
UART2_CTS
Clear to Send
UART2_DSR
Data Set Ready
UART2_RI
Ring Indicator
UART2_DCD
Data Carrier Detect
UART2_DTR
Data Terminal Ready
UART3_RXD
Receive Data
UART3_TXD
Transmit Data
UART3_RTS
Request to Send
UART3_CTS
Clear to Send
UART3_DSR
Data Set Ready
UART3_RI
Ring Indicator
UART3_DCD
Data Carrier Detect
UART3_DTR
Data Terminal Ready
Serial Audio Port – SSI (configurable to I2S protocol)
SSI_TXDAT
Transmit Data
SSI_RXDAT
Receive Data
MC9328MX1 Technical Data, Rev. 7
8
Freescale Semiconductor
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name
Function/Notes
SSI_TXCLK
Transmit Serial Clock
SSI_RXCLK
Receive Serial Clock
SSI_TXFS
Transmit Frame Sync
SSI_RXFS
Receive Frame Sync
SSI2_TXDAT
TxD
SSI2_RXDAT
RxD
SSI2_TXCLK
Transmit Serial Clock
SSI2_RXCLK
Receive Serial Clock
SSI2_TXFS
Transmit Frame Sync
SSI2_RXFS
Receive Frame Sync
I2C
I2C_SCL
I2C Clock
I2C_SDA
I2C Data
PWM
PWMO
PWM Output
ASP
UIN
Positive U analog input (for low voltage, temperature measurement)
UIP
Negative U analog input (for low voltage, temperature measurement)
PX1
Positive pen-X analog input
PY1
Positive pen-Y analog input
PX2
Negative pen-X analog input
PY2
Negative pen-Y analog input
R1A
Positive resistance input (a)
R1B
Positive resistance input (b)
R2A
Negative resistance input (a)
R2B
Negative resistance input (b)
RVP
Positive reference for pen ADC
RVM
Negative reference for pen ADC
AVDD
Analog power supply
AGND
Analog ground
BlueTooth
BT1
I/O clock signal
BT2
Output
BT3
Input
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
9
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name
Function/Notes
BT4
Input
BT5
Output
BT6
Output
BT7
Output
BT8
Output
BT9
Output
BT10
Output
BT11
Output
BT12
Output
BT13
Output
BTRF VDD
Power supply from external BT RFIC
BTRF GND
Ground from external BT RFIC
Test Function
TRISTATE
Forces all I/O signals to high impedance for test purposes. For normal operation, terminate this input
with a 1 k ohm resistor to ground. (TRI-STATE® is a registered trademark of National Semiconductor.)
Digital Supply Pins
NVDD
Digital Supply for the I/O pins
NVSS
Digital Ground for the I/O pins
Supply Pins – Analog Modules
AVDD
Supply for analog blocks
Internal Power Supply
QVDD
Power supply pins for silicon internal circuitry
QVSS
Ground pins for silicon internal circuitry
2.1
I/O Pads Power Supply and Signal Multiplexing Scheme
This section describes detailed information about both the power supply for each I/O pin and its function
multiplexing scheme. The user can reference information provided in Table 6 on page 23 to configure the
power supply scheme for each device in the system (memory and external peripherals). The function
multiplexing information also shown in Table 6 allows the user to select the function of each pin by
configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions.
MC9328MX1 Technical Data, Rev. 7
10
Freescale Semiconductor
reescale Semiconductor
Table 3. MC9328MX1 Signal Multiplexing Scheme
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
MC9328MX1 Technical Data, Rev. 7
K8
NVDD1
Static
NVDD1
B1
A24
O
NVDD1
C2
D31
I/O
NVDD1
C1
A23
O
NVDD1
D2
D30
I/O
NVDD1
D1
A22
O
NVDD1
D3
D29
I/O
NVDD1
E2
A21
O
NVDD1
E3
D28
I/O
NVDD1
E1
A20
O
NVDD1
F2
D27
I/O
NVDD1
F4
A19
O
NVDD1
E4
D26
I/O
A1
VSS
Static
NVDD1
H5
NVDD1
Static
NVDD1
F1
A18
O
NVDD1
F3
D25
I/O
NVDD1
G2
A17
O
NVDD1
G3
D24
I/O
NVDD1
F5
A16
O
NVDD1
G4
D23
I/O
NVDD1
G1
A15
O
NVDD1
H2
D22
I/O
NVDD1
H3
A14
O
Pull-up
GPIO
Signal
Dir
Mux
Pull-up
Ain
ETMTRACESYN
C
O
PA0
69K
SPI2_CLK
69K
Aout
L
O
PA31
69K
69K
L
A23
Pull-H
ETMPIPESTAT2
O
PA30
69K
69K
L
A22
Pull-H
ETMPIPESTAT1
O
PA29
69K
69K
L
A21
Pull-H
ETMPIPESTAT0
O
PA28
69K
69K
L
A20
Pull-H
ETMTRACEPKT3
O
PA27
69K
69K
L
A19
Pull-H
ETMTRACEPKT2
O
PA26
69K
69K
L
A18
Pull-H
ETMTRACEPKT1
O
PA25
69K
69K
L
A17
Pull-H
ETMTRACEPKT0
O
PA24
69K
L
Pull-H
L
69K
A24
Pull-H
ETMTRACECLK
69K
Bin
RESE
Default
State (At/After)
Pull-H
L
A16
11
Signals and Connections
NVDD1
Alternate
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
Pull-up
69K
NVDD1
G5
D21
I/O
NVDD1
H1
A13
O
NVDD1
H4
D20
I/O
T1
VSS
Static
H9
QVDD1
Static
H8
VSS
Static
NVDD1
J5
NVDD1
Static
NVDD1
J1
A12
O
NVDD1
J4
D19
I/O
NVDD1
J2
A11
O
NVDD1
J3
D18
I/O
NVDD1
K1
A10
O
NVDD1
K4
D17
I/O
NVDD1
K3
A9
O
NVDD1
K2
D16
I/O
NVDD1
L1
A8
O
NVDD1
L4
D15
I/O
NVDD1
L2
A7
O
NVDD1
L5
D14
I/O
K6
VSS
Static
NVDD1
K5
NVDD1
Static
NVDD1
M4
A6
O
NVDD1
L3
D13
I/O
NVDD1
M1
A5
O
NVDD1
M2
D12
I/O
QVDD1
Alternate
Signal
GPIO
Dir
Mux
Pull-up
Ain
Bin
Aout
RESE
Default
State (At/After)
Pull-H
L
69K
Pull-H
MC9328MX1 Technical Data, Rev. 7
L
69K
Pull-H
L
69K
Pull-H
L
69K
Pull-H
L
69K
Pull-H
L
69K
Pull-H
L
69K
Pull-H
Freescale Semiconductor
L
69K
Pull-H
L
69K
Pull-H
Signals and Connections
12
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
reescale Semiconductor
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
Alternate
Pull-up
Signal
GPIO
Dir
Mux
Pull-up
Ain
Bin
Aout
RESE
Default
State (At/After)
MC9328MX1 Technical Data, Rev. 7
NVDD1
N1
A4
O
L
NVDD1
M3
D11
I/O
NVDD1
P3
EB0
O
NVDD1
N3
D10
I/O
NVDD1
P1
A3
O
L
NVDD1
N2
EB1
O
H
NVDD1
P2
D9
I/O
NVDD1
R1
EB2
O
M6
VSS
Static
NVDD1
H6
NVDD1
Static
NVDD1
T2
A2
O
L
NVDD1
R2
EB3
O
H
NVDD1
R5
D8
I/O
NVDD1
T3
OE
O
H
NVDD1
R3
A1
O
L
NVDD1
T4
CS5
O
NVDD1
N4
D7
I/O
NVDD1
R4
CS4
O
PA22
69K
Pull-H
PA22
NVDD1
N5
A0
O
PA21
69K
L
A0
NVDD1
P4
CS3
O
H
CSD1
NVDD1
P5
D6
I/O
NVDD1
T5
CS2
O
H7
VSS
Static
NVDD1
J6
NVDD1
Static
NVDD1
M5
SDCLK
O
69K
Pull-H
H
69K
Pull-H
69K
Pull-H
H
69K
Pull-H
PA23
69K
69K
Pull-H
PA23
Pull-H
CSD1
Pull-H
CSD0
H
H
CSD0
13
Signals and Connections
69K
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
Alternate
Pull-up
Signal
GPIO
Dir
Mux
Pull-up
Ain
Bin
Aout
RESE
Default
State (At/After)
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
NVDD1
T6
CS1
O
H
NVDD1
T7
CS0
O
H1
NVDD1
R6
D5
I/O
NVDD1
P6
ECB
I
NVDD1
N6
D4
I/O
NVDD1
R7
LBA
O
NVDD1
P8
D3
I/O
NVDD1
R8
BCLK
NVDD1
P7
D2
I/O
J7
VSS
Static
NVDD1
L6
NVDD1
Static
NVDD1
N7
DTACK
I
NVDD1
N8
D1
I/O
NVDD1
M7
RW
NVDD1
T8
MA11
O
L
NVDD1
M8
MA10
O
L
NVDD1
R9
D0
I/O
K7
VSS
Static
NVDD1
P9
DQM3
O
L
NVDD1
T9
DQM2
O
L
NVDD1
N9
DQM1
O
L
NVDD1
R10
DQM0
O
L
NVDD1
M9
RAS
O
H
NVDD1
L8
CAS
O
H
NVDD1
J8
NVDD1
Static
69K
Pull-H
ETMTRACEPKT7
PA20
69K
Pull-H
69K
Pull-H
ETMTRACEPKT6
PA19
69K
H
69K
PA18
69K
L
69K
BCLK
Pull-H
ETMTRACEPKT4
PA17
69K
SPI2_SS
A25
Pull-H
Pull-H
H
69K
LBA
Pull-H
ETMTRACEPKT5
69K
ECB
Pull-H
PA17
Signals and Connections
14
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
reescale Semiconductor
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
Alternate
Pull-up
Signal
GPIO
Dir
Mux
Pull-up
Ain
Bin
Aout
RESE
Default
State (At/After)
MC9328MX1 Technical Data, Rev. 7
NVDD1
T10
SDWE
O
H
NVDD1
R11
SDCKE0
O
H
NVDD1
P10
SDCKE1
O
H
NVDD1
N10
RESET_SF
O
L/H
NVDD1
T11
CLKO
O
L
L7
VSS
Static
AVDD1
T12
AVDD1
Static
AVDD1
M10
RESET_IN
I
AVDD1
N11
RESET_OUT
O
L/H
AVDD1
R12
POR
I
H/L2
AVDD1
M11
BIG_ENDIAN
I
Hiz3
AVDD1
P11
BOOT3
I
Hiz4
AVDD1
N12
BOOT2
I
Hiz4
AVDD1
R13
BOOT1
I
Hiz4
AVDD1
P12
BOOT0
I
Hiz4
AVDD1
T13
TRISTATE
I
Hiz4
AVDD1
P13
TRST
I
QVDD2
R15
QVDD2
Static
T16
VSS
Static
AVDD1
T14
EXTAL16M
I
AVDD1
T15
XTAL16M
O
AVDD1
R16
EXTAL32K
I
AVDD1
P16
XTAL32K
O
NVDD2
K10
NVDD2
Static
69K
69K
L/H2
H
Hiz
15
Signals and Connections
Hiz
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
Alternate
Pull-up
Signal
GPIO
Dir
Mux
Pull-up
Ain
Bin
Aout
RESE
Default
State (At/After)
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
NVDD2
R14
TDO
O
NVDD2
N15
TMS
I
69K
Pull-H
NVDD2
L9
TCK
I
69K
Pull-H
NVDD2
N16
TDI
I
69K
Pull-H
NVDD2
P14
I2C_SCL
O
PA16
69K
Pull-H
PA16
NVDD2
P15
I2C_SDA
I/O
PA15
69K
Pull-H
PA15
NVDD2
N13
CSI_PIXCLK
I
PA14
69K
Pull-H
PA14
NVDD2
M13
CSI_HSYNC
I
PA13
69K
Pull-H
PA13
NVDD2
M14
CSI_VSYNC
I
PA12
69K
Pull-H
PA12
NVDD2
N14
CSI_D7
I
PA11
69K
Pull-H
PA11
NVDD2
M15
CSI_D6
I
PA10
69K
Pull-H
PA10
NVDD2
M16
CSI_D5
I
PA9
69K
Pull-H
PA9
NVDD2
J10
VSS
Static
NVDD2
M12
CSI_D4
I
PA8
69K
Pull-H
PA8
NVDD2
L16
CSI_D3
I
PA7
69K
Pull-H
PA7
NVDD2
L15
CSI_D2
I
PA6
69K
Pull-H
PA6
NVDD2
L14
CSI_D1
I
PA5
69K
Pull-H
PA5
NVDD2
L13
CSI_D0
I
PA4
69K
Pull-H
PA4
NVDD2
L12
CSI_MCLK
O
PA3
69K
Pull-H
PA3
NVDD2
L11
PWMO
O
PA2
69K
Pull-H
PA2
NVDD2
L10
TIN
I
PA1
69K
Pull-H
PA1
NVDD2
K15
TMR2OUT
O
PD31
69K
Pull-H
PD31
NVDD2
K16
LD15
O
PD30
69K
Pull-H
PD30
NVDD2
K14
LD14
O
PD29
69K
Pull-H
PD29
NVDD2
K13
LD13
O
PD28
69K
Pull-H
PD28
Hiz5
SPI2_RxD
SPI2_TxD
Signals and Connections
16
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
reescale Semiconductor
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
Alternate
Pull-up
Signal
GPIO
Dir
Ain
Bin
Aout
RESE
Default
State (At/After)
Mux
Pull-up
PD27
69K
Pull-H
PD27
MC9328MX1 Technical Data, Rev. 7
K12
LD12
O
QVDD3
J15
QVDD3
Static
J16
VSS
Static
NVDD2
K9
NVDD2
Static
NVDD2
J14
LD11
O
PD26
69K
Pull-H
PD26
NVDD2
K11
LD10
O
PD25
69K
Pull-H
PD25
NVDD2
H15
LD9
O
PD24
69K
Pull-H
PD24
NVDD2
J13
LD8
O
PD23
69K
Pull-H
PD23
NVDD2
J12
LD7
O
PD22
69K
Pull-H
PD22
NVDD2
J11
LD6
O
PD21
69K
Pull-H
PD21
NVDD2
H14
LD5
O
PD20
69K
Pull-H
PD20
NVDD2
H13
LD4
O
PD19
69K
Pull-H
PD19
NVDD2
H16
LD3
O
PD18
69K
Pull-H
PD18
NVDD2
H12
LD2
O
PD17
69K
Pull-H
PD17
NVDD2
G16
LD1
O
PD16
69K
Pull-H
PD16
NVDD2
H11
LD0
O
PD15
69K
Pull-H
PD15
NVDD2
G15
FLM/VSYNC
O
PD14
69K
Pull-H
PD14
NVDD2
G14
LP/HSYNC
O
PD13
69K
Pull-H
PD13
NVDD2
G13
ACD/OE
O
PD12
69K
Pull-H
PD12
NVDD2
G12
CONTRAST
O
PD11
69K
Pull-H
PD11
NVDD2
F16
SPL_SPR
O
UART2_DSR
O
PD10
69K
Pull-H
PD10
NVDD2
H10
PS
O
UART2_RI
O
PD9
69K
Pull-H
PD9
NVDD2
G11
CLS
O
UART2_DCD
O
PD8
69K
SPI2_SS
Pull-H
PD8
NVDD2
F12
REV
O
UART2_DTR
I
PD7
69K
SPI2_CLK
Pull-H
PD7
NVDD2
F15
LSCLK
O
PD6
69K
Pull-H
PD6
SPI2_SS2
SPI2_TxD
SPI2_RxD
17
Signals and Connections
NVDD2
I/O Supply BGA
Voltage
Pin
Primary
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
Signal
Dir
J9
VSS
Static
QVDD6
E16
R2A
I
QVDD6
D16
R2B
I
QVDD6
F14
PX1
I
QVDD6
F13
PY1
I
QVDD6
E15
PX2
I
QVDD6
E14
PY2
I
QVDD6
D15
R1A
I
QVDD6
C16
R1B
I
C15
VSS
Static
AVDD26
C14
AVDD2
Static
QVDD6
B16
NC
I
QVDD6
A16
NC
I
QVDD6
B15
UIN
I
QVDD6
A15
UIP
I
QVDD6
E13
NC
I
QVDD6
D14
NC
I
QVDD6
B14
RVM
I
QVDD6
A14
RVP
I
QVDD6
D13
NC
I
QVDD6
C13
NC
I
QVDD6
E12
NC
O
Alternate
Pull-up
Signal
GPIO
Dir
Mux
Pull-up
Ain
Bin
Aout
RESE
Default
State (At/After)
qvdd
Signals and Connections
18
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
reescale Semiconductor
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
Alternate
Pull-up
Signal
GPIO
Dir
Mux
Pull-up
MC9328MX1 Technical Data, Rev. 7
QVDD6
D12
NC
O
QVDD4
A13
QVDD4
Static
B13
VSS
Static
BTRFVDD
C12
BTRFVDD
Static
BTRFVDD
B12
BT1
I
PC31
69K
BTRFVDD
F11
BT2
O
PC30
69K
BTRFVDD
A12
BT3
I
PC29
69K
BTRFVDD
E11
BT4
I
PC28
69K
BTRFVDD
A11
BT5
I/O
PC27
BTRFVDD
D11
BT6
O
BTRFVDD
B11
BT7
O
BTRFVDD
C11
BT8
O
BTRFVDD
G10
BT9
BTRFVDD
F10
BTRFVDD
Ain
Bin
Aout
UART3_RX
RESE
Default
State (At/After)
PC31
Hiz
PC30
Pull-H
PC29
UART3_CTS
Pull-H
PC28
69K
UART3_DCD
Pull-H
PC27
PC26
69K
SPI2_SS3
L
PC26
PC25
69K
UART3_DSR
L
PC25
SSI2_RXFS
PC24
69K
UART3_RI
Hiz
PC24
O
SSI2_RX
PC23
69K
L
PC23
BT10
O
SSI2_TX
PC22
69K
H
PC22
B10
BT11
O
SSI2_TXCLK
PC21
69K
H
PC21
BTRFVDD
E10
BT12
O
SSI2_TXFS
PC20
69K
Hiz
PC20
BTRFVDD
D10
BT13
O
SSI2_RXCLK
PC19
69K
L
PC19
C10
BTRFGND
Static
NVDD3
A10
NVDD3
Static
NVDD3
G9
SPI1_MOSI
I/O
PC17
69K
Pull-H
PC17
NVDD3
F9
SPI1_MISO
I/O
PC16
69K
Pull-H
PC16
NVDD3
E9
SPI1_SS
I/O
PC15
69K
Pull-H
PC15
NVDD3
B9
SPI1_SCLK
I/O
PC14
69K
Pull-H
PC14
NVDD3
D9
SPI1_SPI_RDY
I
PC13
69K
Pull-H
PC13
NVDD3
A9
UART1_RXD
I
PC12
69K
Pull-H
PC12
UART3_TX
UART3_RTS
UART3_DTR
DMA_Req
19
Signals and Connections
Pull-H
I/O Supply BGA
Voltage
Pin
Primary
Signal
Dir
Alternate
Pull-up
Signal
GPIO
Dir
Mux
Pull-up
Ain
Bin
Aout
RESE
Default
State (At/After)
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
NVDD3
C9
UART1_TXD
O
PC11
69K
Pull-H
PC11
NVDD3
A8
UART1_RTS
I
PC10
69K
Pull-H
PC10
NVDD3
G8
UART1_CTS
O
PC9
69K
Pull-H
PC9
NVDD3
B8
SSI_TXCLK
I/O
PC8
69K
Pull-H
PC8
NVDD3
F8
SSI_TXFS
I/O
PC7
69K
Pull-H
PC7
NVDD3
E8
SSI_TXDAT
O
PC6
69K
Pull-H
PC6
NVDD3
D8
SSI_RXDAT
I
PC5
69K
Pull-H
PC5
NVDD3
B7
SSI_RXCLK
I/O
PC4
69K
Pull-H
PC4
NVDD3
C8
SSI_RXFS
I/O
PC3
69K
Pull-H
PC3
A7
VSS
Static
NVDD4
C7
UART2_RXD
I
PB31
69K
Pull-H
PB31
NVDD4
F7
UART2_TXD
O
PB30
69K
Pull-H
PB30
NVDD4
E7
UART2_RTS
I
PB29
69K
Pull-H
PB29
NVDD4
C6
UART2_CTS
O
PB28
69K
Pull-H
PB28
NVDD4
D7
USBD_VMO
O
PB27
69K
Pull-H
PB27
NVDD4
D6
USBD_VPO
O
PB26
69K
Pull-H
PB26
NVDD4
E6
USBD_VM
I
PB25
69K
Pull-H
PB25
NVDD4
B6
USBD_VP
I
PB24
69K
Pull-H
PB24
NVDD4
D5
USBD_SUSPND
O
PB23
69K
Pull-H
PB23
NVDD4
C5
USBD_RCV
I/O
PB22
69K
Pull-H
PB22
NVDD4
B5
USBD_ROE
O
PB21
69K
Pull-H
PB21
NVDD4
A5
USBD_AFE
O
PB20
69K
Pull-H
PB20
A4
VSS
Static
NVDD4
A6
NVDD4
Static
NVDD4
G7
SIM_CLK
O
I/O PB19
69K
Pull-H
PB19
SSI_TXCLK
Signals and Connections
20
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
reescale Semiconductor
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
I/O Supply BGA
Voltage
Pin
MC9328MX1 Technical Data, Rev. 7
1
2
3
4
5
6
Primary
Signal
Dir
Alternate
Pull-up
Signal
NVDD4
F6
SIM_RST
O
SSI_TXFS
NVDD4
G6
SIM_RX
I
NVDD4
B4
SIM_TX
NVDD4
C4
NVDD4
GPIO
Dir
Mux
Pull-up
Ain
Bin
Aout
RESE
Default
State (At/After)
I/O PB18
69K
Pull-H
PB18
SSI_TXDAT
O
PB17
69K
Pull-H
PB17
I/O
SSI_RXDAT
I
PB16
69K
Pull-H
PB16
SIM_PD
I
SSI_RXCLK
I/O PB15
69K
Pull-H
PB15
D4
SIM_SVEN
O
SSI_RXFS
I/O PB14
69K
Pull-H
PB14
NVDD4
B3
SD_CMD
I/O
MS_BS
O
PB13
69K
Pull-H
PB13
NVDD4
A3
SD_CLK
O
MS_SCLKO
O
PB12
69K
Pull-H
PB12
NVDD4
A2
SD_DAT3
I/O
MS_SDIO
69K
(pull down)
Pull-L
PB11
NVDD4
E5
SD_DAT2
I/O
MS_SCLKI
I
PB10
69K
Pull-H
PB10
NVDD4
B2
SD_DAT1
I/O
MS_PI1
I
PB9
69K
Pull-H
PB9
NVDD4
C3
SD_DAT0
I/O
MS_PI0
I
PB8
69K
Pull-H
PB8
I/O PB11
After reset, CS0 goes H/L depends on BOOT[3:0].
Need external circuitry to drive the signal.
Need external pull-up.
External resistor is needed.
Need external pull-up or pull-down.
ASP signals are clamped by AVDD2 to prevent ESD (electrostatic discharge) damage. AVDD2 must be greater than QVDD to keep diodes reverse-biased.
Signals and Connections
21
Electrical Characteristics
3
Electrical Characteristics
This section contains the electrical specifications and timing diagrams for the i.MX1 processor.
3.1
Maximum Ratings
Table 4 provides information on maximum ratings which are those values beyond which damage to the
device may occur. Functional operation should be restricted to the limits listed in Recommended Operating
Range Table 5 on page 23 or the DC Characteristics table.
Table 4. Maximum Ratings
Symbol
Rating
Minimum
Maximum
Unit
NVDD
DC I/O Supply Voltage
-0.3
3.3
V
QVDD
DC Internal (core = 150 MHz) Supply Voltage
-0.3
1.9
V
QVDD
DC Internal (core = 200 MHz) Supply Voltage
-0.3
2.0
V
AVDD
DC Analog Supply Voltage
-0.3
3.3
V
DC Bluetooth Supply Voltage
-0.3
3.3
V
BTRFVDD
VESD_HBM
ESD immunity with HBM (human body model)
–
2000
V
VESD_MM
ESD immunity with MM (machine model)
–
100
V
Latch-up immunity
–
200
mA
ILatchup
Test
Storage temperature
-55
150
°C
Pmax
Power Consumption
8001
13002
mW
A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM®
core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.
2 A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the
ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS
application at MHz, and where the whole image is running out of SDRAM. QVDD at V, NVDD and AVDD at 3.3V, therefore,
180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle
GPIO consuming 4mA.
1
3.2
Recommended Operating Range
Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MX1
processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are
used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of
VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply
voltage levels in a system.
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter
the AVDD pins from other VDD pins.
BTRFVDD is the supply voltage for the Bluetooth interface signals. It is quite sensitive to the data
transmit/receive accuracy. Please refer to Bluetooth RF spec for special handling. If Bluetooth is not used
MC9328MX1 Technical Data, Rev. 7
22
Freescale Semiconductor
Electrical Characteristics
in the system, these Bluetooth pins can be used as general purpose I/O pins and BTRFVDD can be used
as other NVDD pins.
For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4.
Table 5. Recommended Operating Range
Symbol
Rating
Minimum
Maximum
Unit
0
70
°C
TA
Operating temperature range
MC9328MX1VM20\MC9328MX1VM15
TA
Operating temperature range
MC9328MX1DVM20\MC9328MX1DVM15
-30
70
°C
TA
Operating temperature range
MC9328MX1CVM15
-40
85
°C
NVDD
I/O supply voltage (if using MSHC, CSI, SPI, BTA, LCD, and USBd which
are only 3 V interfaces)
2.70
3.30
V
NVDD
I/O supply voltage (if not using the peripherals listed above)
1.70
3.30
V
QVDD
Internal supply voltage (Core = 150 MHz)
1.70
1.90
V
QVDD
Internal supply voltage (Core = 200 MHz)
1.80
2.00
V
AVDD
Analog supply voltage
1.70
3.30
V
3.3
Power Sequence Requirements
For required power-up and power-down sequencing, please refer to the “Power-Up Sequence” section of
application note AN2537 on the i.MX applications processor website.
3.4
DC Electrical Characteristics
Table 6 contains both maximum and minimum DC characteristics of the i.MX1 processor.
Table 6. Maximum and Minimum DC Characteristics
Number or
Symbol
Min
Typical
Max
Unit
Full running operating current at 1.8V for QVDD, 3.3V for
NVDD/AVDD (Core = 96 MHz, System = 96 MHz, MPEG4
decoding playback from external memory card to both
external SSI audio decoder and driving TFT display panel,
and OS with MMU enabled memory system is running on
external SDRAM).
–
QVDD at
1.8V = 120mA;
NVDD+AVDD at
3.0V = 30mA
–
mA
Sidd1
Standby current
(Core = 150 MHz, QVDD = 1.8V, temp = 25°C)
–
25
–
μA
Sidd2
Standby current
(Core = 150 MHz, QVDD = 1.8V, temp = 55°C)
–
45
–
μA
Sidd3
Standby current
(Core = 150 MHz, QVDD = 2.0V, temp = 25°C)
–
35
–
μA
Iop
Parameter
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
23
Electrical Characteristics
Table 6. Maximum and Minimum DC Characteristics (Continued)
Number or
Symbol
Sidd4
Parameter
Min
Typical
Max
Unit
–
60
–
μA
Standby current
(Core = 150 MHz, QVDD = 2.0V, temp = 55°C)
VIH
Input high voltage
0.7VDD
–
Vdd+0.2
V
VIL
Input low voltage
–
–
0.4
V
VOH
Output high voltage (IOH = 2.0 mA)
0.7VDD
–
Vdd
V
VOL
Output low voltage (IOL = -2.5 mA)
–
–
0.4
V
IIL
Input low leakage current
(VIN = GND, no pull-up or pull-down)
–
–
±1
μA
IIH
Input high leakage current
(VIN = VDD, no pull-up or pull-down)
–
–
±1
μA
IOH
Output high current
(VOH = 0.8VDD, VDD = 1.8V)
4.0
–
–
mA
IOL
Output low current
(VOL = 0.4V, VDD = 1.8V)
-4.0
–
–
mA
IOZ
Output leakage current
(Vout = VDD, output is high impedance)
–
–
±5
μA
Ci
Input capacitance
–
–
5
pF
Co
Output capacitance
–
–
5
pF
3.5
AC Electrical Characteristics
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All
signals are specified relative to an appropriate edge of other signals. All timing specifications are specified
at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an
operating supply voltage from VDD min to VDD max under an operating temperature from TL to TH. All
timing is measured at 30 pF loading.
Table 7. Tristate Signal Timing
Pin
TRISTATE
Parameter
Minimum
Maximum
Unit
–
20.8
ns
Time from TRISTATE activate until I/O becomes Hi-Z
Table 8. 32k/16M Oscillator Signal Timing
Parameter
EXTAL32k input jitter (peak to peak)
EXTAL32k startup time
Minimum
RMS
Maximum
Unit
–
5
20
ns
800
–
–
ms
MC9328MX1 Technical Data, Rev. 7
24
Freescale Semiconductor
Functional Description and Application Information
Table 8. 32k/16M Oscillator Signal Timing (Continued)
Parameter
EXTAL16M input jitter (peak to peak) 1
EXTAL16M startup time 1
1
4
Minimum
RMS
Maximum
Unit
–
TBD
TBD
–
TBD
–
–
–
The 16 MHz oscillator is not recommended for use in new designs.
Functional Description and Application Information
This section provides the electrical information including and timing diagrams for the individual modules
of the i.MX1.
4.1
Embedded Trace Macrocell
All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the
ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit
shift register comprised of the following:
• 32-bit data field
• 7-bit address field
• A read/write bit
The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address
field, and a 1 into the read/write bit.
A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit
data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state.
The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used
in Figure 2.
2a
1
2b
3a
TRACECLK
3b
TRACECLK
(Half-Rate Clocking Mode)
Output Trace Port
Valid Data
4a
Valid Data
4b
Figure 2. Trace Port Timing Diagram
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
25
Functional Description and Application Information
Table 9. Trace Port Timing Diagram Parameter Table
1.8 ± 0.1 V
Ref No.
4.2
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
1
CLK frequency
0
85
0
100
MHz
2a
Clock high time
1.3
–
2
–
ns
2b
Clock low time
3
–
2
–
ns
3a
Clock rise time
–
4
–
3
ns
3b
Clock fall time
–
3
–
3
ns
4a
Output hold time
2.28
–
2
–
ns
4b
Output setup time
3.42
–
3
–
ns
DPLL Timing Specifications
Parameters of the DPLL are given in Table 10. In this table, Tref is a reference clock period after the
pre-divider and Tdck is the output double clock period.
Table 10. DPLL Specifications
Parameter
Test Conditions
Minimum
Typical
Maximum
Unit
5
–
100
MHz
5
–
30
MHz
DPLL input clock freq range
Vcc = 1.8V
Pre-divider output clock
freq range
Vcc = 1.8V
DPLL output clock freq range
Vcc = 1.8V
80
–
220
MHz
Pre-divider factor (PD)
–
1
–
16
–
Total multiplication factor (MF)
Includes both integer and fractional parts
5
–
15
–
MF integer part
–
5
–
15
–
MF numerator
Should be less than the denominator
0
–
1022
–
MF denominator
–
1
–
1023
–
Pre-multiplier lock-in time
–
–
–
312.5
μsec
Freq lock-in time after
full reset
FOL mode for non-integer MF
(does not include pre-multi lock-in time)
250
280
(56 μs)
300
Tref
Freq lock-in time after
partial reset
FOL mode for non-integer MF (does not
include pre-multi lock-in time)
220
250
(50 μs)
270
Tref
Phase lock-in time after
full reset
FPL mode and integer MF (does not include
pre-multi lock-in time)
300
350
(70 μs)
400
Tref
Phase lock-in time after
partial reset
FPL mode and integer MF (does not include
pre-multi lock-in time)
270
320
(64 μs)
370
Tref
Freq jitter (p-p)
–
–
0.005
(0.01%)
0.01
2•Tdck
MC9328MX1 Technical Data, Rev. 7
26
Freescale Semiconductor
Functional Description and Application Information
Table 10. DPLL Specifications (Continued)
Parameter
Test Conditions
Phase jitter (p-p)
Integer MF, FPL mode, Vcc=1.8V
Power supply voltage
–
Power dissipation
FOL mode, integer MF,
fdck = MHz, Vcc = 1.8V
4.3
Minimum
Typical
Maximum
Unit
–
1.0
(10%)
1.5
ns
1.7
–
2.5
V
–
–
4
mW
Reset Module
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and
Figure 4.
NOTE
Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up
to prevent forward biasing.
90% AVDD
1
POR
RESET_POR
10% AVDD
2
Exact 300ms
3
7 cycles @ CLK32
RESET_DRAM
4
HRESET
14 cycles @ CLK32
RESET_OUT
CLK32
HCLK
Figure 3. Timing Relationship with POR
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
27
Functional Description and Application Information
5
RESET_IN
14 cycles @ CLK32
HRESET
RESET_OUT
4
6
CLK32
HCLK
Figure 4. Timing Relationship with RESET_IN
Table 11. Reset Module Timing Parameter Table
Ref
No.
1
1.8 ± 0.1 V
3.0 ± 0.3 V
Parameter
Unit
Min
Max
Min
Max
note1
–
note1
–
–
300
300
300
300
ms
1
Width of input POWER_ON_RESET
2
Width of internal POWER_ON_RESET
(9600 *CLK32 at 32 kHz)
3
7K to 32K-cycle stretcher for SDRAM reset
7
7
7
7
Cycles of
CLK32
4
14K to 32K-cycle stretcher for internal system reset
HRESERT and output reset at pin RESET_OUT
14
14
14
14
Cycles of
CLK32
5
Width of external hard-reset RESET_IN
4
–
4
–
Cycles of
CLK32
6
4K to 32K-cycle qualifier
4
4
4
4
Cycles of
CLK32
POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal
tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals
for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals.
Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal.
If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in
calculating timing for the start-up process.
4.4
External Interface Module
The External Interface Module (EIM) handles the interface to devices external to the i.MX1 processor,
including the generation of chip-selects for external peripherals and memory. The timing diagram for the
EIM is shown in Figure 5, and Table 12 defines the parameters of signals.
MC9328MX1 Technical Data, Rev. 7
28
Freescale Semiconductor
Functional Description and Application Information
(HCLK) Bus Clock
1a
1b
2a
2b
3a
3b
Address
Chip-select
Read (Write)
4a
OE (rising edge)
4b
4c
OE (falling edge)
4d
5a
EB (rising edge)
5b
5c
EB (falling edge)
5d
6a
LBA (negated falling edge)
6b
6a
LBA (negated rising edge)
6c
7a
BCLK (burst clock) - rising edge
7b
7c
7d
BCLK (burst clock) - falling edge
8b
Read Data
9a
8a
9b
Write Data (negated falling)
9a
9c
Write Data (negated rising)
10a
DTACK_B
10a
Figure 5. EIM Bus Timing Diagram
Table 12. EIM Bus Timing Parameter Table
1.8 ± 0.1 V
Ref No.
3.0 ± 0.3 V
Parameter
Unit
Min
Typical
Max
Min
Typical
Max
1a
Clock fall to address valid
2.48
3.31
9.11
2.4
3.2
8.8
ns
1b
Clock fall to address invalid
1.55
2.48
5.69
1.5
2.4
5.5
ns
2a
Clock fall to chip-select valid
2.69
3.31
7.87
2.6
3.2
7.6
ns
2b
Clock fall to chip-select invalid
1.55
2.48
6.31
1.5
2.4
6.1
ns
3a
Clock fall to Read (Write) Valid
1.35
2.79
6.52
1.3
2.7
6.3
ns
3b
Clock fall to Read (Write) Invalid
1.86
2.59
6.11
1.8
2.5
5.9
ns
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
29
Functional Description and Application Information
Table 12. EIM Bus Timing Parameter Table (Continued)
1.8 ± 0.1 V
Ref No.
4a
Unit
Clock1 rise to Output Enable Valid
1
Min
Typical
Max
Min
Typical
Max
2.32
2.62
6.85
2.3
2.6
6.8
ns
4b
Clock rise to Output Enable Invalid
2.11
2.52
6.55
2.1
2.5
6.5
ns
4c
Clock1 fall to Output Enable Valid
2.38
2.69
7.04
2.3
2.6
6.8
ns
1
4d
Clock fall to Output Enable Invalid
2.17
2.59
6.73
2.1
2.5
6.5
ns
5a
Clock1 rise to Enable Bytes Valid
1.91
2.52
5.54
1.9
2.5
5.5
ns
1
5b
Clock rise to Enable Bytes Invalid
1.81
2.42
5.24
1.8
2.4
5.2
ns
5c
Clock1 fall to Enable Bytes Valid
1.97
2.59
5.69
1.9
2.5
5.5
ns
5d
Clock1
1.76
2.48
5.38
1.7
2.4
5.2
ns
6a
Clock1 fall to Load Burst Address Valid
2.07
2.79
6.73
2.0
2.7
6.5
ns
6b
Clock1
1.97
2.79
6.83
1.9
2.7
6.6
ns
6c
Clock1 rise to Load Burst Address Invalid
1.91
2.62
6.45
1.9
2.6
6.4
ns
7a
Clock1
1.61
2.62
5.64
1.6
2.6
5.6
ns
7b
Clock1rise to Burst Clock fall
1.61
2.62
5.84
1.6
2.6
5.8
ns
7c
Clock1
1.55
2.48
5.59
1.5
2.4
5.4
ns
7d
Clock1 fall to Burst Clock fall
1.55
2.59
5.80
1.5
2.5
5.6
ns
8a
Read Data setup time
5.54
–
–
5.5
–
–
ns
8b
Read Data hold time
0
–
–
0
–
–
ns
9a
Clock1
1.81
2.72
6.85
1.8
2.7
6.8
ns
9b
Clock1 fall to Write Data Invalid
1.45
2.48
5.69
1.4
2.4
5.5
ns
9c
Clock1
1.63
–
–
1.62
–
–
ns
2.52
–
–
2.5
–
–
ns
10a
1
3.0 ± 0.3 V
Parameter
fall to Enable Bytes Invalid
fall to Load Burst Address Invalid
rise to Burst Clock rise
fall to Burst Clock rise
rise to Write Data Valid
rise to Write Data Invalid
DTACK setup time
Clock refers to the system clock signal, HCLK, generated from the System DPLL
4.4.1
DTACK Signal Description
The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not
terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group
supports DTACK signal function when the external DTACK signal is used for data acknowledgement.
4.4.2
DTACK Signal Timing
Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units
of measure for this figure are found in the associated tables.
MC9328MX1 Technical Data, Rev. 7
30
Freescale Semiconductor
Functional Description and Application Information
4.4.2.1
WAIT Read Cycle without DMA
3
Address
2
8
CS5
1
9
programmable
min 0ns
EB
5
OE
4
WAIT
7
DATABUS
10
X1)
6
11
Figure 6. WAIT Read Cycle without DMA
Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz
3.0 ± 0.3 V
Number
Characteristic
Unit
Minimum
Maximum
See note 2
–
ns
3T
–
ns
1
OE and EB assertion time
2
CS5 pulse width
3
OE negated to address inactive
56.81
–
ns
4
Wait asserted after OE asserted
–
1020T
ns
5
Wait asserted to OE negated
2T+2.2
3T+7.17
ns
6
Data hold timing after OE negated
T-1.86
–
ns
7
Data ready after wait asserted
0
T
ns
8
OE negated to CS negated
1.5T+0.24
1.5T+0.85
ns
9
OE negated after EB negated
0.5
1.5
ns
10
Become low after CS5 asserted
0
1019T
ns
11
Wait pulse width
1T
1020T
ns
Note:
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when
EBC bit in CS5L register is clear.
3. Address becomes valid and CS asserts at the start of read access cycle.
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
31
Functional Description and Application Information
4.4.2.2
WAIT Read Cycle DMA Enabled
4
Address
2
9
CS5
1
EB
10
programmable
min 0ns
3
6
OE
RW (logic high)
5
WAIT
DATABUS
7
8
11
12
nput to
MX1)
Figure 7. DTACK WAIT Read Cycle DMA Enabled
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz
3.0 ± 0.3 V
Number
Characteristic
Unit
Minimum
Maximum
See note 2
–
ns
3T
–
ns
1.5T+0.24
1.5T+0.85
ns
1
OE and EB assertion time
2
CS pulse width
3
OE negated before CS5 is negated
4
Address inactived before CS negated
–
0.93
ns
5
Wait asserted after CS5 asserted
–
1020T
ns
6
Wait asserted to OE negated
2T+2.2
3T+7.17
ns
7
Data hold timing after OE negated
T-1.86
–
ns
8
Data ready after wait is asserted
–
T
ns
9
CS deactive to next CS active
T
–
ns
10
OE negate after EB negate
0.5
1.5
ns
11
Wait becomes low after CS5 asserted
0
1019T
ns
MC9328MX1 Technical Data, Rev. 7
32
Freescale Semiconductor
Functional Description and Application Information
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)
3.0 ± 0.3 V
Number
12
Characteristic
Unit
Minimum
Maximum
1T
1020T
Wait pulse width
ns
Note:
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when
EBC bit in CS5L register is clear.
3. Address becomes valid and CS asserts at the start of read access cycle.
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.
4.4.2.3
WAIT Write Cycle without DMA
5
Address
1
3
programmable
min 0ns
CS5
10
2
EB
programmable
min 0ns
7
4
RW
OE (logic high)
6
WAIT
DATABUS
(output from
i.MX1)
9
11
8
12
Figure 8. WAIT Write Cycle without DMA
Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz
3.0 ± 0.3 V
Number
Characteristic
Unit
Minimum
Maximum
1
CS5 assertion time
See note 2
–
ns
2
EB assertion time
See note 2
–
ns
3
CS5 pulse width
3T
–
ns
4
RW negated before CS5 is negated
2.5T-0.29
2.5T+0.68
ns
5
RW negated to Address inactive
67.28
–
ns
6
Wait asserted after CS5 asserted
–
1020T
ns
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
33
Functional Description and Application Information
Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)
3.0 ± 0.3 V
Number
Characteristic
Unit
Minimum
Maximum
7
Wait asserted to RW negated
1T+2.15
2T+7.34
ns
8
Data hold timing after RW negated
2.5T-1.18
–
ns
9
Data ready after CS5 is asserted
–
T
ns
10
EB negated after CS5 is negated
1.5T+0.74
1.5T+2.35
ns
11
Wait becomes low after CS5 asserted
0
1019T
ns
12
Wait pulse width
1T
1020T
ns
Note:
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)
2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register.
3. Address becomes valid and RW asserts at the start of write access cycle.
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.
4.4.2.4
WAIT Write Cycle DMA Enabled
5
Address
1
CS5
3
programmable
min 0ns
10
2
EB
11
programmable
min 0ns
4
7
RW
6
OE (logic high)
12
WAIT
9
13
8
DATABUS
Figure 9. WAIT Write Cycle DMA Enabled
MC9328MX1 Technical Data, Rev. 7
34
Freescale Semiconductor
Functional Description and Application Information
Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz
3.0 ± 0.3 V
Number
Characteristic
Unit
Minimum
Maximum
1
CS5 assertion time
See note 2
–
ns
2
EB assertion time
See note 2
–
ns
3
CS5 pulse width
3T
–
ns
4
RW negated before CS5 is negated
2.5T-0.29
2.5T+0.68
ns
5
Address inactived after CS negated
–
0.93
ns
6
Wait asserted after CS5 asserted
–
1020T
ns
7
Wait asserted to RW negated
T+2.15
2T+7.34
ns
8
Data hold timing after RW negated
24.87
–
ns
9
Data ready after CS5 is asserted
–
T
ns
10
CS deactive to next CS active
T
–
ns
11
EB negate after CS negate
1.5T+0.74
1.5T+2.35
12
Wait becomes low after CS5 asserted
0
1019T
ns
13
Wait pulse width
1T
1020T
ns
Note:
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)
2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register.
3. Address becomes valid and RW asserts at the start of write access cycle.
4.The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.
4.4.3
EIM External Bus Timing
The External Interface Module (EIM) is the interface to devices external to the i.MX1, including
generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown
in Figure 5, and Table 12 defines the parameters of signals.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
35
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[0]
htrans
Seq/Nonseq
hwrite
Read
haddr
V1
hready
weim_hrdata
Last Valid Data
V1
weim_hready
BCLK (burst clock)
ADDR
Last Valid Address
V1
CS2
R/W
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
V1
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 10. WSC = 1, A.HALF/E.HALF
MC9328MX1 Technical Data, Rev. 7
36
Freescale Semiconductor
Functional Description and Application Information
hclk
Internal signals - shown only for illustrative purposes
hsel_weim_cs[0]
htrans
Nonseq
hwrite
Write
haddr
V1
hready
hwdata
Last Valid Data
weim_hrdata
Write Data (V1)
Unknown
Last Valid Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Address
V1
CS0
R/W
Write
LBA
OE
EB
DATA
Last Valid Data
Write Data (V1)
Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
37
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[0]
htrans
Nonseq
hwrite
Read
haddr
V1
hready
weim_hrdata
Last Valid Data
V1 Word
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V1 + 2
CS0
R/W
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
1/2 Half Word
2/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
38
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[0]
htrans
Nonseq
hwrite
Write
haddr
V1
hready
hwdata
Last Valid Data
Write Data (V1 Word)
weim_hrdata
Last Valid Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1 + 2
Address V1
CS0
R/W
Write
LBA
OE
EB
DATA
1/2 Half Word
2/2 Half Word
Figure 13. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
39
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[3]
htrans
Nonseq
hwrite
Read
haddr
V1
hready
weim_hrdata
Last Valid Data
V1 Word
weim_hready
BCLK (burst clock)
ADDR Last Valid Addr
Address V1
Address V1 + 2
CS[3]
R/W
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
1/2 Half Word
2/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 14. WSC = 3, OEA = 2, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
40
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[3]
htrans
Nonseq
hwrite
Write
haddr
V1
hready
hwdata Last Valid
Data
Write Data (V1 Word)
weim_hrdata
Last Valid Data
weim_hready
BCLK (burst clock)
ADDR Last Valid Addr
Address V1
Address V1 + 2
CS3
Write
R/W
LBA
OE
EB
DATA
Last Valid Data
1/2 Half Word
2/2 Half Word
Figure 15. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
41
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
hwrite
Read
haddr
V1
hready
weim_hrdata
Last Valid Data
V1 Word
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1 + 2
Address V1
CS2
R/W
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
weim_data_in
1/2 Half Word
2/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 16. WSC = 3, OEA = 4, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
42
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
hwrite
Write
haddr
V1
hready
Valid
hwdata Last
Data
Write Data (V1 Word)
weim_hrdata
Last Valid Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V1 + 2
CS2
R/W
Write
LBA
OE
EB
DATA
Last Valid Data
1/2 Half Word
2/2 Half Word
Figure 17. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
43
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
hwrite
Read
haddr
V1
hready
weim_hrdata
Last Valid Data
V1 Word
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V1 + 2
CS2
Read
R/W
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
1/2 Half Word
2/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 18. WSC = 3, OEN = 2, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
44
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
hwrite
Read
haddr
V1
hready
weim_hrdata
V1 Word
Last Valid Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V1 + 2
CS2
R/W
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
1/2 Half Word
2/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 19. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
45
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
hwrite
Write
haddr
V1
hready
hwdata
Last Valid
Data
Write Data (V1 Word)
weim_hrdata
Unknown
Last Valid Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V1 + 2
CS2
R/W
Write
LBA
OE
EB
DATA
Last Valid Data
1/2 Half Word
2/2 Half Word
Figure 20. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
46
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
hwrite
Write
haddr
V1
hready
Valid
hwdata Last
Data
Unknown
Write Data (V1 Word)
weim_hrdata
Last Valid Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V1 + 2
CS2
R/W
Write
LBA
OE
EB
DATA
Last Valid Data
1/2 Half Word
2/2 Half Word
Figure 21. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
47
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
Nonseq
hwrite
Read
Write
haddr
V1
V8
hready
hwdata
weim_hrdata
Last Valid Data
Write Data
Last Valid Data
Read Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V8
CS2
R/W
Write
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
DATA
Read Data
Last Valid Data
Write Data
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 22. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF
MC9328MX1 Technical Data, Rev. 7
48
Freescale Semiconductor
Functional Description and Application Information
Read
Idle
Write
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
Nonseq
hwrite
Read
Write
haddr
V1
V8
hready
hwdata
weim_hrdata
Write Data
Last Valid Data
Last Valid Data
Read Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V8
CS2
R/W
Read
Write
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
DATA
Read Data
Last Valid Data
Write Data
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 23. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
49
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[4]
htrans
Nonseq
hwrite
Write
haddr
V1
hready
hwdata Last Valid
Data
Write Data (Word)
weim_hrdata
Last Valid Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V1 + 2
CS
R/W
Write
LBA
OE
EB
DATA
Last Valid Data
Write Data (1/2 Half Word)
Write Data (2/2 Half Word)
Figure 24. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
50
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[4]
htrans
Nonseq
Nonseq
hwrite
Read
Write
haddr
V1
V8
hready
hwdata
weim_hrdata
Last Valid Data
Write Data
Last Valid Data
Read Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V8
CS4
R/W
Write
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
DATA
Read Data
Last Valid Data
Write Data
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 25. WSC = 3, CSA = 1, A.HALF/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
51
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[4]
htrans
Nonseq
hwrite
Read
Read
haddr
V1
V2
Idle
Seq
hready
weim_hrdata
Last Valid Data
Read Data (V1)
Read Data (V2)
weim_hready
BCLK (burst clock)
ADDR
Last Valid
Address V1
Address V2
CNC
CS4
Read
R/W
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
Read Data
(V1)
Read Data
(V2)
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 26. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF
MC9328MX1 Technical Data, Rev. 7
52
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[4]
htrans
Nonseq
hwrite
Read
Write
haddr
V1
V8
Idle
Nonseq
hready
hwdata
weim_hrdata
Last Valid Data
Write Data
Last Valid Data
Read Data
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V8
CNC
CS4
R/W
Read
Write
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
DATA
DATA
Read Data
Last Valid Data
Write Data
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 27. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
53
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
Nonse
hwrite
Read
Read
haddr
V1
V5
Idle
hready
weim_hrdata
weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
Address V1
Address V5
CS2
Read
R/W
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
ECB
DATA
V1 Word
V2 Word
V5 Word
V6 Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 28. WSC = 3, SYNC = 1, A.HALF/E.HALF
MC9328MX1 Technical Data, Rev. 7
54
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
Seq
Seq
Seq
hwrite
Read
Read
Read
Read
haddr
V1
V2
V3
V4
Idle
hready
weim_hrdata
Last Valid Data
V1 Word
V2 Word
V3 Word
V4 Word
weim_hready
BCLK (burst clock)
ADDR Last Valid Addr
Address V1
CS2
Read
R/W
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
ECB
DATA
V1 Word
V2 Word
V3 Word
V4 Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 29. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
55
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Nonseq
Seq
hwrite
Read
Read
haddr
V1
V2
Idle
hready
weim_hrdata
Last Valid Data
V1 Word
V2 Word
weim_hready
BCLK (burst clock)
ADDR
Last Valid
Address V1
Address V2
CS2
Read
R/W
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
ECB
DATA
V1 1/2
V1 2/2
V2 1/2
V2 2/2
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 30. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
56
Freescale Semiconductor
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Non
seq
Seq
hwrite
Read
Read
haddr
V1
V2
Idle
hready
weim_hrdata
Last Valid Data
V1 Word
V2 Word
weim_hready
BCLK (burst clock)
ADDR
Last
Address V1
CS2
R/W
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
ECB
DATA
V1 1/2
V1 2/2
V2 1/2
V2 2/2
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 31. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
57
Functional Description and Application Information
Internal signals - shown only for illustrative purposes
hclk
hsel_weim_cs[2]
htrans
Non
seq
Seq
hwrite
Read
Read
haddr
V1
V2
Idle
hready
weim_hrdata
Last Valid Data
V1 Word
V2 Word
weim_hready
BCLK (burst clock)
ADDR
Last
Address V1
CS2
R/W
Read
LBA
OE
EBx1 (EBC2=0)
EBx1 (EBC2=1)
ECB
DATA
V1 1/2
V1 2/2
V2 1/2
V2 2/2
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 32. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF
MC9328MX1 Technical Data, Rev. 7
58
Freescale Semiconductor
Functional Description and Application Information
4.4.4
Non-TFT Panel Timing
T1
T1
VSYN
T3
T2
T4
XMAX
T2
HSYN
SCLK
Ts
LD[15:0]
Figure 33. Non-TFT Panel Timing
Table 17. Non TFT Panel Timing Diagram
Symbol
Parameter
Allowed Register
Minimum Value1, 2
Actual Value
Unit
T1
HSYN to VSYN delay3
0
HWAIT2+2
Tpix4
T2
HSYN pulse width
0
HWIDTH+1
Tpix
T3
VSYN to SCLK
–
0 ≤ T3 ≤ Ts5
–
T4
SCLK to HSYN
0
HWAIT1+1
Tpix
1
Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.
Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.
3 VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all
these 3 signals are active high.
4 Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1).
5 Ts is the shift clock period. Ts = Tpix * (panel data bus width).
2
4.5
Pen ADC Specifications
The specifications for the pen ADC are shown in Table 18 through Table 20.
Table 18. Pen ADC System Performance
Full Range Resolution1
13 bits
Non-Linearity Error1
4 bits
1
9 bits
Accuracy
1
Tested under input = 0~1.8V at 25°C
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
59
Functional Description and Application Information
Table 19. Pen ADC Test Conditions
Vp max
1800 mV
ip max
+7 µA
Vp min
GND
ip min
1.5 µA
Vn
GND
in
1.5 µA
Sample frequency
12 MHz
Sample rate
1.2 KHz
Input frequency
100 Hz
Input range
0–1800 mV
Note:
Ru1 = Ru2 = 200K
Table 20. Pen ADC Absolute Rating
4.6
ip max
+9.5 µA
ip min
-2.5 µA
in max
+9.5 µA
in min
-2.5 µA
ASP Touch Panel Controller
The following sections contain the electrical specifications of the ASP touch panel controller. The value
of parameters and their corresponding measuring conditions are mentioned as well.
4.6.1
Electrical Specifications
Test conditions: Temperature = 25º C, QVDD = 1800mV.
Table 21. ASP Touch Panel Controller Electrical Spec
Parameter
Minimum
Typical
Maximum
Unit
Offset
–
Offset Error
–
32768
–
–
–
8199
–
Gain
–
13.65
–
mV-1
Gain Error
–
–
33%
–
DNL
8
9
–
Bits
INL
–
0
–
Bits
Accuracy (without missing code)
8
9
–
Bits
Operating Voltage Range (Pen)
Operating Voltage Range (U)
On-resistance of switches SW[8:1]
–
–
QVDD
mV
Negative QVDD
–
QVDD
mV
–
10
–
Ohm
Note that QVDD should be 1800mV.
MC9328MX1 Technical Data, Rev. 7
60
Freescale Semiconductor
Functional Description and Application Information
4.6.2
Gain Calculations
The ideal mapping of input voltage to output digital sample is defined as follows:
Sample
G0
65535
Smax
C0
Vi
1800
-2400
2400
Figure 34. Gain Calculations
In general, the mapping function is:
S=G*V+C
Where V is input, S is output, G is the slope, and C is the y-intercept.
Nominal Gain G0 = 65535 / 4800 = 13.65mV-1
Nominal Offset C0 = 65535 / 2 = 32767
4.6.3
Offset Calculations
The ideal mapping of input voltage to output digital sample is defined as:
Sample
G0
65535
Smax
C0
Vi
1800
-2400
2400
Figure 35. Offset Calculations
In general, the mapping function is:
S=G*V+C
Where V is input, S is output, G is the slope, and C is the y-intercept.
Nominal Gain G0 = 65535 / 4800 = 13.65mV-1
Nominal Offset C0 = 65535 / 2 = 32767
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
61
Functional Description and Application Information
4.6.4
Gain Error Calculations
Gain error calculations are made using the information in this section.
Sample
Gmax
G0
65535
Smax
C0
Vi
1800
- 2400
2400
Figure 36. Gain Error Calculations
Assuming the offset remains unchanged, the mapping is rotated around y-intercept to determine the
maximum gain allowed. This occurs when the sample at 1800mV has just reached the ceiling of the 16-bit
range, 65535.
Maximum Offset Gmax,
Gmax
= (65535 - C0) / 1800
= (65535 - 32767) / 1800
= 18.20
Gain Error Gr,
Gr
4.7
= (Gmax - G0) / G0 * 100%
= (18.20 - 13.65) / 13.65 * 100%
= 33%
Bluetooth Accelerator
CAUTION
On-chip accelerator hardware is not supported by software. An external
Bluetooth chip interfaced to a UART is recommended.
The Bluetooth Accelerator (BTA) radio interface supports the Wireless RF Transceiver, MC13180 using
an SPI interface. This section provides the data bus timing diagrams and SPI interface timing diagrams
shown in Figure 37 and Figure 38, and the associated parameters shown in Table 22 and Table 23.
MC9328MX1 Technical Data, Rev. 7
62
Freescale Semiconductor
Functional Description and Application Information
2
BT CLK (BT1)
7
Receive
FS (BT5)
1
PKT DATA (BT3)
3
4
RXTX_EN (BT9)
Transmit
8
PKT DATA (BT2)
5
6
Figure 37. MC13180 Data Bus Timing Diagram
Table 22. MC13180 Data Bus Timing Parameter Table
Ref No.
1
2
Parameter
Minimum
Typical
Maximum
Unit
1
FrameSync setup time relative to BT CLK rising edge1
–
4
–
ns
2
FrameSync hold time relative to BT CLK rising edge1
–
12
–
ns
–
6
–
ns
–
13
–
ns
172.5
–
192.5
µs
edge1
3
Receive Data setup time relative to BT CLK rising
4
Receive Data hold time relative to BT CLK rising edge1
edge2
5
Transmit Data setup time relative to RXTX_EN rising
6
TX DATA period
7
BT CLK duty cycle
40
–
60
%
8
Transmit Data hold time relative to RXTX_EN falling edge
4
–
10
µs
1000 +/- 0.02
ns
Please refer to 2.4 GHz RF Transceiver Module (MC13180) Technical Data documentation.
The setup and hold times of RX_TX_EN can be adjusted by programming Time_A_B register (0x00216050) and
RF_Status (0x0021605C) registers.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
63
Functional Description and Application Information
1
4
5
6
SPI CLK (BT13)
9
SPI_EN (BT11)
8
SPI_DATA_OUT (BT12)
3
SPI_DATA_IN (BT4)
7
2
Figure 38. SPI Interface Timing Diagram Using MC13180
Table 23. SPI Interface Timing Parameter Table Using MC13180
Ref No.
1
4.8
Parameter
Minimum
Maximum
Unit
1
SPI_EN setup time relative to rising edge of SPI_CLK
15
–
ns
2
Transmit data delay time relative to rising edge of SPI_CLK
0
15
ns
3
Transmit data hold time relative to rising edge of SPI_EN
0
15
ns
4
SPI_CLK rise time
0
25
ns
5
SPI_CLK fall time
0
25
ns
6
SPI_EN hold time relative to falling edge of SPI_CLK
15
–
ns
7
Receive data setup time relative to falling edge of SPI_CLK1
15
–
ns
8
Receive data hold time relative to falling edge of SPI_CLK1
15
–
ns
9
SPI_CLK frequency, 50% duty cycle required1
–
20
MHz
The SPI_CLK clock frequency and duty cycle, setup and hold times of receive data can be set by programming
SPI_Control (0x00216138) register together with system clock.
SPI Timing Diagrams
To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a
master, two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY
signal (input). The SPI1 Sample Period Control Register (PERIODREG1) and the SPI2 Sample Period
Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or
SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI1 Control Register
(CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS becomes an input
signal, and is used to latch data into or load data out to the internal data shift registers, as well as to
increment the data FIFO. Figure 39 through Figure 43 show the timing relationship of the master SPI using
different triggering mechanisms.
MC9328MX1 Technical Data, Rev. 7
64
Freescale Semiconductor
Functional Description and Application Information
2
SS
5
3
1
4
SPIRDY
SCLK, MOSI, MISO
Figure 39. Master SPI Timing Diagram Using SPI_RDY Edge Trigger
SS
SPIRDY
SCLK, MOSI, MISO
Figure 40. Master SPI Timing Diagram Using SPI_RDY Level Trigger
SS (output)
SCLK, MOSI, MISO
Figure 41. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger
SS (input)
SCLK, MOSI, MISO
Figure 42. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT
SS (input)
6
7
SCLK, MOSI, MISO
Figure 43. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
65
Functional Description and Application Information
Table 24. Timing Parameter Table for Figure 39 through Figure 43
3.0 ± 0.3 V
Ref No.
Parameter
Unit
Minimum
Maximum
2T1
–
ns
1
SPI_RDY to SS output low
2
SS output low to first SCLK edge
3 • Tsclk2
–
ns
3
Last SCLK edge to SS output high
2 • Tsclk
–
ns
4
SS output high to SPI_RDY low
0
–
ns
5
SS output pulse width
Tsclk + WAIT 3
–
ns
6
SS input low to first SCLK edge
T
–
ns
7
SS input pulse width
T
–
ns
1
T = CSPI system clock period (PERCLK2).
Tsclk = Period of SCLK.
3
WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register.
2
8
SCLK
9
9
Figure 44. SPI SCLK Timing Diagram
Table 25. Timing Parameter Table for SPI SCLK
3.0 ± 0.3 V
Ref No.
4.9
Parameter
8
SCLK frequency
9
SCLK pulse width
Unit
Minimum
Maximum
0
10
MHz
100
–
ns
LCD Controller
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD
controller with various display configurations, refer to the LCD controller chapter of the MC9328MX1
Reference Manual.
LSCLK
1
LD[15:0]
Figure 45. SCLK to LD Timing Diagram
MC9328MX1 Technical Data, Rev. 7
66
Freescale Semiconductor
Functional Description and Application Information
Table 26. LCDC SCLK Timing Parameter Table
3.0 ± 0.3 V
Ref No.
1
Parameter
Minimum
Maximum
Unit
–
2
ns
SCLK to LD valid
Non-display
VSYN
Display region
T3
T1
T4
T2
HSYN
OE
LD[15:0]
Line Y
Line 1
T5
T6
Line Y
T7
XMAX
HSYN
SCLK
OE
T8
LD[15:0]
(1,1)
(1,2)
(1,X)
VSYN
T9
T10
Figure 46. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing
Table 27. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing
Symbol
Description
Minimum
Corresponding Register Value
Unit
T1
End of OE to beginning of VSYN
T5+T6
+T7+T9
(VWAIT1·T2)+T5+T6+T7+T9
Ts
T2
HSYN period
XMAX+5
XMAX+T5+T6+T7+T9+T10
Ts
T3
VSYN pulse width
T2
VWIDTH·(T2)
Ts
T4
End of VSYN to beginning of OE
2
VWAIT2·(T2)
Ts
T5
HSYN pulse width
1
HWIDTH+1
Ts
T6
End of HSYN to beginning to T9
1
HWAIT2+1
Ts
T7
End of OE to beginning of HSYN
1
HWAIT1+1
Ts
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
67
Functional Description and Application Information
Table 27. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing (Continued)
Symbol
Description
Minimum
Corresponding Register Value
Unit
T8
SCLK to valid LD data
-3
3
ns
T9
End of HSYN idle2 to VSYN edge
(for non-display region)
2
2
Ts
T9
End of HSYN idle2 to VSYN edge
(for Display region)
1
1
Ts
T10
VSYN to OE active (Sharp = 0) when VWAIT2 = 0
1
1
Ts
T10
VSYN to OE active (Sharp = 1) when VWAIT2 = 0
2
2
Ts
Note:
•
•
•
•
•
•
4.10
Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns.
VSYN, HSYN and OE can be programmed as active high or active low. In Figure 46, all 3 signals
are active low.
The polarity of SCLK and LD[15:0] can also be programmed.
SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period.
In Figure 46, SCLK is always active.
For T9 non-display region, VSYN is non-active. It is used as an reference.
XMAX is defined in pixels.
Multimedia Card/Secure Digital Host Controller
The DMA interface block controls all data routing between the external data bus (DMA access), internal
MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that
monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the
MMC/SD module (inner system) and the application (user programming).
3a
1
2
4b
3b
Bus Clock
4a
5b
5a
CMD_DAT Input
Valid Data
Valid Data
7
CMD_DAT Output
Valid Data
Valid Data
6a
6b
Figure 47. Chip-Select Read Cycle Timing Diagram
MC9328MX1 Technical Data, Rev. 7
68
Freescale Semiconductor
Functional Description and Application Information
Table 28. SDHC Bus Timing Parameter Table
1.8 ± 0.1 V
Ref
No.
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
1
CLK frequency at Data transfer Mode
(PP)1—10/30 cards
0
25/5
0
25/5
MHz
2
CLK frequency at Identification Mode2
0
400
0
400
kHz
1
3a
Clock high time —10/30 cards
6/33
–
10/50
–
ns
3b
Clock low time1—10/30 cards
15/75
–
10/50
–
ns
4a
1
Clock fall time —10/30 cards
–
10/50
(5.00)3
–
10/50
ns
4b
Clock rise time1—10/30 cards
–
14/67
(6.67)3
–
10/50
ns
5a
Input hold time3—10/30 cards
10.3/10.3
–
9/9
–
ns
10.3/10.3
–
9/9
–
ns
5.7/5.7
–
5/5
–
ns
5.7/5.7
–
5/5
–
ns
0
16
0
14
ns
time3—10/30
5b
Input setup
cards
6a
Output hold time3—10/30 cards
time3—10/30
6b
Output setup
7
Output delay time3
cards
CL ≤ 100 pF / 250 pF (10/30 cards)
CL ≤ 250 pF (21 cards)
3 C ≤ 25 pF (1 card)
L
1
2
4.10.1
Command Response Timing on MMC/SD Bus
The card identification and card operation conditions timing are processed in open-drain mode. The card
response to the host command starts after exactly NID clock cycles. For the card address assignment,
SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and
card response is NCR clock cycles as illustrated in Figure 48. The symbols for Figure 48 through
Figure 52 are defined in Table 29.
Table 29. State Signal Parameters for Figure 48 through Figure 52
Card Active
Host Active
Symbol
Definition
Symbol
Definition
Z
High impedance state
S
Start bit (0)
D
Data bits
T
Transmitter bit (Host = 1, Card = 0)
*
Repetition
P
One-cycle pull-up (1)
CRC
Cyclic redundancy check bits (7 bits)
E
End bit (1)
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
69
Functional Description and Application Information
NID cycles
Host Command
CMD S T
Content
CID/OCR
******
CRC E Z
Content
Z ST
ZZZ
Identification Timing
NCR cycles
Host Command
CMD S T
Content
CID/OCR
******
CRC E Z
Content
Z ST
ZZZ
SET_RCA Timing
Figure 48. Timing Diagrams at Identification Mode
After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in
Figure 49, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a
period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the
responding card. The other two diagrams show the separating periods NRC and NCC.
NCR cycles
Host Command
CMD S T
Content
Response
CRC E Z Z P
******
PST
Content
CRC E Z Z Z
Command response timing (data transfer mode)
NRC cycles
Response
CMD S T
Content
Host Command
CRC E Z
******
Z ST
Content
CRC E Z Z Z
Timing response end to next CMD start (data transfer mode)
NCC cycles
Host Command
CMD S T
Content
CRC E Z
Host Command
******
Z ST
Content
CRC E Z Z Z
Timing of command sequences (all modes)
Figure 49. Timing Diagrams at Data Transfer Mode
Figure 50 shows basic read operation timing. In a read operation, the sequence starts with a single block
read command (which specifies the start address in the argument field). The response is sent on the
SD_CMD lines as usual. Data transmission from the card starts after the access time delay NAC , beginning
from the last bit of the read command. If the system is in multiple block read mode, the card sends a
continuous flow of data blocks with distance NAC until the card sees a stop transmission command. The
data stops two clock cycles after the end bit of the stop command.
MC9328MX1 Technical Data, Rev. 7
70
Freescale Semiconductor
Functional Description and Application Information
NCR cycles
Host Command
CMD S T
Content
DAT
Response
CRC E Z Z P ****** P S T
Z****Z
Content
CRC E Z
*****
Z Z P ****** P S D D D D
Read Data
NAC cycles
Timing of single block read
NCR cycles
Host Command
CMD S T
DAT
Content
Response
CRC E Z Z P ****** P S T
Z****Z
******
ZZP
Content
P S DDDD
CRC E Z
*****
*****
P
P S DDDD
Read Data
*****
Read Data
NAC cycles
NAC cycles
Timing of multiple block read
NCR cycles
Host Command
CMD S T
Content
Response
CRC E Z Z P ****** P S T
Content
CRC E Z
NST
DAT D D D D
*****
DDDDE Z Z Z
Valid Read Data
*****
Timing of stop command
(CMD12, data transfer mode)
Figure 50. Timing Diagrams at Data Read
Figure 51 shows the basic write operation timing. As with the read operation, after the card response, the
data transfer starts after NWR cycles. The data is suffixed with CRC check bits to allow the card to check
for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If
there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC
status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple
block mode, with the flow terminated by a stop transmission command.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
71
72
Z****Z
Z****Z
CRC E Z Z P
NWR cycles
CRC status
Timing of the multiple block write command
NWR cycles
Write Data
Content
DAT Z Z P P S
CRC E Z Z X X X X X X X X Z P P S
EZPPS
Content
Content
Status
PST
DAT Z Z P P S
CRC E Z Z S
******
Write Data
Content
******
Status
ES
L*L
EZ
PP P
ES
L*L
EZ
CRC status
Busy
CRC E Z Z X X X X X X X X X X X X X X X X Z
Status
PPP
CRC status
Busy
CRC E Z Z X X X X X X X X X X X X X X X X Z
CRC E Z Z S
Write Data
Content
Content
CRC E Z Z S
NWR cycles
Z ZZPPS
Z ZZPPS
CRC E Z Z P
Content
Response
******
Timing of the block write command
Content
NCR cycles
CMD E Z Z P
DAT
DAT
CMD S T
Host Command
Functional Description and Application Information
Figure 51. Timing Diagrams at Data Write
The stop transmission command may occur when the card is in different states. Figure 52 shows the
different scenarios on the bus.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
Parameter
Freescale Semiconductor
Content
CRC E Z Z P
Symbol
Minimum
DAT Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z S L
DAT S L
DAT D D D D D D D Z Z S CRC E Z Z S L
Write Data
PST
******
Content
******
******
******
ST
Content
CRC E
Host Command
Stop transmission received after last data block.
Card becomes busy programming.
EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ
Stop transmission received after last data block.
Card becomes busy programming.
EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ
Stop transmission during CRC status transfer
from the card.
EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ
Stop transmission during data transfer
from the host.
EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ
CRC E Z Z Z
Card Response
Busy (Card is programming)
******
NCR cycles
DAT D D D D D D D D D D D D D E Z Z S L
CMD S T
Host Command
Functional Description and Application Information
Figure 52. Stop Transmission During Different Scenarios
Table 30. Timing Values for Figure 48 through Figure 52
Maximum
Unit
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL)
Command response cycle
NCR
2
64
Clock cycles
Identification response cycle
NID
5
5
Clock cycles
Access time delay cycle
NAC
2
TAAC + NSAC
Clock cycles
MC9328MX1 Technical Data, Rev. 7
73
Functional Description and Application Information
Table 30. Timing Values for Figure 48 through Figure 52 (Continued)
Parameter
Symbol
Minimum
Maximum
Unit
Command read cycle
NRC
8
–
Clock cycles
Command-command cycle
NCC
8
–
Clock cycles
Command write cycle
NWR
2
–
Clock cycles
Stop transmission cycle
NST
2
2
Clock cycles
TAAC: Data read access time -1 defined in CSD register bit[119:112]
NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register bit[111:104]
4.10.2
SDIO-IRQ and ReadWait Service Handling
In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the
interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data
in this mode. The memory controller generates an interrupt according to this low and the system interrupt
continues until the source is removed (SD_DAT[1] returns to its high level).
In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the “Interrupt
Period” during the data access, and the controller must sample SD_DAT[1] during this short period to
determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each
block (512 bytes).
CMD
ST
DAT[1]
Content
CRC E Z Z P S
Interrupt Period
Response
S
******
EZZZ
Block Data
E
IRQ
S
ZZZ
Block Data
E
IRQ
For 4-bit
LH
DAT[1]
Interrupt Period
For 1-bit
Figure 53. SDIO IRQ Timing Diagram
ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In
this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps
the clock running, and allows the user to submit commands as normal. After all commands are submitted,
the user can switch back to the data transfer operation and all counter and status values are resumed as
access continues.
MC9328MX1 Technical Data, Rev. 7
74
Freescale Semiconductor
Functional Description and Application Information
CMD
DAT[1]
P S T CMD52
******
CRC E Z Z Z
******
S
Block Data
EZZL H
S
Block Data
E
S
Block Data
E Z Z L L L L L L L L L L L L L L L L L L L L L HZ S
Block Data
E
For 4-bit
DAT[2]
For 4-bit
Figure 54. SDIO ReadWait Timing Diagram
4.11
Memory Stick Host Controller
The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS,
MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in
either four-state or two-state access mode.
The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according
to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet
transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1,
BS2, and BS3 states are regarded as one packet length and one communication transfer is always
completed within one packet length (in four-state access mode).
The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When
an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0
and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
75
Functional Description and Application Information
2
1
3
4
5
MS_SCLKI
6
8
7
MS_SCLKO
9
11
10
11
MS_BS
12
12
MS_SDIO(output)
14
13
MS_SDIO (input)
(RED bit = 0)
15
16
MS_SDIO (input)
(RED bit = 1)
Figure 55. MSHC Signal Timing Diagram
Table 31. MSHC Signal Timing Parameter Table
3.0 ± 0.3 V
Ref
No.
Parameter
Unit
Minimum
Maximum
1
MS_SCLKI frequency
–
25
MHz
2
MS_SCLKI high pulse width
20
–
ns
3
MS_SCLKI low pulse width
20
–
ns
4
MS_SCLKI rise time
–
3
ns
5
MS_SCLKI fall time
–
3
ns
–
25
MHz
20
–
ns
15
–
ns
–
5
ns
–
5
ns
–
3
ns
1
6
MS_SCLKO frequency
7
MS_SCLKO high pulse width1
8
MS_SCLKO low pulse
9
MS_SCLKO rise time1
width1
time1
10
MS_SCLKO fall
11
MS_BS delay time1
MC9328MX1 Technical Data, Rev. 7
76
Freescale Semiconductor
Functional Description and Application Information
Table 31. MSHC Signal Timing Parameter Table (Continued)
3.0 ± 0.3 V
Ref
No.
12
Parameter
Unit
Minimum
Maximum
–
3
ns
18
–
ns
0
–
ns
23
–
ns
0
–
ns
MS_SDIO output delay time1,2
13
MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0)
14
MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0)3
3
15
MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1)
16
MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1)4
4
1
Loading capacitor condition is less than or equal to 30pF.
An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the MS_SDIO pin,
because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick SDIO pin when the pin
direction changes.
3 If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge.
4 If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge.
2
4.12
Pulse-Width Modulator
The PWM can be programmed to select one of two clock signals as its source frequency. The selected
clock signal is passed through a divider and a prescaler before being input to the counter. The output is
available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in
Figure 56 and the parameters are listed in Table 32.
1
2a
3b
System Clock
2b
4b
3a
4a
PWM Output
Figure 56. PWM Output Timing Diagram
Table 32. PWM Output Timing Parameter Table
1.8 ± 0.1 V
Ref No.
3.0 ± 0.3 V
Parameter
1
System CLK frequency1
2a
Clock high time1
1
2b
Clock low time
3a
Clock fall time1
Unit
Minimum
Maximum
Minimum
Maximum
0
87
0
100
MHz
3.3
–
5/10
–
ns
7.5
–
5/10
–
ns
–
5
–
5/10
ns
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
77
Functional Description and Application Information
Table 32. PWM Output Timing Parameter Table (Continued)
1.8 ± 0.1 V
Ref No.
3b
1
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
Clock rise time1
–
6.67
–
5/10
ns
4a
1
Output delay time
5.7
–
5
–
ns
4b
Output setup time1
5.7
–
5
–
ns
CL of PWMO = 30 pF
4.13
SDRAM Controller
This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic
random access memory) Controller.
1
SDCLK
2
3S
3
CS
3H
3S
RAS
3S
3H
CAS
3S
3H
3H
WE
4S
ADDR
4H
ROW/BA
COL/BA
5
8
DQ
6
Data
7
3S
DQM
3H
Note:
CKE is high during the read/write cycle.
Figure 57. SDRAM Read Cycle Timing Diagram
MC9328MX1 Technical Data, Rev. 7
78
Freescale Semiconductor
Functional Description and Application Information
Table 33. SDRAM Read Timing Parameter Table
1.8 ± 0.1 V
Ref
No.
1
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
1
SDRAM clock high-level width
2.67
–
4
–
ns
2
SDRAM clock low-level width
6
–
4
–
ns
3
SDRAM clock cycle time
11.4
–
10
–
ns
3S
CS, RAS, CAS, WE, DQM setup time
3.42
–
3
–
ns
3H
CS, RAS, CAS, WE, DQM hold time
2.28
–
2
–
ns
4S
Address setup time
3.42
–
3
–
ns
4H
Address hold time
2.28
–
2
–
ns
5
SDRAM access time (CL = 3)
–
6.84
–
6
ns
5
SDRAM access time (CL = 2)
–
6.84
–
6
ns
5
SDRAM access time (CL = 1)
–
22
–
22
ns
6
Data out hold time
2.85
–
2.5
–
ns
7
Data out high-impedance time (CL = 3)
–
6.84
–
6
ns
7
Data out high-impedance time (CL = 2)
–
6.84
–
6
ns
7
Data out high-impedance time (CL = 1)
–
22
–
22
ns
8
Active to read/write command period (RC = 1)
tRCD1
–
tRCD1
–
ns
tRCD = SDRAM clock cycle time. This settings can be found in the MC9328MX1 reference manual.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
79
Functional Description and Application Information
SDCLK
1
2
3
CS
RAS
6
CAS
WE
5
7
4
ADDR
/ BA
COL/BA
ROW/BA
8
9
DATA
DQ
DQM
Figure 58. SDRAM Write Cycle Timing Diagram
Table 34. SDRAM Write Timing Parameter Table
1.8 ± 0.1 V
Ref No.
1
2
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
1
SDRAM clock high-level width
2.67
–
4
–
ns
2
SDRAM clock low-level width
6
–
4
–
ns
3
SDRAM clock cycle time
11.4
–
10
–
ns
4
Address setup time
3.42
–
3
–
ns
5
Address hold time
2.28
–
2
–
ns
tRP2
–
tRP2
–
ns
tRCD2
–
tRCD2
–
ns
period1
6
Precharge cycle
7
Active to read/write command delay
8
Data setup time
4.0
–
2
–
ns
9
Data hold time
2.28
–
2
–
ns
Precharge cycle timing is included in the write timing diagram.
tRP and tRCD = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference manual.
MC9328MX1 Technical Data, Rev. 7
80
Freescale Semiconductor
Functional Description and Application Information
SDCLK
1
3
2
CS
RAS
6
CAS
7
7
WE
4
ADDR
5
ROW/BA
BA
DQ
DQM
Figure 59. SDRAM Refresh Timing Diagram
Table 35. SDRAM Refresh Timing Parameter Table
1.8 ± 0.1 V
Ref No.
1
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
1
SDRAM clock high-level width
2.67
–
4
–
ns
2
SDRAM clock low-level width
6
–
4
–
ns
3
SDRAM clock cycle time
11.4
–
10
–
ns
4
Address setup time
3.42
–
3
–
ns
5
Address hold time
2.28
–
2
–
ns
6
Precharge cycle period
tRP1
–
tRP1
–
ns
7
Auto precharge command period
tRC1
–
tRC1
–
ns
tRP and tRC = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference manual.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
81
Functional Description and Application Information
SDCLK
CS
RAS
CAS
WE
ADDR
BA
DQ
DQM
CKE
Figure 60. SDRAM Self-Refresh Cycle Timing Diagram
4.14
USB Device Port
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous
transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is
identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section
covers the transfer modes and how they work from the ground up.
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same
packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved
in the form of packets, however, because isochronous pipes are given a fixed portion of the USB
bandwidth at all times, there is no end-of-transfer.
MC9328MX1 Technical Data, Rev. 7
82
Freescale Semiconductor
Functional Description and Application Information
USBD_AFE
(Output)
1
t VMO_ROE 4
t ROE_VPO
USBD_ROE
(Output)
tPERIOD
6
3
tVPO_ROE
USBD_VPO
(Output)
USBD_VMO
(Output)
USBD_SUSPND
tROE_VMO
2
tFEOPT
5
(Output)
USBD_RCV
(Input)
USBD_VP
(Input)
USBD_VM
(Input)
Figure 61. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX)
Table 36. USB Device Timing Parameters for Data Transfer to USB Transceiver (TX)
3.0 ± 0.3 V
Ref
No.
Parameter
Unit
Minimum
Maximum
1
tROE_VPO; USBD_ROE active to USBD_VPO low
83.14
83.47
ns
2
tROE_VMO; USBD_ROE active to USBD_VMO high
81.55
81.98
ns
3
tVPO_ROE; USBD_VPO high to USBD_ROE deactivated
83.54
83.80
ns
4
tVMO_ROE; USBD_VMO low to USBD_ROE deactivated (includes SE0)
248.90
249.13
ns
5
tFEOPT; SE0 interval of EOP
160.00
175.00
ns
6
tPERIOD; Data transfer rate
11.97
12.03
Mb/s
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
83
Functional Description and Application Information
USBD_AFE
(Output)
USBD_ROE
(Output)
USBD_VPO
(Output)
USBD_VMO
(Output)
USBD_SUSPND
(Output)
USBD_RCV
(Input)
1
tFEOPR
USBD_VP
(Input)
USBD_VM
(Input)
Figure 62. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)
Table 37. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX)
3.0 ± 0.3 V
Ref No.
1
4.15
Parameter
Unit
tFEOPR; Receiver SE0 interval of EOP
Minimum
Maximum
82
–
ns
I2C Module
The I2C communication protocol consists of seven elements: START, Data Source/Recipient, Data
Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.
SDA
5
3
4
SCL
1
2
6
Figure 63. Definition of Bus Timing for I2C
MC9328MX1 Technical Data, Rev. 7
84
Freescale Semiconductor
Functional Description and Application Information
Table 38. I2C Bus Timing Parameter Table
1.8 ± 0.1 V
Ref No.
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
182
–
160
–
ns
1
Hold time (repeated) START condition
2
Data hold time
0
171
0
150
ns
3
Data setup time
11.4
–
10
–
ns
4
HIGH period of the SCL clock
80
–
120
–
ns
5
LOW period of the SCL clock
480
–
320
–
ns
6
Setup time for STOP condition
182.4
–
160
–
ns
4.16
Synchronous Serial Interface
The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode,
the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous
mode, the transmitter and receiver each have their own clock and frame synchronization signals.
Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated
clock mode, the clock functions only during transmission. The internal and external clock timing diagrams
are shown in Figure 65 through Figure 67.
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is
typically used in star or ring-time division multiplex networks with other processors or codecs, allowing
interface to time division multiplexed networks without additional logic. Use of the gated clock is not
allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to
communicate with a wide variety of devices.
1
STCK Output
4
2
STFS (bl) Output
6
8
STFS (wl) Output
12
10
11
STXD Output
31
32
SRXD Input
Note: SRXD input in synchronous mode only.
Figure 64. SSI Transmitter Internal Clock Timing Diagram
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
85
Functional Description and Application Information
1
SRCK Output
3
5
SRFS (bl) Output
7
9
SRFS (wl) Output
13
14
SRXD Input
Figure 65. SSI Receiver Internal Clock Timing Diagram
15
16
17
STCK Input
18
20
STFS (bl) Input
24
22
STFS (wl) Input
27
26
28
STXD Output
33
34
SRXD Input
Note: SRXD Input in Synchronous mode only
Figure 66. SSI Transmitter External Clock Timing Diagram
MC9328MX1 Technical Data, Rev. 7
86
Freescale Semiconductor
Functional Description and Application Information
15
16
17
SRCK Input
19
21
SRFS (bl) Input
25
23
SRFS (wl) Input
30
29
SRXD Input
Figure 67. SSI Receiver External Clock Timing Diagram
Table 39. SSI (Port C Primary Function) Timing Parameter Table
1.8 ± 0.1 V
Ref No.
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
Internal Clock Operation1 (Port C Primary Function2)
1
STCK/SRCK clock period1
95
–
83.3
–
ns
2
STCK high to STFS (bl) high3
1.5
4.5
1.3
3.9
ns
3
SRCK high to SRFS (bl)
high3
-1.2
-1.7
-1.1
-1.5
ns
4
STCK high to STFS (bl) low3
2.5
4.3
2.2
3.8
ns
5
SRCK high to SRFS (bl)
low3
0.1
-0.8
0.1
-0.8
ns
6
STCK high to STFS (wl) high3
1.48
4.45
1.3
3.9
ns
7
3
SRCK high to SRFS (wl) high
-1.1
-1.5
-1.1
-1.5
ns
8
STCK high to STFS (wl) low3
2.51
4.33
2.2
3.8
ns
9
3
SRCK high to SRFS (wl) low
0.1
-0.8
0.1
-0.8
ns
10
STCK high to STXD valid from high impedance
14.25
15.73
12.5
13.8
ns
11a
STCK high to STXD high
0.91
3.08
0.8
2.7
ns
11b
STCK high to STXD low
0.57
3.19
0.5
2.8
ns
12
STCK high to STXD high impedance
12.88
13.57
11.3
11.9
ns
13
SRXD setup time before SRCK low
21.1
–
18.5
–
ns
14
SRXD hold time after SRCK low
0
–
0
–
ns
External Clock Operation (Port C Primary Function2)
15
STCK/SRCK clock period1
92.8
–
81.4
–
ns
16
STCK/SRCK clock high period
27.1
–
40.7
–
ns
17
STCK/SRCK clock low period
61.1
–
40.7
–
ns
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
87
Functional Description and Application Information
Table 39. SSI (Port C Primary Function) Timing Parameter Table (Continued)
1.8 ± 0.1 V
Ref No.
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
18
STCK high to STFS (bl) high3
–
92.8
0
81.4
ns
19
3
SRCK high to SRFS (bl) high
–
92.8
0
81.4
ns
20
STCK high to STFS (bl) low3
–
92.8
0
81.4
ns
21
3
SRCK high to SRFS (bl) low
–
92.8
0
81.4
ns
22
STCK high to STFS (wl) high3
–
92.8
0
81.4
ns
23
3
SRCK high to SRFS (wl) high
–
92.8
0
81.4
ns
24
STCK high to STFS (wl) low3
–
92.8
0
81.4
ns
25
SRCK high to SRFS (wl)
low3
–
92.8
0
81.4
ns
26
STCK high to STXD valid from high impedance
18.01
28.16
15.8
24.7
ns
27a
STCK high to STXD high
8.98
18.13
7.0
15.9
ns
27b
STCK high to STXD low
9.12
18.24
8.0
16.0
ns
28
STCK high to STXD high impedance
18.47
28.5
16.2
25.0
ns
29
SRXD setup time before SRCK low
1.14
–
1.0
–
ns
30
SRXD hole time after SRCK low
0
–
0
–
ns
Synchronous Internal Clock Operation (Port C Primary Function2)
31
SRXD setup before STCK falling
32
SRXD hold after STCK falling
15.4
–
13.5
–
ns
0
–
0
–
ns
Synchronous External Clock Operation (Port C Primary Function2)
33
SRXD setup before STCK falling
34
SRXD hold after STCK falling
1.14
–
1.0
–
ns
0
–
0
–
ns
1
All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
2
There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B
alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary
function and Port B alternate function. When SSI signals are configured as input, the SSI module selects the input based on
status of the FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary
function.
3
bl = bit length; wl = word length.
MC9328MX1 Technical Data, Rev. 7
88
Freescale Semiconductor
Functional Description and Application Information
Table 40. SSI (Port B Alternate Function) Timing Parameter Table
1.8 ± 0.1 V
Ref
No.
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
Internal Clock Operation1 (Port B Alternate Function2)
1
STCK/SRCK clock period1
95
–
83.3
–
ns
2
STCK high to STFS (bl) high3
1.7
4.8
1.5
4.2
ns
3
SRCK high to SRFS (bl) high3
-0.1
1.0
-0.1
1.0
ns
4
STCK high to STFS (bl) low3
3.08
5.24
2.7
4.6
ns
5
SRCK high to SRFS (bl) low3
1.25
2.28
1.1
2.0
ns
6
STCK high to STFS (wl) high3
1.71
4.79
1.5
4.2
ns
7
SRCK high to SRFS (wl) high3
-0.1
1.0
-0.1
1.0
ns
8
STCK high to STFS (wl) low3
3.08
5.24
2.7
4.6
ns
9
SRCK high to SRFS (wl) low3
1.25
2.28
1.1
2.0
ns
10
STCK high to STXD valid from high impedance
14.93
16.19
13.1
14.2
ns
11a
STCK high to STXD high
1.25
3.42
1.1
3.0
ns
11b
STCK high to STXD low
2.51
3.99
2.2
3.5
ns
12
STCK high to STXD high impedance
12.43
14.59
10.9
12.8
ns
13
SRXD setup time before SRCK low
20
–
17.5
–
ns
14
SRXD hold time after SRCK low
0
–
0
–
ns
External Clock Operation (Port B Alternate Function2)
15
STCK/SRCK clock period1
92.8
–
81.4
–
ns
16
STCK/SRCK clock high period
27.1
–
40.7
–
ns
17
STCK/SRCK clock low period
61.1
–
40.7
–
ns
18
STCK high to STFS (bl) high3
–
92.8
0
81.4
ns
19
3
SRCK high to SRFS (bl) high
–
92.8
0
81.4
ns
20
STCK high to STFS (bl) low3
–
92.8
0
81.4
ns
21
SRCK high to SRFS (bl)
low3
–
92.8
0
81.4
ns
22
STCK high to STFS (wl) high3
–
92.8
0
81.4
ns
23
SRCK high to SRFS (wl)
high3
–
92.8
0
81.4
ns
24
STCK high to STFS (wl) low3
–
92.8
0
81.4
ns
25
SRCK high to SRFS (wl)
low3
–
92.8
0
81.4
ns
26
STCK high to STXD valid from high impedance
18.9
29.07
16.6
25.5
ns
27a
STCK high to STXD high
9.23
20.75
8.1
18.2
ns
27b
STCK high to STXD low
10.60
21.32
9.3
18.7
ns
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
89
Functional Description and Application Information
Table 40. SSI (Port B Alternate Function) Timing Parameter Table (Continued)
Ref
No.
1.8 ± 0.1 V
3.0 ± 0.3 V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
28
STCK high to STXD high impedance
17.90
29.75
15.7
26.1
ns
29
SRXD setup time before SRCK low
1.14
–
1.0
–
ns
30
SRXD hold time after SRCK low
0
–
0
–
ns
Synchronous Internal Clock Operation (Port B Alternate Function2)
31
SRXD setup before STCK falling
32
SRXD hold after STCK falling
18.81
–
16.5
–
ns
0
–
0
–
ns
Synchronous External Clock Operation (Port B Alternate Function2)
33
SRXD setup before STCK falling
34
SRXD hold after STCK falling
1.14
–
1.0
–
ns
0
–
0
–
ns
1
All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
2 There are 2 set of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B
alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary
function and Port B alternate function. When SSI signals are configured as inputs, the SSI module selects the input based on
FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function.
3 bl = bit length; wl = word length.
Table 41. SSI 2 (Port C Alternate Function) Timing Parameter Table
Ref
No.
1.8V +/- 0.10V
3.0V +/- 0.30V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
Internal Clock Operation1 (Port C Alternate Function)2
1
STCK/SRCK clock period1
2
3
SRCK high to SRFS (bl) high
4
5
SRCK high to SRFS (bl) low
6
7
SRCK high to SRFS (wl) high
8
9
SRCK high to SRFS (wl) low
10
11a
95
–
83.3
–
ns
STCK high to STFS (bl) high3
1.7
4.8
1.5
4.2
ns
3
-0.1
1.0
-0.1
1.0
ns
STCK high to STFS (bl) low3
3.08
5.24
2.7
4.6
ns
3
1.25
2.28
1.1
2.0
ns
STCK high to STFS (wl) high3
1.71
4.79
1.5
4.2
ns
3
-0.1
1.0
-0.1
1.0
ns
STCK high to STFS (wl) low3
3.08
5.24
2.7
4.6
ns
3
1.25
2.28
1.1
2.0
ns
STCK high to STXD valid from high impedance
14.93
16.19
13.1
14.2
ns
STCK high to STXD high
1.25
3.42
1.1
3.0
ns
MC9328MX1 Technical Data, Rev. 7
90
Freescale Semiconductor
Functional Description and Application Information
Table 41. SSI 2 (Port C Alternate Function) Timing Parameter Table (Continued)
1.8V +/- 0.10V
Ref
No.
3.0V +/- 0.30V
Parameter
Unit
Minimum
Maximum
Minimum
Maximum
11b
STCK high to STXD low
2.51
3.99
2.2
3.5
ns
12
STCK high to STXD high impedance
12.43
14.59
10.9
12.8
ns
13
SRXD setup time before SRCK low
20
–
17.5
–
ns
14
SRXD hold time after SRCK low
0
–
0
–
ns
External Clock Operation (Port C Alternate Function)2
15
STCK/SRCK clock period1
92.8
–
81.4
–
ns
16
STCK/SRCK clock high period
27.1
–
40.7
–
ns
17
STCK/SRCK clock low period
61.1
–
40.7
–
ns
18
STCK high to STFS (bl) high3
–
92.8
0
81.4
ns
19
SRCK high to SRFS (bl)
high3
–
92.8
0
81.4
ns
20
STCK high to STFS (bl) low3
–
92.8
0
81.4
ns
21
SRCK high to SRFS (bl)
low3
–
92.8
0
81.4
ns
22
STCK high to STFS (wl) high3
–
92.8
0
81.4
ns
23
SRCK high to SRFS (wl)
high3
–
92.8
0
81.4
ns
24
STCK high to STFS (wl) low3
–
92.8
0
81.4
ns
25
SRCK high to SRFS (wl)
low3
–
92.8
0
81.4
ns
26
STCK high to STXD valid from high impedance
18.9
29.07
16.6
25.5
ns
27a
STCK high to STXD high
9.23
20.75
8.1
18.2
ns
27b
STCK high to STXD low
10.60
21.32
9.3
18.7
ns
28
STCK high to STXD high impedance
17.90
29.75
15.7
26.1
ns
29
SRXD setup time before SRCK low
1.14
–
1.0
–
ns
30
SRXD hole time after SRCK low
0
–
0
–
ns
Synchronous Internal Clock Operation (Port C Alternate Function)2
31
SRXD setup before STCK falling
32
SRXD hold after STCK falling
18.81
–
16.5
–
ns
0
–
0
–
ns
Synchronous External Clock Operation (Port C Alternate Function)2
1
33
SRXD setup before STCK falling
34
SRXD hold after STCK falling
1.14
–
1.0
–
ns
0
–
0
–
ns
All the timings for both SSI modules are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted
frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid
by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
91
Functional Description and Application Information
2
There is one set of I/O signals for the SSI2 module. They are from Port C alternate function (PC19 – PC24). When SSI signals
are configured as outputs, they can be viewed at Port C alternate function a. When SSI signals are configured as inputs, the
SSI module selects the input based on FMCR register bits in the Clock controller module (CRM). By default, the input is selected
from Port C alternate function.
3
bl = bit length; wl = word length
4.17
CMOS Sensor Interface
The CMOS Sensor Interface (CSI) module consists of a control register to configure the interface timing,
a control register for statistic data generation, a status register, interface logic, a 32 × 32 image data receive
FIFO, and a 16 × 32 statistic data FIFO.
4.17.1
Gated Clock Mode
Figure 68 shows the timing diagram when the CMOS sensor output data is configured for negative edge
and the CSI is programmed to received data on the positive edge. Figure 69 shows the timing diagram
when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received
data in negative edge. The parameters for the timing diagrams are listed in Table 42.
1
VSYNC
7
HSYNC
5
6
2
PIXCLK
DATA[7:0]
Valid Data
3
Valid Data
Valid Data
4
Figure 68. Sensor Output Data on Pixel Clock Falling Edge
CSI Latches Data on Pixel Clock Rising Edge
MC9328MX1 Technical Data, Rev. 7
92
Freescale Semiconductor
Functional Description and Application Information
1
VSYNC
7
HSYNC
6
5
2
PIXCLK
Valid Data
DATA[7:0]
3
Valid Data
Valid Data
4
Figure 69. Sensor Output Data on Pixel Clock Rising Edge
CSI Latches Data on Pixel Clock Falling Edge
Table 42. Gated Clock Mode Timing Parameters
Ref No.
Parameter
Min
Max
Unit
1
csi_vsync to csi_hsync
180
–
ns
2
csi_hsync to csi_pixclk
1
–
ns
3
csi_d setup time
1
–
ns
4
csi_d hold time
1
–
ns
5
csi_pixclk high time
10.42
–
ns
6
csi_pixclk low time
10.42
–
ns
7
csi_pixclk frequency
0
48
MHz
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold
time and setup time, according to:
Rising-edge latch data
max rise time allowed = (positive duty cycle - hold time)
max fall time allowed = (negative duty cycle - setup time)
In most of case, duty cycle is 50 / 50, therefore
max rise time = (period / 2 - hold time)
max fall time = (period / 2 - setup time)
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.
positive duty cycle = 10 / 2 = 5ns
=> max rise time allowed = 5 - 1 = 4ns
negative duty cycle = 10 / 2 = 5ns
=> max fall time allowed = 5 - 1 = 4ns
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
93
Functional Description and Application Information
Falling-edge latch data
max fall time allowed = (negative duty cycle - hold time)
max rise time allowed = (positive duty cycle - setup time)
4.17.2
Non-Gated Clock Mode
Figure 70 shows the timing diagram when the CMOS sensor output data is configured for negative edge
and the CSI is programmed to received data on the positive edge. Figure 71 shows the timing diagram
when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received
data in negative edge. The parameters for the timing diagrams are listed in Table 43.
1
6
VSYNC
4
5
PIXCLK
Valid Data
DATA[7:0]
2
Valid Data
Valid Data
3
Figure 70. Sensor Output Data on Pixel Clock Falling Edge
CSI Latches Data on Pixel Clock Rising Edge
1
VSYNC
6
4
5
PIXCLK
Valid Data
DATA[7:0]
2
Valid Data
Valid Data
3
Figure 71. Sensor Output Data on Pixel Clock Rising Edge
CSI Latches Data on Pixel Clock Falling Edge
Table 43. Non-Gated Clock Mode Parameters
Ref No.
Parameter
1
csi_vsync to csi_pixclk
2
csi_d setup time
Min
Max
Unit
180
–
ns
1
–
ns
MC9328MX1 Technical Data, Rev. 7
94
Freescale Semiconductor
Functional Description and Application Information
Table 43. Non-Gated Clock Mode Parameters (Continued)
Ref No.
Parameter
Min
Max
Unit
1
–
ns
3
csi_d hold time
4
csi_pixclk high time
10.42
–
ns
5
csi_pixclk low time
10.42
–
ns
6
csi_pixclk frequency
0
48
MHz
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold
time and setup time, according to:
max rise time allowed = (positive duty cycle - hold time)
max fall time allowed = (negative duty cycle - setup time)
In most of case, duty cycle is 50 / 50, therefore:
max rise time = (period / 2 - hold time)
max fall time = (period / 2 - setup time)
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.
positive duty cycle = 10 / 2 = 5ns
=> max rise time allowed = 5 - 1 = 4ns
negative duty cycle = 10 / 2 = 5ns
=> max fall time allowed = 5 - 1 = 4ns
Falling-edge latch data
max fall time allowed = (negative duty cycle - hold time)
max rise time allowed = (positive duty cycle - setup time)
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
95
Pin-Out and Package Information
Table 44 illustrates the package pin assignments for the 256-pin MAPBGA package. For a complete listing of signals, see the Signal
Multiplexing Table 3 on page 11.
Table 44. i.MX1 256 MAPBGA Pin Assignments
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
NVSS
SD_DAT3
SD_CLK
NVSS
USBD_
AFE
NVDD4
NVSS
UART1_
RTS
UART1_
RXD
NVDD3
BT5
BT3
QVDD4
RVP
UIP
N.C.
A
B
A24
SD_DAT1
SD_CMD
SIM_TX
USBD_
ROE
USBD_VP
SPI1_
SCLK
BT11
BT7
BT1
QVSS
RVM
UIN
N.C.
B
C
A23
D31
SD_DAT0
SIM_PD
USBD_
RCV
UART2_
CTS
UART2_
RXD
SSI_
RXFS
UART1_
TXD
BTRFGND
BT8
BTRFVDD
N.C.
AVDD21
VSS
R1B
C
D
A22
D30
D29
SIM_SVEN
USBD_
SUSPND
USBD_
VPO
USBD_
VMO
SSI_RXDAT
SPI1_
SPI_RDY
BT13
BT6
N.C.
N.C.
N.C.
R1A
R2B
D
E
A20
A21
D28
D26
SD_DAT2
USBD_VM
UART2_
RTS
SSI_TXDAT
SPI1_SS
BT12
BT4
N.C.
N.C.
PY2
PX2
R2A
E
F
A18
D27
D25
A19
A16
SIM_RST
UART2_
TXD
SSI_TXFS
SPI1_
MISO
BT10
BT2
REV
PY1
PX1
LSCLK
SPL_SPR
F
G
A15
A17
D24
D23
D21
SIM_RX
SIM_CLK
UART1_
CTS
SPI1_
MOSI
BT9
CLS
CONTRAST
ACD/OE
LP/
HSYNC
FLM/
VSYNC
LD1
G
H
A13
D22
A14
D20
NVDD1
NVDD1
NVSS
QVSS
QVDD1
PS
LD0
LD2
LD4
LD5
LD9
LD3
H
J
A12
A11
D18
D19
NVDD1
NVDD1
NVSS
NVDD1
NVSS
NVSS
LD6
LD7
LD8
LD11
QVDD3
QVSS
J
K
A10
D16
A9
D17
NVDD1
NVSS
NVSS
NVDD1
NVDD2
NVDD2
LD10
LD12
LD13
LD14
TMR2OUT
LD15
K
L
A8
A7
D13
D15
D14
NVDD1
NVSS
CAS
TCK
TIN
PWMO
CSI_MCLK
CSI_D0
CSI_D1
CSI_D2
CSI_D3
L
M
A5
D12
D11
A6
SDCLK
NVSS
RW
MA10
RAS
RESET_IN
BIG_
ENDIAN
CSI_D4
CSI_
HSYNC
CSI_VSYNC
CSI_D6
CSI_D5
M
N
A4
EB1
D10
D7
A0
D4
PA17
D1
DQM1
RESET_SF2
RESET_
OUT
BOOT2
CSI_
PIXCLK
CSI_D7
TMS
TDI
N
P
A3
D9
EB0
CS3
D6
ECB
D2
D3
DQM3
SDCKE1
BOOT3
BOOT0
TRST
I2C_SCL
I2C_SDA
XTAL32K
P
R
EB2
EB3
A1
CS4
D8
D5
LBA
BCLK3
D0
DQM0
SDCKE0
POR
BOOT1
TDO
QVDD2
EXTAL32K
R
T
NVSS
A2
OE
CS5
CS2
CS1
CS0
MA11
DQM2
SDWE
CLKO
AVDD1
TRISTATE
EXTAL16M
XTAL16M
QVSS
T
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
SSI_RXCLK SSI_TXCLK
2
ASP signals are clamped by AVDD2 to prevent ESD (Electrostatic Discharge) damage. AVDD2 must be greater than QVDD to keep diodes reversed-biased.
This signal is not used and should be floated in an actual application.
3
burst clock
Pin-Out and Package Information
96
5
Pin-Out and Package Information
5.1
MAPBGA 256 Package Dimensions
Figure 72 illustrates the 256 MAPBGA 14 mm × 14 mm × 1.30 mm package, with an 0.8 mm pad pitch.
The device designator for the MAPBGA package is VH.
Case Outline 1367
TOP VIEW
BOTTOM VIEW
SIDE VIEW
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2.INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.
3.MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS.
Figure 72. i.MXL 256 MAPBGA Mechanical Drawing
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
97
Product Documentation
6
6.1
Product Documentation
Revision History
Table 45 provides revision history for this release. This history includes technical content revisions only
and not stylistic or grammatical changes.
Table 45. i.MX1 Data Sheet Revision History Rev. 7
Location
Revision
Table 1 on page 3
Signal Names and
Descriptions
• Added the DMA_REQ signal to table.
• Corrected signal name from USBD_OE to USBD_ROE
• Corrected signal names
From: C10 BTRFGN, To: BTRFGND
From: G6 SIM_RST, To: SIM_RX
From: G7 UART2_TXD, To: SIM_CLK
Table 3 on page 11
Signal Multiplex Table i.MX1
Added Signal Multiplex table from Reference Manual with the following changes:
• Changed I/O Supply Voltage, PB31–14, from NVDD3 to NVDD4
• Corrected footnotes 1–5.
• Changed AVDD2 references to QVDD, except for C14. Added footnote regarding ESD.
• Changed occurrence of SD_SCLK to SD_CLK.
• Removed 69K pull-up resistor from EB1, EB2, and added to D9
Table 10 on page 26
Changed first and second parameters descriptions:
From: Reference Clock freq range, To: DPLL input clock freq range
From: Double clock freq range, To: DPLL output freq range
Table 3 on page 11
Added Signal Multiplex table.
6.2
Reference Documents
The following documents are required for a complete description of the MC9328MX1 and are necessary
to design properly with the device. Especially for those not familiar with the ARM920T processor or
previous i.MX processor products, the following documents are helpful when used in conjunction with this
document.
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)
ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)
ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)
EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)
MC9328MX1 Product Brief (order number MC9328MX1P)
MC9328MX1 Reference Manual (order number MC9328MX1RM)
The Freescale manuals are available on the Freescale Semiconductors Web site at
http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web
site, or printed versions may be ordered. The ARM Ltd. documentation is available from
http://www.arm.com.
MC9328MX1 Technical Data, Rev. 7
98
Freescale Semiconductor
NOTES
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor
99
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
[email protected]
Document Number: MC9328MX1
Rev. 7
12/2006
Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the
ARM POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and
ARM9TDMI are the trademarks of ARM Limited. All other product or service names are the property
of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further
information, see http://www.freescale.com or contact your Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.