Freescale Semiconductor Data Sheet: Technical Data Document Number: MC9328MX1 Rev. 7, 12/2006 MC9328MX1 Package Information Plastic Package Case 1304B-01 (MAPBGA–225) MC9328MX1 Ordering Information See Table 1 on page 3 1 Introduction The i.MX Family of applications processors provides a leap in performance with an ARM9™ microprocessor core and highly integrated system functions. The i.MX family specifically addresses the requirements of the personal, portable product market by providing intelligent integrated peripherals, an advanced processor core, and power management capabilities. Contents 1 2 3 4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Signals and Connections . . . . . . . . . . . . . . . 4 Electrical Characteristics . . . . . . . . . . . . . . 22 Functional Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Pin-Out and Package Information . . . . . . . . 96 6 Product Documentation . . . . . . . . . . . . . . . . 98 Contact Information . . . . . . . . . . . . . . . Last Page The MC9328MX1 (i.MX1) processor features the advanced and power-efficient ARM920T™ core that operates at speeds up to 200 MHz. Integrated modules, which include a USB device, an LCD controller, and an MMC/SD host controller, support a suite of peripherals to enhance portable products seeking to provide a rich multimedia experience. It is packaged in a 256-contact Mold Array Process-Ball Grid Array (MAPBGA). Figure 1 shows the functional block diagram of the i.MX1 processor. Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © Freescale Semiconductor, Inc., 2004, 2005, 2006. All rights reserved. Introduction System Control JTAG/ICE Bootstrap Power Control CGM (DPLLx2) Standard System I/O GPIO Connectivity PWM MC9328MX1 MMC/SD RTC ARM9TDMI™ SPI 1 and SPI 2 UART 1 Timer 1 & 2 CPU Complex Memory Stick® Host Controller Watchdog D Cache I Cache UART 2 & 3 SSI/I2S 1 & 2 AIPI 1 Interrupt Controller VMMU I2C USB Device AIPI 2 DMAC (11 Chnl) Bus Control SmartCard I/F Bluetooth Accelerator EIM & SDRAMC eSRAM (128K) Multimedia Multimedia Accelerator Video Port Human Interface Analog Signal Processor LCD Controller Figure 1. i.MX1 Functional Block Diagram 1.1 Features To support a wide variety of applications, the processor offers a robust array of features, including the following: • • • • • • • • • • • • • • • • • • • ARM920T™ Microprocessor Core AHB to IP Bus Interfaces (AIPIs) External Interface Module (EIM) SDRAM Controller (SDRAMC) DPLL Clock and Power Control Module Three Universal Asynchronous Receiver/Transmitters (UART 1, UART 2, and UART3) Two Serial Peripheral Interfaces (SPI1 and SPI2) Two General-Purpose 32-bit Counters/Timers Watchdog Timer Real-Time Clock/Sampling Timer (RTC) LCD Controller (LCDC) Pulse-Width Modulation (PWM) Module Universal Serial Bus (USB) Device Multimedia Card and Secure Digital (MMC/SD) Host Controller Module Memory Stick® Host Controller (MSHC) Direct Memory Access Controller (DMAC) Two Synchronous Serial Interfaces and an Inter-IC Sound (SSI1 and SSI2/I2S) Module Inter-IC (I2C) Bus Module Video Port MC9328MX1 Technical Data, Rev. 7 2 Freescale Semiconductor Introduction • • • • • • • • 1.2 General-Purpose I/O (GPIO) Ports Bootstrap Mode Analog Signal Processing (ASP) Module Bluetooth™ Accelerator (BTA) Multimedia Accelerator (MMA) Power Management Features Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O 256-pin MAPBGA Package Target Applications The i.MX1 processor is targeted for advanced information appliances, smart phones, Web browsers, based on the popular Palm OS platform, and messaging applications such as wireless cellular products, including the AccompliTM 008 GSM/GPRS interactive communicator. 1.3 Ordering Information Table 1 provides ordering information. Table 1. Ordering Information Package Type Frequency Temperature Solderball Type Order Number 256-lead MAPBGA 200 MHz 0°C to 70°C Pb-free MC9328MX1VM20(R2) -30°C to 70°C Pb-free MC9328MX1DVM20(R2) 0°C to 70°C Pb-free MC9328MX1VM15(R2) -30°C to 70°C Pb-free MC9328MX1DVM15(R2) -40°C to 85°C Pb-free MC9328MX1CVM15(R2) 150 MHz 1.4 Conventions This document uses the following conventions: • • • • • • • • OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET. Logic level one is a voltage that corresponds to Boolean true (1) state. Logic level zero is a voltage that corresponds to Boolean false (0) state. To set a bit or bits means to establish logic level one. To clear a bit or bits means to establish logic level zero. A signal is an electronic construct whose state conveys or changes in state convey information. A pin is an external physical connection. The same pin can be used to connect a number of signals. Asserted means that a discrete signal is in active logic state. — Active low signals change from logic level one to logic level zero. — Active high signals change from logic level zero to logic level one. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 3 Signals and Connections • • • 2 Negated means that an asserted discrete signal changes logic state. — Active low signals change from logic level zero to logic level one. — Active high signals change from logic level one to logic level zero. LSB means least significant bit or bits, and MSB means most significant bit or bits. References to low and high bytes or words are spelled out. Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x are hexadecimal. Signals and Connections Table 2 identifies and describes the i.MX1 processor signals that are assigned to package pins. The signals are grouped by the internal module that they are connected to. Table 2. i.MX1 Signal Descriptions Signal Name Function/Notes External Bus/Chip-Select (EIM) A[24:0] Address bus signals D[31:0] Data bus signals EB0 MSB Byte Strobe—Active low external enable byte signal that controls D [31:24]. EB1 Byte Strobe—Active low external enable byte signal that controls D [23:16]. EB2 Byte Strobe—Active low external enable byte signal that controls D [15:8]. EB3 LSB Byte Strobe—Active low external enable byte signal that controls D [7:0]. OE Memory Output Enable—Active low output enables external data bus. CS [5:0] Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the Function Multiplexing Control Register (FMCR). By default CSD [1:0] is selected. ECB Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an on-going burst sequence and initiate a new (long first access) burst sequence. LBA Active low signal sent by a flash device causing the external burst device to latch the starting burst address. BCLK (burst clock) Clock signal sent to external synchronous memories (such as burst flash) during burst mode. RW RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE input signal by external DRAM. DTACK DTACK signal—The external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 clock counts have elapsed. Bootstrap BOOT [3:0] System Boot Mode Select—The operational system boot mode of the i.MX1 processor upon system reset is determined by the settings of these pins. SDRAM Controller SDBA [4:0] SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals are logically equivalent to core address p_addr [25:21] in SDRAM cycles. MC9328MX1 Technical Data, Rev. 7 4 Freescale Semiconductor Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name Function/Notes SDIBA [3:0] SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles. MA [11:10] SDRAM address signals MA [9:0] SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on SDRAM cycles. DQM [3:0] SDRAM data enable CSD0 SDRAM Chip-select signal which is multiplexed with the CS2 signal. These two signals are selectable by programming the system control register. CSD1 SDRAM Chip-select signal which is multiplexed with CS3 signal. These two signals are selectable by programming the system control register. By default, CSD1 is selected, so it can be used as boot chip-select by properly configuring BOOT [3:0] input pins. RAS SDRAM Row Address Select signal CAS SDRAM Column Address Select signal SDWE SDRAM Write Enable signal SDCKE0 SDRAM Clock Enable 0 SDCKE1 SDRAM Clock Enable 1 SDCLK SDRAM Clock RESET_SF Not Used Clocks and Resets EXTAL16M Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut down. XTAL16M Crystal output EXTAL32K 32 kHz crystal input XTAL32K 32 kHz crystal output CLKO Clock Out signal selected from internal clock signals. RESET_IN Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all modules (except the reset module and the clock control module) are reset. RESET_OUT Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out. POR Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally generated by an external RC circuit designed to detect a power-up event. JTAG TRST Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller. TDO Serial Output for test instructions and data. Changes on the falling edge of TCK. TDI Serial Input for test instructions and data. Sampled on the rising edge of TCK. TCK Test Clock to synchronize test logic and control register access through the JTAG port. TMS Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge of TCK. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 5 Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name Function/Notes DMA DMA_REQ DMA Request—external DMA request signal. Multiplexed with SPI1_SPI_RDY. BIG_ENDIAN Big Endian—Input signal that determines the configuration of the external chip-select space. If it is driven logic-high at reset, the external chip-select space will be configured to big endian. If it is driven logic-low at reset, the external chip-select space will be configured to little endian. This input must not change state after power-on reset negates or during chip operation. ETM ETMTRACESYNC ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode. ETMTRACECLK ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode. ETMPIPESTAT [2:0] ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM mode. ETMTRACEPKT [7:0] ETM packet signals which are multiplexed with ECB, LBA, BCLK (burst clock), PA17, A [19:16]. ETMTRACEPKT [7:0] are selected in ETM mode. CMOS Sensor Interface CSI_D [7:0] Sensor port data CSI_MCLK Sensor port master clock CSI_VSYNC Sensor port vertical sync CSI_HSYNC Sensor port horizontal sync CSI_PIXCLK Sensor port data latch clock LCD Controller LD [15:0] LCD Data Bus—All LCD signals are driven low after reset and when LCD is off. FLM/VSYNC Frame Sync or Vsync—This signal also serves as the clock signal output for the gate driver (dedicated signal SPS for Sharp panel HR-TFT). LP/HSYNC Line pulse or H sync LSCLK Shift clock ACD/OE Alternate crystal direction/output enable. CONTRAST This signal is used to control the LCD bias voltage as contrast control. SPL_SPR Program horizontal scan direction (Sharp panel dedicated signal). PS Control signal output for source driver (Sharp panel dedicated signal). CLS Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated signal). REV Signal for common electrode driving signal preparation (Sharp panel dedicated signal). SIM SIM_CLK SIM Clock SIM_RST SIM Reset SIM_RX Receive Data MC9328MX1 Technical Data, Rev. 7 6 Freescale Semiconductor Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name Function/Notes SIM_TX Transmit Data SIM_PD Presence Detect Schmitt trigger input SIM_SVEN SIM Vdd Enable SPI 1 and SPI 2 SPI1_MOSI Master Out/Slave In SPI1_MISO Slave In/Master Out SPI1_SS Slave Select (Selectable polarity) SPI1_SCLK Serial Clock SPI1_SPI_RDY Serial Data Ready SPI2_TXD SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin. SPI2_RXD SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin. SPI2_SS SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin. SPI2_SCLK SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin. General Purpose Timers TIN Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers simultaneously. TMR2OUT Timer 2 Output USB Device USBD_VMO USB Minus Output USBD_VPO USB Plus Output USBD_VM USB Minus Input USBD_VP USB Plus Input USBD_SUSPND USB Suspend Output USBD_RCV USB Receive Data USBD_ROE USB OE USBD_AFE USB Analog Front End Enable Secure Digital Interface SD_CMD SD Command—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable register, a 4.7K–69K external pull up resistor must be added. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 7 Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name Function/Notes SD_CLK MMC Output Clock SD_DAT [3:0] Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable register, a 50K–69K external pull up resistor must be added. Memory Stick Interface MS_BS Memory Stick Bus State (Output)—Serial bus control signal MS_SDIO Memory Stick Serial Data (Input/Output) MS_SCLKO Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider MS_SCLKI Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test purposes, not for use in application mode. MS_PI0 General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect MS_PI1 General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect UARTs – IrDA/Auto-Bauding UART1_RXD Receive Data UART1_TXD Transmit Data UART1_RTS Request to Send UART1_CTS Clear to Send UART2_RXD Receive Data UART2_TXD Transmit Data UART2_RTS Request to Send UART2_CTS Clear to Send UART2_DSR Data Set Ready UART2_RI Ring Indicator UART2_DCD Data Carrier Detect UART2_DTR Data Terminal Ready UART3_RXD Receive Data UART3_TXD Transmit Data UART3_RTS Request to Send UART3_CTS Clear to Send UART3_DSR Data Set Ready UART3_RI Ring Indicator UART3_DCD Data Carrier Detect UART3_DTR Data Terminal Ready Serial Audio Port – SSI (configurable to I2S protocol) SSI_TXDAT Transmit Data SSI_RXDAT Receive Data MC9328MX1 Technical Data, Rev. 7 8 Freescale Semiconductor Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name Function/Notes SSI_TXCLK Transmit Serial Clock SSI_RXCLK Receive Serial Clock SSI_TXFS Transmit Frame Sync SSI_RXFS Receive Frame Sync SSI2_TXDAT TxD SSI2_RXDAT RxD SSI2_TXCLK Transmit Serial Clock SSI2_RXCLK Receive Serial Clock SSI2_TXFS Transmit Frame Sync SSI2_RXFS Receive Frame Sync I2C I2C_SCL I2C Clock I2C_SDA I2C Data PWM PWMO PWM Output ASP UIN Positive U analog input (for low voltage, temperature measurement) UIP Negative U analog input (for low voltage, temperature measurement) PX1 Positive pen-X analog input PY1 Positive pen-Y analog input PX2 Negative pen-X analog input PY2 Negative pen-Y analog input R1A Positive resistance input (a) R1B Positive resistance input (b) R2A Negative resistance input (a) R2B Negative resistance input (b) RVP Positive reference for pen ADC RVM Negative reference for pen ADC AVDD Analog power supply AGND Analog ground BlueTooth BT1 I/O clock signal BT2 Output BT3 Input MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 9 Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name Function/Notes BT4 Input BT5 Output BT6 Output BT7 Output BT8 Output BT9 Output BT10 Output BT11 Output BT12 Output BT13 Output BTRF VDD Power supply from external BT RFIC BTRF GND Ground from external BT RFIC Test Function TRISTATE Forces all I/O signals to high impedance for test purposes. For normal operation, terminate this input with a 1 k ohm resistor to ground. (TRI-STATE® is a registered trademark of National Semiconductor.) Digital Supply Pins NVDD Digital Supply for the I/O pins NVSS Digital Ground for the I/O pins Supply Pins – Analog Modules AVDD Supply for analog blocks Internal Power Supply QVDD Power supply pins for silicon internal circuitry QVSS Ground pins for silicon internal circuitry 2.1 I/O Pads Power Supply and Signal Multiplexing Scheme This section describes detailed information about both the power supply for each I/O pin and its function multiplexing scheme. The user can reference information provided in Table 6 on page 23 to configure the power supply scheme for each device in the system (memory and external peripherals). The function multiplexing information also shown in Table 6 allows the user to select the function of each pin by configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions. MC9328MX1 Technical Data, Rev. 7 10 Freescale Semiconductor reescale Semiconductor Table 3. MC9328MX1 Signal Multiplexing Scheme I/O Supply BGA Voltage Pin Primary Signal Dir MC9328MX1 Technical Data, Rev. 7 K8 NVDD1 Static NVDD1 B1 A24 O NVDD1 C2 D31 I/O NVDD1 C1 A23 O NVDD1 D2 D30 I/O NVDD1 D1 A22 O NVDD1 D3 D29 I/O NVDD1 E2 A21 O NVDD1 E3 D28 I/O NVDD1 E1 A20 O NVDD1 F2 D27 I/O NVDD1 F4 A19 O NVDD1 E4 D26 I/O A1 VSS Static NVDD1 H5 NVDD1 Static NVDD1 F1 A18 O NVDD1 F3 D25 I/O NVDD1 G2 A17 O NVDD1 G3 D24 I/O NVDD1 F5 A16 O NVDD1 G4 D23 I/O NVDD1 G1 A15 O NVDD1 H2 D22 I/O NVDD1 H3 A14 O Pull-up GPIO Signal Dir Mux Pull-up Ain ETMTRACESYN C O PA0 69K SPI2_CLK 69K Aout L O PA31 69K 69K L A23 Pull-H ETMPIPESTAT2 O PA30 69K 69K L A22 Pull-H ETMPIPESTAT1 O PA29 69K 69K L A21 Pull-H ETMPIPESTAT0 O PA28 69K 69K L A20 Pull-H ETMTRACEPKT3 O PA27 69K 69K L A19 Pull-H ETMTRACEPKT2 O PA26 69K 69K L A18 Pull-H ETMTRACEPKT1 O PA25 69K 69K L A17 Pull-H ETMTRACEPKT0 O PA24 69K L Pull-H L 69K A24 Pull-H ETMTRACECLK 69K Bin RESE Default State (At/After) Pull-H L A16 11 Signals and Connections NVDD1 Alternate I/O Supply BGA Voltage Pin Primary Signal Dir Pull-up 69K NVDD1 G5 D21 I/O NVDD1 H1 A13 O NVDD1 H4 D20 I/O T1 VSS Static H9 QVDD1 Static H8 VSS Static NVDD1 J5 NVDD1 Static NVDD1 J1 A12 O NVDD1 J4 D19 I/O NVDD1 J2 A11 O NVDD1 J3 D18 I/O NVDD1 K1 A10 O NVDD1 K4 D17 I/O NVDD1 K3 A9 O NVDD1 K2 D16 I/O NVDD1 L1 A8 O NVDD1 L4 D15 I/O NVDD1 L2 A7 O NVDD1 L5 D14 I/O K6 VSS Static NVDD1 K5 NVDD1 Static NVDD1 M4 A6 O NVDD1 L3 D13 I/O NVDD1 M1 A5 O NVDD1 M2 D12 I/O QVDD1 Alternate Signal GPIO Dir Mux Pull-up Ain Bin Aout RESE Default State (At/After) Pull-H L 69K Pull-H MC9328MX1 Technical Data, Rev. 7 L 69K Pull-H L 69K Pull-H L 69K Pull-H L 69K Pull-H L 69K Pull-H L 69K Pull-H Freescale Semiconductor L 69K Pull-H L 69K Pull-H Signals and Connections 12 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) reescale Semiconductor Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin Primary Signal Dir Alternate Pull-up Signal GPIO Dir Mux Pull-up Ain Bin Aout RESE Default State (At/After) MC9328MX1 Technical Data, Rev. 7 NVDD1 N1 A4 O L NVDD1 M3 D11 I/O NVDD1 P3 EB0 O NVDD1 N3 D10 I/O NVDD1 P1 A3 O L NVDD1 N2 EB1 O H NVDD1 P2 D9 I/O NVDD1 R1 EB2 O M6 VSS Static NVDD1 H6 NVDD1 Static NVDD1 T2 A2 O L NVDD1 R2 EB3 O H NVDD1 R5 D8 I/O NVDD1 T3 OE O H NVDD1 R3 A1 O L NVDD1 T4 CS5 O NVDD1 N4 D7 I/O NVDD1 R4 CS4 O PA22 69K Pull-H PA22 NVDD1 N5 A0 O PA21 69K L A0 NVDD1 P4 CS3 O H CSD1 NVDD1 P5 D6 I/O NVDD1 T5 CS2 O H7 VSS Static NVDD1 J6 NVDD1 Static NVDD1 M5 SDCLK O 69K Pull-H H 69K Pull-H 69K Pull-H H 69K Pull-H PA23 69K 69K Pull-H PA23 Pull-H CSD1 Pull-H CSD0 H H CSD0 13 Signals and Connections 69K I/O Supply BGA Voltage Pin Primary Signal Dir Alternate Pull-up Signal GPIO Dir Mux Pull-up Ain Bin Aout RESE Default State (At/After) MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor NVDD1 T6 CS1 O H NVDD1 T7 CS0 O H1 NVDD1 R6 D5 I/O NVDD1 P6 ECB I NVDD1 N6 D4 I/O NVDD1 R7 LBA O NVDD1 P8 D3 I/O NVDD1 R8 BCLK NVDD1 P7 D2 I/O J7 VSS Static NVDD1 L6 NVDD1 Static NVDD1 N7 DTACK I NVDD1 N8 D1 I/O NVDD1 M7 RW NVDD1 T8 MA11 O L NVDD1 M8 MA10 O L NVDD1 R9 D0 I/O K7 VSS Static NVDD1 P9 DQM3 O L NVDD1 T9 DQM2 O L NVDD1 N9 DQM1 O L NVDD1 R10 DQM0 O L NVDD1 M9 RAS O H NVDD1 L8 CAS O H NVDD1 J8 NVDD1 Static 69K Pull-H ETMTRACEPKT7 PA20 69K Pull-H 69K Pull-H ETMTRACEPKT6 PA19 69K H 69K PA18 69K L 69K BCLK Pull-H ETMTRACEPKT4 PA17 69K SPI2_SS A25 Pull-H Pull-H H 69K LBA Pull-H ETMTRACEPKT5 69K ECB Pull-H PA17 Signals and Connections 14 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) reescale Semiconductor Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin Primary Signal Dir Alternate Pull-up Signal GPIO Dir Mux Pull-up Ain Bin Aout RESE Default State (At/After) MC9328MX1 Technical Data, Rev. 7 NVDD1 T10 SDWE O H NVDD1 R11 SDCKE0 O H NVDD1 P10 SDCKE1 O H NVDD1 N10 RESET_SF O L/H NVDD1 T11 CLKO O L L7 VSS Static AVDD1 T12 AVDD1 Static AVDD1 M10 RESET_IN I AVDD1 N11 RESET_OUT O L/H AVDD1 R12 POR I H/L2 AVDD1 M11 BIG_ENDIAN I Hiz3 AVDD1 P11 BOOT3 I Hiz4 AVDD1 N12 BOOT2 I Hiz4 AVDD1 R13 BOOT1 I Hiz4 AVDD1 P12 BOOT0 I Hiz4 AVDD1 T13 TRISTATE I Hiz4 AVDD1 P13 TRST I QVDD2 R15 QVDD2 Static T16 VSS Static AVDD1 T14 EXTAL16M I AVDD1 T15 XTAL16M O AVDD1 R16 EXTAL32K I AVDD1 P16 XTAL32K O NVDD2 K10 NVDD2 Static 69K 69K L/H2 H Hiz 15 Signals and Connections Hiz I/O Supply BGA Voltage Pin Primary Signal Dir Alternate Pull-up Signal GPIO Dir Mux Pull-up Ain Bin Aout RESE Default State (At/After) MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor NVDD2 R14 TDO O NVDD2 N15 TMS I 69K Pull-H NVDD2 L9 TCK I 69K Pull-H NVDD2 N16 TDI I 69K Pull-H NVDD2 P14 I2C_SCL O PA16 69K Pull-H PA16 NVDD2 P15 I2C_SDA I/O PA15 69K Pull-H PA15 NVDD2 N13 CSI_PIXCLK I PA14 69K Pull-H PA14 NVDD2 M13 CSI_HSYNC I PA13 69K Pull-H PA13 NVDD2 M14 CSI_VSYNC I PA12 69K Pull-H PA12 NVDD2 N14 CSI_D7 I PA11 69K Pull-H PA11 NVDD2 M15 CSI_D6 I PA10 69K Pull-H PA10 NVDD2 M16 CSI_D5 I PA9 69K Pull-H PA9 NVDD2 J10 VSS Static NVDD2 M12 CSI_D4 I PA8 69K Pull-H PA8 NVDD2 L16 CSI_D3 I PA7 69K Pull-H PA7 NVDD2 L15 CSI_D2 I PA6 69K Pull-H PA6 NVDD2 L14 CSI_D1 I PA5 69K Pull-H PA5 NVDD2 L13 CSI_D0 I PA4 69K Pull-H PA4 NVDD2 L12 CSI_MCLK O PA3 69K Pull-H PA3 NVDD2 L11 PWMO O PA2 69K Pull-H PA2 NVDD2 L10 TIN I PA1 69K Pull-H PA1 NVDD2 K15 TMR2OUT O PD31 69K Pull-H PD31 NVDD2 K16 LD15 O PD30 69K Pull-H PD30 NVDD2 K14 LD14 O PD29 69K Pull-H PD29 NVDD2 K13 LD13 O PD28 69K Pull-H PD28 Hiz5 SPI2_RxD SPI2_TxD Signals and Connections 16 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) reescale Semiconductor Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin Primary Signal Dir Alternate Pull-up Signal GPIO Dir Ain Bin Aout RESE Default State (At/After) Mux Pull-up PD27 69K Pull-H PD27 MC9328MX1 Technical Data, Rev. 7 K12 LD12 O QVDD3 J15 QVDD3 Static J16 VSS Static NVDD2 K9 NVDD2 Static NVDD2 J14 LD11 O PD26 69K Pull-H PD26 NVDD2 K11 LD10 O PD25 69K Pull-H PD25 NVDD2 H15 LD9 O PD24 69K Pull-H PD24 NVDD2 J13 LD8 O PD23 69K Pull-H PD23 NVDD2 J12 LD7 O PD22 69K Pull-H PD22 NVDD2 J11 LD6 O PD21 69K Pull-H PD21 NVDD2 H14 LD5 O PD20 69K Pull-H PD20 NVDD2 H13 LD4 O PD19 69K Pull-H PD19 NVDD2 H16 LD3 O PD18 69K Pull-H PD18 NVDD2 H12 LD2 O PD17 69K Pull-H PD17 NVDD2 G16 LD1 O PD16 69K Pull-H PD16 NVDD2 H11 LD0 O PD15 69K Pull-H PD15 NVDD2 G15 FLM/VSYNC O PD14 69K Pull-H PD14 NVDD2 G14 LP/HSYNC O PD13 69K Pull-H PD13 NVDD2 G13 ACD/OE O PD12 69K Pull-H PD12 NVDD2 G12 CONTRAST O PD11 69K Pull-H PD11 NVDD2 F16 SPL_SPR O UART2_DSR O PD10 69K Pull-H PD10 NVDD2 H10 PS O UART2_RI O PD9 69K Pull-H PD9 NVDD2 G11 CLS O UART2_DCD O PD8 69K SPI2_SS Pull-H PD8 NVDD2 F12 REV O UART2_DTR I PD7 69K SPI2_CLK Pull-H PD7 NVDD2 F15 LSCLK O PD6 69K Pull-H PD6 SPI2_SS2 SPI2_TxD SPI2_RxD 17 Signals and Connections NVDD2 I/O Supply BGA Voltage Pin Primary MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor Signal Dir J9 VSS Static QVDD6 E16 R2A I QVDD6 D16 R2B I QVDD6 F14 PX1 I QVDD6 F13 PY1 I QVDD6 E15 PX2 I QVDD6 E14 PY2 I QVDD6 D15 R1A I QVDD6 C16 R1B I C15 VSS Static AVDD26 C14 AVDD2 Static QVDD6 B16 NC I QVDD6 A16 NC I QVDD6 B15 UIN I QVDD6 A15 UIP I QVDD6 E13 NC I QVDD6 D14 NC I QVDD6 B14 RVM I QVDD6 A14 RVP I QVDD6 D13 NC I QVDD6 C13 NC I QVDD6 E12 NC O Alternate Pull-up Signal GPIO Dir Mux Pull-up Ain Bin Aout RESE Default State (At/After) qvdd Signals and Connections 18 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) reescale Semiconductor Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin Primary Signal Dir Alternate Pull-up Signal GPIO Dir Mux Pull-up MC9328MX1 Technical Data, Rev. 7 QVDD6 D12 NC O QVDD4 A13 QVDD4 Static B13 VSS Static BTRFVDD C12 BTRFVDD Static BTRFVDD B12 BT1 I PC31 69K BTRFVDD F11 BT2 O PC30 69K BTRFVDD A12 BT3 I PC29 69K BTRFVDD E11 BT4 I PC28 69K BTRFVDD A11 BT5 I/O PC27 BTRFVDD D11 BT6 O BTRFVDD B11 BT7 O BTRFVDD C11 BT8 O BTRFVDD G10 BT9 BTRFVDD F10 BTRFVDD Ain Bin Aout UART3_RX RESE Default State (At/After) PC31 Hiz PC30 Pull-H PC29 UART3_CTS Pull-H PC28 69K UART3_DCD Pull-H PC27 PC26 69K SPI2_SS3 L PC26 PC25 69K UART3_DSR L PC25 SSI2_RXFS PC24 69K UART3_RI Hiz PC24 O SSI2_RX PC23 69K L PC23 BT10 O SSI2_TX PC22 69K H PC22 B10 BT11 O SSI2_TXCLK PC21 69K H PC21 BTRFVDD E10 BT12 O SSI2_TXFS PC20 69K Hiz PC20 BTRFVDD D10 BT13 O SSI2_RXCLK PC19 69K L PC19 C10 BTRFGND Static NVDD3 A10 NVDD3 Static NVDD3 G9 SPI1_MOSI I/O PC17 69K Pull-H PC17 NVDD3 F9 SPI1_MISO I/O PC16 69K Pull-H PC16 NVDD3 E9 SPI1_SS I/O PC15 69K Pull-H PC15 NVDD3 B9 SPI1_SCLK I/O PC14 69K Pull-H PC14 NVDD3 D9 SPI1_SPI_RDY I PC13 69K Pull-H PC13 NVDD3 A9 UART1_RXD I PC12 69K Pull-H PC12 UART3_TX UART3_RTS UART3_DTR DMA_Req 19 Signals and Connections Pull-H I/O Supply BGA Voltage Pin Primary Signal Dir Alternate Pull-up Signal GPIO Dir Mux Pull-up Ain Bin Aout RESE Default State (At/After) MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor NVDD3 C9 UART1_TXD O PC11 69K Pull-H PC11 NVDD3 A8 UART1_RTS I PC10 69K Pull-H PC10 NVDD3 G8 UART1_CTS O PC9 69K Pull-H PC9 NVDD3 B8 SSI_TXCLK I/O PC8 69K Pull-H PC8 NVDD3 F8 SSI_TXFS I/O PC7 69K Pull-H PC7 NVDD3 E8 SSI_TXDAT O PC6 69K Pull-H PC6 NVDD3 D8 SSI_RXDAT I PC5 69K Pull-H PC5 NVDD3 B7 SSI_RXCLK I/O PC4 69K Pull-H PC4 NVDD3 C8 SSI_RXFS I/O PC3 69K Pull-H PC3 A7 VSS Static NVDD4 C7 UART2_RXD I PB31 69K Pull-H PB31 NVDD4 F7 UART2_TXD O PB30 69K Pull-H PB30 NVDD4 E7 UART2_RTS I PB29 69K Pull-H PB29 NVDD4 C6 UART2_CTS O PB28 69K Pull-H PB28 NVDD4 D7 USBD_VMO O PB27 69K Pull-H PB27 NVDD4 D6 USBD_VPO O PB26 69K Pull-H PB26 NVDD4 E6 USBD_VM I PB25 69K Pull-H PB25 NVDD4 B6 USBD_VP I PB24 69K Pull-H PB24 NVDD4 D5 USBD_SUSPND O PB23 69K Pull-H PB23 NVDD4 C5 USBD_RCV I/O PB22 69K Pull-H PB22 NVDD4 B5 USBD_ROE O PB21 69K Pull-H PB21 NVDD4 A5 USBD_AFE O PB20 69K Pull-H PB20 A4 VSS Static NVDD4 A6 NVDD4 Static NVDD4 G7 SIM_CLK O I/O PB19 69K Pull-H PB19 SSI_TXCLK Signals and Connections 20 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) reescale Semiconductor Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin MC9328MX1 Technical Data, Rev. 7 1 2 3 4 5 6 Primary Signal Dir Alternate Pull-up Signal NVDD4 F6 SIM_RST O SSI_TXFS NVDD4 G6 SIM_RX I NVDD4 B4 SIM_TX NVDD4 C4 NVDD4 GPIO Dir Mux Pull-up Ain Bin Aout RESE Default State (At/After) I/O PB18 69K Pull-H PB18 SSI_TXDAT O PB17 69K Pull-H PB17 I/O SSI_RXDAT I PB16 69K Pull-H PB16 SIM_PD I SSI_RXCLK I/O PB15 69K Pull-H PB15 D4 SIM_SVEN O SSI_RXFS I/O PB14 69K Pull-H PB14 NVDD4 B3 SD_CMD I/O MS_BS O PB13 69K Pull-H PB13 NVDD4 A3 SD_CLK O MS_SCLKO O PB12 69K Pull-H PB12 NVDD4 A2 SD_DAT3 I/O MS_SDIO 69K (pull down) Pull-L PB11 NVDD4 E5 SD_DAT2 I/O MS_SCLKI I PB10 69K Pull-H PB10 NVDD4 B2 SD_DAT1 I/O MS_PI1 I PB9 69K Pull-H PB9 NVDD4 C3 SD_DAT0 I/O MS_PI0 I PB8 69K Pull-H PB8 I/O PB11 After reset, CS0 goes H/L depends on BOOT[3:0]. Need external circuitry to drive the signal. Need external pull-up. External resistor is needed. Need external pull-up or pull-down. ASP signals are clamped by AVDD2 to prevent ESD (electrostatic discharge) damage. AVDD2 must be greater than QVDD to keep diodes reverse-biased. Signals and Connections 21 Electrical Characteristics 3 Electrical Characteristics This section contains the electrical specifications and timing diagrams for the i.MX1 processor. 3.1 Maximum Ratings Table 4 provides information on maximum ratings which are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits listed in Recommended Operating Range Table 5 on page 23 or the DC Characteristics table. Table 4. Maximum Ratings Symbol Rating Minimum Maximum Unit NVDD DC I/O Supply Voltage -0.3 3.3 V QVDD DC Internal (core = 150 MHz) Supply Voltage -0.3 1.9 V QVDD DC Internal (core = 200 MHz) Supply Voltage -0.3 2.0 V AVDD DC Analog Supply Voltage -0.3 3.3 V DC Bluetooth Supply Voltage -0.3 3.3 V BTRFVDD VESD_HBM ESD immunity with HBM (human body model) – 2000 V VESD_MM ESD immunity with MM (machine model) – 100 V Latch-up immunity – 200 mA ILatchup Test Storage temperature -55 150 °C Pmax Power Consumption 8001 13002 mW A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM® core-that is, 7x GPIO, 15x Data bus, and 8x Address bus. 2 A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS application at MHz, and where the whole image is running out of SDRAM. QVDD at V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA. 1 3.2 Recommended Operating Range Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MX1 processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system. Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the AVDD pins from other VDD pins. BTRFVDD is the supply voltage for the Bluetooth interface signals. It is quite sensitive to the data transmit/receive accuracy. Please refer to Bluetooth RF spec for special handling. If Bluetooth is not used MC9328MX1 Technical Data, Rev. 7 22 Freescale Semiconductor Electrical Characteristics in the system, these Bluetooth pins can be used as general purpose I/O pins and BTRFVDD can be used as other NVDD pins. For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4. Table 5. Recommended Operating Range Symbol Rating Minimum Maximum Unit 0 70 °C TA Operating temperature range MC9328MX1VM20\MC9328MX1VM15 TA Operating temperature range MC9328MX1DVM20\MC9328MX1DVM15 -30 70 °C TA Operating temperature range MC9328MX1CVM15 -40 85 °C NVDD I/O supply voltage (if using MSHC, CSI, SPI, BTA, LCD, and USBd which are only 3 V interfaces) 2.70 3.30 V NVDD I/O supply voltage (if not using the peripherals listed above) 1.70 3.30 V QVDD Internal supply voltage (Core = 150 MHz) 1.70 1.90 V QVDD Internal supply voltage (Core = 200 MHz) 1.80 2.00 V AVDD Analog supply voltage 1.70 3.30 V 3.3 Power Sequence Requirements For required power-up and power-down sequencing, please refer to the “Power-Up Sequence” section of application note AN2537 on the i.MX applications processor website. 3.4 DC Electrical Characteristics Table 6 contains both maximum and minimum DC characteristics of the i.MX1 processor. Table 6. Maximum and Minimum DC Characteristics Number or Symbol Min Typical Max Unit Full running operating current at 1.8V for QVDD, 3.3V for NVDD/AVDD (Core = 96 MHz, System = 96 MHz, MPEG4 decoding playback from external memory card to both external SSI audio decoder and driving TFT display panel, and OS with MMU enabled memory system is running on external SDRAM). – QVDD at 1.8V = 120mA; NVDD+AVDD at 3.0V = 30mA – mA Sidd1 Standby current (Core = 150 MHz, QVDD = 1.8V, temp = 25°C) – 25 – μA Sidd2 Standby current (Core = 150 MHz, QVDD = 1.8V, temp = 55°C) – 45 – μA Sidd3 Standby current (Core = 150 MHz, QVDD = 2.0V, temp = 25°C) – 35 – μA Iop Parameter MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 23 Electrical Characteristics Table 6. Maximum and Minimum DC Characteristics (Continued) Number or Symbol Sidd4 Parameter Min Typical Max Unit – 60 – μA Standby current (Core = 150 MHz, QVDD = 2.0V, temp = 55°C) VIH Input high voltage 0.7VDD – Vdd+0.2 V VIL Input low voltage – – 0.4 V VOH Output high voltage (IOH = 2.0 mA) 0.7VDD – Vdd V VOL Output low voltage (IOL = -2.5 mA) – – 0.4 V IIL Input low leakage current (VIN = GND, no pull-up or pull-down) – – ±1 μA IIH Input high leakage current (VIN = VDD, no pull-up or pull-down) – – ±1 μA IOH Output high current (VOH = 0.8VDD, VDD = 1.8V) 4.0 – – mA IOL Output low current (VOL = 0.4V, VDD = 1.8V) -4.0 – – mA IOZ Output leakage current (Vout = VDD, output is high impedance) – – ±5 μA Ci Input capacitance – – 5 pF Co Output capacitance – – 5 pF 3.5 AC Electrical Characteristics The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of other signals. All timing specifications are specified at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an operating supply voltage from VDD min to VDD max under an operating temperature from TL to TH. All timing is measured at 30 pF loading. Table 7. Tristate Signal Timing Pin TRISTATE Parameter Minimum Maximum Unit – 20.8 ns Time from TRISTATE activate until I/O becomes Hi-Z Table 8. 32k/16M Oscillator Signal Timing Parameter EXTAL32k input jitter (peak to peak) EXTAL32k startup time Minimum RMS Maximum Unit – 5 20 ns 800 – – ms MC9328MX1 Technical Data, Rev. 7 24 Freescale Semiconductor Functional Description and Application Information Table 8. 32k/16M Oscillator Signal Timing (Continued) Parameter EXTAL16M input jitter (peak to peak) 1 EXTAL16M startup time 1 1 4 Minimum RMS Maximum Unit – TBD TBD – TBD – – – The 16 MHz oscillator is not recommended for use in new designs. Functional Description and Application Information This section provides the electrical information including and timing diagrams for the individual modules of the i.MX1. 4.1 Embedded Trace Macrocell All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following: • 32-bit data field • 7-bit address field • A read/write bit The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit. A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used in Figure 2. 2a 1 2b 3a TRACECLK 3b TRACECLK (Half-Rate Clocking Mode) Output Trace Port Valid Data 4a Valid Data 4b Figure 2. Trace Port Timing Diagram MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 25 Functional Description and Application Information Table 9. Trace Port Timing Diagram Parameter Table 1.8 ± 0.1 V Ref No. 4.2 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum 1 CLK frequency 0 85 0 100 MHz 2a Clock high time 1.3 – 2 – ns 2b Clock low time 3 – 2 – ns 3a Clock rise time – 4 – 3 ns 3b Clock fall time – 3 – 3 ns 4a Output hold time 2.28 – 2 – ns 4b Output setup time 3.42 – 3 – ns DPLL Timing Specifications Parameters of the DPLL are given in Table 10. In this table, Tref is a reference clock period after the pre-divider and Tdck is the output double clock period. Table 10. DPLL Specifications Parameter Test Conditions Minimum Typical Maximum Unit 5 – 100 MHz 5 – 30 MHz DPLL input clock freq range Vcc = 1.8V Pre-divider output clock freq range Vcc = 1.8V DPLL output clock freq range Vcc = 1.8V 80 – 220 MHz Pre-divider factor (PD) – 1 – 16 – Total multiplication factor (MF) Includes both integer and fractional parts 5 – 15 – MF integer part – 5 – 15 – MF numerator Should be less than the denominator 0 – 1022 – MF denominator – 1 – 1023 – Pre-multiplier lock-in time – – – 312.5 μsec Freq lock-in time after full reset FOL mode for non-integer MF (does not include pre-multi lock-in time) 250 280 (56 μs) 300 Tref Freq lock-in time after partial reset FOL mode for non-integer MF (does not include pre-multi lock-in time) 220 250 (50 μs) 270 Tref Phase lock-in time after full reset FPL mode and integer MF (does not include pre-multi lock-in time) 300 350 (70 μs) 400 Tref Phase lock-in time after partial reset FPL mode and integer MF (does not include pre-multi lock-in time) 270 320 (64 μs) 370 Tref Freq jitter (p-p) – – 0.005 (0.01%) 0.01 2•Tdck MC9328MX1 Technical Data, Rev. 7 26 Freescale Semiconductor Functional Description and Application Information Table 10. DPLL Specifications (Continued) Parameter Test Conditions Phase jitter (p-p) Integer MF, FPL mode, Vcc=1.8V Power supply voltage – Power dissipation FOL mode, integer MF, fdck = MHz, Vcc = 1.8V 4.3 Minimum Typical Maximum Unit – 1.0 (10%) 1.5 ns 1.7 – 2.5 V – – 4 mW Reset Module The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and Figure 4. NOTE Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent forward biasing. 90% AVDD 1 POR RESET_POR 10% AVDD 2 Exact 300ms 3 7 cycles @ CLK32 RESET_DRAM 4 HRESET 14 cycles @ CLK32 RESET_OUT CLK32 HCLK Figure 3. Timing Relationship with POR MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 27 Functional Description and Application Information 5 RESET_IN 14 cycles @ CLK32 HRESET RESET_OUT 4 6 CLK32 HCLK Figure 4. Timing Relationship with RESET_IN Table 11. Reset Module Timing Parameter Table Ref No. 1 1.8 ± 0.1 V 3.0 ± 0.3 V Parameter Unit Min Max Min Max note1 – note1 – – 300 300 300 300 ms 1 Width of input POWER_ON_RESET 2 Width of internal POWER_ON_RESET (9600 *CLK32 at 32 kHz) 3 7K to 32K-cycle stretcher for SDRAM reset 7 7 7 7 Cycles of CLK32 4 14K to 32K-cycle stretcher for internal system reset HRESERT and output reset at pin RESET_OUT 14 14 14 14 Cycles of CLK32 5 Width of external hard-reset RESET_IN 4 – 4 – Cycles of CLK32 6 4K to 32K-cycle qualifier 4 4 4 4 Cycles of CLK32 POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals. Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal. If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in calculating timing for the start-up process. 4.4 External Interface Module The External Interface Module (EIM) handles the interface to devices external to the i.MX1 processor, including the generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals. MC9328MX1 Technical Data, Rev. 7 28 Freescale Semiconductor Functional Description and Application Information (HCLK) Bus Clock 1a 1b 2a 2b 3a 3b Address Chip-select Read (Write) 4a OE (rising edge) 4b 4c OE (falling edge) 4d 5a EB (rising edge) 5b 5c EB (falling edge) 5d 6a LBA (negated falling edge) 6b 6a LBA (negated rising edge) 6c 7a BCLK (burst clock) - rising edge 7b 7c 7d BCLK (burst clock) - falling edge 8b Read Data 9a 8a 9b Write Data (negated falling) 9a 9c Write Data (negated rising) 10a DTACK_B 10a Figure 5. EIM Bus Timing Diagram Table 12. EIM Bus Timing Parameter Table 1.8 ± 0.1 V Ref No. 3.0 ± 0.3 V Parameter Unit Min Typical Max Min Typical Max 1a Clock fall to address valid 2.48 3.31 9.11 2.4 3.2 8.8 ns 1b Clock fall to address invalid 1.55 2.48 5.69 1.5 2.4 5.5 ns 2a Clock fall to chip-select valid 2.69 3.31 7.87 2.6 3.2 7.6 ns 2b Clock fall to chip-select invalid 1.55 2.48 6.31 1.5 2.4 6.1 ns 3a Clock fall to Read (Write) Valid 1.35 2.79 6.52 1.3 2.7 6.3 ns 3b Clock fall to Read (Write) Invalid 1.86 2.59 6.11 1.8 2.5 5.9 ns MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 29 Functional Description and Application Information Table 12. EIM Bus Timing Parameter Table (Continued) 1.8 ± 0.1 V Ref No. 4a Unit Clock1 rise to Output Enable Valid 1 Min Typical Max Min Typical Max 2.32 2.62 6.85 2.3 2.6 6.8 ns 4b Clock rise to Output Enable Invalid 2.11 2.52 6.55 2.1 2.5 6.5 ns 4c Clock1 fall to Output Enable Valid 2.38 2.69 7.04 2.3 2.6 6.8 ns 1 4d Clock fall to Output Enable Invalid 2.17 2.59 6.73 2.1 2.5 6.5 ns 5a Clock1 rise to Enable Bytes Valid 1.91 2.52 5.54 1.9 2.5 5.5 ns 1 5b Clock rise to Enable Bytes Invalid 1.81 2.42 5.24 1.8 2.4 5.2 ns 5c Clock1 fall to Enable Bytes Valid 1.97 2.59 5.69 1.9 2.5 5.5 ns 5d Clock1 1.76 2.48 5.38 1.7 2.4 5.2 ns 6a Clock1 fall to Load Burst Address Valid 2.07 2.79 6.73 2.0 2.7 6.5 ns 6b Clock1 1.97 2.79 6.83 1.9 2.7 6.6 ns 6c Clock1 rise to Load Burst Address Invalid 1.91 2.62 6.45 1.9 2.6 6.4 ns 7a Clock1 1.61 2.62 5.64 1.6 2.6 5.6 ns 7b Clock1rise to Burst Clock fall 1.61 2.62 5.84 1.6 2.6 5.8 ns 7c Clock1 1.55 2.48 5.59 1.5 2.4 5.4 ns 7d Clock1 fall to Burst Clock fall 1.55 2.59 5.80 1.5 2.5 5.6 ns 8a Read Data setup time 5.54 – – 5.5 – – ns 8b Read Data hold time 0 – – 0 – – ns 9a Clock1 1.81 2.72 6.85 1.8 2.7 6.8 ns 9b Clock1 fall to Write Data Invalid 1.45 2.48 5.69 1.4 2.4 5.5 ns 9c Clock1 1.63 – – 1.62 – – ns 2.52 – – 2.5 – – ns 10a 1 3.0 ± 0.3 V Parameter fall to Enable Bytes Invalid fall to Load Burst Address Invalid rise to Burst Clock rise fall to Burst Clock rise rise to Write Data Valid rise to Write Data Invalid DTACK setup time Clock refers to the system clock signal, HCLK, generated from the System DPLL 4.4.1 DTACK Signal Description The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group supports DTACK signal function when the external DTACK signal is used for data acknowledgement. 4.4.2 DTACK Signal Timing Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units of measure for this figure are found in the associated tables. MC9328MX1 Technical Data, Rev. 7 30 Freescale Semiconductor Functional Description and Application Information 4.4.2.1 WAIT Read Cycle without DMA 3 Address 2 8 CS5 1 9 programmable min 0ns EB 5 OE 4 WAIT 7 DATABUS 10 X1) 6 11 Figure 6. WAIT Read Cycle without DMA Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz 3.0 ± 0.3 V Number Characteristic Unit Minimum Maximum See note 2 – ns 3T – ns 1 OE and EB assertion time 2 CS5 pulse width 3 OE negated to address inactive 56.81 – ns 4 Wait asserted after OE asserted – 1020T ns 5 Wait asserted to OE negated 2T+2.2 3T+7.17 ns 6 Data hold timing after OE negated T-1.86 – ns 7 Data ready after wait asserted 0 T ns 8 OE negated to CS negated 1.5T+0.24 1.5T+0.85 ns 9 OE negated after EB negated 0.5 1.5 ns 10 Become low after CS5 asserted 0 1019T ns 11 Wait pulse width 1T 1020T ns Note: 1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns) 2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear. 3. Address becomes valid and CS asserts at the start of read access cycle. 4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 31 Functional Description and Application Information 4.4.2.2 WAIT Read Cycle DMA Enabled 4 Address 2 9 CS5 1 EB 10 programmable min 0ns 3 6 OE RW (logic high) 5 WAIT DATABUS 7 8 11 12 nput to MX1) Figure 7. DTACK WAIT Read Cycle DMA Enabled Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz 3.0 ± 0.3 V Number Characteristic Unit Minimum Maximum See note 2 – ns 3T – ns 1.5T+0.24 1.5T+0.85 ns 1 OE and EB assertion time 2 CS pulse width 3 OE negated before CS5 is negated 4 Address inactived before CS negated – 0.93 ns 5 Wait asserted after CS5 asserted – 1020T ns 6 Wait asserted to OE negated 2T+2.2 3T+7.17 ns 7 Data hold timing after OE negated T-1.86 – ns 8 Data ready after wait is asserted – T ns 9 CS deactive to next CS active T – ns 10 OE negate after EB negate 0.5 1.5 ns 11 Wait becomes low after CS5 asserted 0 1019T ns MC9328MX1 Technical Data, Rev. 7 32 Freescale Semiconductor Functional Description and Application Information Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued) 3.0 ± 0.3 V Number 12 Characteristic Unit Minimum Maximum 1T 1020T Wait pulse width ns Note: 1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns) 2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear. 3. Address becomes valid and CS asserts at the start of read access cycle. 4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. 4.4.2.3 WAIT Write Cycle without DMA 5 Address 1 3 programmable min 0ns CS5 10 2 EB programmable min 0ns 7 4 RW OE (logic high) 6 WAIT DATABUS (output from i.MX1) 9 11 8 12 Figure 8. WAIT Write Cycle without DMA Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz 3.0 ± 0.3 V Number Characteristic Unit Minimum Maximum 1 CS5 assertion time See note 2 – ns 2 EB assertion time See note 2 – ns 3 CS5 pulse width 3T – ns 4 RW negated before CS5 is negated 2.5T-0.29 2.5T+0.68 ns 5 RW negated to Address inactive 67.28 – ns 6 Wait asserted after CS5 asserted – 1020T ns MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 33 Functional Description and Application Information Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued) 3.0 ± 0.3 V Number Characteristic Unit Minimum Maximum 7 Wait asserted to RW negated 1T+2.15 2T+7.34 ns 8 Data hold timing after RW negated 2.5T-1.18 – ns 9 Data ready after CS5 is asserted – T ns 10 EB negated after CS5 is negated 1.5T+0.74 1.5T+2.35 ns 11 Wait becomes low after CS5 asserted 0 1019T ns 12 Wait pulse width 1T 1020T ns Note: 1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns) 2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register. 3. Address becomes valid and RW asserts at the start of write access cycle. 4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. 4.4.2.4 WAIT Write Cycle DMA Enabled 5 Address 1 CS5 3 programmable min 0ns 10 2 EB 11 programmable min 0ns 4 7 RW 6 OE (logic high) 12 WAIT 9 13 8 DATABUS Figure 9. WAIT Write Cycle DMA Enabled MC9328MX1 Technical Data, Rev. 7 34 Freescale Semiconductor Functional Description and Application Information Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz 3.0 ± 0.3 V Number Characteristic Unit Minimum Maximum 1 CS5 assertion time See note 2 – ns 2 EB assertion time See note 2 – ns 3 CS5 pulse width 3T – ns 4 RW negated before CS5 is negated 2.5T-0.29 2.5T+0.68 ns 5 Address inactived after CS negated – 0.93 ns 6 Wait asserted after CS5 asserted – 1020T ns 7 Wait asserted to RW negated T+2.15 2T+7.34 ns 8 Data hold timing after RW negated 24.87 – ns 9 Data ready after CS5 is asserted – T ns 10 CS deactive to next CS active T – ns 11 EB negate after CS negate 1.5T+0.74 1.5T+2.35 12 Wait becomes low after CS5 asserted 0 1019T ns 13 Wait pulse width 1T 1020T ns Note: 1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns) 2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register. 3. Address becomes valid and RW asserts at the start of write access cycle. 4.The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. 4.4.3 EIM External Bus Timing The External Interface Module (EIM) is the interface to devices external to the i.MX1, including generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 35 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[0] htrans Seq/Nonseq hwrite Read haddr V1 hready weim_hrdata Last Valid Data V1 weim_hready BCLK (burst clock) ADDR Last Valid Address V1 CS2 R/W Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA V1 Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 10. WSC = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 36 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[0] htrans Nonseq hwrite Write haddr V1 hready hwdata Last Valid Data weim_hrdata Write Data (V1) Unknown Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Address V1 CS0 R/W Write LBA OE EB DATA Last Valid Data Write Data (V1) Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 37 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[0] htrans Nonseq hwrite Read haddr V1 hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS0 R/W Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 38 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[0] htrans Nonseq hwrite Write haddr V1 hready hwdata Last Valid Data Write Data (V1 Word) weim_hrdata Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 + 2 Address V1 CS0 R/W Write LBA OE EB DATA 1/2 Half Word 2/2 Half Word Figure 13. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 39 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[3] htrans Nonseq hwrite Read haddr V1 hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS[3] R/W Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 14. WSC = 3, OEA = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 40 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[3] htrans Nonseq hwrite Write haddr V1 hready hwdata Last Valid Data Write Data (V1 Word) weim_hrdata Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS3 Write R/W LBA OE EB DATA Last Valid Data 1/2 Half Word 2/2 Half Word Figure 15. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 41 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq hwrite Read haddr V1 hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 + 2 Address V1 CS2 R/W Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) weim_data_in 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 16. WSC = 3, OEA = 4, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 42 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq hwrite Write haddr V1 hready Valid hwdata Last Data Write Data (V1 Word) weim_hrdata Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS2 R/W Write LBA OE EB DATA Last Valid Data 1/2 Half Word 2/2 Half Word Figure 17. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 43 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq hwrite Read haddr V1 hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS2 Read R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 18. WSC = 3, OEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 44 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq hwrite Read haddr V1 hready weim_hrdata V1 Word Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS2 R/W Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 19. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 45 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq hwrite Write haddr V1 hready hwdata Last Valid Data Write Data (V1 Word) weim_hrdata Unknown Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS2 R/W Write LBA OE EB DATA Last Valid Data 1/2 Half Word 2/2 Half Word Figure 20. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 46 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq hwrite Write haddr V1 hready Valid hwdata Last Data Unknown Write Data (V1 Word) weim_hrdata Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS2 R/W Write LBA OE EB DATA Last Valid Data 1/2 Half Word 2/2 Half Word Figure 21. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 47 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq Nonseq hwrite Read Write haddr V1 V8 hready hwdata weim_hrdata Last Valid Data Write Data Last Valid Data Read Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V8 CS2 R/W Write Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA DATA Read Data Last Valid Data Write Data Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 22. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 48 Freescale Semiconductor Functional Description and Application Information Read Idle Write Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq Nonseq hwrite Read Write haddr V1 V8 hready hwdata weim_hrdata Write Data Last Valid Data Last Valid Data Read Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V8 CS2 R/W Read Write LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA DATA Read Data Last Valid Data Write Data Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 23. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 49 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[4] htrans Nonseq hwrite Write haddr V1 hready hwdata Last Valid Data Write Data (Word) weim_hrdata Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS R/W Write LBA OE EB DATA Last Valid Data Write Data (1/2 Half Word) Write Data (2/2 Half Word) Figure 24. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 50 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[4] htrans Nonseq Nonseq hwrite Read Write haddr V1 V8 hready hwdata weim_hrdata Last Valid Data Write Data Last Valid Data Read Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V8 CS4 R/W Write Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA DATA Read Data Last Valid Data Write Data Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 25. WSC = 3, CSA = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 51 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[4] htrans Nonseq hwrite Read Read haddr V1 V2 Idle Seq hready weim_hrdata Last Valid Data Read Data (V1) Read Data (V2) weim_hready BCLK (burst clock) ADDR Last Valid Address V1 Address V2 CNC CS4 Read R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA Read Data (V1) Read Data (V2) Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 26. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 52 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[4] htrans Nonseq hwrite Read Write haddr V1 V8 Idle Nonseq hready hwdata weim_hrdata Last Valid Data Write Data Last Valid Data Read Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V8 CNC CS4 R/W Read Write LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA DATA Read Data Last Valid Data Write Data Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 27. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 53 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq Nonse hwrite Read Read haddr V1 V5 Idle hready weim_hrdata weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V5 CS2 Read R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) ECB DATA V1 Word V2 Word V5 Word V6 Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 28. WSC = 3, SYNC = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 54 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq Seq Seq Seq hwrite Read Read Read Read haddr V1 V2 V3 V4 Idle hready weim_hrdata Last Valid Data V1 Word V2 Word V3 Word V4 Word weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 CS2 Read R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) ECB DATA V1 Word V2 Word V3 Word V4 Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 29. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 55 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Nonseq Seq hwrite Read Read haddr V1 V2 Idle hready weim_hrdata Last Valid Data V1 Word V2 Word weim_hready BCLK (burst clock) ADDR Last Valid Address V1 Address V2 CS2 Read R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) ECB DATA V1 1/2 V1 2/2 V2 1/2 V2 2/2 Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 30. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 56 Freescale Semiconductor Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Non seq Seq hwrite Read Read haddr V1 V2 Idle hready weim_hrdata Last Valid Data V1 Word V2 Word weim_hready BCLK (burst clock) ADDR Last Address V1 CS2 R/W Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) ECB DATA V1 1/2 V1 2/2 V2 1/2 V2 2/2 Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 31. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 57 Functional Description and Application Information Internal signals - shown only for illustrative purposes hclk hsel_weim_cs[2] htrans Non seq Seq hwrite Read Read haddr V1 V2 Idle hready weim_hrdata Last Valid Data V1 Word V2 Word weim_hready BCLK (burst clock) ADDR Last Address V1 CS2 R/W Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) ECB DATA V1 1/2 V1 2/2 V2 1/2 V2 2/2 Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 32. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 58 Freescale Semiconductor Functional Description and Application Information 4.4.4 Non-TFT Panel Timing T1 T1 VSYN T3 T2 T4 XMAX T2 HSYN SCLK Ts LD[15:0] Figure 33. Non-TFT Panel Timing Table 17. Non TFT Panel Timing Diagram Symbol Parameter Allowed Register Minimum Value1, 2 Actual Value Unit T1 HSYN to VSYN delay3 0 HWAIT2+2 Tpix4 T2 HSYN pulse width 0 HWIDTH+1 Tpix T3 VSYN to SCLK – 0 ≤ T3 ≤ Ts5 – T4 SCLK to HSYN 0 HWAIT1+1 Tpix 1 Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register. Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong. 3 VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all these 3 signals are active high. 4 Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1). 5 Ts is the shift clock period. Ts = Tpix * (panel data bus width). 2 4.5 Pen ADC Specifications The specifications for the pen ADC are shown in Table 18 through Table 20. Table 18. Pen ADC System Performance Full Range Resolution1 13 bits Non-Linearity Error1 4 bits 1 9 bits Accuracy 1 Tested under input = 0~1.8V at 25°C MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 59 Functional Description and Application Information Table 19. Pen ADC Test Conditions Vp max 1800 mV ip max +7 µA Vp min GND ip min 1.5 µA Vn GND in 1.5 µA Sample frequency 12 MHz Sample rate 1.2 KHz Input frequency 100 Hz Input range 0–1800 mV Note: Ru1 = Ru2 = 200K Table 20. Pen ADC Absolute Rating 4.6 ip max +9.5 µA ip min -2.5 µA in max +9.5 µA in min -2.5 µA ASP Touch Panel Controller The following sections contain the electrical specifications of the ASP touch panel controller. The value of parameters and their corresponding measuring conditions are mentioned as well. 4.6.1 Electrical Specifications Test conditions: Temperature = 25º C, QVDD = 1800mV. Table 21. ASP Touch Panel Controller Electrical Spec Parameter Minimum Typical Maximum Unit Offset – Offset Error – 32768 – – – 8199 – Gain – 13.65 – mV-1 Gain Error – – 33% – DNL 8 9 – Bits INL – 0 – Bits Accuracy (without missing code) 8 9 – Bits Operating Voltage Range (Pen) Operating Voltage Range (U) On-resistance of switches SW[8:1] – – QVDD mV Negative QVDD – QVDD mV – 10 – Ohm Note that QVDD should be 1800mV. MC9328MX1 Technical Data, Rev. 7 60 Freescale Semiconductor Functional Description and Application Information 4.6.2 Gain Calculations The ideal mapping of input voltage to output digital sample is defined as follows: Sample G0 65535 Smax C0 Vi 1800 -2400 2400 Figure 34. Gain Calculations In general, the mapping function is: S=G*V+C Where V is input, S is output, G is the slope, and C is the y-intercept. Nominal Gain G0 = 65535 / 4800 = 13.65mV-1 Nominal Offset C0 = 65535 / 2 = 32767 4.6.3 Offset Calculations The ideal mapping of input voltage to output digital sample is defined as: Sample G0 65535 Smax C0 Vi 1800 -2400 2400 Figure 35. Offset Calculations In general, the mapping function is: S=G*V+C Where V is input, S is output, G is the slope, and C is the y-intercept. Nominal Gain G0 = 65535 / 4800 = 13.65mV-1 Nominal Offset C0 = 65535 / 2 = 32767 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 61 Functional Description and Application Information 4.6.4 Gain Error Calculations Gain error calculations are made using the information in this section. Sample Gmax G0 65535 Smax C0 Vi 1800 - 2400 2400 Figure 36. Gain Error Calculations Assuming the offset remains unchanged, the mapping is rotated around y-intercept to determine the maximum gain allowed. This occurs when the sample at 1800mV has just reached the ceiling of the 16-bit range, 65535. Maximum Offset Gmax, Gmax = (65535 - C0) / 1800 = (65535 - 32767) / 1800 = 18.20 Gain Error Gr, Gr 4.7 = (Gmax - G0) / G0 * 100% = (18.20 - 13.65) / 13.65 * 100% = 33% Bluetooth Accelerator CAUTION On-chip accelerator hardware is not supported by software. An external Bluetooth chip interfaced to a UART is recommended. The Bluetooth Accelerator (BTA) radio interface supports the Wireless RF Transceiver, MC13180 using an SPI interface. This section provides the data bus timing diagrams and SPI interface timing diagrams shown in Figure 37 and Figure 38, and the associated parameters shown in Table 22 and Table 23. MC9328MX1 Technical Data, Rev. 7 62 Freescale Semiconductor Functional Description and Application Information 2 BT CLK (BT1) 7 Receive FS (BT5) 1 PKT DATA (BT3) 3 4 RXTX_EN (BT9) Transmit 8 PKT DATA (BT2) 5 6 Figure 37. MC13180 Data Bus Timing Diagram Table 22. MC13180 Data Bus Timing Parameter Table Ref No. 1 2 Parameter Minimum Typical Maximum Unit 1 FrameSync setup time relative to BT CLK rising edge1 – 4 – ns 2 FrameSync hold time relative to BT CLK rising edge1 – 12 – ns – 6 – ns – 13 – ns 172.5 – 192.5 µs edge1 3 Receive Data setup time relative to BT CLK rising 4 Receive Data hold time relative to BT CLK rising edge1 edge2 5 Transmit Data setup time relative to RXTX_EN rising 6 TX DATA period 7 BT CLK duty cycle 40 – 60 % 8 Transmit Data hold time relative to RXTX_EN falling edge 4 – 10 µs 1000 +/- 0.02 ns Please refer to 2.4 GHz RF Transceiver Module (MC13180) Technical Data documentation. The setup and hold times of RX_TX_EN can be adjusted by programming Time_A_B register (0x00216050) and RF_Status (0x0021605C) registers. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 63 Functional Description and Application Information 1 4 5 6 SPI CLK (BT13) 9 SPI_EN (BT11) 8 SPI_DATA_OUT (BT12) 3 SPI_DATA_IN (BT4) 7 2 Figure 38. SPI Interface Timing Diagram Using MC13180 Table 23. SPI Interface Timing Parameter Table Using MC13180 Ref No. 1 4.8 Parameter Minimum Maximum Unit 1 SPI_EN setup time relative to rising edge of SPI_CLK 15 – ns 2 Transmit data delay time relative to rising edge of SPI_CLK 0 15 ns 3 Transmit data hold time relative to rising edge of SPI_EN 0 15 ns 4 SPI_CLK rise time 0 25 ns 5 SPI_CLK fall time 0 25 ns 6 SPI_EN hold time relative to falling edge of SPI_CLK 15 – ns 7 Receive data setup time relative to falling edge of SPI_CLK1 15 – ns 8 Receive data hold time relative to falling edge of SPI_CLK1 15 – ns 9 SPI_CLK frequency, 50% duty cycle required1 – 20 MHz The SPI_CLK clock frequency and duty cycle, setup and hold times of receive data can be set by programming SPI_Control (0x00216138) register together with system clock. SPI Timing Diagrams To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a master, two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY signal (input). The SPI1 Sample Period Control Register (PERIODREG1) and the SPI2 Sample Period Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI1 Control Register (CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS becomes an input signal, and is used to latch data into or load data out to the internal data shift registers, as well as to increment the data FIFO. Figure 39 through Figure 43 show the timing relationship of the master SPI using different triggering mechanisms. MC9328MX1 Technical Data, Rev. 7 64 Freescale Semiconductor Functional Description and Application Information 2 SS 5 3 1 4 SPIRDY SCLK, MOSI, MISO Figure 39. Master SPI Timing Diagram Using SPI_RDY Edge Trigger SS SPIRDY SCLK, MOSI, MISO Figure 40. Master SPI Timing Diagram Using SPI_RDY Level Trigger SS (output) SCLK, MOSI, MISO Figure 41. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger SS (input) SCLK, MOSI, MISO Figure 42. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT SS (input) 6 7 SCLK, MOSI, MISO Figure 43. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 65 Functional Description and Application Information Table 24. Timing Parameter Table for Figure 39 through Figure 43 3.0 ± 0.3 V Ref No. Parameter Unit Minimum Maximum 2T1 – ns 1 SPI_RDY to SS output low 2 SS output low to first SCLK edge 3 • Tsclk2 – ns 3 Last SCLK edge to SS output high 2 • Tsclk – ns 4 SS output high to SPI_RDY low 0 – ns 5 SS output pulse width Tsclk + WAIT 3 – ns 6 SS input low to first SCLK edge T – ns 7 SS input pulse width T – ns 1 T = CSPI system clock period (PERCLK2). Tsclk = Period of SCLK. 3 WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register. 2 8 SCLK 9 9 Figure 44. SPI SCLK Timing Diagram Table 25. Timing Parameter Table for SPI SCLK 3.0 ± 0.3 V Ref No. 4.9 Parameter 8 SCLK frequency 9 SCLK pulse width Unit Minimum Maximum 0 10 MHz 100 – ns LCD Controller This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD controller with various display configurations, refer to the LCD controller chapter of the MC9328MX1 Reference Manual. LSCLK 1 LD[15:0] Figure 45. SCLK to LD Timing Diagram MC9328MX1 Technical Data, Rev. 7 66 Freescale Semiconductor Functional Description and Application Information Table 26. LCDC SCLK Timing Parameter Table 3.0 ± 0.3 V Ref No. 1 Parameter Minimum Maximum Unit – 2 ns SCLK to LD valid Non-display VSYN Display region T3 T1 T4 T2 HSYN OE LD[15:0] Line Y Line 1 T5 T6 Line Y T7 XMAX HSYN SCLK OE T8 LD[15:0] (1,1) (1,2) (1,X) VSYN T9 T10 Figure 46. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing Table 27. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing Symbol Description Minimum Corresponding Register Value Unit T1 End of OE to beginning of VSYN T5+T6 +T7+T9 (VWAIT1·T2)+T5+T6+T7+T9 Ts T2 HSYN period XMAX+5 XMAX+T5+T6+T7+T9+T10 Ts T3 VSYN pulse width T2 VWIDTH·(T2) Ts T4 End of VSYN to beginning of OE 2 VWAIT2·(T2) Ts T5 HSYN pulse width 1 HWIDTH+1 Ts T6 End of HSYN to beginning to T9 1 HWAIT2+1 Ts T7 End of OE to beginning of HSYN 1 HWAIT1+1 Ts MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 67 Functional Description and Application Information Table 27. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing (Continued) Symbol Description Minimum Corresponding Register Value Unit T8 SCLK to valid LD data -3 3 ns T9 End of HSYN idle2 to VSYN edge (for non-display region) 2 2 Ts T9 End of HSYN idle2 to VSYN edge (for Display region) 1 1 Ts T10 VSYN to OE active (Sharp = 0) when VWAIT2 = 0 1 1 Ts T10 VSYN to OE active (Sharp = 1) when VWAIT2 = 0 2 2 Ts Note: • • • • • • 4.10 Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns. VSYN, HSYN and OE can be programmed as active high or active low. In Figure 46, all 3 signals are active low. The polarity of SCLK and LD[15:0] can also be programmed. SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period. In Figure 46, SCLK is always active. For T9 non-display region, VSYN is non-active. It is used as an reference. XMAX is defined in pixels. Multimedia Card/Secure Digital Host Controller The DMA interface block controls all data routing between the external data bus (DMA access), internal MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the MMC/SD module (inner system) and the application (user programming). 3a 1 2 4b 3b Bus Clock 4a 5b 5a CMD_DAT Input Valid Data Valid Data 7 CMD_DAT Output Valid Data Valid Data 6a 6b Figure 47. Chip-Select Read Cycle Timing Diagram MC9328MX1 Technical Data, Rev. 7 68 Freescale Semiconductor Functional Description and Application Information Table 28. SDHC Bus Timing Parameter Table 1.8 ± 0.1 V Ref No. 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum 1 CLK frequency at Data transfer Mode (PP)1—10/30 cards 0 25/5 0 25/5 MHz 2 CLK frequency at Identification Mode2 0 400 0 400 kHz 1 3a Clock high time —10/30 cards 6/33 – 10/50 – ns 3b Clock low time1—10/30 cards 15/75 – 10/50 – ns 4a 1 Clock fall time —10/30 cards – 10/50 (5.00)3 – 10/50 ns 4b Clock rise time1—10/30 cards – 14/67 (6.67)3 – 10/50 ns 5a Input hold time3—10/30 cards 10.3/10.3 – 9/9 – ns 10.3/10.3 – 9/9 – ns 5.7/5.7 – 5/5 – ns 5.7/5.7 – 5/5 – ns 0 16 0 14 ns time3—10/30 5b Input setup cards 6a Output hold time3—10/30 cards time3—10/30 6b Output setup 7 Output delay time3 cards CL ≤ 100 pF / 250 pF (10/30 cards) CL ≤ 250 pF (21 cards) 3 C ≤ 25 pF (1 card) L 1 2 4.10.1 Command Response Timing on MMC/SD Bus The card identification and card operation conditions timing are processed in open-drain mode. The card response to the host command starts after exactly NID clock cycles. For the card address assignment, SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and card response is NCR clock cycles as illustrated in Figure 48. The symbols for Figure 48 through Figure 52 are defined in Table 29. Table 29. State Signal Parameters for Figure 48 through Figure 52 Card Active Host Active Symbol Definition Symbol Definition Z High impedance state S Start bit (0) D Data bits T Transmitter bit (Host = 1, Card = 0) * Repetition P One-cycle pull-up (1) CRC Cyclic redundancy check bits (7 bits) E End bit (1) MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 69 Functional Description and Application Information NID cycles Host Command CMD S T Content CID/OCR ****** CRC E Z Content Z ST ZZZ Identification Timing NCR cycles Host Command CMD S T Content CID/OCR ****** CRC E Z Content Z ST ZZZ SET_RCA Timing Figure 48. Timing Diagrams at Identification Mode After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in Figure 49, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the responding card. The other two diagrams show the separating periods NRC and NCC. NCR cycles Host Command CMD S T Content Response CRC E Z Z P ****** PST Content CRC E Z Z Z Command response timing (data transfer mode) NRC cycles Response CMD S T Content Host Command CRC E Z ****** Z ST Content CRC E Z Z Z Timing response end to next CMD start (data transfer mode) NCC cycles Host Command CMD S T Content CRC E Z Host Command ****** Z ST Content CRC E Z Z Z Timing of command sequences (all modes) Figure 49. Timing Diagrams at Data Transfer Mode Figure 50 shows basic read operation timing. In a read operation, the sequence starts with a single block read command (which specifies the start address in the argument field). The response is sent on the SD_CMD lines as usual. Data transmission from the card starts after the access time delay NAC , beginning from the last bit of the read command. If the system is in multiple block read mode, the card sends a continuous flow of data blocks with distance NAC until the card sees a stop transmission command. The data stops two clock cycles after the end bit of the stop command. MC9328MX1 Technical Data, Rev. 7 70 Freescale Semiconductor Functional Description and Application Information NCR cycles Host Command CMD S T Content DAT Response CRC E Z Z P ****** P S T Z****Z Content CRC E Z ***** Z Z P ****** P S D D D D Read Data NAC cycles Timing of single block read NCR cycles Host Command CMD S T DAT Content Response CRC E Z Z P ****** P S T Z****Z ****** ZZP Content P S DDDD CRC E Z ***** ***** P P S DDDD Read Data ***** Read Data NAC cycles NAC cycles Timing of multiple block read NCR cycles Host Command CMD S T Content Response CRC E Z Z P ****** P S T Content CRC E Z NST DAT D D D D ***** DDDDE Z Z Z Valid Read Data ***** Timing of stop command (CMD12, data transfer mode) Figure 50. Timing Diagrams at Data Read Figure 51 shows the basic write operation timing. As with the read operation, after the card response, the data transfer starts after NWR cycles. The data is suffixed with CRC check bits to allow the card to check for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple block mode, with the flow terminated by a stop transmission command. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 71 72 Z****Z Z****Z CRC E Z Z P NWR cycles CRC status Timing of the multiple block write command NWR cycles Write Data Content DAT Z Z P P S CRC E Z Z X X X X X X X X Z P P S EZPPS Content Content Status PST DAT Z Z P P S CRC E Z Z S ****** Write Data Content ****** Status ES L*L EZ PP P ES L*L EZ CRC status Busy CRC E Z Z X X X X X X X X X X X X X X X X Z Status PPP CRC status Busy CRC E Z Z X X X X X X X X X X X X X X X X Z CRC E Z Z S Write Data Content Content CRC E Z Z S NWR cycles Z ZZPPS Z ZZPPS CRC E Z Z P Content Response ****** Timing of the block write command Content NCR cycles CMD E Z Z P DAT DAT CMD S T Host Command Functional Description and Application Information Figure 51. Timing Diagrams at Data Write The stop transmission command may occur when the card is in different states. Figure 52 shows the different scenarios on the bus. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor Parameter Freescale Semiconductor Content CRC E Z Z P Symbol Minimum DAT Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z S L DAT S L DAT D D D D D D D Z Z S CRC E Z Z S L Write Data PST ****** Content ****** ****** ****** ST Content CRC E Host Command Stop transmission received after last data block. Card becomes busy programming. EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ Stop transmission received after last data block. Card becomes busy programming. EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ Stop transmission during CRC status transfer from the card. EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ Stop transmission during data transfer from the host. EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ CRC E Z Z Z Card Response Busy (Card is programming) ****** NCR cycles DAT D D D D D D D D D D D D D E Z Z S L CMD S T Host Command Functional Description and Application Information Figure 52. Stop Transmission During Different Scenarios Table 30. Timing Values for Figure 48 through Figure 52 Maximum Unit MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL) Command response cycle NCR 2 64 Clock cycles Identification response cycle NID 5 5 Clock cycles Access time delay cycle NAC 2 TAAC + NSAC Clock cycles MC9328MX1 Technical Data, Rev. 7 73 Functional Description and Application Information Table 30. Timing Values for Figure 48 through Figure 52 (Continued) Parameter Symbol Minimum Maximum Unit Command read cycle NRC 8 – Clock cycles Command-command cycle NCC 8 – Clock cycles Command write cycle NWR 2 – Clock cycles Stop transmission cycle NST 2 2 Clock cycles TAAC: Data read access time -1 defined in CSD register bit[119:112] NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register bit[111:104] 4.10.2 SDIO-IRQ and ReadWait Service Handling In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data in this mode. The memory controller generates an interrupt according to this low and the system interrupt continues until the source is removed (SD_DAT[1] returns to its high level). In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the “Interrupt Period” during the data access, and the controller must sample SD_DAT[1] during this short period to determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each block (512 bytes). CMD ST DAT[1] Content CRC E Z Z P S Interrupt Period Response S ****** EZZZ Block Data E IRQ S ZZZ Block Data E IRQ For 4-bit LH DAT[1] Interrupt Period For 1-bit Figure 53. SDIO IRQ Timing Diagram ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps the clock running, and allows the user to submit commands as normal. After all commands are submitted, the user can switch back to the data transfer operation and all counter and status values are resumed as access continues. MC9328MX1 Technical Data, Rev. 7 74 Freescale Semiconductor Functional Description and Application Information CMD DAT[1] P S T CMD52 ****** CRC E Z Z Z ****** S Block Data EZZL H S Block Data E S Block Data E Z Z L L L L L L L L L L L L L L L L L L L L L HZ S Block Data E For 4-bit DAT[2] For 4-bit Figure 54. SDIO ReadWait Timing Diagram 4.11 Memory Stick Host Controller The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS, MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in either four-state or two-state access mode. The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1, BS2, and BS3 states are regarded as one packet length and one communication transfer is always completed within one packet length (in four-state access mode). The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0 and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 75 Functional Description and Application Information 2 1 3 4 5 MS_SCLKI 6 8 7 MS_SCLKO 9 11 10 11 MS_BS 12 12 MS_SDIO(output) 14 13 MS_SDIO (input) (RED bit = 0) 15 16 MS_SDIO (input) (RED bit = 1) Figure 55. MSHC Signal Timing Diagram Table 31. MSHC Signal Timing Parameter Table 3.0 ± 0.3 V Ref No. Parameter Unit Minimum Maximum 1 MS_SCLKI frequency – 25 MHz 2 MS_SCLKI high pulse width 20 – ns 3 MS_SCLKI low pulse width 20 – ns 4 MS_SCLKI rise time – 3 ns 5 MS_SCLKI fall time – 3 ns – 25 MHz 20 – ns 15 – ns – 5 ns – 5 ns – 3 ns 1 6 MS_SCLKO frequency 7 MS_SCLKO high pulse width1 8 MS_SCLKO low pulse 9 MS_SCLKO rise time1 width1 time1 10 MS_SCLKO fall 11 MS_BS delay time1 MC9328MX1 Technical Data, Rev. 7 76 Freescale Semiconductor Functional Description and Application Information Table 31. MSHC Signal Timing Parameter Table (Continued) 3.0 ± 0.3 V Ref No. 12 Parameter Unit Minimum Maximum – 3 ns 18 – ns 0 – ns 23 – ns 0 – ns MS_SDIO output delay time1,2 13 MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0) 14 MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0)3 3 15 MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1) 16 MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1)4 4 1 Loading capacitor condition is less than or equal to 30pF. An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the MS_SDIO pin, because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick SDIO pin when the pin direction changes. 3 If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge. 4 If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge. 2 4.12 Pulse-Width Modulator The PWM can be programmed to select one of two clock signals as its source frequency. The selected clock signal is passed through a divider and a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in Figure 56 and the parameters are listed in Table 32. 1 2a 3b System Clock 2b 4b 3a 4a PWM Output Figure 56. PWM Output Timing Diagram Table 32. PWM Output Timing Parameter Table 1.8 ± 0.1 V Ref No. 3.0 ± 0.3 V Parameter 1 System CLK frequency1 2a Clock high time1 1 2b Clock low time 3a Clock fall time1 Unit Minimum Maximum Minimum Maximum 0 87 0 100 MHz 3.3 – 5/10 – ns 7.5 – 5/10 – ns – 5 – 5/10 ns MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 77 Functional Description and Application Information Table 32. PWM Output Timing Parameter Table (Continued) 1.8 ± 0.1 V Ref No. 3b 1 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum Clock rise time1 – 6.67 – 5/10 ns 4a 1 Output delay time 5.7 – 5 – ns 4b Output setup time1 5.7 – 5 – ns CL of PWMO = 30 pF 4.13 SDRAM Controller This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic random access memory) Controller. 1 SDCLK 2 3S 3 CS 3H 3S RAS 3S 3H CAS 3S 3H 3H WE 4S ADDR 4H ROW/BA COL/BA 5 8 DQ 6 Data 7 3S DQM 3H Note: CKE is high during the read/write cycle. Figure 57. SDRAM Read Cycle Timing Diagram MC9328MX1 Technical Data, Rev. 7 78 Freescale Semiconductor Functional Description and Application Information Table 33. SDRAM Read Timing Parameter Table 1.8 ± 0.1 V Ref No. 1 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum 1 SDRAM clock high-level width 2.67 – 4 – ns 2 SDRAM clock low-level width 6 – 4 – ns 3 SDRAM clock cycle time 11.4 – 10 – ns 3S CS, RAS, CAS, WE, DQM setup time 3.42 – 3 – ns 3H CS, RAS, CAS, WE, DQM hold time 2.28 – 2 – ns 4S Address setup time 3.42 – 3 – ns 4H Address hold time 2.28 – 2 – ns 5 SDRAM access time (CL = 3) – 6.84 – 6 ns 5 SDRAM access time (CL = 2) – 6.84 – 6 ns 5 SDRAM access time (CL = 1) – 22 – 22 ns 6 Data out hold time 2.85 – 2.5 – ns 7 Data out high-impedance time (CL = 3) – 6.84 – 6 ns 7 Data out high-impedance time (CL = 2) – 6.84 – 6 ns 7 Data out high-impedance time (CL = 1) – 22 – 22 ns 8 Active to read/write command period (RC = 1) tRCD1 – tRCD1 – ns tRCD = SDRAM clock cycle time. This settings can be found in the MC9328MX1 reference manual. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 79 Functional Description and Application Information SDCLK 1 2 3 CS RAS 6 CAS WE 5 7 4 ADDR / BA COL/BA ROW/BA 8 9 DATA DQ DQM Figure 58. SDRAM Write Cycle Timing Diagram Table 34. SDRAM Write Timing Parameter Table 1.8 ± 0.1 V Ref No. 1 2 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum 1 SDRAM clock high-level width 2.67 – 4 – ns 2 SDRAM clock low-level width 6 – 4 – ns 3 SDRAM clock cycle time 11.4 – 10 – ns 4 Address setup time 3.42 – 3 – ns 5 Address hold time 2.28 – 2 – ns tRP2 – tRP2 – ns tRCD2 – tRCD2 – ns period1 6 Precharge cycle 7 Active to read/write command delay 8 Data setup time 4.0 – 2 – ns 9 Data hold time 2.28 – 2 – ns Precharge cycle timing is included in the write timing diagram. tRP and tRCD = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference manual. MC9328MX1 Technical Data, Rev. 7 80 Freescale Semiconductor Functional Description and Application Information SDCLK 1 3 2 CS RAS 6 CAS 7 7 WE 4 ADDR 5 ROW/BA BA DQ DQM Figure 59. SDRAM Refresh Timing Diagram Table 35. SDRAM Refresh Timing Parameter Table 1.8 ± 0.1 V Ref No. 1 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum 1 SDRAM clock high-level width 2.67 – 4 – ns 2 SDRAM clock low-level width 6 – 4 – ns 3 SDRAM clock cycle time 11.4 – 10 – ns 4 Address setup time 3.42 – 3 – ns 5 Address hold time 2.28 – 2 – ns 6 Precharge cycle period tRP1 – tRP1 – ns 7 Auto precharge command period tRC1 – tRC1 – ns tRP and tRC = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference manual. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 81 Functional Description and Application Information SDCLK CS RAS CAS WE ADDR BA DQ DQM CKE Figure 60. SDRAM Self-Refresh Cycle Timing Diagram 4.14 USB Device Port Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and how they work from the ground up. Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is no end-of-transfer. MC9328MX1 Technical Data, Rev. 7 82 Freescale Semiconductor Functional Description and Application Information USBD_AFE (Output) 1 t VMO_ROE 4 t ROE_VPO USBD_ROE (Output) tPERIOD 6 3 tVPO_ROE USBD_VPO (Output) USBD_VMO (Output) USBD_SUSPND tROE_VMO 2 tFEOPT 5 (Output) USBD_RCV (Input) USBD_VP (Input) USBD_VM (Input) Figure 61. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX) Table 36. USB Device Timing Parameters for Data Transfer to USB Transceiver (TX) 3.0 ± 0.3 V Ref No. Parameter Unit Minimum Maximum 1 tROE_VPO; USBD_ROE active to USBD_VPO low 83.14 83.47 ns 2 tROE_VMO; USBD_ROE active to USBD_VMO high 81.55 81.98 ns 3 tVPO_ROE; USBD_VPO high to USBD_ROE deactivated 83.54 83.80 ns 4 tVMO_ROE; USBD_VMO low to USBD_ROE deactivated (includes SE0) 248.90 249.13 ns 5 tFEOPT; SE0 interval of EOP 160.00 175.00 ns 6 tPERIOD; Data transfer rate 11.97 12.03 Mb/s MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 83 Functional Description and Application Information USBD_AFE (Output) USBD_ROE (Output) USBD_VPO (Output) USBD_VMO (Output) USBD_SUSPND (Output) USBD_RCV (Input) 1 tFEOPR USBD_VP (Input) USBD_VM (Input) Figure 62. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX) Table 37. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX) 3.0 ± 0.3 V Ref No. 1 4.15 Parameter Unit tFEOPR; Receiver SE0 interval of EOP Minimum Maximum 82 – ns I2C Module The I2C communication protocol consists of seven elements: START, Data Source/Recipient, Data Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP. SDA 5 3 4 SCL 1 2 6 Figure 63. Definition of Bus Timing for I2C MC9328MX1 Technical Data, Rev. 7 84 Freescale Semiconductor Functional Description and Application Information Table 38. I2C Bus Timing Parameter Table 1.8 ± 0.1 V Ref No. 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum 182 – 160 – ns 1 Hold time (repeated) START condition 2 Data hold time 0 171 0 150 ns 3 Data setup time 11.4 – 10 – ns 4 HIGH period of the SCL clock 80 – 120 – ns 5 LOW period of the SCL clock 480 – 320 – ns 6 Setup time for STOP condition 182.4 – 160 – ns 4.16 Synchronous Serial Interface The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and frame synchronization signals. Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external clock timing diagrams are shown in Figure 65 through Figure 67. Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices. 1 STCK Output 4 2 STFS (bl) Output 6 8 STFS (wl) Output 12 10 11 STXD Output 31 32 SRXD Input Note: SRXD input in synchronous mode only. Figure 64. SSI Transmitter Internal Clock Timing Diagram MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 85 Functional Description and Application Information 1 SRCK Output 3 5 SRFS (bl) Output 7 9 SRFS (wl) Output 13 14 SRXD Input Figure 65. SSI Receiver Internal Clock Timing Diagram 15 16 17 STCK Input 18 20 STFS (bl) Input 24 22 STFS (wl) Input 27 26 28 STXD Output 33 34 SRXD Input Note: SRXD Input in Synchronous mode only Figure 66. SSI Transmitter External Clock Timing Diagram MC9328MX1 Technical Data, Rev. 7 86 Freescale Semiconductor Functional Description and Application Information 15 16 17 SRCK Input 19 21 SRFS (bl) Input 25 23 SRFS (wl) Input 30 29 SRXD Input Figure 67. SSI Receiver External Clock Timing Diagram Table 39. SSI (Port C Primary Function) Timing Parameter Table 1.8 ± 0.1 V Ref No. 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum Internal Clock Operation1 (Port C Primary Function2) 1 STCK/SRCK clock period1 95 – 83.3 – ns 2 STCK high to STFS (bl) high3 1.5 4.5 1.3 3.9 ns 3 SRCK high to SRFS (bl) high3 -1.2 -1.7 -1.1 -1.5 ns 4 STCK high to STFS (bl) low3 2.5 4.3 2.2 3.8 ns 5 SRCK high to SRFS (bl) low3 0.1 -0.8 0.1 -0.8 ns 6 STCK high to STFS (wl) high3 1.48 4.45 1.3 3.9 ns 7 3 SRCK high to SRFS (wl) high -1.1 -1.5 -1.1 -1.5 ns 8 STCK high to STFS (wl) low3 2.51 4.33 2.2 3.8 ns 9 3 SRCK high to SRFS (wl) low 0.1 -0.8 0.1 -0.8 ns 10 STCK high to STXD valid from high impedance 14.25 15.73 12.5 13.8 ns 11a STCK high to STXD high 0.91 3.08 0.8 2.7 ns 11b STCK high to STXD low 0.57 3.19 0.5 2.8 ns 12 STCK high to STXD high impedance 12.88 13.57 11.3 11.9 ns 13 SRXD setup time before SRCK low 21.1 – 18.5 – ns 14 SRXD hold time after SRCK low 0 – 0 – ns External Clock Operation (Port C Primary Function2) 15 STCK/SRCK clock period1 92.8 – 81.4 – ns 16 STCK/SRCK clock high period 27.1 – 40.7 – ns 17 STCK/SRCK clock low period 61.1 – 40.7 – ns MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 87 Functional Description and Application Information Table 39. SSI (Port C Primary Function) Timing Parameter Table (Continued) 1.8 ± 0.1 V Ref No. 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum 18 STCK high to STFS (bl) high3 – 92.8 0 81.4 ns 19 3 SRCK high to SRFS (bl) high – 92.8 0 81.4 ns 20 STCK high to STFS (bl) low3 – 92.8 0 81.4 ns 21 3 SRCK high to SRFS (bl) low – 92.8 0 81.4 ns 22 STCK high to STFS (wl) high3 – 92.8 0 81.4 ns 23 3 SRCK high to SRFS (wl) high – 92.8 0 81.4 ns 24 STCK high to STFS (wl) low3 – 92.8 0 81.4 ns 25 SRCK high to SRFS (wl) low3 – 92.8 0 81.4 ns 26 STCK high to STXD valid from high impedance 18.01 28.16 15.8 24.7 ns 27a STCK high to STXD high 8.98 18.13 7.0 15.9 ns 27b STCK high to STXD low 9.12 18.24 8.0 16.0 ns 28 STCK high to STXD high impedance 18.47 28.5 16.2 25.0 ns 29 SRXD setup time before SRCK low 1.14 – 1.0 – ns 30 SRXD hole time after SRCK low 0 – 0 – ns Synchronous Internal Clock Operation (Port C Primary Function2) 31 SRXD setup before STCK falling 32 SRXD hold after STCK falling 15.4 – 13.5 – ns 0 – 0 – ns Synchronous External Clock Operation (Port C Primary Function2) 33 SRXD setup before STCK falling 34 SRXD hold after STCK falling 1.14 – 1.0 – ns 0 – 0 – ns 1 All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. 2 There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as input, the SSI module selects the input based on status of the FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function. 3 bl = bit length; wl = word length. MC9328MX1 Technical Data, Rev. 7 88 Freescale Semiconductor Functional Description and Application Information Table 40. SSI (Port B Alternate Function) Timing Parameter Table 1.8 ± 0.1 V Ref No. 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum Internal Clock Operation1 (Port B Alternate Function2) 1 STCK/SRCK clock period1 95 – 83.3 – ns 2 STCK high to STFS (bl) high3 1.7 4.8 1.5 4.2 ns 3 SRCK high to SRFS (bl) high3 -0.1 1.0 -0.1 1.0 ns 4 STCK high to STFS (bl) low3 3.08 5.24 2.7 4.6 ns 5 SRCK high to SRFS (bl) low3 1.25 2.28 1.1 2.0 ns 6 STCK high to STFS (wl) high3 1.71 4.79 1.5 4.2 ns 7 SRCK high to SRFS (wl) high3 -0.1 1.0 -0.1 1.0 ns 8 STCK high to STFS (wl) low3 3.08 5.24 2.7 4.6 ns 9 SRCK high to SRFS (wl) low3 1.25 2.28 1.1 2.0 ns 10 STCK high to STXD valid from high impedance 14.93 16.19 13.1 14.2 ns 11a STCK high to STXD high 1.25 3.42 1.1 3.0 ns 11b STCK high to STXD low 2.51 3.99 2.2 3.5 ns 12 STCK high to STXD high impedance 12.43 14.59 10.9 12.8 ns 13 SRXD setup time before SRCK low 20 – 17.5 – ns 14 SRXD hold time after SRCK low 0 – 0 – ns External Clock Operation (Port B Alternate Function2) 15 STCK/SRCK clock period1 92.8 – 81.4 – ns 16 STCK/SRCK clock high period 27.1 – 40.7 – ns 17 STCK/SRCK clock low period 61.1 – 40.7 – ns 18 STCK high to STFS (bl) high3 – 92.8 0 81.4 ns 19 3 SRCK high to SRFS (bl) high – 92.8 0 81.4 ns 20 STCK high to STFS (bl) low3 – 92.8 0 81.4 ns 21 SRCK high to SRFS (bl) low3 – 92.8 0 81.4 ns 22 STCK high to STFS (wl) high3 – 92.8 0 81.4 ns 23 SRCK high to SRFS (wl) high3 – 92.8 0 81.4 ns 24 STCK high to STFS (wl) low3 – 92.8 0 81.4 ns 25 SRCK high to SRFS (wl) low3 – 92.8 0 81.4 ns 26 STCK high to STXD valid from high impedance 18.9 29.07 16.6 25.5 ns 27a STCK high to STXD high 9.23 20.75 8.1 18.2 ns 27b STCK high to STXD low 10.60 21.32 9.3 18.7 ns MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 89 Functional Description and Application Information Table 40. SSI (Port B Alternate Function) Timing Parameter Table (Continued) Ref No. 1.8 ± 0.1 V 3.0 ± 0.3 V Parameter Unit Minimum Maximum Minimum Maximum 28 STCK high to STXD high impedance 17.90 29.75 15.7 26.1 ns 29 SRXD setup time before SRCK low 1.14 – 1.0 – ns 30 SRXD hold time after SRCK low 0 – 0 – ns Synchronous Internal Clock Operation (Port B Alternate Function2) 31 SRXD setup before STCK falling 32 SRXD hold after STCK falling 18.81 – 16.5 – ns 0 – 0 – ns Synchronous External Clock Operation (Port B Alternate Function2) 33 SRXD setup before STCK falling 34 SRXD hold after STCK falling 1.14 – 1.0 – ns 0 – 0 – ns 1 All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. 2 There are 2 set of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as inputs, the SSI module selects the input based on FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function. 3 bl = bit length; wl = word length. Table 41. SSI 2 (Port C Alternate Function) Timing Parameter Table Ref No. 1.8V +/- 0.10V 3.0V +/- 0.30V Parameter Unit Minimum Maximum Minimum Maximum Internal Clock Operation1 (Port C Alternate Function)2 1 STCK/SRCK clock period1 2 3 SRCK high to SRFS (bl) high 4 5 SRCK high to SRFS (bl) low 6 7 SRCK high to SRFS (wl) high 8 9 SRCK high to SRFS (wl) low 10 11a 95 – 83.3 – ns STCK high to STFS (bl) high3 1.7 4.8 1.5 4.2 ns 3 -0.1 1.0 -0.1 1.0 ns STCK high to STFS (bl) low3 3.08 5.24 2.7 4.6 ns 3 1.25 2.28 1.1 2.0 ns STCK high to STFS (wl) high3 1.71 4.79 1.5 4.2 ns 3 -0.1 1.0 -0.1 1.0 ns STCK high to STFS (wl) low3 3.08 5.24 2.7 4.6 ns 3 1.25 2.28 1.1 2.0 ns STCK high to STXD valid from high impedance 14.93 16.19 13.1 14.2 ns STCK high to STXD high 1.25 3.42 1.1 3.0 ns MC9328MX1 Technical Data, Rev. 7 90 Freescale Semiconductor Functional Description and Application Information Table 41. SSI 2 (Port C Alternate Function) Timing Parameter Table (Continued) 1.8V +/- 0.10V Ref No. 3.0V +/- 0.30V Parameter Unit Minimum Maximum Minimum Maximum 11b STCK high to STXD low 2.51 3.99 2.2 3.5 ns 12 STCK high to STXD high impedance 12.43 14.59 10.9 12.8 ns 13 SRXD setup time before SRCK low 20 – 17.5 – ns 14 SRXD hold time after SRCK low 0 – 0 – ns External Clock Operation (Port C Alternate Function)2 15 STCK/SRCK clock period1 92.8 – 81.4 – ns 16 STCK/SRCK clock high period 27.1 – 40.7 – ns 17 STCK/SRCK clock low period 61.1 – 40.7 – ns 18 STCK high to STFS (bl) high3 – 92.8 0 81.4 ns 19 SRCK high to SRFS (bl) high3 – 92.8 0 81.4 ns 20 STCK high to STFS (bl) low3 – 92.8 0 81.4 ns 21 SRCK high to SRFS (bl) low3 – 92.8 0 81.4 ns 22 STCK high to STFS (wl) high3 – 92.8 0 81.4 ns 23 SRCK high to SRFS (wl) high3 – 92.8 0 81.4 ns 24 STCK high to STFS (wl) low3 – 92.8 0 81.4 ns 25 SRCK high to SRFS (wl) low3 – 92.8 0 81.4 ns 26 STCK high to STXD valid from high impedance 18.9 29.07 16.6 25.5 ns 27a STCK high to STXD high 9.23 20.75 8.1 18.2 ns 27b STCK high to STXD low 10.60 21.32 9.3 18.7 ns 28 STCK high to STXD high impedance 17.90 29.75 15.7 26.1 ns 29 SRXD setup time before SRCK low 1.14 – 1.0 – ns 30 SRXD hole time after SRCK low 0 – 0 – ns Synchronous Internal Clock Operation (Port C Alternate Function)2 31 SRXD setup before STCK falling 32 SRXD hold after STCK falling 18.81 – 16.5 – ns 0 – 0 – ns Synchronous External Clock Operation (Port C Alternate Function)2 1 33 SRXD setup before STCK falling 34 SRXD hold after STCK falling 1.14 – 1.0 – ns 0 – 0 – ns All the timings for both SSI modules are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 91 Functional Description and Application Information 2 There is one set of I/O signals for the SSI2 module. They are from Port C alternate function (PC19 – PC24). When SSI signals are configured as outputs, they can be viewed at Port C alternate function a. When SSI signals are configured as inputs, the SSI module selects the input based on FMCR register bits in the Clock controller module (CRM). By default, the input is selected from Port C alternate function. 3 bl = bit length; wl = word length 4.17 CMOS Sensor Interface The CMOS Sensor Interface (CSI) module consists of a control register to configure the interface timing, a control register for statistic data generation, a status register, interface logic, a 32 × 32 image data receive FIFO, and a 16 × 32 statistic data FIFO. 4.17.1 Gated Clock Mode Figure 68 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the CSI is programmed to received data on the positive edge. Figure 69 shows the timing diagram when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative edge. The parameters for the timing diagrams are listed in Table 42. 1 VSYNC 7 HSYNC 5 6 2 PIXCLK DATA[7:0] Valid Data 3 Valid Data Valid Data 4 Figure 68. Sensor Output Data on Pixel Clock Falling Edge CSI Latches Data on Pixel Clock Rising Edge MC9328MX1 Technical Data, Rev. 7 92 Freescale Semiconductor Functional Description and Application Information 1 VSYNC 7 HSYNC 6 5 2 PIXCLK Valid Data DATA[7:0] 3 Valid Data Valid Data 4 Figure 69. Sensor Output Data on Pixel Clock Rising Edge CSI Latches Data on Pixel Clock Falling Edge Table 42. Gated Clock Mode Timing Parameters Ref No. Parameter Min Max Unit 1 csi_vsync to csi_hsync 180 – ns 2 csi_hsync to csi_pixclk 1 – ns 3 csi_d setup time 1 – ns 4 csi_d hold time 1 – ns 5 csi_pixclk high time 10.42 – ns 6 csi_pixclk low time 10.42 – ns 7 csi_pixclk frequency 0 48 MHz The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to: Rising-edge latch data max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time) In most of case, duty cycle is 50 / 50, therefore max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time) For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns. positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 93 Functional Description and Application Information Falling-edge latch data max fall time allowed = (negative duty cycle - hold time) max rise time allowed = (positive duty cycle - setup time) 4.17.2 Non-Gated Clock Mode Figure 70 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the CSI is programmed to received data on the positive edge. Figure 71 shows the timing diagram when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative edge. The parameters for the timing diagrams are listed in Table 43. 1 6 VSYNC 4 5 PIXCLK Valid Data DATA[7:0] 2 Valid Data Valid Data 3 Figure 70. Sensor Output Data on Pixel Clock Falling Edge CSI Latches Data on Pixel Clock Rising Edge 1 VSYNC 6 4 5 PIXCLK Valid Data DATA[7:0] 2 Valid Data Valid Data 3 Figure 71. Sensor Output Data on Pixel Clock Rising Edge CSI Latches Data on Pixel Clock Falling Edge Table 43. Non-Gated Clock Mode Parameters Ref No. Parameter 1 csi_vsync to csi_pixclk 2 csi_d setup time Min Max Unit 180 – ns 1 – ns MC9328MX1 Technical Data, Rev. 7 94 Freescale Semiconductor Functional Description and Application Information Table 43. Non-Gated Clock Mode Parameters (Continued) Ref No. Parameter Min Max Unit 1 – ns 3 csi_d hold time 4 csi_pixclk high time 10.42 – ns 5 csi_pixclk low time 10.42 – ns 6 csi_pixclk frequency 0 48 MHz The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to: max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time) In most of case, duty cycle is 50 / 50, therefore: max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time) For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns. positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns Falling-edge latch data max fall time allowed = (negative duty cycle - hold time) max rise time allowed = (positive duty cycle - setup time) MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 95 Pin-Out and Package Information Table 44 illustrates the package pin assignments for the 256-pin MAPBGA package. For a complete listing of signals, see the Signal Multiplexing Table 3 on page 11. Table 44. i.MX1 256 MAPBGA Pin Assignments MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A NVSS SD_DAT3 SD_CLK NVSS USBD_ AFE NVDD4 NVSS UART1_ RTS UART1_ RXD NVDD3 BT5 BT3 QVDD4 RVP UIP N.C. A B A24 SD_DAT1 SD_CMD SIM_TX USBD_ ROE USBD_VP SPI1_ SCLK BT11 BT7 BT1 QVSS RVM UIN N.C. B C A23 D31 SD_DAT0 SIM_PD USBD_ RCV UART2_ CTS UART2_ RXD SSI_ RXFS UART1_ TXD BTRFGND BT8 BTRFVDD N.C. AVDD21 VSS R1B C D A22 D30 D29 SIM_SVEN USBD_ SUSPND USBD_ VPO USBD_ VMO SSI_RXDAT SPI1_ SPI_RDY BT13 BT6 N.C. N.C. N.C. R1A R2B D E A20 A21 D28 D26 SD_DAT2 USBD_VM UART2_ RTS SSI_TXDAT SPI1_SS BT12 BT4 N.C. N.C. PY2 PX2 R2A E F A18 D27 D25 A19 A16 SIM_RST UART2_ TXD SSI_TXFS SPI1_ MISO BT10 BT2 REV PY1 PX1 LSCLK SPL_SPR F G A15 A17 D24 D23 D21 SIM_RX SIM_CLK UART1_ CTS SPI1_ MOSI BT9 CLS CONTRAST ACD/OE LP/ HSYNC FLM/ VSYNC LD1 G H A13 D22 A14 D20 NVDD1 NVDD1 NVSS QVSS QVDD1 PS LD0 LD2 LD4 LD5 LD9 LD3 H J A12 A11 D18 D19 NVDD1 NVDD1 NVSS NVDD1 NVSS NVSS LD6 LD7 LD8 LD11 QVDD3 QVSS J K A10 D16 A9 D17 NVDD1 NVSS NVSS NVDD1 NVDD2 NVDD2 LD10 LD12 LD13 LD14 TMR2OUT LD15 K L A8 A7 D13 D15 D14 NVDD1 NVSS CAS TCK TIN PWMO CSI_MCLK CSI_D0 CSI_D1 CSI_D2 CSI_D3 L M A5 D12 D11 A6 SDCLK NVSS RW MA10 RAS RESET_IN BIG_ ENDIAN CSI_D4 CSI_ HSYNC CSI_VSYNC CSI_D6 CSI_D5 M N A4 EB1 D10 D7 A0 D4 PA17 D1 DQM1 RESET_SF2 RESET_ OUT BOOT2 CSI_ PIXCLK CSI_D7 TMS TDI N P A3 D9 EB0 CS3 D6 ECB D2 D3 DQM3 SDCKE1 BOOT3 BOOT0 TRST I2C_SCL I2C_SDA XTAL32K P R EB2 EB3 A1 CS4 D8 D5 LBA BCLK3 D0 DQM0 SDCKE0 POR BOOT1 TDO QVDD2 EXTAL32K R T NVSS A2 OE CS5 CS2 CS1 CS0 MA11 DQM2 SDWE CLKO AVDD1 TRISTATE EXTAL16M XTAL16M QVSS T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SSI_RXCLK SSI_TXCLK 2 ASP signals are clamped by AVDD2 to prevent ESD (Electrostatic Discharge) damage. AVDD2 must be greater than QVDD to keep diodes reversed-biased. This signal is not used and should be floated in an actual application. 3 burst clock Pin-Out and Package Information 96 5 Pin-Out and Package Information 5.1 MAPBGA 256 Package Dimensions Figure 72 illustrates the 256 MAPBGA 14 mm × 14 mm × 1.30 mm package, with an 0.8 mm pad pitch. The device designator for the MAPBGA package is VH. Case Outline 1367 TOP VIEW BOTTOM VIEW SIDE VIEW NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2.INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994. 3.MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A. 4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS. Figure 72. i.MXL 256 MAPBGA Mechanical Drawing MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 97 Product Documentation 6 6.1 Product Documentation Revision History Table 45 provides revision history for this release. This history includes technical content revisions only and not stylistic or grammatical changes. Table 45. i.MX1 Data Sheet Revision History Rev. 7 Location Revision Table 1 on page 3 Signal Names and Descriptions • Added the DMA_REQ signal to table. • Corrected signal name from USBD_OE to USBD_ROE • Corrected signal names From: C10 BTRFGN, To: BTRFGND From: G6 SIM_RST, To: SIM_RX From: G7 UART2_TXD, To: SIM_CLK Table 3 on page 11 Signal Multiplex Table i.MX1 Added Signal Multiplex table from Reference Manual with the following changes: • Changed I/O Supply Voltage, PB31–14, from NVDD3 to NVDD4 • Corrected footnotes 1–5. • Changed AVDD2 references to QVDD, except for C14. Added footnote regarding ESD. • Changed occurrence of SD_SCLK to SD_CLK. • Removed 69K pull-up resistor from EB1, EB2, and added to D9 Table 10 on page 26 Changed first and second parameters descriptions: From: Reference Clock freq range, To: DPLL input clock freq range From: Double clock freq range, To: DPLL output freq range Table 3 on page 11 Added Signal Multiplex table. 6.2 Reference Documents The following documents are required for a complete description of the MC9328MX1 and are necessary to design properly with the device. Especially for those not familiar with the ARM920T processor or previous i.MX processor products, the following documents are helpful when used in conjunction with this document. ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100) ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029) ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C) EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E) MC9328MX1 Product Brief (order number MC9328MX1P) MC9328MX1 Reference Manual (order number MC9328MX1RM) The Freescale manuals are available on the Freescale Semiconductors Web site at http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web site, or printed versions may be ordered. The ARM Ltd. documentation is available from http://www.arm.com. MC9328MX1 Technical Data, Rev. 7 98 Freescale Semiconductor NOTES MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 99 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Fax: 303-675-2150 [email protected] Document Number: MC9328MX1 Rev. 7 12/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the ARM POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and ARM9TDMI are the trademarks of ARM Limited. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.