Freescale Semiconductor Hardware Specification Document Number: MCF5235EC Rev. 2, 08/2006 MCF523x Integrated Microprocessor Hardware Specification by: Microcontroller Division The MCF523x is a family of highly-integrated 32-bit microcontrollers based on the V2 ColdFire microarchitecture. Featuring a 16 or 32 channel eTPU, 64 Kbytes of internal SRAM, a 2-bank SDRAM controller, four 32-bit timers with dedicated DMA, a 4 channel DMA controller, up to 2 CAN modules, 3 UARTs and a queued SPI, the MCF523x family has been designed for general purpose industrial control applications. It is also a high-performance upgrade for users of the MC68332. This document provides an overview of the MCF523x microcontroller family, as well as detailed descriptions of the mechanical and electrical characteristics of the devices. The MCF523x family is based on the Version 2 ColdFire reduced instruction set computing (RISC) microarchitecture operating at a core frequency of up to 150 MHz and bus frequency up to 75 MHz. © Freescale Semiconductor, Inc., 2006. All rights reserved. Contents 1 2 3 4 5 6 7 8 9 MCF523x Family Configurations . . . . . . . . . . . . . . . . . . . 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Design Recommendations . . . . . . . . . . . . . . . . . . . . . . . 9 Mechanicals/Pinouts and Part Numbers . . . . . . . . . . . . 14 Preliminary Electrical Characteristics . . . . . . . . . . . . . . 23 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Document Revision History . . . . . . . . . . . . . . . . . . . . . . 44 MCF523x Family Configurations 1 MCF523x Family Configurations Table 1. MCF523x Family Configurations Module MCF5232 MCF5233 MCF5234 MCF5235 ColdFire V2 Core with EMAC (Enhanced Multiply-Accumulate Unit) x x x x Enhanced Time Processor Unit with memory (eTPU) 16-ch 6K 32-ch 6K 16-ch 6K 32-ch 6K System Clock Performance (Dhrystone/2.1 MIPS) up to 144 Instruction/Data Cache 8 Kbytes Static RAM (SRAM) 64 Kbytes Interrupt Controllers (INTC) 2 2 2 2 Edge Port Module (EPORT) x x x x External Interface Module (EIM) x x x x 4-channel Direct-Memory Access (DMA) x x x x SDRAM Controller x x x x Fast Ethernet Controller (FEC) — — x x Cryptography - Security module for data packets processing — — — x Watchdog Timer (WDT) x x x x Four Periodic Interrupt Timers (PIT) x x x x 32-bit DMA Timers 4 4 4 4 QSPI x x x x UART(s) 3 3 3 3 x x x x FlexCAN 2.0B - Controller-Area Network communication module 1 2 1 2 General Purpose I/O Module (GPIO) x x x x JTAG - IEEE 1149.1 Test Access Port x x x x 160 QFP 196 MAPBGA 256 MAPBGA 256 MAPBGA 256 MAPBGA I 2C Package 2 up to 150 MHz Block Diagram The superset device in the MCF523x family comes in a 256 mold array process ball grid array (MAPBGA) package. Figure shows a top-level block diagram of the MCF5235, the superset device. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 2 Freescale Semiconductor Features EIM SDRAMC CHIP SELECTS (To/From SRAM backdoor) QSPI I2C_SDA I2C_SCL INTC0 Arbiter EBI INTC1 UnTXD UnRXD UnRTS UnCTS (To/From PADI) UART 0 UART 1 DTIM 0 4 CH DMA UART 2 DTIM 1 I2 C QSPI SDRAMC PADI – Pin Muxing (To/From PADI) FAST ETHERNET CONTROLLER (FEC) DTnOUT DTnIN FEC CANRX CANTX eTPU DTIM 3 DTIM 2 D[31:0] (To/From PADI) A[23:0] R/W MUX DREQ[2:0] DACK[2:0] BDM JTAG_EN CS[3:0] V2 ColdFire CPU TA TSIZ[1:0] EMAC DIV TEA BS[3:0] NEXUS JTAG TAP 64 Kbytes SRAM (8Kx16)x4 eTPU (To/From PADI) Watchdog Timer PLL CLKGEN FlexCAN (x2) MDHA PORTS (GPIO) CIM (To/From Arbiter backdoor) SKHA RNGA 8 Kbytes CACHE (1Kx32)x2 PIT0 PIT1 PIT2 PIT3 (To/From INTC) Edge Port Cryptography Modules MCF5235 Block Diagram 3 Features For a detailed feature list see the MCF5235 Reference Manual (MCF5235RM). MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 3 Signal Descriptions 4 Signal Descriptions This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF523x signals, consult the MCF5235 Reference Manual (MCF5235RM). 4.1 Signal Properties Table 2 lists all of the signals grouped by function. The “Dir” column is the direction for the primary function of the pin. Refer to Section 6, “Mechanicals/Pinouts and Part Numbers,” for package diagrams. NOTE In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon. NOTE The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality. Table 2. MCF523x Signal Information and Muxing Signal Name Alternate 1 Alternate 2 Dir.1 GPIO MCF5232 160 QFP MCF5232 196 MAPBGA MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA Reset RESET — — — I 83 N13 T15 T15 T15 RSTOUT — — — O 82 P13 T14 T14 T14 Clock EXTAL — — — I 86 M14 P16 P16 P16 XTAL — — — O 85 N14 R16 R16 R16 CLKOUT — — — O 89 K14 M16 M16 M16 Mode Selection CLKMOD[1:0] — — — I 19,20 G5, H5 J3, J2 J3, J2 J3, J2 RCON — — — I 79 K10 P13 P13 P13 B14, C14, A15 B14, C14, A15 B14, C14, A15 External Memory Interface and Ports A[23:21] PADDR[7:5] CS[6:4] — O 126, 125, 124 B11, C11, D11 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 4 Freescale Semiconductor Signal Descriptions Table 2. MCF523x Signal Information and Muxing (continued) Alternate 1 Alternate 2 Dir.1 MCF5232 160 QFP MCF5232 196 MAPBGA MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA 123:115, 112:106, 102:98 A12, B12, C12, A13, B13, B14, C13, C14, D12, D13, D14, E11, E12, E13, E14, F12, F13, F14, G11, G12, G13 B15, B16, B15, B16, B15, B16, C15, C16, C15, C16, C15, C16, D16, D15, D16, D15, D16, D15, D14, E16, D14, E16, D14, E16, E15, E14, E15, E14, E15, E14, E13, F15, E13, F15, E13, F15, F14, F13, F14, F13, F14, F13, G15, G14, G15, G14, G15, G14, G13, H16, G13, H16, G13, H16, H15, H14, H15, H14, H15, H14, H13 H13 H13 Signal Name GPIO A[20:0] — — — O D[31:16] — — — O D[15:8] PDATAH[7:0] — — O D[7:0] PDATAL[7:0] — — O BS[3:0] PBS[7:4] CAS[3:0] — O 143:140 OE PBUSCTL7 — — O 63 N6 T7 T7 T7 TA PBUSCTL6 — — I 97 H11 K14 K14 K14 TEA PBUSCTL5 DREQ1 — I — J14 K13 K13 K13 R/W PBUSCTL4 — — O 96 J13 L16 L16 L16 TSIZ1 PBUSCTL3 DACK1 — O — P6 N8 N8 N8 TSIZ0 PBUSCTL2 DACK0 — O — P7 P8 P8 P8 TS PBUSCTL1 DACK2 — O — H13 K16 K16 K16 TIP PBUSCTL0 DREQ0 — O — H12 K15 K15 K15 21:24, 26:30, G1, G2, H1, 33:39 H2, H3, H4, J1, J2, J3, J4, K1, K2, K3, K4, L1, L2 42:49, K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1 K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1 K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1 M1, N1, M2, R2, T2, N3, R2, T2, N3, R2, T2, N3, N2, P2, L3, P3, R3, T3, P3, R3, T3, P3, R3, T3, M3, N3, N4, P4, N4, P4, N4, P4, 50:52, 56:60 P3, M4, N4, R4, T4, P5, R4, T4, P5, R4, T4, P5, P4, L5, M5, R5, N6, P6, R5, N6, P6, R5, N6, P6, N5, P5 R6, N7 R6, N7 R6, N7 B6, C6, D7, C9, B9, A9, C9, B9, A9, C9, B9, A9, C7 A10 A10 A10 Chip Selects CS[7:4] PCS[7:4] — — O — B9, A10, C10, A11 C12, A13, C13, A14 C12, A13, C13, A14 C12, A13, C13, A14 CS[3:2] PCS[3:2] SD_CS[1:0] — O 134,133 A9, C9 B12, D12 B12, D12 B12, D12 CS1 PCS1 — — O 130 B10 B13 B13 B13 CS0 — — — O 129 D10 D13 D13 D13 SDRAM Controller MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 5 Signal Descriptions Table 2. MCF523x Signal Information and Muxing (continued) MCF5232 160 QFP MCF5232 196 MAPBGA MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA O 93 K13 L13 L13 L13 — O 92 K12 M15 M15 M15 — — O 91 K11 M14 M14 M14 PSDRAM2 — — O — E8 C10 C10 C10 PSDRAM[1:0] — — O — L12, L13 N15, M13 N15, M13 N15, M13 Alternate 1 Alternate 2 Dir.1 Signal Name GPIO SD_WE PSDRAM5 — — SD_SCAS PSDRAM4 — SD_SRAS PSDRAM3 SD_CKE SD_CS[1:0] External Interrupts Port IRQ[7:3] PIRQ[7:3] — — I IRQ7=64 IRQ4=65 N7, M7, L7, R8, T8, N9, R8, T8, N9, R8, T8, N9, P8, N8 P9, R9 P9, R9 P9, R9 IRQ2 PIRQ2 DREQ2 — I — M8 T9 T9 T9 IRQ1 PIRQ1 — — I 66 L8 N10 N10 N10 eTPU TPUCH31 — ECOL — — — F3 — F3 TPUCH30 — ECRS — — — F4 — F4 TPUCH29 — ERXCLK — — — E3 — E3 TPUCH28 — ERXDV — — — E4 — E4 TPUCH[27:24] — ERXD[3:0] — — — D3, D4, C3, C4 — D3, D4, C3, C4 TPUCH23 — ERXER — — — D5 — D5 TPUCH22 — ETXCLK — — — C5 — C5 TPUCH21 — ETXEN — — — D6 — D6 TPUCH20 — ETXER — — — C6 — C6 TPUCH[19:16] — ETXD[3:0] — — — B6,B5, A5, B7 — B6,B5, A5, B7 TPUCH[15:0] — — — F2, E1, E2, D1, D2, C1, C2, B1, B2, A2, B3, A3, B4, A4, A6, A7 F2, E1, E2, D1, D2, C1, C2, B1, B2, A2, B3, A3, B4, A4, A6, A7 F2, E1, E2, D1, D2, C1, C2, B1, B2, A2, B3, A3, B4, A4, A6, A7 TCRCLK PETPU2 — — 12 E3 F1 F1 F1 UTPUODIS PETPU1 — — — H10 J13 J13 J13 LTPUODIS PETPU0 — — — G10 J14 J14 J14 11, 10, 7:2, E2, E1, D1 159:154, D2, D3, C1, 152, 151 C2, B1, B2, A2, C3, B3, A3, A4, C4, BR FEC EMDIO PFECI2C2 I2C_SDA U2RXD I/O — — — C7 C7 EMDC PFECI2C3 I2C_SCL U2TXD O — — — D7 D7 ECOL — — — I — — — F3 F3 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 6 Freescale Semiconductor Signal Descriptions Table 2. MCF523x Signal Information and Muxing (continued) MCF5232 160 QFP MCF5232 196 MAPBGA MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA I — — — F4 F4 — I — — — E3 E3 — — I — — — E4 E4 — — — I — — — ERXER — — — I — — — D5 D5 ETXCLK — — — I — — — C5 C5 ETXEN — — — O — — — D6 D6 ETXER — — — O — — — C6 C6 ETXD[3:0] — — — O — — — — — — — M4 Alternate 1 Alternate 2 Dir.1 Signal Name GPIO ECRS — — — ERXCLK — — ERXDV — ERXD[3:0] D3, D4, C3, D3, D4, C3, C4 C4 B6, B5, A5, B6, B5, A5, B7 B7 Feature Control eTPU/EthENB — — — I I2C I2C_SDA PFECI2C1 CAN0RX — I/O — J12 L15 L15 L15 I2C_SCL PFECI2C0 CAN0TX — I/O — J11 L14 L14 L14 — — — — — DMA DACK[2:0] and DREQ[2:0] do not have a dedicated bond pads. Please refer to the following pins for muxing: TS and DT2OUT for DACK2, TSIZ1and DT1OUT for DACK1, TSIZ0 and DT0OUT for DACK0, IRQ2 and DT2IN for DREQ2, TEA and DT1IN for DREQ1, and TIP and DT0IN for DREQ0. QSPI QSPI_CS1 PQSPI4 SD_CKE — O 139 B7 B10 B10 B10 QSPI_CS0 PQSPI3 — — O 147 A6 D9 D9 D9 QSPI_CLK PQSPI2 I2C_SCL — O 148 C5 B8 B8 B8 QSPI_DIN PQSPI1 I2C_SDA — I 149 B5 C8 C8 C8 QSPI_DOUT PQSPI0 — — O 150 A5 D8 D8 D8 UARTs U2TXD PUARTH1 CAN1TX — O — A8 D11 D11 D11 U2RXD PUARTH0 CAN1RX — I — A7 D10 D10 D10 U1CTS PUARTL7 U2CTS — I — B8 C11 C11 C11 U1RTS PUARTL6 U2RTS — O — C8 B11 B11 B11 U1TXD PUARTL5 CAN0TX — O 135 D9 A12 A12 A12 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 7 Signal Descriptions Table 2. MCF523x Signal Information and Muxing (continued) MCF5232 160 QFP MCF5232 196 MAPBGA MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA I 136 D8 A11 A11 A11 — I — F3 G1 G1 G1 — — O — G3 H3 H3 H3 PUARTL1 — — O 14 F1 H2 H2 H2 PUARTL0 — — I 13 F2 G2 G2 G2 Alternate 1 Alternate 2 Dir.1 Signal Name GPIO U1RXD PUARTL4 CAN0RX — U0CTS PUARTL3 — U0RTS PUARTL2 U0TXD U0RXD DMA Timers DT3IN PTIMER7 U2CTS QSPI_CS2 I — H14 J15 J15 J15 DT3OUT PTIMER6 U2RTS QSPI_CS3 O — G14 J16 J16 J16 DT2IN PTIMER5 DREQ2 DT2OUT I — M9 P10 P10 P10 DT2OUT PTIMER4 DACK2 — O — L9 R10 R10 R10 DT1IN PTIMER3 DREQ1 DT1OUT I — L6 P7 P7 P7 DT1OUT PTIMER2 DACK1 — O — M6 R7 R7 R7 DT0IN PTIMER1 DREQ0 — I — E4 G4 G4 G4 DT0OUT PTIMER0 DACK0 — O — F4 G3 G3 G3 BDM/JTAG2 DSCLK — TRST — I 70 N9 N11 N11 N11 PSTCLK — TCLK — O 68 P9 T10 T10 T10 BKPT — TMS — I 71 P10 P11 P11 P11 DSI — TDI — I 73 M10 T11 T11 T11 DSO — TDO — O 72 N10 R11 R11 R11 JTAG_EN — — — I 78 K9 N13 N13 N13 DDATA[3:0] — — — O — M12, N12, P12, L11 N14, P14, T13, R13 N14, P14, T13, R13 N14, P14, T13, R13 PST[3:0] — — — O 77:74 M11, N11, P11, L10 T12, R12, P12, N12 T12, R12, P12, N12 T12, R12, P12, N12 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 8 Freescale Semiconductor Design Recommendations Table 2. MCF523x Signal Information and Muxing (continued) Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5232 160 QFP MCF5232 196 MAPBGA MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA F5 J4 J4 J4 R14 R14 R14 Test TEST — — — I 18 PLL_TEST — — — I — Power Supplies VDDPLL — — — I 87 M13 P15 VSSPLL — — — I 84 L14 R15 OVDD — — — I 1, 9, 17, 32, 41, 55, 62, 69, 81, 90, 95, 105, 114, 128, 132, 138, 146 VSS — — — I 8, 16, 25, 31, A1, A14, A1, A16, E5, E12, F6, F11, F16, 40, 54, 61, E6, E9, F6, G7:10, H7: 10, J1, J7:10, K7:10, L6, 67, 80, 88, F8, F10, L11, M5, M12, N16, T1, T6, T16 94, 104, 113, G7, G9, H6, 127, 131, J5, J7, J9, 137, 145, K7, P1, P14 153, 160 VDD — — — I 15, 53, 103, 144 E5, E7, E6:11, F5, F7:10, F12, G5, G6, G11, E10, F7, F9, G12, H5, H6, H11, H12, J5, J6, J11, G6, G8, H7, J12, K5, K6, K11, K12, L5, L7:10, H8, H9, J6, L12, M6:M11 J8, J10, K5, K6, K8 D6, F11, G4, L4 A8, G16, H1, T5 1 Refers to pin’s primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM. 2 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins. 5 Design Recommendations 5.1 Layout • • • Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF523x. See application note AN1259, System Design and Layout Techniques for Noise Reduction in Processor-Based Systems. Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 9 Design Recommendations 5.2 • Power Supply 33 µF, 0.1 µF, and 0.01 µF across each power supply 5.2.1 Supply Voltage Sequencing and Separation Cautions DC Power Supply Voltage Figure 1 shows situations in sequencing the I/O VDD (OVDD), PLL VDD (PLLVDD), and Core VDD (VDD). OVDD is specified relative to VDD. OVDD 3.3V Supplies Stable 2.5V 1.5V VDD, PLLVDD 1 2 0 Time Notes: 1. VDD should not exceed OVDD or PLLVDD by more than 0.4 V at any time, including power-up. 2. Recommended that VDD/PLLVDD should track OVDD up to 0.9 V, then separate for completion of ramps. 3. Input voltage must not be greater than the supply voltage (OVDD, VDD, or PLLVDD) by more than 0.5 V at any time, including during power-up. 4. Use 1 ms or slower rise time for all supplies. Figure 1. Supply Voltage Sequencing and Separation Cautions 5.2.1.1 Power Up Sequence If OVDD are powered up with VDD at 0 V, then the sense circuits in the I/O pads will cause all pad output drivers connected to the OVDD to be in a high impedance state. There is no limit on how long after OVDD powers up before VDD must powered up. VDD should not lead the OVDD or PLLVDD by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning on the internal ESD protection clamp diodes. The recommended power up sequence is as follows: 1. Use 1 µs or slower rise time for all supplies. 2. VDD/PLLVDD and OVDD should track up to 0.9 V, then separate for the completion of ramps with OVDD going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 10 Freescale Semiconductor Design Recommendations 5.2.1.2 Power Down Sequence If VDD/PLLVDD are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance state. There is no limit on how long after VDD and PLLVDD power down before OVDD must power down. VDD should not lag OVDD or PLLVDD going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies. The recommended power down sequence is as follows: 1. Drop VDD/PLLVDD to 0 V. 2. Drop OVDD supplies. 5.3 • • 5.4 • 5.5 • 5.6 • • • • • • • • Decoupling Place the decoupling caps as close to the pins as possible, but they can be outside the footprint of the package. 0.1 µF and 0.01 µF at each supply input Buffering Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See Section 7, “Preliminary Electrical Characteristics.” Pull-up Recommendations Use external pull-up resistors on unused inputs. See pin table. Clocking Recommendations Use a multi-layer board with a separate ground plane. Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible. Do not run a high frequency trace around crystal circuit. Ensure that the ground for the bypass capacitors is connected to a solid ground trace. Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal. Tie the ground pin to the most solid ground in the system. Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable. Tie XTAL to ground when an external oscillator is clocking the device. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 11 Design Recommendations 5.7 Interface Recommendations 5.7.1 SDRAM Controller 5.7.1.1 SDRAM Controller Signals in Synchronous Mode Table 3 shows the behavior of SDRAM signals in synchronous mode. Table 3. Synchronous DRAM Signal Connections Signal Description SD_SRAS Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller’s SD_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals. SD_SCAS Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM. DRAMW DRAM read/write. Asserted for write operations and negated for read operations. SD_CS[1:0] Row address strobe. Select each memory block of SDRAMs connected to the MCF523x. One SD_CS signal selects one SDRAM block and connects to the corresponding CS signals. SD_CKE Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality. BS[3:0] Column address strobe. For synchronous operation, BS[3:0] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs. CLKOUT Bus clock output. Connects to the CLK input of SDRAMs. 5.7.1.2 Address Multiplexing See the SDRAM controller module chapter in the MCF5235 Reference Manual for details on address multiplexing. 5.7.2 Ethernet PHY Transceiver Connection The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4. Table 4. MII Mode Signal Description MCF523x Pin Transmit clock ETXCLK Transmit enable ETXEN Transmit data ETXD[3:0] MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 12 Freescale Semiconductor Design Recommendations Table 4. MII Mode (continued) Signal Description MCF523x Pin Transmit error ETXER Collision ECOL Carrier sense ECRS Receive clock ERXCLK Receive enable ERXDV Receive data ERXD[3:0] Receive error ERXER Management channel clock EMDC Management channel serial data EMDIO The serial mode interface operates in what is generally referred to as AMD mode. The MCF523x configuration for seven-wire serial mode connections to the external transceiver are shown in Table 5. Table 5. Seven-Wire Mode Configuration Signal Description MCF523x Pin Transmit clock ETXCLK Transmit enable ETXEN Transmit data ETXD[0] Collision ECOL Receive clock ERXCLK Receive enable ERXDV Receive data ERXD[0] Unused, configure as PB14 ERXER Unused input, tie to ground ECRS Unused, configure as PB[13:11] ERXD[3:1] Unused output, ignore ETXER Unused, configure as PB[10:8] ETXD[3:1] Unused, configure as PB15 EMDC Input after reset, connect to ground EMDIO Refer to the M523xEVB evaluation board user’s manual for an example of how to connect an external PHY. Schematics for this board are accessible at the MCF5235 site by navigating to: http://www.freescale.com/coldfire. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 13 Mechanicals/Pinouts and Part Numbers 5.7.3 FlexCAN The FlexCAN module interface to the CAN bus is composed of 2 pins: CANTX and CANRX, which are the serial transmitted data and the serial received data. The use of an external CAN transceiver to interface to the CAN bus is generally required. The transceiver is capable of driving the large current needed for the CAN bus and has current protection, against a defective CAN bus or defective stations. 5.7.4 BDM Use the BDM interface as shown in the M523xEVB evaluation board user’s manual. The schematics for this board are accessible at the Freescale website at: http://www.freescale.com/coldfire. 6 Mechanicals/Pinouts and Part Numbers This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF523x devices. See Table 2 for a list the signal names and pin locations for each device. 6.1 Pinout—196 MAPBGA The following figure shows a pinout of the MCF5232CVMxxx package. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 14 Freescale Semiconductor Mechanicals/Pinouts and Part Numbers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A VSS TPUCH6 TPUCH3 TPUCH2 QSPI_ DOUT QSPI_CS0 U2RXD U2TXD CS3 CS6 CS4 A20 A17 VSS A B TPUCH8 TPUCH7 TPUCH4 TPUCH0 QSPI_ DIN BS3 QSPI_CS1 U1CTS CS7 CS1 A23 A19 A16 A15 B C TPUCH10 TPUCH9 TPUCH5 TPUCH1 QSPI_CLK BS2 BS0 U1RTS CS2 CS5 A22 A18 A14 A13 C NC NC VDD BS1 U1RXD/ CAN0RX U1TXD/ CAN0TX CS0 A21 A12 A11 A10 D TCRCLK DT0IN OVDD VSS OVDD SD_CKE VSS OVDD A9 A8 A7 A6 E D TPUCH13 TPUCH12 TPUCH11 E TPUCH14 TPUCH15 F U0TXD U0RXD U0CTS DT0OUT TEST VSS OVDD VSS OVDD VSS VDD A5 A4 A3 F G D31 D30 U0RTS VDD CLKMOD1 OVDD VSS OVDD VSS LTPU ODIS A2 A1 A0 DT3OUT G H D29 D28 D27 D26 CLKMOD0 VSS OVDD OVDD OVDD UTPU ODIS TA TIP TS DT3IN H J D25 D24 D23 D22 VSS OVDD VSS OVDD VSS OVDD I2C_SCL I2C_SDA R/W TEA J K D21 D20 D19 D18 OVDD OVDD VSS OVDD JTAG_EN RCON SD_SRAS SD_SCAS SD_WE CLKOUT K L D17 D16 D10 VDD D3 DT1IN IRQ5 IRQ1 DT2OUT PST0 DDATA0 SD_CS1 SD_CS0 VSSPLL L M D15 D13 D9 D6 D2 DT1OUT IRQ6 IRQ2 DT2IN TDI/DSI PST3 DDATA3 VDDPLL EXTAL M N D14 D12 D8 D5 D1 OE IRQ7 IRQ3 TRST/ DSCLK TDO/DSO PST2 DDATA2 RESET XTAL N P VSS D11 D7 D4 D0 TSIZ1 TSIZ0 IRQ4 TCLK/ PSTCLK TMS/ BKPT PST1 DDATA1 RSTOUT VSS P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Figure 2. MCF5232CVMxxx Pinout (196 MAPBGA) 6.2 Package Dimensions—196 MAPBGA Figure 3 shows MCF5232CVMxxx package dimensions. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 15 Mechanicals/Pinouts and Part Numbers X D Y Laser mark for pin 1 identification in this area NOTES: 1. Dimensions are in millimeters. 2. Interpret dimensions and tolerances per ASME Y14.5M, 1994. 3. Dimension b is measured at the maximum solder ball diameter, parallel to datum plane Z. 4. Datum Z (seating plane) is defined by the spherical crowns of the solder balls. 5. Parallelism measurement shall exclude any effect of mark on top surface of package. M K E Millimeters DIM Min Max A 1.25 1.60 A1 0.27 0.47 A2 M b TOL 13X e S 14 13 12 11 10 9 6 5 4 3 2 Metalized mark for pin 1 identification in this area 1 1.16 REF 0.45 0.55 D 15.00 BSC E 15.00 BSC e 1.00 BSC S 0.50 BSC A B C 5 D S E 13X e F A 0.20 Z A2 G H J K L M A1 Z 0.10 Z 196X 4 Detail K Rotated 90° Clockwise N P 3 196X b 0.15 Z X Y View M-M 0.08 Z Figure 3. 196 MAPBGA Package Dimensions (Case No. 1128A-01) 6.2.1 Pinout—256 MAPBGA Figure 4 through Figure 6 show pinouts of the MCF5233CVMxxx, MCF5234CVMxxx, and MCF5235CVMxxx packages. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 16 Freescale Semiconductor Mechanicals/Pinouts and Part Numbers A B C D E F G H J K L M N P R T 1 2 3 4 5 6 7 8 9 10 VSS TPUCH6 TPUCH4 TPUCH2 TPUCH17 TPUCH1 TPUCH0 VDD BS1 BS0 TPUCH8 TPUCH7 TPUCH5 TPUCH3 TPUCH18 TPUCH19 TPUCH16 QSPI_ CLK BS2 QSPI_ CS1 TPUCH10 TPUCH9 TPUCH25 TPUCH24 TPUCH22 TPUCH20 I2C_SDA/ U2RXD QSPI_ DIN BS3 TPUCH12 TPUCH11 TPUCH27 TPUCH26 TPUCH23 TPUCH21 I2C_SCL/ U2TXD 11 12 U1RXD/ U1TXD/ CAN0RX CAN0TX 13 14 15 16 CS6 CS4 A21 VSS A U1RTS CS3 CS1 A23 A20 A19 B SD_CKE U1CTS CS7 CS5 A22 A18 A17 C QSPI_ DOUT QSPI_ U2RXD/ U2TXD/ CS0 CAN1RX CAN1TX CS2 CS0 A14 A15 A16 D TPUCH14 TPUCH13 TPUCH29 TPUCH28 VSS OVDD OVDD OVDD OVDD OVDD OVDD VSS A10 A11 A12 A13 E TCRCLK TPUCH15 TPUCH31 TPUCH30 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD A7 A8 A9 VSS F U0CTS U0RXD DT0OUT DT0IN OVDD OVDD VSS VSS VSS VSS OVDD OVDD A4 A5 A6 VDD G VDD U0TXD U0RTS NC OVDD OVDD VSS VSS VSS VSS OVDD OVDD A0 A1 A2 A3 H VSS CLK MOD0 CLK MOD1 TEST OVDD OVDD VSS VSS VSS VSS OVDD OVDD UTPU ODIS LTPU ODIS DT3IN D28 D29 D30 D31 OVDD OVDD VSS VSS VSS VSS OVDD OVDD TEA TA TIP D24 D25 D26 D27 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD SD_WE D21 D22 D23 NC VSS OVDD OVDD OVDD OVDD OVDD OVDD VSS SD_ CS0 SD_ SRAS SD_ SCAS D19 D20 D13 D9 NC D3 D0 TSIZ1 IRQ5 IRQ1 TRST/ DSCLK PST0 JTAG_ EN DDATA3 SD_CS1 VSS N D17 D18 D12 D8 D5 D2 DT1IN TSIZ0 IRQ4 DT2IN TMS/ BKPT PST1 RCON DDATA2 VDDPLL EXTAL P D16 D15 D11 D7 D4 D1 DT1OUT IRQ7 IRQ3 DT2OUT TDO/ DSO PST2 DDATA0 PLL_ TEST VSSPLL XTAL R VSS D14 D10 D6 VDD VSS OE IRQ6 IRQ2 TCLK/ TDI/DSI PSTCLK PST3 DDATA1 RSTOUT RESET VSS T 1 2 3 4 5 6 7 8 9 15 16 10 11 12 13 I2C_SCL/ I2C_SDA/ CAN0TX CAN0RX 14 DT3OUT J TS K R/W L CLKOUT M Figure 4. MCF5233CVMxxx Pinout (256 MAPBGA) MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 17 Mechanicals/Pinouts and Part Numbers 1 2 3 4 5 6 7 8 9 10 A VSS TPUCH6 TPUCH4 TPUCH2 ETXD1 TPUCH1 TPUCH0 VDD BS1 BS0 B TPUCH8 TPUCH7 TPUCH5 TPUCH3 ETXD2 ETXD3 ETXD0 QSPI_ CLK BS2 QSPI_ CS1 C TPUCH10 TPUCH9 ERXD1 ERXD0 ETXCLK ETXER EMDIO QSPI_ DIN BS3 D TPUCH12 TPUCH11 ERXD3 ERXD2 ERXER ETXEN EMDC QSPI_ DOUT E TPUCH14 TPUCH13 ERXCLK ERXDV VSS OVDD OVDD ECOL ECRS OVDD VSS F TCRCLK TPUCH15 11 12 U1RXD/ U1TXD/ CAN0RX CAN0TX 13 14 15 16 CS6 CS4 A21 VSS A U1RTS CS3 CS1 A23 A20 A19 B SD_CKE U1CTS CS7 CS5 A22 A18 A17 C QSPI_ CS0 U2RXD U2TXD CS2 CS0 A14 A15 A16 D OVDD OVDD OVDD OVDD VSS A10 A11 A12 A13 E OVDD OVDD OVDD OVDD VSS OVDD A7 A8 A9 VSS F G U0CTS U0RXD DT0OUT DT0IN OVDD OVDD VSS VSS VSS VSS OVDD OVDD A4 A5 A6 VDD G H VDD U0TXD U0RTS NC OVDD OVDD VSS VSS VSS VSS OVDD OVDD A0 A1 A2 A3 H J VSS CLK MOD0 CLK MOD1 TEST OVDD OVDD VSS VSS VSS VSS OVDD OVDD UTPU ODIS LTPU ODIS DT3IN K D28 D29 D30 D31 OVDD OVDD VSS VSS VSS VSS OVDD OVDD TEA TA TIP L D24 D25 D26 D27 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD SD_WE M D21 D22 D23 NC VSS OVDD OVDD OVDD OVDD OVDD OVDD VSS SD_CS0 SD_ SRAS SD_ SCAS N D19 D20 D13 D9 NC D3 D0 TSIZ1 IRQ5 IRQ1 TRST/ DSCLK PST0 JTAG_ EN DDATA3 SD_CS1 VSS N P D17 D18 D12 D8 D5 D2 DT1IN TSIZ0 IRQ4 DT2IN TMS/ BKPT PST1 RCON DDATA2 VDDPLL EXTAL P R D16 D15 D11 D7 D4 D1 DT1OUT IRQ7 IRQ3 DT2OUT TDO/ DSO PST2 DDATA0 PLL_ TEST VSSPLL XTAL R T VSS D14 D10 D6 VDD VSS OE IRQ6 IRQ2 TCLK/ TDI/DSI PSTCLK PST3 DDATA1 RST OUT RESET VSS T 1 2 3 4 5 6 7 8 9 12 13 14 15 16 10 11 I2C_SCL/ I2C_SDA/ CAN0TX CAN0RX DT3OUT J TS K R/W L CLKOUT M Figure 5. MCF5234CVMxxx Pinout (256 MAPBGA) MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 18 Freescale Semiconductor Mechanicals/Pinouts and Part Numbers 1 2 3 4 VSS TPUCH6 TPUCH4 TPUCH2 TPUCH17/ TPUCH1 ETXD1 B TPUCH8 TPUCH7 TPUCH5 TPUCH3 TPUCH18/ TPUCH19/ TPUCH16/ QSPI_ ETXD2 ETXD3 ETXD0 CLK A 5 6 7 8 9 10 TPUCH0 VDD BS1 BS0 BS2 QSPI_ CS1 11 12 U1RXD/ U1TXD/ CAN0RX CAN0TX 13 14 15 16 CS6 CS4 A21 VSS A U1RTS CS3 CS1 A23 A20 A19 B SD_CKE U1CTS CS7 CS5 A22 A18 A17 C C TPUCH10 TPUCH9 TPUCH25/ TPUCH24/ TPUCH22/ TPUCH20/ ERXD1 ERXD0 ETXCLK ETXER I2C_SDA/ U2RXD/ EMDIO QSPI_ DIN D TPUCH12 TPUCH11 TPUCH27/ TPUCH26/ TPUCH23/ TPUCH21/ ERXD3 ERXD2 ERXER ETXEN I2C_SCL/ U2TXD/ EMDC QSPI_ DOUT QSPI_ U2RXD/ U2TXD/ CS0 CAN1RX CAN1TX CS2 CS0 A14 A15 A16 D E TPUCH14 TPUCH13 TPUCH29/ TPUCH2/ ERXCLK ERXDV VSS OVDD OVDD OVDD OVDD OVDD OVDD VSS A10 A11 A12 A13 E F TCRCLK TPUCH15 TPUCH31/ TPUCH30/ ECOL ECRS OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD A7 A8 A9 VSS F BS3 G U0CTS U0RXD DT0OUT DT0IN OVDD OVDD VSS VSS VSS VSS OVDD OVDD A4 A5 A6 VDD G H VDD U0TXD U0RTS NC OVDD OVDD VSS VSS VSS VSS OVDD OVDD A0 A1 A2 A3 H J VSS CLK MOD0 CLK MOD1 TEST OVDD OVDD VSS VSS VSS VSS OVDD OVDD UTPU ODIS LTPU ODIS DT3IN K D28 D29 D30 D31 OVDD OVDD VSS VSS VSS VSS OVDD OVDD TEA TA TIP L D24 D25 D26 D27 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD SD_WE M D21 D22 D23 eTPU/ EthENB VSS OVDD OVDD OVDD OVDD OVDD OVDD VSS SD_CS0 SD_ SRAS SD_ SCAS N D19 D20 D13 D9 NC D3 D0 TSIZ1 IRQ5 IRQ1 TRST/ DSCLK PST0 JTAG_ EN DDATA3 SD_CS1 VSS N P D17 D18 D12 D8 D5 D2 DT1IN TSIZ0 IRQ4 DT2IN TMS/ BKPT PST1 RCON DDATA2 VDDPLL EXTAL P R D16 D15 D11 D7 D4 D1 DT1OUT IRQ7 IRQ3 DT2OUT TDO/ DSO PST2 DDATA0 PLL_ TEST VSSPLL XTAL R T VSS D14 D10 D6 VDD VSS OE IRQ6 IRQ2 TCLK/ TDI/DSI PSTCLK PST3 DDATA1 RSTOUT RESET VSS T 1 2 3 4 5 6 7 8 9 15 16 10 11 12 13 I2C_SCL/ I2C_SDA/ CAN0TX CAN0RX 14 DT3OUT J TS K R/W L CLKOUT M Figure 6. MCF5235CVMxxx Pinout (256 MAPBGA) MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 19 Mechanicals/Pinouts and Part Numbers 6.2.2 Package Dimensions—256 MAPBGA Figure 7 shows MCF5235CVMxxx, MCF5234CVMxxx, and MCF5233CVMxx package dimensions. X D Y M LASER MARK FOR PIN A1 IDENTIFICATION IN THIS AREA 5 K A 0.30 Z A2 A1 Z E 256X 4 0.15 Z DETAIL K ROTATED 90°CLOCKWISE M 0.20 15X e S 16151413121110 15X e METALIZED MARK FOR PIN A1 IDENTIFICATION IN THIS AREA 7654321 A B C D E F G H J K L M N P R T S 256X b 3 0.25 M Z X Y 0.10 M Z NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z. 4. DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE. VIEW M-M MILLIMETERS MIN MAX A 1.25 1.60 A1 0.27 0.47 1.16 REF A2 0.40 0.60 b 17.00 BSC D 17.00 BSC E e 1.00 BSC 0.50 BSC S DIM Figure 7. 256 MAPBGA Package Outline 6.3 Pinout—160 QFP Figure 8 shows a pinout of the MCF5232CABxxx package. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 20 Freescale Semiconductor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 MCF5232 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 A17 A16 A15 A14 A13 A12 OVDD VSS A11 A10 A9 A8 A7 A6 A5 OVDD VSS/OVSS VDD A4 A3 A2 A1 A0 TA R/W OVDD VSS SD_WE SD_SCAS SD_SRAS OVDD CLKOUT VSS VDDPLL EXTAL XTAL VSSPLL RESET RSTOUT/PLL_TEST OVDD OVDD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 VDD VSS\OVSS OVDD D4 D3 D2 D1 D0 VSS OVDD OE IRQ7 IRQ4 IRQ1 VSS TCLK\PSTCLK OVDD TRST\DSCLK TMS\BKPT TDO/DSO TDI/DSI PST0 PST1 PST2 PST3 JTAG_EN RCON VSS 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 OVDD TPUCH8 TPUCH9 TPUCH10 TPUCH11 TPUCH12 TPUCH13 VSS OVDD TPUCH14 TPUCH15 TCRCLK U0RXD U0TXD VDD VSS OVDD TEST CLKMOD1 CLKMOD0 D31 D30 D29 D28 VSS D27 D26 D25 D24 D23 VSS OVDD D22 D21 D20 D19 D18 D17 D16 VSS 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 VSS TPUCH7 TPUCH6 TPUCH5 TPUCH4 TPUCH3 TPUCH2 VSS TPUCH1 TPUCH0 QSPI_DOUT QSPI_DIN QSPI_CLK QSPI_CS0 OVDD VSS\OVSS VDD BS3 BS2 BS1 BS0 SD_CKE\QSPI_CS1 OVDD VSS U1RXD\CAN0RX U1TXD\CAN0TX CS3 CS2 OVDD VSS CS1 CS0 OVDD VSS A23 A22 A21 A20 A19 A18 Mechanicals/Pinouts and Part Numbers Figure 8. MCF5232CABxxx Pinout (160 QFP) 6.4 Package Dimensions—160 QFP Figure 9 shows MCF5232CAB80 package dimensions. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 21 Mechanicals/Pinouts and Part Numbers L DETAIL A B H V B 0.20 (0.008) M A-B H 0.20 (0.008) M B 0.20 (0.008) –B– –A– L –A–, –B–, –D– A-B S A-B S D S D S Y P G DETAIL A Z A 0.20 (0.008) M C 0.20 (0.008) S A-B BASE METAL D S A-B N S 0.20 (0.008) M C A-B S J D S F DETAIL C D –H– 0.13 (0.005) M C A-B S D S SECTION B–B M× TOP & BOTTOM U× C E NOTES T –H– R Q× W –C– K H X 0.110 (0.004) DETAIL C 1. DIMENSIONING AND TOLERINCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER 3. DATUM PLAN -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -A-, -B-, AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MILLIMETERS DIM MIN MAX A 27.90 28.10 27.90 28.10 B 3.85 3.35 C D 0.22 0.38 3.20 3.50 E 0.22 0.33 F 0.65 BSC G H 0.25 0.35 J 0.11 0.23 K 0.70 0.90 25.35 BSC L 16° M 5° 0.11 0.19 N 0.325 BSC P Q 7° 0° R 0.13 0.30 S 31.00 31.40 0.13 — T U 0° — V 31.00 31.40 0.4 — W 1.60 REF X Y 1.33 REF 1.33 REF Z INCHES MIN MAX 1.098 1.106 1.098 1.106 0.132 1.106 0.009 0.015 0.126 0.138 0.009 0.013 0.026 REF 0.010 0.014 0.004 0.009 0.028 0.035 0.998 REF 5° 16° 0.004 0.007 0.013 REF 0° 7° 0.005 0.012 1.220 1.236 0.005 — 0° — 1.220 1.236 0.016 — 0.063 REF 0.052 REF 0.052 REF Case 864A-03 Figure 9. 160 QFP Package Dimensions MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 22 Freescale Semiconductor Preliminary Electrical Characteristics 6.5 Ordering Information Table 6. Orderable Part Numbers 7 Freescale Part Number Description Speed Temperature MCF5232CAB80 MCF5232 RISC Microprocessor, 160 QFP 80MHz –40° to +85° C MCF5232CVM100 MCF5232 RISC Microprocessor, 196 MAPBGA 100MHz –40° to +85° C MCF5232CVM150 MCF5232 RISC Microprocessor, 196 MAPBGA 150MHz –40° to +85° C MCF5233CVM100 MCF5233 RISC Microprocessor, 256 MAPBGA 100MHz –40° to +85° C MCF5233CVM150 MCF5233 RISC Microprocessor, 256 MAPBGA 150MHz –40° to +85° C MCF5234CVM100 MCF5234 RISC Microprocessor, 256 MAPBGA 100MHz –40° to +85° C MCF5234CVM150 MCF5234 RISC Microprocessor, 256 MAPBGA 150MHz –40° to +85° C MCF5235CVM100 MCF5235 RISC Microprocessor, 256 MAPBGA 100MHz –40° to +85° C MCF5235CVM150 MCF5235 RISC Microprocessor, 256 MAPBGA 150MHz –40° to +85° C Preliminary Electrical Characteristics This chapter contains electrical specification tables and reference timing diagrams for the MCF5235 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5235. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this processor document supersede any values found in the module specifications. 7.1 Maximum Ratings Table 7. Absolute Maximum Ratings1, 2 Rating Symbol Value Unit Core Supply Voltage VDD – 0.5 to +2.0 V Pad Supply Voltage OVDD – 0.3 to +4.0 V VDDPLL – 0.3 to +4.0 V VIN – 0.3 to + 4.0 V Clock Synthesizer Supply Voltage Digital Input Voltage 3 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 23 Preliminary Electrical Characteristics Table 7. Absolute Maximum Ratings1, 2 (continued) Rating Symbol Value Unit ID 25 mA TA (TL - TH) – 40 to 85 °C Tstg – 65 to 150 °C Instantaneous Maximum Current Single pin limit (applies to all pins) 3,4,5 Operating Temperature Range (Packaged) Storage Temperature Range 1 2 3 4 5 7.2 Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or OVDD). Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. All functional non-supply pins are internally clamped to VSS and OVDD. Power supply must maintain regulation within operating OVDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > OVDD) is greater than IDD, the injection current may flow out of OVDD and could result in external power supply going out of regulation. Insure external OVDD load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power (ex; no clock).Power supply must maintain regulation within operating OVDD range during instantaneous and operating maximum current conditions. Thermal Characteristics The below table lists thermal resistance values. Table 8. Thermal Characteristics Characteristic Symbol 256 196 MAPBGA MAPBGA 160 QFP Unit Four layer board (2s2p) θJMA 261,2 321,2 401,2 °C/W Four layer board (2s2p) θJMA 231,2 291,2 361,2 °C/W Junction to board θJB 153 203 253 °C/W Junction to case θJC 104 104 104 °C/W Junction to top of package Ψjt 1,5 1,5 1,5 °C/W Junction to ambient, natural convection Junction to ambient (@200 ft/min) Maximum operating junction temperature Tj 2 102 2 104 2 1056 oC θJMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer’s system using the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2. 2 Per JEDEC JESD51-6 with the board horizontal. 1 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 24 Freescale Semiconductor Preliminary Electrical Characteristics 3 Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 4 Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 5 Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT. 6 At 100MHz. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D × Θ JMA ) (1) Where: TA= Ambient Temperature, °C ΘJMA= Package Thermal Resistance, Junction-to-Ambient, °C/W PD= PINT + PI/O PINT= IDD × VDD, Watts - Chip Internal Power PI/O= Power Dissipation on Input and Output Pins — User Determined For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is: P D = K ÷ ( T J + 273°C ) (2) Solving equations 1 and 2 for K gives: K = PD × (TA + 273 °C) + ΘJMA × PD 2 (3) where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA. 7.3 DC Electrical Specifications Table 9. DC Electrical Specifications1 Characteristic Symbol Min Typical Max Unit Core Supply Voltage VDD 1.4 — 1.6 V Pad Supply Voltage OVDD 3 — 3.6 V Input High Voltage VIH 0.7 × OVDD — 3.65 V Input Low Voltage VIL VSS – 0.3 — 0.35 × OVDD V VHYS 0.06 × OVDD — — mV Input Leakage Current Vin = VDD or VSS, Input-only pins Iin –1.0 — 1.0 µA High Impedance (Off-State) Leakage Current Vin = VDD or VSS, All input/output and output pins IOZ –1.0 — 1.0 µA Input Hysteresis MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 25 Preliminary Electrical Characteristics Table 9. DC Electrical Specifications1 (continued) Characteristic Symbol Min Typical Max Unit Output High Voltage (All input/output and all output pins) IOH = –5.0 mA VOH OVDD - 0.5 — — V Output Low Voltage (All input/output and all output pins) IOL = 5.0mA VOL — — 0.5 V Weak Internal Pull Up Device Current, tested at VIL Max.2 IAPU –10 — – 130 µA 3 Input Capacitance All input-only pins All input/output (three-state) pins Cin Load Capacitance4 Low drive strength High drive strength CL Core Operating Supply Current 5 Master Mode IDD Pad Operating Supply Current Master Mode Low Power Modes DC Injection Current 3, 6, 7, 8 VNEGCLAMP =VSS– 0.3 V, VPOSCLAMP = VDD + 0.3 Single Pin Limit Total processor Limit, Includes sum of all stressed pins 1 2 3 4 5 6 7 8 — — — pF 7 7 — — 25 50 pF pF — 135 150 mA — — 100 TBD — — mA µA 1.0 10 mA mA OIDD IIC –1.0 –10 Refer to Table 10 for additional PLL specifications. Refer to the MCF5235 signals section for pins having weak internal pull-up devices. This parameter is characterized before qualification rather than 100% tested. pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination. See High Speed Signal Propagation: Advanced Black Magic by Howard W. Johnson for design guidelines. Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load. All functional non-supply pins are internally clamped to VSS and their respective VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Insure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 26 Freescale Semiconductor Preliminary Electrical Characteristics 7.4 Oscillator and PLLMRFM Electrical Characteristics Table 10. HiP7 PLLMRFM Electrical Specifications1 Num 1 2 1 2 3 4 5 6 Characteristic PLL Reference Frequency Range Crystal reference External reference 1:1 mode (NOTE: fsys/2 = 2 × fref_1:1) Core frequency CLKOUT Frequency 2 External reference On-Chip PLL Frequency Symbol Min. Value Max. Value fref_crystal fref_ext fref_1:1 8 8 24 25 25 75 fsys/2 0 fref ÷ 32 150 75 75 MHz MHz MHz Unit MHz fsys 3 Loss of Reference Frequency 3, 5 fLOR 100 1000 kHz 4 Self Clocked Mode Frequency 4, 5 fSCM 10.25 15.25 MHz 5 Crystal Start-up Time 5, 6 tcst — 10 ms 6 XTAL Load Capacitance5 5 30 pF 7 PLL Lock Time 5, 7,13 tlpll — 750 µs 8 Power-up To Lock Time 5, 6,8 With Crystal Reference (includes 5 time) Without Crystal Reference9 tlplk — — 11 750 ms µs 9 1:1 Mode Clock Skew (between CLKOUT and EXTAL) 10 tskew –1 1 ns 10 Duty Cycle of reference 5 tdc 40 60 % 11 Frequency un-LOCK Range fUL –3.8 4.1 % fsys/2 12 Frequency LOCK Range fLCK –1.7 2.0 % fsys/2 13 CLKOUT Period Jitter, 5, 6, 8,11, 12 Measured at fsys/2 Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval) Cjitter — — 5.0 .01 % fsys/2 14 Frequency Modulation Range Limit13,14 (fsys/2 Max must not be exceeded) Cmod 0.8 2.2 %fsys/2 15 ICO Frequency. fico = fref × 2 × (MFD+2) 15 fico 48 150 MHz All values given are initial design targets and subject to change. All internal registers retain data at 0 Hz. “Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR with default MFD/RFD settings. This parameter is guaranteed by characterization before qualification rather than 100% tested. Proper PC board layout procedures must be followed to achieve specifications. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 27 Preliminary Electrical Characteristics 7 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). Assuming a reference is available at power up, lock time is measured from the time VDD and VDDSYN are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must be added to the PLL lock time to determine the total start-up time. tlpll = (64 * 4 * 5 + 5 × τ) × Tref, where Tref = 1/Fref_crystal = 1/Fref_ext = 1/Fref_1:1, and τ = 1.57x10-6 × 2(MFD + 2). PLL is operating in 1:1 PLL mode. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys/2. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod. Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz. Modulation rate selected must not result in fsys/2 value greater than the fsys/2 maximum specified value. Modulation range determined by hardware design. fsys/2 = fico / (2 * 2RFD) 8 9 10 11 12 13 14 15 7.5 External Interface Timing Characteristics Table 11 lists processor bus input timings. NOTE All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output. All other timing relationships can be derived from these values. Table 11. Processor Bus Input Timing Specifications Characteristic1 Name freq System bus frequency B0 CLKOUT period Symbol Min Max Unit fsys/2 50 75 MHz tcyc — 1/75 ns tCVCH 9 — ns tBKVCH 9 — ns tCHCII 0 — ns tBKNCH 0 — ns Control Inputs B1a B1b Control input valid to CLKOUT high2 3 BKPT valid to CLKOUT high invalid2 B2a CLKOUT high to control inputs B2b CLKOUT high to asynchronous control input BKPT invalid3 Data Inputs B4 Data input (D[31:0]) valid to CLKOUT high tDIVCH 4 — ns B5 CLKOUT high to data input (D[31:0]) invalid tCHDII 0 — ns 1 Timing specifications are tested using full drive strength pad configurations in a 50ohm transmission line environment.. 2 TEA and TA pins are being referred to as control inputs. 3 Refer to figure A-19. Timings listed in Table 11 are shown in Figure 10 & Figure A-3. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 28 Freescale Semiconductor Preliminary Electrical Characteristics * The timings are also valid for inputs sampled on the negative clock edge. 1.5V CLKOUT(75MHz) TSETUP THOLD Input Setup And Hold Invalid 1.5V Valid 1.5V Invalid trise Input Rise Time Vh = VIH Vl = VIL tfall Input Fall Time CLKOUT Vh = VIH Vl = VIL B4 B5 Inputs Figure 10. General Input Timing Requirements 7.6 Processor Bus Output Timing Specifications Table 12 lists processor bus output timings. Table 12. External Bus Output Timing Specifications Name Characteristic Symbol Min Max Unit Control Outputs B6a CLKOUT high to chip selects valid 1 tCHCV — 0.5tCYC +5 ns B6b CLKOUT high to byte enables (BS[3:0]) valid2 tCHBV — 0.5tCYC +5 ns B6c CLKOUT high to output enable (OE) valid3 tCHOV — 0.5tCYC +5 ns B7 CLKOUT high to control output (BS[3:0], OE) invalid tCHCOI 0.5tCYC+1.5 — ns B7a CLKOUT high to chip selects invalid tCHCI 0.5tCYC+1.5 — ns — 9 ns Address and Attribute Outputs B8 CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) valid tCHAV MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 29 Preliminary Electrical Characteristics Table 12. External Bus Output Timing Specifications (continued) Name B9 Characteristic CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalid Symbol Min Max Unit tCHAI 1.5 — ns Data Outputs 1 2 3 B11 CLKOUT high to data output (D[31:0]) valid tCHDOV — 9 ns B12 CLKOUT high to data output (D[31:0]) invalid tCHDOI 1.5 — ns B13 CLKOUT high to data output (D[31:0]) high impedance tCHDOZ — 9 ns CS transitions after the falling edge of CLKOUT. BS transitions after the falling edge of CLKOUT. OE transitions after the falling edge of CLKOUT. Read/write bus timings listed in Table 12 are shown in Figure 11, Figure 12, and Figure 13. S1 S0 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5 CLKOUT B7a CSn A[23:0] TSIZ[1:0] B6a B6a B7a B8 B8 B8 B9 B9 TS B9 B8 B9 TIP B8 B6c B0 B7 OE R/W (H) B9 B8 B6b B6b BS[3:0] B7 B7 B11 B4 B12 D[31:0] B5 B13 TA (H) TEA (H) Figure 11. Read/Write (Internally Terminated) SRAM Bus Timing MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 30 Freescale Semiconductor Preliminary Electrical Characteristics Figure 12 shows a bus cycle terminated by TA showing timings listed in Table 12. S0 S1 S2 S3 S4 S5 S0 S1 CLKOUT B6a B7a CSn A[23:0] B8 B9 TSIZ[1:0] B8 B9 TS B8 B9 TIP B6c OE B7 R/W (H) B6b B7 BS[3:0] B5 B4 D[31:0] B2a TA B1a TEA (H) Figure 12. SRAM Read Bus Cycle Terminated by TA Figure 13 shows an SRAM bus cycle terminated by TEA showing timings listed in Table 12. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 31 Preliminary Electrical Characteristics S0 S1 S2 S3 S4 S5 S0 S1 CLKOUT B6a B7a CSn A[23:0] TSIZ[1:0] B8 B9 B8 B9 TS B8 TIP B9 B6c B7 OE R/W (H) B6b B7 BS[3:0] D[31:0] TA (H) B1a TEA B2a Figure 13. SRAM Read Bus Cycle Terminated by TEA Figure 14 shows an SDRAM read cycle. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 32 Freescale Semiconductor Preliminary Electrical Characteristics 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SD_CKE D3 D1 Row A[23:0] Column D2 D4 SD_SRAS D4 D2 SD_CAS1 D2 D4 SDWE D6 D5 D[31:0] D2 RAS[1:0] D2 D4 CAS[3:0] ACTV 1 NOP READ NOP NOP PALL DACR[CASL] = 2 Figure 14. SDRAM Read Cycle Table 13. SDRAM Timing NUM Symbol Min Max Unit D1 CLKOUT high to SDRAM address valid tCHDAV — 9 ns D2 CLKOUT high to SDRAM control valid tCHDCV — 9 ns D3 CLKOUT high to SDRAM address invalid tCHDAI 1.5 — ns D4 CLKOUT high to SDRAM control invalid tCHDCI 1.5 — ns D5 SDRAM data valid to CLKOUT high tDDVCH 4 — ns D6 CLKOUT high to SDRAM data invalid tCHDDI 1.5 — ns D71 CLKOUT high to SDRAM data valid tCHDDVW — 9 ns CLKOUT high to SDRAM data invalid tCHDDIW 1.5 — ns 2 D8 1 Characteristic D7 and D8 are for write cycles only. Figure 15 shows an SDRAM write cycle. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 33 Preliminary Electrical Characteristics 0 1 2 3 4 5 6 7 8 9 10 11 12 SD_CKE D3 D1 A[23:0] Row Column D4 D2 SD_SRAS D2 SD_SCAS1 D2 D4 SD_WE D7 D[31:0] D2 D8 RAS[1:0] D4 D2 CAS[3:0] ACTV 1 DACR[CASL] NOP WRITE NOP PALL =2 Figure 15. SDRAM Write Cycle 7.7 General Purpose I/O Timing Table 14. GPIO Timing1 NUM G1 G2 G3 G4 1 Characteristic Symbol Min Max Unit CLKOUT High to GPIO Output Valid tCHPOV — 10 ns CLKOUT High to GPIO Output Invalid tCHPOI 1.5 — ns GPIO Input Valid to CLKOUT High tPVCH 9 — ns CLKOUT High to GPIO Input Invalid tCHPI 1.5 — ns GPIO pins include: INT, ETPU, UART, FlexCAN and Timer pins. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 34 Freescale Semiconductor Preliminary Electrical Characteristics CLKOUT G2 G1 GPIO Outputs G3 G4 GPIO Inputs Figure 16. GPIO Timing 7.8 Reset and Configuration Override Timing Table 15. Reset and Configuration Override Timing (VDD = 2.7 to 3.6 V, VSS = 0 V, TA = TL to TH)1 NUM 1 2 Characteristic Symbol Min Max Unit R1 RESET Input valid to CLKOUT High tRVCH 9 — ns R2 CLKOUT High to RESET Input invalid tCHRI 1.5 — ns tRIVT 5 — tCYC 2 R3 RESET Input valid Time R4 CLKOUT High to RSTOUT Valid tCHROV — 10 ns R5 RSTOUT valid to Config. Overrides valid tROVCV 0 — ns R6 Configuration Override Setup Time to RSTOUT invalid tCOS 20 — tCYC R7 Configuration Override Hold Time after RSTOUT invalid tCOH 0 — ns R8 RSTOUT invalid to Configuration Override High Impedance tROICZ — 1 tCYC All AC timing is shown with respect to 50% VDD levels unless otherwise noted. During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns. CLKOUT R1 R2 R3 RESET R4 R4 RSTOUT R8 R5 R6 R7 Configuration Overrides*: (RCON, Override pins]) Figure 17. RESET and Configuration Override Timing Refer to the chip configuration module (CCM) chapter in the device’s reference manual for more information. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 35 Preliminary Electrical Characteristics I2C Input/Output Timing Specifications 7.9 Table 16 lists specifications for the I2C input timing parameters shown in Figure 18. Table 16. I2C Input Timing Specifications between I2C_SCL and I2C_SDA Num Characteristic Min Max Units I1 Start condition hold time 2 — tcyc I2 Clock low period 8 — tcyc I3 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) — 1 ms I4 Data hold time 0 — ns I5 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) — 1 ms I6 Clock high time 4 — tcyc I7 Data setup time 0 — ns I8 Start condition setup time (for repeated start condition only) 2 — tcyc I9 Stop condition setup time 2 — tcyc Table 17 lists specifications for the I2C output timing parameters shown in Figure 18. Table 17. I2C Output Timing Specifications between I2C_SCL and I2C_SDA Num Characteristic Min Max Units I11 Start condition hold time 6 — tcyc I2 1 Clock low period 10 — tcyc I3 2 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) — — µs I4 1 Data hold time 7 — tcyc I5 3 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) — 3 ns I6 1 Clock high time 10 — tcyc I7 1 Data setup time 2 — tcyc I8 1 Start condition setup time (for repeated start condition only) 20 — tcyc I9 1 Stop condition setup time 10 — tcyc 1 Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 17. The I2C interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 17 are minimum values. 2 Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values. 3 Specified at a nominal 50-pF load. Figure 18 shows timing for the values in Table 16 and Table 17. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 36 Freescale Semiconductor Preliminary Electrical Characteristics I2 I6 I5 I2C_SCL I1 I4 I3 I8 I9 I7 I2C_SDA Figure 18. I2C Input/Output Timings 7.10 Fast Ethernet AC Timing Specifications MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V. 7.10.1 MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK) The receiver functions correctly up to a ERXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ERXCLK frequency. Table 18 lists MII receive channel timings. Table 18. MII Receive Signal Timing Num Characteristic Min Max Unit M1 ERXD[3:0], ERXDV, ERXER to ERXCLK setup 5 — ns M2 ERXCLK to ERXD[3:0], ERXDV, ERXER hold 5 — ns M3 ERXCLK pulse width high 35% 65% ERXCLK period M4 ERXCLK pulse width low 35% 65% ERXCLK period Figure 19 shows MII receive signal timings listed in Table 18. M3 ERXCLK (input) M4 ERXD[3:0] (inputs) ERXDV ERXER M1 M2 Figure 19. MII Receive Signal Timing Diagram MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 37 Preliminary Electrical Characteristics 7.10.2 MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK) Table 19 lists MII transmit channel timings. The transmitter functions correctly up to a ETXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ETXCLK frequency. Table 19. MII Transmit Signal Timing Num Characteristic Min Max Unit M5 ETXCLK to ETXD[3:0], ETXEN, ETXER invalid 5 — ns M6 ETXCLK to ETXD[3:0], ETXEN, ETXER valid — 25 ns M7 ETXCLK pulse width high 35% 65% ETXCLK period M8 ETXCLK pulse width low 35% 65% ETXCLK period Figure 20 shows MII transmit signal timings listed in Table 19. M7 ETXCLK (input) M5 M8 ETXD[3:0] (outputs) ETXEN ETXER M6 Figure 20. MII Transmit Signal Timing Diagram 7.10.3 MII Async Inputs Signal Timing (ECRS and ECOL) Table 20 lists MII asynchronous inputs signal timing. Table 20. MII Async Inputs Signal Timing Num M9 Characteristic Min Max Unit 1.5 — ETXCLK period ECRS, ECOL minimum pulse width Figure 21 shows MII asynchronous input timings listed in Table 20. ECRS, ECOL M9 Figure 21. MII Async Inputs Timing Diagram MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 38 Freescale Semiconductor Preliminary Electrical Characteristics 7.10.4 MII Serial Management Channel Timing (EMDIO and EMDC) Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 21. MII Serial Management Channel Timing Num Characteristic Min Max Unit M10 EMDC falling edge to EMDIO output invalid (minimum propagation delay) 0 — ns M11 EMDC falling edge to EMDIO output valid (max prop delay) — 25 ns M12 EMDIO (input) to EMDC rising edge setup 10 — ns M13 EMDIO (input) to EMDC rising edge hold 0 — ns M14 EMDC pulse width high 40% 60% MDC period M15 EMDC pulse width low 40% 60% MDC period Figure 22 shows MII serial management channel timings listed in Table 21. M14 M15 EMDC (output) M10 EMDIO (output) M11 EMDIO (input) M12 M13 Figure 22. MII Serial Management Channel Timing Diagram 7.11 32-Bit Timer Module AC Timing Specifications Table 22 lists timer module AC timings. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 39 Preliminary Electrical Characteristics Table 22. Timer Module AC Timing Specifications 0–66 MHz Name Characteristic Unit Min Max T1 DT0IN / DT1IN / DT2IN / DT3IN cycle time 3 — tCYC T2 DT0IN / DT1IN / DT2IN / DT3IN pulse width 1 — tCYC 7.12 QSPI Electrical Specifications Table 23 lists QSPI timings. Table 23. QSPI Modules AC Timing Specifications Name Characteristic Min Max Unit QS1 QSPI_CS[1:0] to QSPI_CLK 1 510 tcyc QS2 QSPI_CLK high to QSPI_DOUT valid. — 10 ns QS3 QSPI_CLK high to QSPI_DOUT invalid. (Output hold) 2 — ns QS4 QSPI_DIN to QSPI_CLK (Input setup) 9 — ns QS5 QSPI_DIN to QSPI_CLK (Input hold) 9 — ns The values in Table 23 correspond to Figure 23. QS1 QSPI_CS[1:0] QSPI_CLK QS2 QSPI_DOUT QS3 QS4 QS5 QSPI_DIN Figure 23. QSPI Timing MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 40 Freescale Semiconductor Preliminary Electrical Characteristics 7.13 JTAG and Boundary Scan Timing Table 24. JTAG and Boundary Scan Timing Characteristics1 Num 1 Symbol Min Max Unit J1 TCLK Frequency of Operation fJCYC DC 1/4 fsys/2 J2 TCLK Cycle Period tJCYC 4 — tCYC J3 TCLK Clock Pulse Width tJCW 26 — ns J4 TCLK Rise and Fall Times tJCRF 0 3 ns J5 Boundary Scan Input Data Setup Time to TCLK Rise tBSDST 4 — ns J6 Boundary Scan Input Data Hold Time after TCLK Rise tBSDHT 26 — ns J7 TCLK Low to Boundary Scan Output Data Valid tBSDV 0 33 ns J8 TCLK Low to Boundary Scan Output High Z tBSDZ 0 33 ns J9 TMS, TDI Input Data Setup Time to TCLK Rise tTAPBST 4 — ns J10 TMS, TDI Input Data Hold Time after TCLK Rise tTAPBHT 10 — ns J11 TCLK Low to TDO Data Valid tTDODV 0 26 ns J12 TCLK Low to TDO High Z tTDODZ 0 8 ns J13 TRST Assert Time tTRSTAT 100 — ns J14 TRST Setup Time (Negation) to TCLK High tTRSTST 10 — ns JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it. J2 J3 J3 VIH TCLK (input) J4 VIL J4 Figure 24. Test Clock Input Timing MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 41 Preliminary Electrical Characteristics TCLK VIL VIH J5 Data Inputs J6 Input Data Valid J7 Data Outputs Output Data Valid J8 Data Outputs J7 Data Outputs Output Data Valid Figure 25. Boundary Scan (JTAG) Timing TCLK VIL VIH J9 TDI TMS J10 Input Data Valid J11 TDO Output Data Valid J12 TDO J11 TDO Output Data Valid Figure 26. Test Access Port Timing TCLK J14 TRST J13 Figure 27. TRST Timing 7.14 Debug AC Timing Specifications Table 25 lists specifications for the debug AC timing parameters shown in Figure 29. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 42 Freescale Semiconductor Preliminary Electrical Characteristics Table 25. Debug AC Timing Specification 150 MHz Num Units Min Max DE0 PSTCLK cycle time — 0.5 tcyc DE1 PST valid to PSTCLK high 4 — ns DE2 PSTCLK high to PST invalid 1.5 — ns DE3 DSCLK cycle time 5 — tcyc DE4 DSI valid to DSCLK high 1 — tcyc DE5 DSCLK high to DSO invalid 4 — tcyc DE6 BKPT input data setup time to CLKOUT rise 4 — ns DE7 CLKOUT high to BKPT high Z 0 10 ns 1 1 Characteristic DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT. Figure 28 shows real-time trace timing for the values in Table 25. PSTCLK DE0 DE1 DE2 PST[3:0] DDATA[3:0] Figure 28. Real-Time Trace AC Timing Figure 29 shows BDM serial port AC timing for the values in Table 25. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 43 Documentation CLKOUT DE6 BKPT DE7 DE5 DSCLK DE3 Current DSI Next DE4 Past DSO Current Figure 29. BDM Serial Port AC Timing 8 Documentation Documentation regarding the MCF523x and their development support tools is available from a local Freescale distributor, a Freescale semiconductor sales office, the Freescale Literature Distribution Center, or through the Freescale web address at http://www.freescale.com/coldfire. 9 Document Revision History The below table provides a revision history for this document. Table 26. Document Revision History Rev. No. Substantive Change(s) 0 Preliminary release. 1 • Updated Signal List table 1.1 • Removed duplicate information in the module description sections. The information is all in the Signals Description Table. 1.2 • Corrected Figure 8 pin 81. VDD instead of VSS • Changed instances of Motorola to Freescale 1.3 • Removed detailed signal description section. This information can be found in the MCF5235RM Chapter 2. • Removed detailed feature list. This information can be found in the MCF5235RM Chapter 1. • Corrected Figure 2 pin F10. VSS instead of VDD. Change made in Table 2 as well. • Corrected Figure 8 pin 81. OVDD instead of VDD. Change made in Table 2 as well. • Cleaned up many inconsistencies within the pinout figure signal names • Corrected document IDs in Documentation Table 1.4 • • • • Added values for ‘Maximum operating junction temperature’ in Table 8. Added typical values for ‘Core operating supply current (master mode)’ in Table 9. Added typical values for ‘Pad operating supply current (master mode)’ in Table 9. Removed unnecessary PLL specifications, #6-9, in Table 10. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 44 Freescale Semiconductor Document Revision History Table 26. Document Revision History (continued) Rev. No. Substantive Change(s) 1.5 • Removed Overview, Features, Modes of Operation, and Address Multiplexing sections. This information can be found in the MCF5235 Reference Manual. • Removed list of documentation table in Section 8, “Documentation.”. An up-to-date list is always available on our web site. 1.6 • Table 9: Changed core supply voltage (VDD) from 1.35-1.65 to 1.4-1.6. 1.7 • Table 10: Changed max fICO frequency from “75 MHz” to “150 MHz”. 1.8 • Added Section 5.2.1, “Supply Voltage Sequencing and Separation Cautions.” • Updated 196MAPBGA package dimensions, Figure 3. 2 • Table 2: Changed SD_CKE pin location from 139 to “—” for the 160QFP device. Changed QSPI_CS1 pin location from “—” to 139 for the 160QFP device. • Figure 8: Changed pin 139 label from “SD_CKE/QSPI_CS1” to “QSPI_CS1/SD_CKE”. • Removed second sentence from Section 7.10.1, “MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK),” and Section 7.10.2, “MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK),” regarding no minimum frequency requirement for TXCLK. • Removed third and fourth paragraphs from Section 7.10.2, “MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK),” as this feature is not supported on this device. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 45 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Document Number: MCF5235EC Rev. 2 08/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.