FREESCALE MRF6S18100NBR1

Freescale Semiconductor
Technical Data
Document Number: MRF6S18100N
Rev. 1, 5/2006
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
MRF6S18100NR1
MRF6S18100NBR1
Designed for GSM and GSM EDGE base station applications with
frequenc ies from 1800 to 2000 MHz . S u i t a b l e f o r T D M A , C D M A a n d
multicarrier amplifier applications.
GSM Application
• Typical GSM Performance: VDD = 28 Volts, IDQ = 900 mA, Pout =
100 Watts, Full Frequency Band (1805 - 1880 MHz or 1930- 1990 MHz)
Power Gain — 14.5 dB
Drain Efficiency — 49%
GSM EDGE Application
• Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA,
Pout = 40 Watts Avg., Full Frequency Band (1805 - 1880 MHz or
1930- 1990 MHz)
Power Gain — 15 dB
Drain Efficiency — 35%
Spectral Regrowth @ 400 kHz Offset = - 63 dBc
Spectral Regrowth @ 600 kHz Offset = - 76 dBc
EVM — 2% rms
• Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW
Output Power
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Qualified Up to a Maximum of 32 VDD Operation
• Integrated ESD Protection
• Designed for Lower Memory Effects and Wide Instantaneous Bandwidth
Applications
• 200°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
1805- 1990 MHz, 100 W, 28 V
GSM/GSM EDGE
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 1486 - 03, STYLE 1
TO - 270 WB - 4
MRF6S18100NR1
CASE 1484 - 04, STYLE 1
TO - 272 WB - 4
MRF6S18100NBR1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain- Source Voltage
Rating
VDSS
- 0.5, +68
Vdc
Gate- Source Voltage
VGS
- 0.5, +12
Vdc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
343
1.96
W
W/°C
Storage Temperature Range
Tstg
- 65 to +175
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Value(1,2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 100 CW
Case Temperature 77°C, 40 CW
RθJC
0.51
0.62
°C/W
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access
the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1B (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 68 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
500
nAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 330 μAdc)
VGS(th)
1.6
2
3
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, ID = 900 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.8
3.5
Vdc
Drain- Source On - Voltage
(VGS = 10 Vdc, ID = 3.3 Adc)
VDS(on)
—
0.24
—
Vdc
Forward Transconductance
(VDS = 10 Vdc, ID = 3.3 Adc)
gfs
—
5.3
—
S
Crss
—
1.5
—
pF
Characteristic
Off Characteristics
On Characteristics
Dynamic Characteristics(1)
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W, IDQ = 900 mA, f = 1930- 1990 MHz
Power Gain
Gps
13
14.5
16
dB
Drain Efficiency
ηD
47
49
—
%
Input Return Loss
IRL
—
- 12
-9
dB
P1dB
100
110
—
W
Pout @ 1 dB Compression Point
1. Part internally matched both on input and output.
(continued)
MRF6S18100NR1 MRF6S18100NBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ = 700 mA, Pout =
40 W Avg., 1805- 1880 MHz or 1930 - 1990 MHz EDGE Modulation
Power Gain
Gps
—
15
—
dB
Drain Efficiency
ηD
—
35
—
%
Error Vector Magnitude
EVM
—
2
—
% rms
Spectral Regrowth at 400 kHz Offset
SR1
—
- 63
—
dBc
Spectral Regrowth at 600 kHz Offset
SR2
—
- 76
—
dBc
Typical CW Performances (In Freescale GSM Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W,
1805- 1880 MHz
Power Gain
Gps
—
14.5
—
dB
Drain Efficiency
ηD
—
49
—
%
Input Return Loss
IRL
—
- 12
—
dB
P1dB
—
110
—
W
Pout @ 1 dB Compression Point
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
3
R1
VBIAS
VSUPPLY
+
R2
C1
C2
C3
Z6
C4
C5
C14
Z13
RF
INPUT
R3
Z1
Z2
Z3
Z4
Z5
Z9
Z7
C6
C7
Z8
Z10
Z11
DUT
C8
Z12
RF
OUTPUT
C10
C9
Z14
VSUPPLY
C11
Z1, Z12
Z2*
Z3*
Z4*
Z5
Z6
Z7, Z8
0.250″ x 0.083″ Microstrip
0.450″ x 0.083″ Microstrip
0.535″ x 0.083″ Microstrip
0.540″ x 0.083″ Microstrip
0.365″ x 1.000″ Microstrip
1.190″ x 0.080″ Microstrip
0.115″ x 1.000″ Microstrip
Z9
Z10*
Z11*
Z13, Z14
PCB
C12
C13
0.485″ x 1.000″ Microstrip
0.590″ x 0.083″ Microstrip
0.805″ x 0.083″ Microstrip
0.870″ x 0.080″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
*Variable for tuning.
Figure 1. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1930 - 1990 MHz
Table 6. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz
Part
Description
Part Number
Manufacturer
C1
100 nF Chip Capacitor (1206)
1206C104KAT
AVX
C2, C3, C6, C10, C11
6.8 pF 600B Chip Capacitors
600B6R8BW
ATC
C4, C5, C12, C13
4.7 μF Chip Capacitors (1812)
C4532X5R1H475MT
TDK
C7
0.3 pF 700B Chip Capacitor
700B0R3BW
ATC
C8
1.3 pF 600B Chip Capacitor
600B1R3BW
ATC
C9
0.5 pF 600B Chip Capacitor
600B0R5BW
ATC
C14
470 μF, 63 V Electrolytic Capacitor, Radial
13661471
Philips
R1, R2
10 kΩ, 1/4 W Chip Resistors (1206)
R3
10 Ω, 1/4 W Chip Resistor (1206)
MRF6S18100NR1 MRF6S18100NBR1
4
RF Device Data
Freescale Semiconductor
C14
R1
C3
R2 C1 C2
C4 C5
R3
C6
C8
CUT OUT AREA
C7
C10
C9
C11
C12 C13
MRF6S18100N
Rev. 0
Figure 2. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS — 1930 - 1990 MHz
0
60
50
IRL
40
15
Gps
14
30
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
ηD
16
−10
−20
−30
VDD = 28 Vdc
IDQ = 900 mA
13
1900
1920
1940
1960
1980
20
2020
2000
IRL, INPUT RETURN LOSS (dB)
17
−40
f, FREQUENCY (MHz)
60
16
50
IRL
40
15
Gps
14
ηD
30
0
−10
−20
−30
IRL, INPUT RETURN LOSS (dB)
17
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
Figure 3. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 100 Watts
VDD = 28 Vdc
IDQ = 900 mA
13
1900
1920
1940
1960
1980
20
2020
2000
−40
f, FREQUENCY (MHz)
Figure 4. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 40 Watts
16
16
IDQ = 1350 mA
14
1125 mA
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
15
900 mA
14
665 mA
13
450 mA
12
32 V
10
28 V
8
24 V
6
VDD = 12 V
12
16 V
4
VDD = 28 Vdc
f = 1960 MHz
2
11
1
10
100
IDQ = 900 mA
f = 1960 MHz
20 V
0
20
40
60
80
100
120
140
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 5. Power Gain versus Output Power
Figure 6. Power Gain versus Output Power
160
MRF6S18100NR1 MRF6S18100NBR1
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1930 - 1990 MHz
25_C 50
ηD
Gps
85_C
40
−30_C
25_C
14
30
85_C
12
20
10
10
8
0
1
3
44 W Avg.
2
20 W Avg.
1
0
1920
1940
1960
2000
1980
Figure 7. Power Gain and Drain Efficiency
versus CW Output Power
Figure 8. EVM versus Frequency
60
TC = −30_C
50
40
8
6
25_C
ηD
30
20
4
85_C
EVM
2
10
0
0
100
10
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
f, FREQUENCY (MHz)
1
−50
SR @ 400 kHz
Pout = 61 W Avg.
−55
−60
44 W Avg.
−65
20 W Avg.
VDD = 28 Vdc
IDQ = 700 mA
f = 1960 MHz
EDGE Modulation
−70
SR @ 600 kHz
−75
61 W Avg.
−80
−85
1900
44 W Avg.
1920
Pout, OUTPUT POWER (WATTS) AVG.
1940
20 W Avg.
1960
1980
2000
2020
f, FREQUENCY (MHz)
Figure 10. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
Figure 9. EVM and Drain Efficiency versus
Output Power
−55
−40
VDD = 28 Vdc, IDQ = 700 mA
f = 1960 MHz, EDGE Modulation
−45
SPECTRAL REGROWTH @ 600 kHz (dBc)
SPECTRAL REGROWTH @ 400 kHz (dBc)
Pout = 61 W Avg.
4
Pout, OUTPUT POWER (WATTS) CW
VDD = 28 Vdc
IDQ = 700 mA
f = 1960 MHz
EDGE Modulation
10
VDD = 28 Vdc
IDQ = 700 mA
100
ηD, DRAIN EFFICIENCY (%)
EVM, ERROR VECTOR MAGNITUDE (% rms)
12
10
EVM, ERROR VECTOR MAGNITUDE (% rms)
16
TC = −30_C
ηD, DRAIN EFFICIENCY (%)
18
Gps, POWER GAIN (dB)
5
VDD = 28 Vdc
IDQ = 900 mA
f = 1960 MHz
85_C
−50
25_C
−55
−60
TC = −30_C
−65
−70
TC = −30_C
VDD = 28 Vdc, IDQ = 700 mA
f = 1960 MHz, EDGE Modulation
−60
85_C
−65
25_C
−70
−75
−80
−85
−75
0
20
40
60
80
100
0
20
40
60
80
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
Figure 11. Spectral Regrowth at 400 kHz
versus Output Power
Figure 12. Spectral Regrowth at 600 kHz
versus Output Power
100
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
MTTF FACTOR (HOURS X AMPS2)
1.E+09
1.E+08
1.E+07
1.E+06
90
100 110 120 130 140 150 160 170 180 190 200 210
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 13. MTTF Factor versus Junction Temperature
GSM TEST SIGNAL
−10
Reference Power
−20
VBW = 30 kHz
Sweep Time = 70 ms
RBW = 30 kHz
−30
−40
(dB)
−50
−60
400 kHz
−70
−80
400 kHz
600 kHz
600 kHz
−90
−100
−110
Center 1.96 GHz
200 kHz
Span 2 MHz
Figure 14. EDGE Spectrum
MRF6S18100NR1 MRF6S18100NBR1
8
RF Device Data
Freescale Semiconductor
Zo = 5 Ω
f = 2020 MHz
Zsource
f = 2020 MHz
Zload
f = 1900 MHz
f = 1900 MHz
VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W
f
MHz
Zsource
W
Zload
W
1900
2.80 - j4.53
1.75 - j3.52
1930
2.71 - j4.27
1.67 - j3.25
1960
2.63 - j4.03
1.59 - j2.99
1990
2.56 - j3.79
1.52 - j2.74
2020
2.51 - j3.57
1.47 - j2.51
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance — 1930 - 1990 MHz
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
9
R1
VBIAS
VSUPPLY
+
R2
C1
C2
C3
Z6
C4
C5
C17
Z14
RF
INPUT
R3
Z1
Z2
Z3
Z4
Z5
C8
Z9
Z7
C6
C7
Z8
Z10
DUT
C9
C10
Z11
Z12
C11
C12
Z13
RF
OUTPUT
C13
Z15
VSUPPLY
C14
Z1, Z13
Z2*
Z3*
Z4*
Z5
Z6
Z7, Z8
0.250″ x 0.083″ Microstrip
0.620″ x 0.083″ Microstrip
0.715″ x 0.083″ Microstrip
0.190″ x 0.083″ Microstrip
0.365″ x 1.000″ Microstrip
1.190″ x 0.080″ Microstrip
0.115″ x 1.000″ Microstrip
Z9
Z10*
Z11*
Z12*
Z14, Z15
PCB
C15
C16
0.485″ x 1.000″ Microstrip
0.080″ x 0.083″ Microstrip
0.340″ x 0.083″ Microstrip
0.975″ x 0.083″ Microstrip
0.960″ x 0.080″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
*Variable for tuning.
Figure 16. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1805 - 1880 MHz
Table 7. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz
Part
Description
Part Number
Manufacturer
C1
100 nF Chip Capacitor (1206)
1206C104KAT
AVX
C2, C3, C6, C13, C14
8.2 pF 600B Chip Capacitors
600B8R2BW
ATC
C4, C5, C15, C16
4.7 μF Chip Capacitors (1812)
C4532X5R1H475MT
TDK
C7, C8, C11, C12
0.2 pF 700B Chip Capacitors
700B0R2BW
ATC
C9
1 pF 600B Chip Capacitor
600B1R0BW
ATC
C10
0.5 pF 600B Chip Capacitor
600B0R5BW
ATC
C17
470 μF, 63 V Electrolytic Capacitor, Radial
13661471
Philips
R1, R2
10 kΩ, 1/4 W Chip Resistor (1206)
R3
10 Ω, 1/4 W Chip Resistor (1206)
MRF6S18100NR1 MRF6S18100NBR1
10
RF Device Data
Freescale Semiconductor
C17
R1
R2
C3
C1 C2
C4
C5
R3
C10
C7 C8
C9
CUT OUT AREA
C6
C13
C11
C14
C12
C15 C16
MRF6S18100N
Rev. 0
Figure 17. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
11
TYPICAL CHARACTERISTICS — 1805 - 1880 MHz
17
60
ηD
40
Gps
14
30
IRL
13
20
VDD = 28 Vdc
IDQ = 900 mA
12
1800
1810
1820
1830
1840
1850
1860
1870
10
1880
−10
−20
−30
IRL, INPUT RETURN LOSS (dB)
15
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
0
50
16
−40
f, FREQUENCY (MHz)
Figure 18. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 100 Watts
40
15
ηD
14
30
VDD = 28 Vdc
IDQ = 900 mA
1810
1820
1830
1840
1850
1860
20
1870 1880
−20
−30
IRL, INPUT RETURN LOSS (dB)
Gps
13
1800
−10
50
IRL
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
16
−40
f, FREQUENCY (MHz)
Figure 19. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 40 Watts
10
5
Pout = 60 W Avg.
4
3
42 W Avg.
2
1
1800
25 W Avg.
1820
1840
1860
1880
f, FREQUENCY (MHz)
Figure 20. EVM versus Frequency
1900
50
VDD = 28 Vdc
IDQ = 700 mA
f = 1840 MHz
EDGE Modulation
8
40
6
30
ηD
4
TC = 25_C
2
10
EVM
0
1
20
ηD, DRAIN EFFICIENCY (%)
VDD = 28 Vdc
IDQ = 700 mA
EVM, ERROR VECTOR MAGNITUDE (% rms)
EVM, ERROR VECTOR MAGNITUDE (% rms)
6
0
100
10
Pout, OUTPUT POWER (WATTS) AVG.
Figure 21. EVM and Drain Efficiency versus
Output Power
MRF6S18100NR1 MRF6S18100NBR1
12
RF Device Data
Freescale Semiconductor
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
TYPICAL CHARACTERISTICS — 1805 - 1880 MHZ
−45
−50
Pout = 60 W Avg.
SR @ 400 kHz
−55
42 W Avg.
−60
VDD = 28 Vdc
IDQ = 700 mA
f = 1960 MHz
−65
25 W Avg.
−70
−75
60 W Avg.
SR @ 600 kHz
42 W Avg.
−80
25 W Avg.
−85
1780
1800
1820
1840
1860
1880
1900
1920
f, FREQUENCY (MHz)
Figure 22. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
−60
VDD = 28 Vdc, IDQ = 700 mA
f = 1840 MHz, EDGE Modulation
−50
SPECTRAL REGROWTH @ 600 kHz (dBc)
SPECTRAL REGROWTH @ 400 kHz (dBc)
−45
−55
TC = 25_C
−60
−65
−70
VDD = 28 Vdc, IDQ = 700 mA
f = 1840 MHz, EDGE Modulation
−65
−70
TC = 25_C
−75
−80
−85
−75
0
20
40
60
80
0
20
40
60
80
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
Figure 23. Spectral Regrowth at 400 kHz
versus Output Power
Figure 24. Spectral Regrowth at 600 kHz
versus Output Power
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
13
Zo = 5 Ω
f = 1900 MHz
Zload
f = 1780 MHz
f = 1900 MHz
f = 1780 MHz
Zsource
VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W
f
MHz
Zsource
W
Zload
W
1780
1.96 - j4.09
1.94 - j2.90
1804
1.90 - j3.86
1.88 - j2.67
1840
1.82 - j3.53
1.80 - j2.42
1880
1.76 - j3.16
1.73 - j1.99
1900
1.72 - j2.97
1.70 - j1.82
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 25. Series Equivalent Source and Load Impedance — 1805 - 1880 MHz
MRF6S18100NR1 MRF6S18100NBR1
14
RF Device Data
Freescale Semiconductor
NOTES
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
15
PACKAGE DIMENSIONS
E1
B
A
2X
E3
GATE LEAD
DRAIN LEAD
D
D1
4X
e
4X
aaa
b1
C A
M
2X
2X
D2
c1
E
H
DATUM
PLANE
F
ZONE J
A
A1
2X
A2
E2
NOTE 7
C
E5
E4
4
D3
3
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
SEATING
PLANE
PIN 5
NOTE 8
1
2
E5
BOTTOM VIEW
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT THE TOP OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE TOP OF THE PARTING LINE.
4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO
INCLUDE MOLD MISMATCH AND ARE DETER−
MINED AT DATUM PLANE −H−.
5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE .005 TOTAL IN EXCESS
OF THE “b1" DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. DATUMS −A− AND −B− TO BE DETERMINED AT
DATUM PLANE −H−.
7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY.
8. HATCHING REPRESENTS THE EXPOSED AREA
OF THE HEAT SLUG.
DIM
A
A1
A2
D
D1
D2
D3
E
E1
E2
E3
E4
E5
F
b1
c1
e
aaa
INCHES
MIN
MAX
.100
.104
.039
.043
.040
.042
.712
.720
.688
.692
.011
.019
.600
−−−
.551
.559
.353
.357
.132
.140
.124
.132
.270
−−−
.346
.350
.025 BSC
.164
.170
.007
.011
.106 BSC
.004
STYLE 1:
PIN 1.
2.
3.
4.
5.
MILLIMETERS
MIN
MAX
2.54
2.64
0.99
1.09
1.02
1.07
18.08
18.29
17.48
17.58
0.28
0.48
15.24
−−−
14
14.2
8.97
9.07
3.35
3.56
3.15
3.35
6.86
−−−
8.79
8.89
0.64 BSC
4.17
4.32
0.18
0.28
2.69 BSC
0.10
DRAIN
DRAIN
GATE
GATE
SOURCE
CASE 1486 - 03
ISSUE C
TO - 270 WB - 4
MRF6S18100NR1
MRF6S18100NR1 MRF6S18100NBR1
16
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
17
MRF6S18100NR1 MRF6S18100NBR1
18
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
RF Device Data
Freescale Semiconductor
19
How to Reach Us:
Home Page:
www.freescale.com
E - mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1 - 800- 521- 6274 or +1 - 480- 768- 2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800- 441- 2447 or 303 - 675- 2140
Fax: 303 - 675- 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
MRF6S18100NR1 MRF6S18100NBR1
Document Number: MRF6S18100N
Rev. 1, 5/2006
20
RF Device Data
Freescale Semiconductor