Freescale Semiconductor Technical Data Document Number: MRF6S18100N Rev. 1, 5/2006 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs MRF6S18100NR1 MRF6S18100NBR1 Designed for GSM and GSM EDGE base station applications with frequenc ies from 1800 to 2000 MHz . S u i t a b l e f o r T D M A , C D M A a n d multicarrier amplifier applications. GSM Application • Typical GSM Performance: VDD = 28 Volts, IDQ = 900 mA, Pout = 100 Watts, Full Frequency Band (1805 - 1880 MHz or 1930- 1990 MHz) Power Gain — 14.5 dB Drain Efficiency — 49% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA, Pout = 40 Watts Avg., Full Frequency Band (1805 - 1880 MHz or 1930- 1990 MHz) Power Gain — 15 dB Drain Efficiency — 35% Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 76 dBc EVM — 2% rms • Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW Output Power Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications • 200°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. 1805- 1990 MHz, 100 W, 28 V GSM/GSM EDGE LATERAL N - CHANNEL RF POWER MOSFETs CASE 1486 - 03, STYLE 1 TO - 270 WB - 4 MRF6S18100NR1 CASE 1484 - 04, STYLE 1 TO - 272 WB - 4 MRF6S18100NBR1 Table 1. Maximum Ratings Symbol Value Unit Drain- Source Voltage Rating VDSS - 0.5, +68 Vdc Gate- Source Voltage VGS - 0.5, +12 Vdc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 343 1.96 W W/°C Storage Temperature Range Tstg - 65 to +175 °C Operating Junction Temperature TJ 200 °C Symbol Value(1,2) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 100 CW Case Temperature 77°C, 40 CW RθJC 0.51 0.62 °C/W 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2006. All rights reserved. RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 68 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 500 nAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 330 μAdc) VGS(th) 1.6 2 3 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, ID = 900 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.8 3.5 Vdc Drain- Source On - Voltage (VGS = 10 Vdc, ID = 3.3 Adc) VDS(on) — 0.24 — Vdc Forward Transconductance (VDS = 10 Vdc, ID = 3.3 Adc) gfs — 5.3 — S Crss — 1.5 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics(1) Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W, IDQ = 900 mA, f = 1930- 1990 MHz Power Gain Gps 13 14.5 16 dB Drain Efficiency ηD 47 49 — % Input Return Loss IRL — - 12 -9 dB P1dB 100 110 — W Pout @ 1 dB Compression Point 1. Part internally matched both on input and output. (continued) MRF6S18100NR1 MRF6S18100NBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted (continued) Characteristic Symbol Min Typ Max Unit Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ = 700 mA, Pout = 40 W Avg., 1805- 1880 MHz or 1930 - 1990 MHz EDGE Modulation Power Gain Gps — 15 — dB Drain Efficiency ηD — 35 — % Error Vector Magnitude EVM — 2 — % rms Spectral Regrowth at 400 kHz Offset SR1 — - 63 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 76 — dBc Typical CW Performances (In Freescale GSM Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W, 1805- 1880 MHz Power Gain Gps — 14.5 — dB Drain Efficiency ηD — 49 — % Input Return Loss IRL — - 12 — dB P1dB — 110 — W Pout @ 1 dB Compression Point MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 3 R1 VBIAS VSUPPLY + R2 C1 C2 C3 Z6 C4 C5 C14 Z13 RF INPUT R3 Z1 Z2 Z3 Z4 Z5 Z9 Z7 C6 C7 Z8 Z10 Z11 DUT C8 Z12 RF OUTPUT C10 C9 Z14 VSUPPLY C11 Z1, Z12 Z2* Z3* Z4* Z5 Z6 Z7, Z8 0.250″ x 0.083″ Microstrip 0.450″ x 0.083″ Microstrip 0.535″ x 0.083″ Microstrip 0.540″ x 0.083″ Microstrip 0.365″ x 1.000″ Microstrip 1.190″ x 0.080″ Microstrip 0.115″ x 1.000″ Microstrip Z9 Z10* Z11* Z13, Z14 PCB C12 C13 0.485″ x 1.000″ Microstrip 0.590″ x 0.083″ Microstrip 0.805″ x 0.083″ Microstrip 0.870″ x 0.080″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 *Variable for tuning. Figure 1. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1930 - 1990 MHz Table 6. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz Part Description Part Number Manufacturer C1 100 nF Chip Capacitor (1206) 1206C104KAT AVX C2, C3, C6, C10, C11 6.8 pF 600B Chip Capacitors 600B6R8BW ATC C4, C5, C12, C13 4.7 μF Chip Capacitors (1812) C4532X5R1H475MT TDK C7 0.3 pF 700B Chip Capacitor 700B0R3BW ATC C8 1.3 pF 600B Chip Capacitor 600B1R3BW ATC C9 0.5 pF 600B Chip Capacitor 600B0R5BW ATC C14 470 μF, 63 V Electrolytic Capacitor, Radial 13661471 Philips R1, R2 10 kΩ, 1/4 W Chip Resistors (1206) R3 10 Ω, 1/4 W Chip Resistor (1206) MRF6S18100NR1 MRF6S18100NBR1 4 RF Device Data Freescale Semiconductor C14 R1 C3 R2 C1 C2 C4 C5 R3 C6 C8 CUT OUT AREA C7 C10 C9 C11 C12 C13 MRF6S18100N Rev. 0 Figure 2. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS — 1930 - 1990 MHz 0 60 50 IRL 40 15 Gps 14 30 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) ηD 16 −10 −20 −30 VDD = 28 Vdc IDQ = 900 mA 13 1900 1920 1940 1960 1980 20 2020 2000 IRL, INPUT RETURN LOSS (dB) 17 −40 f, FREQUENCY (MHz) 60 16 50 IRL 40 15 Gps 14 ηD 30 0 −10 −20 −30 IRL, INPUT RETURN LOSS (dB) 17 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) Figure 3. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 100 Watts VDD = 28 Vdc IDQ = 900 mA 13 1900 1920 1940 1960 1980 20 2020 2000 −40 f, FREQUENCY (MHz) Figure 4. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 40 Watts 16 16 IDQ = 1350 mA 14 1125 mA Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 15 900 mA 14 665 mA 13 450 mA 12 32 V 10 28 V 8 24 V 6 VDD = 12 V 12 16 V 4 VDD = 28 Vdc f = 1960 MHz 2 11 1 10 100 IDQ = 900 mA f = 1960 MHz 20 V 0 20 40 60 80 100 120 140 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) CW Figure 5. Power Gain versus Output Power Figure 6. Power Gain versus Output Power 160 MRF6S18100NR1 MRF6S18100NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1930 - 1990 MHz 25_C 50 ηD Gps 85_C 40 −30_C 25_C 14 30 85_C 12 20 10 10 8 0 1 3 44 W Avg. 2 20 W Avg. 1 0 1920 1940 1960 2000 1980 Figure 7. Power Gain and Drain Efficiency versus CW Output Power Figure 8. EVM versus Frequency 60 TC = −30_C 50 40 8 6 25_C ηD 30 20 4 85_C EVM 2 10 0 0 100 10 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) f, FREQUENCY (MHz) 1 −50 SR @ 400 kHz Pout = 61 W Avg. −55 −60 44 W Avg. −65 20 W Avg. VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz EDGE Modulation −70 SR @ 600 kHz −75 61 W Avg. −80 −85 1900 44 W Avg. 1920 Pout, OUTPUT POWER (WATTS) AVG. 1940 20 W Avg. 1960 1980 2000 2020 f, FREQUENCY (MHz) Figure 10. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency Figure 9. EVM and Drain Efficiency versus Output Power −55 −40 VDD = 28 Vdc, IDQ = 700 mA f = 1960 MHz, EDGE Modulation −45 SPECTRAL REGROWTH @ 600 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz (dBc) Pout = 61 W Avg. 4 Pout, OUTPUT POWER (WATTS) CW VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz EDGE Modulation 10 VDD = 28 Vdc IDQ = 700 mA 100 ηD, DRAIN EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% rms) 12 10 EVM, ERROR VECTOR MAGNITUDE (% rms) 16 TC = −30_C ηD, DRAIN EFFICIENCY (%) 18 Gps, POWER GAIN (dB) 5 VDD = 28 Vdc IDQ = 900 mA f = 1960 MHz 85_C −50 25_C −55 −60 TC = −30_C −65 −70 TC = −30_C VDD = 28 Vdc, IDQ = 700 mA f = 1960 MHz, EDGE Modulation −60 85_C −65 25_C −70 −75 −80 −85 −75 0 20 40 60 80 100 0 20 40 60 80 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Figure 11. Spectral Regrowth at 400 kHz versus Output Power Figure 12. Spectral Regrowth at 600 kHz versus Output Power 100 MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS MTTF FACTOR (HOURS X AMPS2) 1.E+09 1.E+08 1.E+07 1.E+06 90 100 110 120 130 140 150 160 170 180 190 200 210 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 13. MTTF Factor versus Junction Temperature GSM TEST SIGNAL −10 Reference Power −20 VBW = 30 kHz Sweep Time = 70 ms RBW = 30 kHz −30 −40 (dB) −50 −60 400 kHz −70 −80 400 kHz 600 kHz 600 kHz −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 14. EDGE Spectrum MRF6S18100NR1 MRF6S18100NBR1 8 RF Device Data Freescale Semiconductor Zo = 5 Ω f = 2020 MHz Zsource f = 2020 MHz Zload f = 1900 MHz f = 1900 MHz VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W f MHz Zsource W Zload W 1900 2.80 - j4.53 1.75 - j3.52 1930 2.71 - j4.27 1.67 - j3.25 1960 2.63 - j4.03 1.59 - j2.99 1990 2.56 - j3.79 1.52 - j2.74 2020 2.51 - j3.57 1.47 - j2.51 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance — 1930 - 1990 MHz MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 9 R1 VBIAS VSUPPLY + R2 C1 C2 C3 Z6 C4 C5 C17 Z14 RF INPUT R3 Z1 Z2 Z3 Z4 Z5 C8 Z9 Z7 C6 C7 Z8 Z10 DUT C9 C10 Z11 Z12 C11 C12 Z13 RF OUTPUT C13 Z15 VSUPPLY C14 Z1, Z13 Z2* Z3* Z4* Z5 Z6 Z7, Z8 0.250″ x 0.083″ Microstrip 0.620″ x 0.083″ Microstrip 0.715″ x 0.083″ Microstrip 0.190″ x 0.083″ Microstrip 0.365″ x 1.000″ Microstrip 1.190″ x 0.080″ Microstrip 0.115″ x 1.000″ Microstrip Z9 Z10* Z11* Z12* Z14, Z15 PCB C15 C16 0.485″ x 1.000″ Microstrip 0.080″ x 0.083″ Microstrip 0.340″ x 0.083″ Microstrip 0.975″ x 0.083″ Microstrip 0.960″ x 0.080″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 *Variable for tuning. Figure 16. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1805 - 1880 MHz Table 7. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz Part Description Part Number Manufacturer C1 100 nF Chip Capacitor (1206) 1206C104KAT AVX C2, C3, C6, C13, C14 8.2 pF 600B Chip Capacitors 600B8R2BW ATC C4, C5, C15, C16 4.7 μF Chip Capacitors (1812) C4532X5R1H475MT TDK C7, C8, C11, C12 0.2 pF 700B Chip Capacitors 700B0R2BW ATC C9 1 pF 600B Chip Capacitor 600B1R0BW ATC C10 0.5 pF 600B Chip Capacitor 600B0R5BW ATC C17 470 μF, 63 V Electrolytic Capacitor, Radial 13661471 Philips R1, R2 10 kΩ, 1/4 W Chip Resistor (1206) R3 10 Ω, 1/4 W Chip Resistor (1206) MRF6S18100NR1 MRF6S18100NBR1 10 RF Device Data Freescale Semiconductor C17 R1 R2 C3 C1 C2 C4 C5 R3 C10 C7 C8 C9 CUT OUT AREA C6 C13 C11 C14 C12 C15 C16 MRF6S18100N Rev. 0 Figure 17. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 11 TYPICAL CHARACTERISTICS — 1805 - 1880 MHz 17 60 ηD 40 Gps 14 30 IRL 13 20 VDD = 28 Vdc IDQ = 900 mA 12 1800 1810 1820 1830 1840 1850 1860 1870 10 1880 −10 −20 −30 IRL, INPUT RETURN LOSS (dB) 15 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 0 50 16 −40 f, FREQUENCY (MHz) Figure 18. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 100 Watts 40 15 ηD 14 30 VDD = 28 Vdc IDQ = 900 mA 1810 1820 1830 1840 1850 1860 20 1870 1880 −20 −30 IRL, INPUT RETURN LOSS (dB) Gps 13 1800 −10 50 IRL ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 16 −40 f, FREQUENCY (MHz) Figure 19. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 40 Watts 10 5 Pout = 60 W Avg. 4 3 42 W Avg. 2 1 1800 25 W Avg. 1820 1840 1860 1880 f, FREQUENCY (MHz) Figure 20. EVM versus Frequency 1900 50 VDD = 28 Vdc IDQ = 700 mA f = 1840 MHz EDGE Modulation 8 40 6 30 ηD 4 TC = 25_C 2 10 EVM 0 1 20 ηD, DRAIN EFFICIENCY (%) VDD = 28 Vdc IDQ = 700 mA EVM, ERROR VECTOR MAGNITUDE (% rms) EVM, ERROR VECTOR MAGNITUDE (% rms) 6 0 100 10 Pout, OUTPUT POWER (WATTS) AVG. Figure 21. EVM and Drain Efficiency versus Output Power MRF6S18100NR1 MRF6S18100NBR1 12 RF Device Data Freescale Semiconductor SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) TYPICAL CHARACTERISTICS — 1805 - 1880 MHZ −45 −50 Pout = 60 W Avg. SR @ 400 kHz −55 42 W Avg. −60 VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz −65 25 W Avg. −70 −75 60 W Avg. SR @ 600 kHz 42 W Avg. −80 25 W Avg. −85 1780 1800 1820 1840 1860 1880 1900 1920 f, FREQUENCY (MHz) Figure 22. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency −60 VDD = 28 Vdc, IDQ = 700 mA f = 1840 MHz, EDGE Modulation −50 SPECTRAL REGROWTH @ 600 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz (dBc) −45 −55 TC = 25_C −60 −65 −70 VDD = 28 Vdc, IDQ = 700 mA f = 1840 MHz, EDGE Modulation −65 −70 TC = 25_C −75 −80 −85 −75 0 20 40 60 80 0 20 40 60 80 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Figure 23. Spectral Regrowth at 400 kHz versus Output Power Figure 24. Spectral Regrowth at 600 kHz versus Output Power MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 13 Zo = 5 Ω f = 1900 MHz Zload f = 1780 MHz f = 1900 MHz f = 1780 MHz Zsource VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W f MHz Zsource W Zload W 1780 1.96 - j4.09 1.94 - j2.90 1804 1.90 - j3.86 1.88 - j2.67 1840 1.82 - j3.53 1.80 - j2.42 1880 1.76 - j3.16 1.73 - j1.99 1900 1.72 - j2.97 1.70 - j1.82 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 25. Series Equivalent Source and Load Impedance — 1805 - 1880 MHz MRF6S18100NR1 MRF6S18100NBR1 14 RF Device Data Freescale Semiconductor NOTES MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 15 PACKAGE DIMENSIONS E1 B A 2X E3 GATE LEAD DRAIN LEAD D D1 4X e 4X aaa b1 C A M 2X 2X D2 c1 E H DATUM PLANE F ZONE J A A1 2X A2 E2 NOTE 7 C E5 E4 4 D3 3 ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ SEATING PLANE PIN 5 NOTE 8 1 2 E5 BOTTOM VIEW NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO INCLUDE MOLD MISMATCH AND ARE DETER− MINED AT DATUM PLANE −H−. 5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE “b1" DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. 7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY. 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. DIM A A1 A2 D D1 D2 D3 E E1 E2 E3 E4 E5 F b1 c1 e aaa INCHES MIN MAX .100 .104 .039 .043 .040 .042 .712 .720 .688 .692 .011 .019 .600 −−− .551 .559 .353 .357 .132 .140 .124 .132 .270 −−− .346 .350 .025 BSC .164 .170 .007 .011 .106 BSC .004 STYLE 1: PIN 1. 2. 3. 4. 5. MILLIMETERS MIN MAX 2.54 2.64 0.99 1.09 1.02 1.07 18.08 18.29 17.48 17.58 0.28 0.48 15.24 −−− 14 14.2 8.97 9.07 3.35 3.56 3.15 3.35 6.86 −−− 8.79 8.89 0.64 BSC 4.17 4.32 0.18 0.28 2.69 BSC 0.10 DRAIN DRAIN GATE GATE SOURCE CASE 1486 - 03 ISSUE C TO - 270 WB - 4 MRF6S18100NR1 MRF6S18100NR1 MRF6S18100NBR1 16 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 17 MRF6S18100NR1 MRF6S18100NBR1 18 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 19 How to Reach Us: Home Page: www.freescale.com E - mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. MRF6S18100NR1 MRF6S18100NBR1 Document Number: MRF6S18100N Rev. 1, 5/2006 20 RF Device Data Freescale Semiconductor