GSI GS8160F36BGT-7.5I

GS8160F18/32/36BT-5.5/6.5/7.5
100-Pin TQFP
Commercial Temp
Industrial Temp
5.5 ns–8.5 ns
2.5 V or 3.3 V VDD
2.5 V or 3.3 V I/O
1M x 18, 512K x 32, 512K x 36
18Mb Sync Burst SRAMs
Features
• Flow Through mode operation; Pin 14 = No Connect
• 2.5 V or 3.3 V +10%/–10% core power supply
• 2.5 V or 3.3 V I/O supply
• LBO pin for Linear or Interleaved Burst mode
• Internal input resistors on mode pins allow floating mode pins
• Byte Write (BW) and/or Global Write (GW) operation
• Internal self-timed write cycle
• Automatic power-down for portable applications
• JEDEC-standard 100-lead TQFP package
• RoHS-compliant 100-lead TQFP package available
Functional Description
Applications
The GS8160F18/32/36BT is an 18,874,368-bit (16,777,216-bit
for x32 version) high performance synchronous SRAM with a
2-bit burst address counter. Although of a type originally
developed for Level 2 Cache applications supporting high
performance CPUs, the device now finds application in
synchronous SRAM applications, ranging from DSP main
store to networking chip set support.
Controls
Addresses, data I/Os, chip enables (E1, E2, E3), address burst
control inputs (ADSP, ADSC, ADV), and write control inputs
(Bx, BW, GW) are synchronous and are controlled by a
positive-edge-triggered clock input (CK). Output enable (G)
and power down control (ZZ) are asynchronous inputs. Burst
cycles can be initiated with either ADSP or ADSC inputs. In
Burst mode, subsequent burst addresses are generated
internally and are controlled by ADV. The burst address
counter may be configured to count in either linear or
interleave order with the Linear Burst Order (LBO) input. The
Burst function need not be used. New addresses can be loaded
on every cycle with no degradation of chip performance.
Designing For Compatibility
The JEDEC standard for Burst RAMS calls for a FT mode pin
option on Pin 14. Board sites for flow through Burst RAMS
should be designed with VSS connected to the FT pin location
to ensure the broadest access to multiple vendor sources.
Boards designed with FT pin pads tied low may be stuffed with
GSI’s pipeline/flow through-configurable Burst RAMs or any
vendor’s flow through or configurable Burst SRAM. Boards
designed with the FT pin location tied high or floating must
employ a non-configurable flow through Burst RAM, like this
RAM, to achieve flow through functionality.
Byte Write and Global Write
Byte write operation is performed by using Byte Write enable
(BW) input combined with one or more individual byte write
signals (Bx). In addition, Global Write (GW) is available for
writing all bytes at one time, regardless of the Byte Write
control inputs.
Sleep Mode
Low power (Sleep mode) is attained through the assertion
(High) of the ZZ signal, or by stopping the clock (CK).
Memory data is retained during Sleep mode.
Core and Interface Voltages
The GS8160F18/32/36BT operates on a 2.5 V or 3.3 V power
supply. All input are 3.3 V and 2.5 V compatible. Separate
output power (VDDQ) pins are used to decouple output noise
from the internal circuits and are 3.3 V and 2.5 V compatible.
Parameter Synopsis
Flow Through
2-1-1-1
Rev: 1.03 9/2005
-5.5
-6.5
-7.5
Unit
tKQ
tCycle
5.5
5.5
6.5
6.5
7.5
7.5
ns
ns
Curr (x18)
Curr (x32/x36)
225
255
200
220
185
205
mA
mA
1/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
A
A
E1
E2
NC
NC
BB
BA
E3
VDD
VSS
CK
GW
BW
G
ADSC
ADSP
ADV
A
A
GS8160F18B 100-Pin TQFP Pinout
NC
NC
NC
VDDQ
A
NC
NC
VDDQ
VSS
NC
DQPA
DQA
DQA
VSS
VDDQ
DQA
DQA
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSS
DQA
DQA
NC
NC
VSS
VDDQ
NC
NC
NC
LBO
A
A
A
A
A1
A0
NC
NC
VSS
VDD
A
A
A
A
A
A
A
A
A
VSS
NC
NC
DQB
DQB
VSS
VDDQ
DQB
DQB
NC
VDD
NC
VSS
DQB
DQB
VDDQ
VSS
DQB
DQB
DQPB
NC
VSS
VDDQ
NC
NC
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
1M x 18
10
71
Top View
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Rev: 1.03 9/2005
2/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
A
A
E1
E2
BD
BC
BB
BA
E3
VDD
VSS
CK
GW
BW
G
ADSC
ADSP
ADV
A
A
GS8160F32B 100-Pin TQFP Pinout
VSS
DQC
DQC
DQC
DQC
VSS
VDDQ
DQC
DQC
LBO
A
A
A
A
A1
A0
NC
NC
VSS
VDD
A
A
A
A
A
A
A
A
NC
VDD
NC
VSS
DQD
DQD
VDDQ
VSS
DQD
DQD
DQD
DQD
VSS
VDDQ
DQD
DQD
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
512K x 32
10
71
11
Top View
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Rev: 1.03 9/2005
3/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
NC
DQB
DQB
VDDQ
VSS
DQB
DQB
DQB
DQB
VSS
VDDQ
DQB
DQB
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSS
DQA
DQA
DQA
DQA
VSS
VDDQ
DQA
DQA
NC
A
NC
DQC
DQC
VDDQ
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
A
A
E1
E2
BD
BC
BB
BA
E3
VDD
VSS
CK
GW
BW
G
ADSC
ADSP
ADV
A
A
GS8160F36B 100-Pin TQFP Pinout
VSS
DQC
DQC
DQC
DQC
VSS
VDDQ
DQC
DQC
LBO
A
A
A
A
A1
A0
NC
NC
VSS
VDD
A
A
A
A
A
A
A
A
NC
VDD
NC
VSS
DQD
DQD
VDDQ
VSS
DQD
DQD
DQD
DQD
VSS
VDDQ
DQD
DQD
DQPD
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
512K x 36
10
71
11
Top View
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Rev: 1.03 9/2005
4/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
DQPB
DQB
DQB
VDDQ
VSS
DQB
DQB
DQB
DQB
VSS
VDDQ
DQB
DQB
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSS
DQA
DQA
DQA
DQA
VSS
VDDQ
DQA
DQA
DQPA
A
DQPC
DQC
DQC
VDDQ
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
TQFP Pin Description
Symbol
Type
Description
A0 , A 1
I
Address field LSBs and Address Counter preset Inputs
A
I
Address Inputs
DQA
DQB
DQC
DQD
I/O
Data Input and Output pins
NC
—
No Connect
BW
I
Byte Write—Writes all enabled bytes; active low
BA, BB, BC, BD
I
Byte Write Enable for DQA, DQB Data I/Os; active low
CK
I
Clock Input Signal; active high
GW
I
Global Write Enable—Writes all bytes; active low
E1 , E3
I
Chip Enable; active low
E2
I
Chip Enable; active high
G
I
Output Enable; active low
ADV
I
Burst address counter advance enable; active low
ADSP, ADSC
I
Address Strobe (Processor, Cache Controller); active low
ZZ
I
Sleep Mode control; active high
LBO
I
Linear Burst Order mode; active low
VDD
I
Core power supply
VSS
I
I/O and Core Ground
VDDQ
I
Output driver power supply
Rev: 1.03 9/2005
5/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
GS8160F18/32/36B Block Diagram
Register
A0–An
D
Q
A0
A0
D0
A1
Q0
A1
D1
Q1
Counter
Load
A
LBO
ADV
Memory
Array
CK
ADSC
ADSP
Q
D
Register
GW
BW
BA
D
Q
Register
D
36
Q
BB
36
4
Register
D
Q
D
Q
D
Q
Register
Register
D
Q
Register
BC
BD
Register
D
Q
Register
E1
E2
E3
D
Q
Register
D
Q
0
G
ZZ
1
Power Down
DQx1–DQx9
Control
Note: Only x36 version shown for simplicity.
Rev: 1.03 9/2005
6/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Mode Pin Functions
Mode Name
Pin Name
Burst Order Control
LBO
Power Down Control
ZZ
State
Function
L
Linear Burst
H
Interleaved Burst
L or NC
Active
H
Standby, IDD = ISB
Note:
Thereis a pull-down device on the ZZ pin, so this input pin can be unconnected and the chip will operate in the default states as specified in
the above tables.
Burst Counter Sequences
Linear Burst Sequence
Interleaved Burst Sequence
A[1:0] A[1:0] A[1:0] A[1:0]
A[1:0] A[1:0] A[1:0] A[1:0]
1st address
00
01
10
11
1st address
00
01
10
11
2nd address
01
10
11
00
2nd address
01
00
11
10
3rd address
10
11
00
01
3rd address
10
11
00
01
4th address
11
00
01
10
4th address
11
10
01
00
Note:
The burst counter wraps to initial state on the 5th clock.
Note:
The burst counter wraps to initial state on the 5th clock.
BPR 1999.05.18
Rev: 1.03 9/2005
7/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Byte Write Truth Table
Function
GW
BW
BA
BB
BC
BD
Notes
Read
H
H
X
X
X
X
1
Read
H
L
H
H
H
H
1
Write byte a
H
L
L
H
H
H
2, 3
Write byte b
H
L
H
L
H
H
2, 3
Write byte c
H
L
H
H
L
H
2, 3, 4
Write byte d
H
L
H
H
H
L
2, 3, 4
Write all bytes
H
L
L
L
L
L
2, 3, 4
Write all bytes
L
X
X
X
X
X
Notes:
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.
2. Byte Write Enable inputs BA, BB, BC, and/or BD may be used in any combination with BW to write single or multiple bytes.
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.
4. Bytes “C” and “D” are only available on the x32 and x36 versions.
Rev: 1.03 9/2005
8/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Synchronous Truth Table
Operation
Address
Used
State
Diagram
Key5
E1
E2
Deselect Cycle, Power Down
None
X
H
X
X
Deselect Cycle, Power Down
None
X
L
F
Deselect Cycle, Power Down
None
X
L
Read Cycle, Begin Burst
External
R
Read Cycle, Begin Burst
External
Write Cycle, Begin Burst
ADV
W3
DQ4
L
X
X
High-Z
L
X
X
X
High-Z
F
H
L
X
X
High-Z
L
T
L
X
X
X
Q
R
L
T
H
L
X
F
Q
External
W
L
T
H
L
X
T
D
Read Cycle, Continue Burst
Next
CR
X
X
H
H
L
F
Q
Read Cycle, Continue Burst
Next
CR
H
X
X
H
L
F
Q
Write Cycle, Continue Burst
Next
CW
X
X
H
H
L
T
D
Write Cycle, Continue Burst
Next
CW
H
X
X
H
L
T
D
Read Cycle, Suspend Burst
Current
X
X
H
H
H
F
Q
Read Cycle, Suspend Burst
Current
H
X
X
H
H
F
Q
Write Cycle, Suspend Burst
Current
X
X
H
H
H
T
D
Write Cycle, Suspend Burst
Current
H
X
X
H
H
T
D
ADSP ADSC
Notes:
1. X = Don’t Care, H = High, L = Low
2. E = T (True) if E2 = 1; E = F (False) if E2 = 0
3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding
4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown
as “Q” in the Truth Table above).
5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish
basic synchronous or synchronous burst operations and may be avoided for simplicity.
6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.
7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.
Rev: 1.03 9/2005
9/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Simplified State Diagram
X
Deselect
W
R
Simple Burst Synchronous Operation
Simple Synchronous Operation
W
X
R
R
First Write
First Read
CR
CW
W
X
CR
R
R
X
Burst Write
Burst Read
X
CR
CW
CR
Notes:
1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.
2. The upper portion of the diagram assumes active use of only the Enable (E1, E2, and E3) and Write (BA, BB, BC, BD, BW, and GW) control inputs and that ADSP is tied high and ADSC is tied low.
3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs and
assumes ADSP is tied high and ADV is tied low.
Rev: 1.03 9/2005
10/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Simplified State Diagram with G
X
Deselect
W
R
W
X
R
R
First Write
CR
CW
W
CW
W
X
First Read
X
CR
R
Burst Write
R
CR
CW
W
Burst Read
X
CW
CR
Notes:
1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.
2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passing
through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.
3. Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet
Data Input Set Up Time.
Rev: 1.03 9/2005
11/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Absolute Maximum Ratings
(All voltages reference to VSS)
Symbol
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 4.6
V
VDDQ
Voltage in VDDQ Pins
–0.5 to 4.6
V
VI/O
Voltage on I/O Pins
–0.5 to VDDQ +0.5
V
VIN
Voltage on Other Input Pins
–0.5 to VDD +0.5
V
IIN
Input Current on Any Pin
+/–20
mA
IOUT
Output Current on Any I/O Pin
+/–20
mA
PD
Package Power Dissipation
1.5
W
TSTG
Storage Temperature
–55 to 125
oC
TBIAS
Temperature Under Bias
–55 to 125
oC
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of
this component.
Power Supply Voltage Ranges
Parameter
Symbol
Min.
Typ.
Max.
Unit
3.3 V Supply Voltage
VDD3
3.0
3.3
3.6
V
2.5 V Supply Voltage
VDD2
2.3
2.5
2.7
V
3.3 V VDDQ I/O Supply Voltage
VDDQ3
3.0
3.3
3.6
V
2.5 V VDDQ I/O Supply Voltage
VDDQ2
2.3
2.5
2.7
V
Notes
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+1.5 V maximum, with a pulse width not to exceed 50% tKC.
Rev: 1.03 9/2005
12/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
VDDQ3 Range Logic Levels
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
VDD Input High Voltage
VIH
2.0
—
VDD + 0.3
V
1
VDD Input Low Voltage
VIL
–0.3
—
0.8
V
1
VDDQ I/O Input High Voltage
VIHQ
2.0
—
VDDQ + 0.3
V
1,3
VDDQ I/O Input Low Voltage
VILQ
–0.3
—
0.8
V
1,3
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+1.5 V maximum, with a pulse width not to exceed 50% tKC.
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.
VDDQ2 Range Logic Levels
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
VDD Input High Voltage
VIH
0.6*VDD
—
VDD + 0.3
V
1
VDD Input Low Voltage
VIL
–0.3
—
0.3*VDD
V
1
VDDQ I/O Input High Voltage
VIHQ
0.6*VDD
—
VDDQ + 0.3
V
1,3
VDDQ I/O Input Low Voltage
VILQ
–0.3
—
0.3*VDD
V
1,3
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+1.5 V maximum, with a pulse width not to exceed 50% tKC.
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.
Recommended Operating Temperatures
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
Ambient Temperature (Commercial Range Versions)
TA
0
25
70
°C
2
Ambient Temperature (Industrial Range Versions)
TA
–40
25
85
°C
2
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+1.5 V maximum, with a pulse width not to exceed 50% tKC.
Rev: 1.03 9/2005
13/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Undershoot Measurement and Timing
Overshoot Measurement and Timing
VIH
50% tKC
VDD +1.5 V
VSS
50%
50%
VDD
VSS – 2.0 V
50% tKC
VIL
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 2.5 V)
Parameter
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
CIN
VIN = 0 V
4
5
pF
Input/Output Capacitance
CI/O
VOUT = 0 V
6
7
pF
Note:
These parameters are sample tested.
AC Test Conditions
Parameter
Conditions
Input high level
VDD – 0.2 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
VDD/2
Output reference level
VDDQ/2
Output load
Fig. 1
Notes:
1. Include scope and jig capacitance.
2. Test conditions as specified with output loading as shown in Fig. 1
unless otherwise noted.
3. Device is deselected as defined by the Truth Table.
Output Load 1
DQ
50Ω
30pF*
VDDQ/2
* Distributed Test Jig Capacitance
Rev: 1.03 9/2005
14/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
DC Electrical Characteristics
Parameter
Symbol
Test Conditions
Min
Max
Input Leakage Current
(except mode pins)
IIL
VIN = 0 to VDD
–1 uA
1 uA
ZZ Input Current
IIN1
VDD ≥ VIN ≥ VIH
0 V ≤ VIN ≤ VIH
–1 uA
–1 uA
1 uA
100 uA
FT Input Current
IIN2
VDD ≥ VIN ≥ VIL
0 V ≤ VIN ≤ VIL
–100 uA
–1 uA
1 uA
1 uA
Output Leakage Current
IOL
Output Disable, VOUT = 0 to VDD
–1 uA
1 uA
Output High Voltage
VOH2
IOH = –8 mA, VDDQ = 2.375 V
1.7 V
—
Output High Voltage
VOH3
IOH = –8 mA, VDDQ = 3.135 V
2.4 V
—
Output Low Voltage
VOL
IOL = 8 mA
—
0.4 V
Rev: 1.03 9/2005
15/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Operating Currents
-5.5
-6.5
-7.5
Symbol
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
Flow Through
IDD
IDDQ
235
20
245
20
205
15
215
15
190
15
200
15
mA
(x18)
Flow Through
IDD
IDDQ
215
10
225
10
190
10
200
10
175
10
185
10
mA
ZZ ≥ VDD – 0.2 V
—
Flow Through
ISB
40
50
40
50
40
50
mA
Device Deselected;
All other inputs
≥ VIH or ≤ VIL
—
Flow Through
IDD
60
65
50
55
50
55
mA
Parameter
Test Conditions
Mode
Operating
Current
Device Selected;
All other inputs
≥VIH or ≤ VIL
Output open
(x32/
x36)
Standby
Current
Deselect
Current
Unit
Notes:
1. IDD and IDDQ apply to any combination of VDD3, VDD2, VDDQ3, and VDDQ2 operation.
2. All parameters listed are worst case scenario.
AC Electrical Characteristics
Flow Through
Parameter
Symbol
Clock Cycle Time
tKC
-5.5
-6.5
-7.5
Unit
Min
Max
Min
Max
Min
Max
5.5
—
6.5
—
7.5
—
ns
Clock to Output Valid
tKQ
—
5.5
—
6.5
—
7.5
ns
Clock to Output Invalid
tKQX
3.0
—
3.0
—
3.0
—
ns
1
3.0
—
3.0
—
3.0
—
ns
Clock to Output in Low-Z
tLZ
Setup time
tS
1.5
—
1.5
—
1.5
—
ns
Hold time
tH
0.5
—
0.5
—
0.5
—
ns
Clock HIGH Time
tKH
1.3
—
1.3
—
1.5
—
ns
Clock LOW Time
tKL
1.5
—
1.5
—
1.7
—
ns
Clock to Output in
High-Z
tHZ1
1.5
2.5
1.5
3.0
1.5
3.0
ns
G to Output Valid
tOE
—
2.5
—
3.0
—
3.8
ns
G to output in Low-Z
tOLZ1
0
—
0
—
0
—
ns
G to output in High-Z
tOHZ1
—
2.5
—
3.0
—
3.8
ns
ZZ setup time
tZZS2
5
—
5
—
5
—
ns
ZZ hold time
tZZH2
1
—
1
—
1
—
ns
ZZ recovery
tZZR
20
—
20
—
20
—
ns
Notes:
1. These parameters are sampled and are not 100% tested.
2. ZZ is an asynchronous signal. However, In order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold
times as specified above.
Rev: 1.03 9/2005
16/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Flow Through Mode Timing
Begin
Read A
Cont
Cont
Write B
Read C
Read C+1 Read C+2 Read C+3 Read C
Cont
Deselect
tKL
tKH
tKC
CK
ADSP
Fixed High
tS
tH
tS
tH
ADSC
initiated read
ADSC
tS
tH
ADV
tS
tH
A0–An
A
B
C
tS
tH
GW
tS
tH
BW
tS
tH
Ba–Bd
tS
Deselected with E1
tH
E1
tS
tH
E2 and E3 only sampled with ADSC
E2
tS
tH
E3
G
tH
tS
tOE
DQa–DQd
Rev: 1.03 9/2005
tOHZ
Q(A)
D(B)
tKQ
tLZ
tHZ
tKQX
Q(C)
Q(C+1)
Q(C+2)
17/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Q(C+3)
Q(C)
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Sleep Mode
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to
low, the SRAM operates normally after ZZ recovery time.
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands
may be applied while the SRAM is recovering from Sleep mode.
Sleep Mode Timing
tKH
tKC
tKL
CK
Setup
Hold
ADSP
ADSC
tZZR
tZZS
tZZH
ZZ
Rev: 1.03 9/2005
18/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
TQFP Package Drawing (Package T)
L
Min. Nom. Max
A1
Standoff
0.05
0.10
0.15
A2
Body Thickness
1.35
1.40
1.45
b
Lead Width
0.20
0.30
0.40
c
Lead Thickness
0.09
—
0.20
D
Terminal Dimension
21.9
22.0
22.1
D1
Package Body
19.9
20.0
20.1
E
Terminal Dimension
15.9
16.0
16.1
E1
Package Body
13.9
14.0
14.1
e
Lead Pitch
—
0.65
—
L
Foot Length
0.45
0.60
0.75
L1
Lead Length
—
1.00
—
Y
Coplanarity
θ
Lead Angle
L1
c
e
D
D1
Description
Pin 1
Symbol
θ
b
A1
A2
0.10
Y
0°
—
7°
E1
E
Notes:
1. All dimensions are in millimeters (mm).
2. Package width and length do not include mold protrusion.
Rev: 1.03 9/2005
19/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Ordering Information for GSI Synchronous Burst RAMs
Org
Part Number1
Type
Package
Speed2
(MHz/ns)
TA3
Status
1M x 18
GS8160F18BT-5.5
Flow Through
TQFP
5.5
C
MP
1M x 18
GS8160F18BT-6.5
Flow Through
TQFP
6.5
C
MP
1M x 18
GS8160F18BT-7.5
Flow Through
TQFP
7.5
C
MP
512K x 32
GS8160F32BT-5.5
Flow Through
TQFP
5.5
C
MP
512K x 32
GS8160F32BT-6.5
Flow Through
TQFP
6.5
C
MP
512K x 32
GS8160F32BT-7.5
Flow Through
TQFP
7.5
C
MP
512K x 36
GS8160F36BT-5.5
Flow Through
TQFP
5.5
C
MP
512K x 36
GS8160F36BT-6.5
Flow Through
TQFP
6.5
C
MP
512K x 36
GS8160F36BT-7.5
Flow Through
TQFP
7.5
C
MP
1M x 18
GS8160F18BT-5.5I
Flow Through
TQFP
5.5
I
MP
1M x 18
GS8160F18BT-6.5I
Flow Through
TQFP
6.5
I
MP
1M x 18
GS8160F18BT-7.5I
Flow Through
TQFP
7.5
I
MP
512K x 32
GS8160F32BT-5.5I
Flow Through
TQFP
5.5
I
MP
512K x 32
GS8160F32BT-6.5I
Flow Through
TQFP
6.5
I
MP
512K x 32
GS8160F32BT-7.5I
Flow Through
TQFP
7.5
I
MP
512K x 36
GS8160F36BT-5.5I
Flow Through
TQFP
5.5
I
MP
512K x 36
GS8160F36BT-6.5I
Flow Through
TQFP
6.5
I
MP
512K x 36
GS8160F36BT-7.5I
Flow Through
TQFP
7.5
I
MP
1M x 18
GS8160F18BGT-5.5
Flow Through
RoHS-compliant TQFP
5.5
C
PQ
1M x 18
GS8160F18BGT-6.5
Flow Through
RoHS-compliant TQFP
6.5
C
PQ
1M x 18
GS8160F18BGT-7.5
Flow Through
RoHS-compliant TQFP
7.5
C
PQ
512K x 32
GS8160F32BGT-5.5
Flow Through
RoHS-compliant TQFP
5.5
C
PQ
512K x 32
GS8160F32BGT-6.5
Flow Through
RoHS-compliant TQFP
6.5
C
PQ
512K x 32
GS8160F32BGT-7.5
Flow Through
RoHS-compliant TQFP
7.5
C
PQ
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8160F18B-6.5T.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
4. MP = Mass Production. PQ = Pre-Qualification.
5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.03 9/2005
20/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
Ordering Information for GSI Synchronous Burst RAMs (Continued)
Org
Part Number1
Type
Package
Speed2
(MHz/ns)
TA3
Status
512K x 36
GS8160F36BGT-5.5
Flow Through
RoHS-compliant TQFP
5.5
C
PQ
512K x 36
GS8160F36BGT-6.5
Flow Through
RoHS-compliant TQFP
6.5
C
PQ
512K x 36
GS8160F36BGT-7.5
Flow Through
RoHS-compliant TQFP
7.5
C
PQ
1M x 18
GS8160F18BGT-5.5I
Flow Through
RoHS-compliant TQFP
5.5
I
PQ
1M x 18
GS8160F18BGT-6.5I
Flow Through
RoHS-compliant TQFP
6.5
I
PQ
1M x 18
GS8160F18BGT-7.5I
Flow Through
RoHS-compliant TQFP
7.5
I
PQ
512K x 32
GS8160F32BGT-5.5I
Flow Through
RoHS-compliant TQFP
5.5
I
PQ
512K x 32
GS8160F32BGT-6.5I
Flow Through
RoHS-compliant TQFP
6.5
I
PQ
512K x 32
GS8160F32BGT-7.5I
Flow Through
RoHS-compliant TQFP
7.5
I
PQ
512K x 36
GS8160F36BGT-5.5I
Flow Through
RoHS-compliant TQFP
5.5
I
PQ
512K x 36
GS8160F36BGT-6.5I
Flow Through
RoHS-compliant TQFP
6.5
I
PQ
512K x 36
GS8160F36BGT-7.5I
Flow Through
RoHS-compliant TQFP
7.5
I
PQ
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8160F18B-6.5T.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
4. MP = Mass Production. PQ = Pre-Qualification.
5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.03 9/2005
21/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8160F18/32/36BT-5.5/6.5/7.5
18Mb Sync SRAM Datasheet Revision History
DS/DateRev. Code: Old;
New
Types of Changes
Format or Content
• Creation of new datasheet
GS8160FxxB_r1
8160FxxB_r1;
8160FxxB_r1_01
Content
8160FxxB_r1_01;
8160FxxB_r1_02
Content
8160FxxB_r1_01;
8160FxxB_r1_02
Content
Rev: 1.03 9/2005
Page;Revisions;Reason
• Updated overshoot/undershoot information
• Added 5.3 ns speed bin
• Removed 5.3 ns speed bin
• Added part status to Ordering Information table
22/22
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology