LA-MachXO Automotive Family Data Sheet DS1003 Version 01.5, November 2007 LA-MachXO Automotive Family Data Sheet Introduction April 2006 Data Sheet DS1003 Features • Programmable sysIO™ buffer supports wide range of interfaces: − LVCMOS 3.3/2.5/1.8/1.5/1.2 − LVTTL − PCI − LVDS, Bus-LVDS, LVPECL, RSDS ■ Non-volatile, Infinitely Reconfigurable • Instant-on – powers up in microseconds • Single chip, no external configuration memory required • Excellent design security, no bit stream to intercept • Reconfigure SRAM based logic in milliseconds • SRAM and non-volatile memory programmable through JTAG port • Supports background programming of non-volatile memory ■ sysCLOCK™ PLLs • Up to two analog PLLs per device • Clock multiply, divide, and phase shifting ■ System Level Support • IEEE Standard 1149.1 Boundary Scan • Onboard oscillator • Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply • IEEE 1532 compliant in-system programming ■ AEC-Q100 Tested and Qualified ■ Sleep Mode • Allows up to 100x static current reduction ■ TransFR™ Reconfiguration (TFR) Introduction • In-field logic update while system operates The LA-MachXO automotive device family is optimized to meet the requirements of applications traditionally addressed by CPLDs and low capacity FPGAs: glue logic, bus bridging, bus interfacing, power-up control, and control logic. These devices bring together the best features of CPLD and FPGA devices on a single chip in AEC-Q100 tested and qualified versions. ■ High I/O to Logic Density • • • • 256 to 2280 LUT4s 73 to 271 I/Os with extensive package options Density migration supported Lead free/RoHS compliant packaging ■ Embedded and Distributed Memory • Up to 27.6 Kbits sysMEM™ Embedded Block RAM • Up to 7.5 Kbits distributed RAM • Dedicated FIFO control logic The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through nonvolatile technology, the devices provide the single-chip, ■ Flexible I/O Buffer Table 1-1. LA-MachXO Automotive Family Selection Guide LAMXO256E/C LAMXO640E/C LAMXO1200E LAMXO2280E LUTs Device 256 640 1200 2280 Dist. RAM (Kbits) 2.0 6.0 6.25 7.5 0 0 9.2 27.6 EBR SRAM (Kbits) Number of EBR SRAM Blocks (9 Kbits) VCC Voltage 0 0 1 3 1.2/1.8/2.5/3.3V 1.2/1.8/2.5/3.3V 1.2 1.2 Number of PLLs 0 0 1 2 Max. I/O 78 159 211 271 78 74 73 73 144-pin Lead-Free TQFP (20x20 mm) 113 113 113 256-ball Lead-Free ftBGA (17x17 mm) 159 211 211 Packages 100-pin Lead-Free TQFP (14x14 mm) 324-ball Lead-Free ftBGA (19x19 mm) 271 © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1-1 DS1003 Introduction_01.0 Introduction LA-MachXO Automotive Family Data Sheet Lattice Semiconductor high-security, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs. The ispLEVER® design tools from Lattice allow complex designs to be efficiently implemented using the LAMachXO automotive family of devices. Popular logic synthesis tools provide synthesis library support for LAMachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LA-MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification. 1-2 LA-MachXO Automotive Family Data Sheet Architecture February 2007 Data Sheet DS1003 Architecture Overview The LA-MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM™ Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members. The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row. In the LA-MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag “hard” control logic to minimize LUT use. The LA-MachXO architecture provides up to two sysCLOCK™ Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks. Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The LA-MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system. © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 2-1 DS1003 Architecture_01.2 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Figure 2-1. Top View of the LA-MachXO1200 Device1 PIOs Arranged into sysIO Banks Programmable Functional Units with RAM (PFUs) sysMEM Embedded Block RAM (EBR) Programmable Functional Units without RAM (PFFs) sysCLOCK PLL JTAG Port 1. Top view of the LA-MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks. Figure 2-2. Top View of the LA-MachXO640 Device PIOs Arranged into sysIO Banks Programmable Function Units without RAM (PFFs) Programmable Function Units with RAM (PFUs) JTAG Port 2-2 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Figure 2-3. Top View of the LA-MachXO256 Device Programmable Function Units without RAM (PFFs) JTAG Port PIOs Arranged into sysIO Banks Programmable Function Units with RAM (PFUs) PFU Blocks The core of the LA-MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks. Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs and 25 outputs associated with each PFU block. Figure 2-4. PFU Diagram From Routing FCIN LUT4 & CARRY LUT4 & CARRY LUT4 & CARRY Slice 0 D FF/ Latch D FF/ Latch LUT4 & CARRY LUT4 & CARRY Slice 1 D FF/ Latch LUT4 & CARRY LUT4 & CARRY D FF/ Latch FCO Slice 3 Slice 2 D FF/ Latch LUT4 & CARRY D FF/ Latch D FF/ Latch D FF/ Latch To Routing Slice Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice. The registers in the Slice can be configured for positive/negative and edge/level clocks. 2-3 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU). There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the signals associated with each Slice. Figure 2-5. Slice Diagram To Adjacent Slice/PFU Slice OFX1 A1 B1 C1 D1 CO LUT4 & CARRY F1 F D SUM FF/ Latch Fast Connection to I/O Cell* Q1 CI From Routing To Routing M1 M0 CO A0 OFX0 Fast Connection to I/O Cell* LUT Expansion Mux B0 C0 D0 LUT4 & CARRY F0 F SUM OFX0 CI Control Signals selected and inverted per Slice in routing D FF/ Latch Q0 CE CLK LSR From Adjacent Slice/PFU Notes: Some inter-Slice signals are not shown. * Only PFUs at the edges have fast connections to the I/O cell. Table 2-1. Slice Signal Descriptions Function Type Signal Names Description Input Data signal A0, B0, C0, D0 Inputs to LUT4 Input Data signal A1, B1, C1, D1 Inputs to LUT4 Input Multi-purpose M0/M1 Input Control signal CE Clock Enable Multipurpose Input Input Control signal LSR Local Set/Reset Input Control signal CLK System Clock Input Inter-PFU signal FCIN Fast Carry In1 Output Data signals F0, F1 LUT4 output register bypass signals Output Data signals Q0, Q1 Output Data signals OFX0 Output of a LUT5 MUX Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the Slice Output Inter-PFU signal FCO Fast Carry Out1 Register Outputs 1. See Figure 2-4 for connection details. 2. Requires two PFUs. 2-4 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Modes of Operation Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks. Table 2-2. Slice Modes Logic Ripple RAM ROM PFU Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit SP 16x2 ROM 16x1 x 2 PFF Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit N/A ROM 16x1 x 2 Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices. Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice: • • • • • • • Addition 2-bit Subtraction 2-bit Add/Subtract 2-bit using dynamic control Up counter 2-bit Down counter 2-bit Ripple mode multiplier building block Comparator functions of A and B inputs - A greater-than-or-equal-to B - A not-equal-to B - A less-than-or-equal-to B Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices. RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed. The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in LA-MachXO devices, please see details of additional technical documentation at the end of this data sheet. Table 2-3. Number of Slices Required For Implementing Distributed RAM SPR16x2 DPR16x2 1 2 Number of Slices Note: SPR = Single Port RAM, DPR = Dual Port RAM 2-5 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Figure 2-6. Distributed Memory Primitives SPR16x2 AD0 AD1 AD2 AD3 DPR16x2 DO0 DI0 DI1 WRE CK DO1 WAD0 WAD1 WAD2 WAD3 RAD0 RAD1 RAD2 RAD3 DI0 DI1 WCK WRE RDO0 RDO1 WDO0 WDO1 ROM16x1 AD0 AD1 AD2 AD3 DO0 ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration. PFU Modes of Operation Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level. Table 2-4. PFU Modes of Operation Ripple RAM ROM LUT 4x8 or MUX 2x1 x 8 Logic 2-bit Add x 4 SPR16x2 x 4 DPR16x2 x 2 ROM16x1 x 8 LUT 5x4 or MUX 4x1 x 4 2-bit Sub x 4 SPR16x4 x 2 DPR16x4 x 1 ROM16x2 x 4 LUT 6x 2 or MUX 8x1 x 2 2-bit Counter x 4 SPR16x8 x 1 ROM16x4 x 2 LUT 7x1 or MUX 16x1 x 1 2-bit Comp x 4 ROM16x8 x 1 Routing There are many resources provided in the LA-MachXO devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments. The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions. 2-6 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design. Clock/Control Distribution Network The LA-MachXO automotive family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the LA-MachXO256 and LA-MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the LAMachXO1200 and LA-MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs. Figure 2-7. Primary Clocks for LA-MachXO256 and LA-MachXO640 Devices 12 4 16:1 16:1 16:1 16:1 Routing Clock Pads 2-7 Primary Clock 0 Primary Clock 1 Primary Clock 2 Primary Clock 3 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Figure 2-8. Primary Clocks for LA-MachXO1200 and LA-MachXO2280 Devices Up to 9 4 Up to 6 16:1 Primary Clock 0 Primary Clock 1 16:1 16:1 16:1 Routing Clock Pads Primary Clock 2 Primary Clock 3 PLL Outputs Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock sources come from dual function clock pins and 12 come from internal routing. Figure 2-9. Secondary Clocks for LA-MachXO Devices 12 4 16:1 16:1 Secondary (Control) Clocks 16:1 16:1 Routing Clock Pads 2-8 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor sysCLOCK Phase Locked Loops (PLLs) The LA-MachXO1200 and LA-MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram. The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the tLOCK parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output. The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs. Figure 2-10. PLL Diagram Dynamic Delay Adjustment LOCK RST CLKI (from routing or external pin) Input Clock Divider (CLKI) Delay Adjust Voltage Controlled VCO Oscillator Post Scalar Divider (CLKOP) Phase/Duty Select CLKOS CLKOP CLKFB (from Post Scalar Divider output, clock net, routing/external pin or CLKINTFB port Secondary Clock Divider (CLKOK) Feedback Divider (CLKFB) CLKOK CLKINTFB (internal feedback) Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block. Figure 2-11. PLL Primitive RST CLKI CLKOP CLKFB CLKOS DDA MODE EHXPLLC DDAIZR CLKOK LOCK DDAILAG CLKINTFB DDAIDEL[2:0] 2-9 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Table 2-5. PLL Signal Descriptions Signal CLKI I/O Description I Clock input from external pin or routing I PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKINTFB port RST I “1” to reset the input clock divider CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed) CLKOP O PLL output clock to clock tree (No phase shift) CLKOK O PLL output to clock tree through secondary clock divider LOCK O “1” indicates PLL LOCK to CLKI CLKINTFB O Internal feedback source, CLKOP divider output before CLOCKTREE CLKFB DDAMODE I Dynamic Delay Enable. “1”: Pin control (dynamic), “0”: Fuse Control (static) DDAIZR I Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on DDAILAG I Dynamic Delay Lag/Lead. “1”: Lag, “0”: Lead DDAIDEL[2:0] I Dynamic Delay Input For more information on the PLL, please see details of additional technical documentation at the end of this data sheet. sysMEM Memory The LA-MachXO1200 and LA-MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers. sysMEM Memory Block The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6. Table 2-6. sysMEM Block Configurations Memory Mode Configurations Single Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36 True Dual Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 Pseudo Dual Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36 FIFO 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36 2-10 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Bus Size Matching All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port. RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. Memory Cascading Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs. Single, Dual, Pseudo-Dual Port and FIFO Modes Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output. Figure 2-12. sysMEM Memory Primitives AD[12:0] DI[35:0] CLK CE RST WE CS[2:0] EBR ADA[12:0] DIA[17:0] CLKA CEA DO[35:0] RSTA WEA CSA[2:0] DOA[17:0] True Dual Port RAM Single Port RAM AD[12:0] CLK CE RST CS[2:0] EBR ADW[12:0] DI[35:0] CLKW CEW DO[35:0] WE RST CS[2:0] ROM DI[35:0] CLKW RSTA WE CEW EBR ADB[12:0] DIB[17:0] CEB CLKB RSTB WEB CSB[2:0] DOB[17:0] ADR[12:0] EBR DO[35:0] CER CLKR Pseudo-Dual Port RAM EBR FIFO 2-11 DO[35:0] CLKR RSTB RE RCE FF AF EF AE Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor The EBR memory supports three forms of write behavior for single or dual port operation: 1. Normal – data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths. 2. Write Through – a copy of the input data appears at the output of the same port. This mode is supported for all data widths. 3. Read-Before-Write – when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths. FIFO Configuration The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7. Table 2-7. Programmable FIFO Flag Ranges Flag Name Programming Range 1 to (up to 2N-1) Full (FF) Almost Full (AF) 1 to Full-1 Almost Empty (AE) 1 to Full-1 Empty (EF) 0 N = Address bit width The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO. Memory Core Reset The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13. 2-12 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Figure 2-13. Memory Core Reset Memory Core D SET Q Port A[17:0] LCLR Output Data Latches D SET Q Port B[17:0] LCLR RSTA RSTB GSRN Programmable Disable For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet. EBR Asynchronous Reset EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous. Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram Reset Clock Clock Enable If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/fMAX (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge. If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active. These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled. 2-13 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor PIO Groups On the LA-MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs. On all LA-MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/ O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins. The LA-MachXO1200 and LA-MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support. Figure 2-15. Group of Four Programmable I/O Cells This structure is used on the left and right of MachXO devices PIO A PADA "T" PIO B PADB "C" PIO C PADC "T" PIO D PADD "C" Four PIOs Figure 2-16. Group of Six Programmable I/O Cells This structure is used on the top and bottom of MachXO devices PIO A PADA "T" PIO B PADB "C" PIO C PADC "T" PIO D PADD "C" PIO E PADE "T" PIO F PADF "C" Six PIOs PIO The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast 2-14 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the LA-MachXO PIO logic. The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer. The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times. Figure 2-17. LA-MachXO PIO Block Diagram From Routing TS TSALL From Routing TO sysIO Buffer Fast Output Data signal DO PAD 1 Input Data Signal 2 Programmable Delay Elements 3 + 4- Note: Buffer 1 tracks with VCCAUX Buffer 2 tracks with VCCIO. Buffer 3 tracks with internal 1.2V VREF. Buffer 4 is available in MachXO1200 and MachXO2280 devices only. From Complementary Pad sysIO Buffer Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today’s systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL. In the LA-MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using VCCIO. In addition to the Bank VCCIO supplies, the LA-MachXO devices have a VCC core logic power supply, and a VCCAUX supply that powers up a variety of internal circuits including all the differential and referenced input buffers. LA-MachXO256 and LA-MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks. LA-MachXO1200 and LA-MachXO2280 devices contain two types of sysIO buffer pairs. 1. Top and Bottom sysIO Buffer Pairs The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom 2-15 Lattice Semiconductor Architecture LA-MachXO Automotive Family Data Sheet of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after VCC, VCCAUX, and VCCIO are at valid operating levels and the device has been configured. The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer. 2. Left and Right sysIO Buffer Pairs The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O. Typical I/O Behavior During Power-up The internal power-on-reset (POR) signal is deactivated when VCC and VCCAUX have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to ensure that all VCCIO Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings. The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, VCCIO supplies should be powered up before or together with the VCC and VCCAUX supplies Supported Standards The LA-MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The LA-MachXO1200 and LA-MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of LA-MachXO1200 and LA-MachXO2280 devices. PCI support is provided in the top Banks of the LA-MachXO1200 and LA-MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the LA-MachXO family. Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the LA-MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet. 2-16 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Table 2-8. I/O Support Device by Device LA-MachXO256 Number of I/O Banks LA-MachXO640 LA-MachXO1200 LA-MachXO2280 2 4 8 8 Single-ended (all I/O Banks) Single-ended (all I/O Banks) Single-ended (all I/O Banks) Single-ended (all I/O Banks) Differential Receivers (all I/O Banks) Differential Receivers (all I/O Banks) Single-ended buffers with complementary outputs (all I/O Banks) Single-ended buffers with complementary outputs (all I/O Banks) Type of Input Buffers Single-ended buffers with complementary outputs (all I/O Banks) Single-ended buffers with complementary outputs (all I/O Banks) Types of Output Buffers Differential buffers with Differential buffers with true LVDS outputs (50% true LVDS outputs (50% on left and right side) on left and right side) Differential Output Emulation Capability All I/O Banks All I/O Banks All I/O Banks All I/O Banks PCI Support No No Top side only Top side only Table 2-9. Supported Input Standards VCCIO (Typ.) Input Standard 3.3V 2.5V 1.8V 1.5V 1.2V LVTTL √ √ √ √ √ LVCMOS33 √ √ √ √ √ LVCMOS25 √ √ √ √ √ Single Ended Interfaces LVCMOS18 √ LVCMOS15 √ LVCMOS12 √ PCI1 √ √ √ √ √ √ √ √ √ Differential Interfaces BLVDS2, LVDS2, LVPECL2, RSDS2 √ 1. Top Banks of LA-MachXO1200 and LA-MachXO2280 devices only. 2. LA-MachXO1200 and LA-MachXO2280 devices only. 2-17 Lattice Semiconductor Architecture LA-MachXO Automotive Family Data Sheet Table 2-10. Supported Output Standards Output Standard Drive VCCIO (Typ.) LVTTL 4mA, 8mA, 12mA, 16mA 3.3 LVCMOS33 4mA, 8mA, 12mA, 14mA 3.3 LVCMOS25 4mA, 8mA, 12mA, 14mA 2.5 LVCMOS18 4mA, 8mA, 12mA, 14mA 1.8 LVCMOS15 4mA, 8mA 1.5 LVCMOS12 2mA, 6mA 1.2 Single-ended Interfaces LVCMOS33, Open Drain 4mA, 8mA, 12mA, 14mA — LVCMOS25, Open Drain 4mA, 8mA, 12mA, 14mA — LVCMOS18, Open Drain 4mA, 8mA, 12mA, 14mA — LVCMOS15, Open Drain 4mA, 8mA — LVCMOS12, Open Drain 2mA, 6mA — N/A 3.3 N/A 2.5 BLVDS, RSDS N/A 2.5 LVPECL2 N/A 3.3 PCI333 Differential Interfaces LVDS1, 2 2 1. LA-MachXO1200 and LA-MachXO2280 devices have dedicated LVDS buffers. 2. These interfaces can be emulated with external resistors in all devices. 3. Top Banks of LA-MachXO1200 and LA-MachXO2280 devices only. sysIO Buffer Banks The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the LAMachXO1200 and LA-MachXO2280 (two Banks per side). The LA-MachXO640 has four Banks (one Bank per side). The smallest member of this family, the LA-MachXO256, has only two Banks. Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (VCCIO) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices. 2-18 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Figure 2-18. LA-MachXO2280 Banks Bank 7 Bank 1 36 1 34 1 1 Bank 6 34 Bank 4 1 GND 31 VCCIO4 Bank 5 VCCIO1 GND VCCIO5 1 GND 33 Bank 3 GND 1 Bank 2 VCCIO6 35 GND GND Bank 0 VCCIO1 VCCIO7 GND VCCIO0 1 1 VCCIO2 GND VCCIO3 GND 33 35 Figure 2-19. LA-MachXO1200 Banks Bank 7 Bank 1 30 1 26 1 1 Bank 6 Bank 5 20 1 2-19 Bank 4 GND 1 VCCIO4 28 GND GND 1 Bank 3 VCCIO6 24 26 VCCIO5 GND Bank 0 Bank 2 VCCIO7 GND VCCIO0 1 1 28 29 VCCIO2 GND VCCIO3 GND Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Figure 2-20. LA-MachXO640 Banks Bank 3 40 VCCO2 GND 40 37 Bank 2 1 V CCO1 GND GND 42 1 Bank 0 Bank 1 V CCO3 GND V CCO0 1 1 Figure 2-21. LA-MachXO256 Banks V CCO0 1 1 Bank 0 Bank 1 GND 41 37 GND V CCO1 Hot Socketing The LA-MachXO automotive devices have been carefully designed to ensure predictable behavior during powerup and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration 2-20 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor with the rest of the system. These capabilities make the LA-MachXO ideal for many multiple power supply and hot-swap applications. Sleep Mode The LA-MachXO “C” devices (VCC = 1.8/2.5/3.3V) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin. During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes. Table 2-11. Characteristics of Normal, Off and Sleep Modes Characteristic SLEEPN Pin Static Icc I/O Leakage Power Supplies VCC/VCCIO/VCCAUX Normal Off Sleep High — Low Typical <10mA 0 Typical <100uA <10µA <1mA <10µA Normal Range 0 Normal Range Logic Operation User Defined Non Operational Non operational I/O Operation User Defined Tri-state Tri-state JTAG and Programming circuitry Operational Non-operational Non-operational EBR Contents and Registers Maintained Non-maintained Non-maintained SLEEPN Pin Characteristics The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram. Oscillator Every LA-MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 16MHz to 26MHz. Configuration and Testing The following section describes the configuration and testing features of the LA-MachXO automotive family of devices. IEEE 1149.1-Compliant Boundary Scan Testability All LA-MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (LA-MachXO256: VCCIO1; LA-MachXO640: VCCIO2; LA-MachXO1200 and LAMachXO2280: VCCIO5) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards. For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet. 2-21 Lattice Semiconductor Architecture LA-MachXO Automotive Family Data Sheet Device Configuration All LA-MachXO devices contain a test access port that can be used for device configuration and programming. The non-volatile memory in the LA-MachXO can be configured in two different modes: • In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by BSCAN registers. • In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place. The SRAM configuration memory can be configured in three different ways: • At power-up via the on-chip non-volatile memory. • After a refresh command is issued via the IEEE 1149.1 port. • In IEEE 1532 mode via the IEEE 1149.1 port. Figure 2-22 provides a pictorial representation of the different programming modes available in the LA-MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols. Leave Alone I/O When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly. TransFR (Transparent Field Reconfiguration) TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See Lattice technical note #TN1087, Minimizing System Interruption During Configuration Using TransFR Technology, for details. Security The LA-MachXO automotive devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space. For more information on device configuration, please see details of additional technical documentation at the end of this data sheet. AEC-Q100 Tested and Qualified The Automotive Electronics Council (AEC) consists of two committees: the Quality Systems Committee and the Component Technical Committee. These committees are composed of representatives from sustaining and other associate members. The AEC Component Technical Committee is the standardization body for establishing standards for reliable, high quality electronic components. In particular, the AEC-Q100 specification “Stress Test for Qualification for Integrated Circuits” defines qualification and re-qualification requirements for electronic components. Components meeting these specifications are suitable for use in the harsh automotive environment without additional component-level qualification testing. Lattice's LA-ispMACH 4000V and LA-MachXO devices completed and passed the requirements of the AEC-Q100 specification. 2-22 Architecture LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Figure 2-22. LA-MachXO Configuration and Programming ISP 1149.1 TAP Port Port Background 1532 Mode Program in seconds Power-up Non-Volatile Memory Space Configure in milliseconds SRAM Memory Space Refresh Download in microseconds Density Shifting The LA-MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. 2-23 LA-MachXO Automotive Family Data Sheet DC and Switching Characteristics November 2007 Data Sheet DS1003 Absolute Maximum Ratings1, 2, 3 LCMXO E (1.2V) LCMXO C (1.8V/2.5V/3.3V) Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V . . . . . . . . . . . . . . . -0.5 to 3.75V Supply Voltage VCCAUX . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V Output Supply Voltage VCCIO . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V I/O Tristate Voltage Applied 4 . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V Dedicated Input Voltage Applied4 . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 4.25V Storage Temperature (ambient). . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . . -65 to 150°C Junction Temp. (Tj) . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C . . . . . . . . . . . . . . . . . . . +125°C 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. 4. Overshoot and undershoot of -2V to (VIHMAX + 2) volts is permitted for a duration of <20ns. Recommended Operating Conditions1 Symbol VCC VCCAUX 3 VCCIO2 tJAUTO Parameter Min. Max. Units Core Supply Voltage for 1.2V Devices 1.14 1.26 V Core Supply Voltage for 1.8V/2.5V/3.3V Devices 1.71 3.465 V Auxiliary Supply Voltage 3.135 3.465 V I/O Driver Supply Voltage 1.14 3.465 Junction Temperature Automotive Operation tJFLASHAUTO Junction Temperature, Flash Programming, Automotive V -40 125 o -40 125 o C C 1. Like power supplies must be tied together. For example, if VCCIO and VCC are both 2.5V, they must also be the same supply. 3.3V VCCIO and 1.2V VCCIO should be tied to VCCAUX or 1.2V VCC respectively. 2. See recommended voltages by I/O standard in subsequent table. 3. VCC must reach minimum VCC value before VCCAUX reaches 2.5V. LA-MachXO256 and LA-MachXO640 Hot Socketing Specifications1, 2, 3 Symbol IDK Parameter Input or I/O leakage Current Condition 0 ≤ VIN ≤ VIH (MAX) Min. Typ. Max Units — — +/-1000 µA 1. Insensitive to sequence of VCC, VCCAUX, and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX, and VCCIO. 2. 0 ≤ VCC ≤ VCC (MAX), 0 ≤ VCCIO ≤ VCCIO (MAX) and 0 ≤ VCCAUX ≤ VCCAUX (MAX). 3. IDK is additive to IPU, IPD or IBH. © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 3-1 DS1003 DC and Switching_01.3 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO1200 and LA-MachXO2280 Hot Socketing Specifications1, 2, 3, 4 Symbol Parameter Condition Min. Typ. Max. Units 0 ≤ VIN ≤ VIH (MAX.) — — +/-1000 µA VIN ≤ VCCIO — — +/-1000 µA VIN > VCCIO — 35 — mA Non-LVDS General Purpose sysIOs IDK Input or I/O Leakage Current LVDS General Purpose sysIOs IDK_LVDS 1. 2. 3. 4. Input or I/O Leakage Current Insensitive to sequence of VCC, VCCAUX, and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX, and VCCIO. 0 ≤ VCC ≤ VCC (MAX), 0 ≤ VCCIO ≤ VCCIO (MAX), and 0 ≤ VCCAUX ≤ VCCAUX (MAX). IDK is additive to IPU, IPW or IBH. LVCMOS and LVTTL only. DC Electrical Characteristics Over Recommended Operating Conditions Symbol Parameter IIL, IIH1, 4, 5 Input or I/O Leakage Condition 0 ≤ VIN ≤ (VCCIO - 0.2V) Min. Typ. Max. Units — — 10 µA (VCCIO - 0.2V) < VIN ≤ 3.6V — — 40 µA 0 ≤ VIN ≤ 0.7 VCCIO -30 — -150 µA 30 — 150 µA 30 — — µA — — µA — 150 µA — -150 µA — VIH (MIN) V 8 — pf 8 — pf IPU I/O Active Pull-up Current IPD I/O Active Pull-down Current VIL (MAX) ≤ VIN ≤ VIH (MAX) IBHLS Bus Hold Low sustaining current VIN = VIL (MAX) IBHHS Bus Hold High sustaining current VIN = 0.7VCCIO -30 IBHLO Bus Hold Low Overdrive current — IBHHO Bus Hold High Overdrive current 0 ≤ VIN ≤ VIH (MAX) — VBHT3 Bus Hold trip Points 0 ≤ VIN ≤ VIH (MAX) VIL (MAX) C1 I/O Capacitance2 VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, VCC = Typ., VIO = 0 to VIH (MAX) — C2 Dedicated Input Capacitance2 VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, VCC = Typ., VIO = 0 to VIH (MAX) — 0 ≤ VIN ≤ VIH (MAX) 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. TA 25°C, f = 1.0MHz 3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document. 4. Not applicable to SLEEPN pin. 5. When VIH is higher than VCCIO, a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For LA-MachXO1200 and LA-MachXO2280 true LVDS output pins, VIH must be less than or equal to VCCIO. 3-2 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Supply Current (Sleep Mode)1, 2 Symbol ICC Max. Units LCMXO256C 12 25 µA LCMXO640C 12 25 µA LCMXO256C 1 15 µA LCMXO640C 1 25 µA All LCMXO ‘C’ Devices 2 30 µA Device Core Power Supply ICCAUX Auxiliary Power Supply ICCIO Bank Power Supply4 1. 2. 3. 4. Typ.3 Parameter Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND. Frequency = 0MHz. TA = 25°C, power supplies at nominal voltage. Per Bank. Supply Current (Standby)1, 2, 3, 4 Over Recommended Operating Conditions Symbol ICC ICCAUX ICCIO 1. 2. 3. 4. 5. 6. Typ.5 Units LCMXO256C 7 mA LCMXO640C 9 mA LCMXO256E 4 mA LCMXO640E 6 mA LCMXO1200E 10 mA LCMXO2280E 12 mA LCMXO256E/C 5 mA LCMXO640E/C 7 mA LCMXO1200E 12 mA LCMXO2280E 13 mA All devices 2 mA Parameter Core Power Supply Auxiliary Power Supply VCCAUX = 3.3V 6 Bank Power Supply Device For further information on supply current, please see details of additional technical documentation at the end of this data sheet. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at VCCIO or GND. Frequency = 0MHz. User pattern = blank. TJ = 25oC, power supplies at nominal voltage. Per Bank. VCCIO = 2.5V. Does not include pull-up/pull-down. 3-3 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Initialization Supply Current1, 2, 3, 4 Over Recommended Operating Conditions Symbol Parameter Device LCMXO256C ICC ICCAUX ICCIO 1. 2. 3. 4. 5. 6. Core Power Supply Auxiliary Power Supply VCCAUX = 3.3V 6 Bank Power Supply Typ.5 Units 13 mA LCMXO640C 17 mA LCMXO256E 10 mA LCMXO640E 14 mA LCMXO1200E 18 mA LCMXO2280E 20 mA LCMXO256E/C 10 mA LCMXO640E/C 13 mA LCMXO1200E 24 mA LCMXO2280E 25 mA All devices 2 mA For further information on supply current, please see details of additional technical documentation at the end of this data sheet. Assumes all I/O pins are held at VCCIO or GND. Frequency = 0MHz. Typical user pattern. TJ = 25oC, power supplies at nominal voltage. Per Bank, VCCIO = 2.5V. Does not include pull-up/pull-down. 3-4 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Programming and Erase Flash Supply Current1, 2, 3, 4 Symbol ICC ICCAUX ICCIO 1. 2. 3. 4. 5. 6. Parameter Typ.5 Units LCMXO256C 9 mA LCMXO640C 11 mA LCMXO256E 6 mA LCMXO640E 8 mA LCMXO1200E 12 mA LCMXO2280E 14 mA LCMXO256E/C 8 mA LCMXO640E/C 10 mA LCMXO1200E 15 mA LCMXO2280E 16 mA All devices 2 mA Device Core Power Supply Auxiliary Power Supply VCCAUX = 3.3V 6 Bank Power Supply For further information on supply current, please see details of additional technical documentation at the end of this data sheet. Assumes all I/O pins are held at VCCIO or GND. Typical user pattern. JTAG programming is at 25MHz. TJ = 25°C, power supplies at nominal voltage. Per Bank. VCCIO = 2.5V. Does not include pull-up/pull-down. 3-5 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor sysIO Recommended Operating Conditions VCCIO (V) Standard Min. Typ. Max. LVCMOS 3.3 3.135 3.3 3.465 LVCMOS 2.5 2.375 2.5 2.625 LVCMOS 1.8 1.71 1.8 1.89 LVCMOS 1.5 1.425 1.5 1.575 LVCMOS 1.2 1.14 1.2 1.26 LVTTL 3.135 3.3 3.465 PCI3 3.135 3.3 3.465 LVDS1, 2 2.375 2.5 2.625 LVPECL1 3.135 3.3 3.465 BLVDS 2.375 2.5 2.625 RSDS1 2.375 2.5 2.625 1 1. Inputs on chip. Outputs are implemented with the addition of external resistors. 2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers 3. Input on the top bank of the MachXO1200 and MachXO2280 only. 3-6 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor sysIO Single-Ended DC Electrical Characteristics Input/Output Standard LVCMOS 3.3 LVTTL LVCMOS 2.5 LVCMOS 1.8 LVCMOS 1.5 LVCMOS 1.2 (“C” Version) VIL VIH Min. (V) Max. (V) Min. (V) -0.3 0.8 2.0 -0.3 -0.3 -0.3 -0.3 -0.3 0.8 0.7 0.35VCCIO 0.35VCCIO 0.42 2.0 1.7 0.65VCCIO 0.65VCCIO 0.78 VOH Min. (V) IOL1 (mA) IOH1 (mA) 0.4 VCCIO - 0.4 16, 12, 8, 4 -14, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 2.4 16 -16 0.4 VCCIO - 0.4 12, 8, 4 -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 16, 12, 8, 4 -14, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 16, 12, 8, 4 -14, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 8, 4 -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 6, 2 -6, -2 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 6, 2 -6, -2 0.2 VCCIO - 0.2 0.1 -0.1 0.1VCCIO 0.9VCCIO 1.5 -0.5 VOL Max. (V) Max. (V) 3.6 3.6 3.6 3.6 3.6 3.6 LVCMOS 1.2 (“E” Version) -0.3 0.35VCC 0.65VCC 3.6 PCI -0.3 0.3VCCIO 0.5VCCIO 3.6 1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank. 3-7 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor sysIO Differential Electrical Characteristics LVDS Over Recommended Operating Conditions Parameter Symbol Parameter Description Test Conditions VINP, VINM Input Voltage VTHD Differential Input Threshold VCM Input Common Mode Voltage IIN Input current Power on VOH Output high voltage for VOP or VOM VOL Output low voltage for VOP or VOM VOD Output voltage differential ΔVOD Change in VOD between high and low VOS Output voltage offset ΔVOS Change in VOS between H and L IOSD Typ. Max. Units 0 — 2.4 V +/-100 — — mV 100mV ≤ VTHD VTHD/2 1.2 1.8 V 200mV ≤ VTHD VTHD/2 1.2 1.9 V 350mV ≤ VTHD VTHD/2 1.2 2.0 V — — +/-10 µA RT = 100 Ohm — 1.38 1.60 V RT = 100 Ohm 0.9V 1.03 — V (VOP - VOM), RT = 100 Ohm 250 350 450 mV — — 50 mV 1.125 1.25 1.375 V — — 50 mV — — 6 mA (VOP - VOM)/2, RT = 100 Ohm VOD = 0V Driver outputs shorted Output short circuit current Min. LVDS Emulation LA-MachXO automotive devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors. Figure 3-1. LVDS Using External Resistors (LVDS25E) VCCIO = 2.5 158 8mA Zo = 100 VCCIO = 2.5 158 140 + 100 - 8mA On-chip Off-chip Off-chip On-chip Emulated LVDS Buffer Note: All resistors are ±1%. The LVDS differential input buffers are available on certain devices in the LA-MachXO family. 3-8 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Table 3-1. LVDS DC Conditions Over Recommended Operating Conditions Typical Units ZOUT Parameter Output impedance Description 20 Ω RS Driver series resistor 294 Ω RP Driver parallel resistor 121 Ω RT Receiver termination 100 Ω VOH Output high voltage 1.43 V VOL Output low voltage 1.07 V VOD Output differential voltage 0.35 V VCM Output common mode voltage 1.25 V ZBACK Back impedance 100 Ω IDC DC output current 3.66 mA BLVDS The LA-MachXO automotive family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. The input standard is supported by the LVDS differential input buffer on certain devices. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals. Figure 3-2. BLVDS Multi-point Output Example Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential 2.5V 2.5V 80 45-90 ohms 45-90 ohms 16mA 16mA 80 2.5V 2.5V 80 16mA 16mA 80 ... 2.5V + + - 2.5V 16mA - 16mA 3-9 80 2.5V 16mA 80 + - 2.5V 16mA + 80 - DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Table 3-2. BLVDS DC Conditions1 Over Recommended Operating Conditions Nominal Symbol Description Zo = 45 Zo = 90 Units ZOUT Output impedance 100 100 ohm RTLEFT Left end termination 45 90 ohm RTRIGHT Right end termination 45 90 ohm VOH Output high voltage 1.375 1.48 V VOL Output low voltage 1.125 1.02 V VOD Output differential voltage 0.25 0.46 V VCM Output common mode voltage 1.25 1.25 V IDC DC output current 11.2 10.2 mA 1. For input buffer, see LVDS table. LVPECL The LA-MachXO automotive family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals. Figure 3-3. Differential LVPECL VCCIO = 3.3V 100 ohms 16mA + VCCIO = 3.3V 150 ohms 100 ohms - 100 ohms 16mA Transmission line, Zo = 100 ohm differential On-chip Off-chip Off-chip On-chip Table 3-3. LVPECL DC Conditions1 Over Recommended Operating Conditions Symbol Description Nominal Units ZOUT Output impedance 100 ohm RP Driver parallel resistor 150 ohm RT Receiver termination 100 ohm VOH Output high voltage 2.03 V VOL Output low voltage 1.27 V VOD Output differential voltage 0.76 V VCM Output common mode voltage 1.65 V ZBACK Back impedance 85.7 ohm IDC DC output current 12.7 mA 1. For input buffer, see LVDS table. 3-10 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet. RSDS The LA-MachXO automotive family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors. Figure 3-4. RSDS (Reduced Swing Differential Standard) VCCIO = 2.5V 294 8mA Zo = 100 + VCCIO = 2.5V 121 100 - 294 8mA On-chip Off-chip Off-chip On-chip Emulated RSDS Buffer Table 3-4. RSDS DC Conditions Parameter Description Typical Units ZOUT Output impedance 20 ohm RS Driver series resistor 294 ohm RP Driver parallel resistor 121 ohm RT Receiver termination 100 ohm VOH Output high voltage 1.35 V VOL Output low voltage 1.15 V VOD Output differential voltage 0.20 V VCM Output common mode voltage 1.25 V ZBACK Back impedance 101.5 ohm IDC DC output current 3.66 mA 3-11 Lattice Semiconductor DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Typical Building Block Function Performance1 Pin-to-Pin Performance (LVCMOS25 12mA Drive) Function -3 Timing Units Basic Functions 16-bit decoder 9.4 ns 4:1 MUX 6.3 ns 16:1 MUX 7.1 ns -3 Timing Units 16:1 MUX 348 MHz 16-bit adder 209 MHz 16-bit counter 277 MHz 64-bit counter 143 MHz Register-to-Register Performance Function Basic Functions Embedded Memory Functions (1200 and 2280 Devices Only) 256x36 Single Port RAM 203 MHz 512x18 True-Dual Port RAM 203 MHz 310 MHz 64x2 Single Port RAM 229 MHz 128x4 Single Port RAM 186 MHz 32x2 Pseudo-Dual Port RAM 224 MHz 64x4 Pseudo-Dual Port RAM 194 MHz Distributed Memory Functions 16x2 Single Port RAM 1. The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Rev. A 0.19 Derating Logic Timing Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage. 3-12 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO External Switching Characteristics1 Over Recommended Operating Conditions -3 Parameter Description Device Min. Max. Units LCMXO256 — 4.9 ns LCMXO640 — 4.9 ns LCMXO1200 — 5.1 ns LCMXO2280 — 5.1 ns LCMXO256 — 5.6 ns LCMXO640 — 5.7 ns LCMXO1200 — 6.1 ns LCMXO2280 — 6.1 ns LCMXO256 1.8 — ns LCMXO640 1.5 — ns LCMXO1200 1.6 — ns LCMXO2280 1.5 — ns LCMXO256 -0.3 — ns LCMXO640 -0.1 — ns LCMXO1200 0.0 — ns LCMXO2280 -0.4 — ns LCMXO256 — 500 MHz LCMXO640 — 500 MHz LCMXO1200 — 500 MHz LCMXO2280 — 500 MHz LCMXO256 — 240 ps LCMXO640 — 240 ps LCMXO1200 — 260 ps LCMXO2280 — 260 ps General I/O Pin Parameters (Using Global Clock without PLL)1 tPD tCO tSU tH fMAX_IO tSKEW_PRI Best Case tPD Through 1 LUT Best Case Clock to Output - From PFU Clock to Data Setup - To PFU Clock to Data Hold - To PFU Clock Frequency of I/O and PFU Register Global Clock Skew Across Device 1. General timing numbers based on LVCMOS2.5V, 12 mA. Rev. A 0.19 3-13 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO Internal Timing Parameters1 Over Recommended Operating Conditions -3 Parameter Description Min. Max. Units PFU/PFF Logic Mode Timing tLUT4_PFU LUT4 delay (A to D inputs to F output) — 0.39 ns tLUT6_PFU LUT6 delay (A to D inputs to OFX output) — 0.62 ns tLSR_PFU Set/Reset to output of PFU — 1.26 ns tSUM_PFU Clock to Mux (M0,M1) input setup time 0.15 — ns tHM_PFU Clock to Mux (M0,M1) input hold time -0.07 — ns tSUD_PFU Clock to D input setup time 0.18 — ns tHD_PFU Clock to D input hold time -0.04 — ns tCK2Q_PFU Clock to Q delay, D-type register configuration — 0.56 ns tLE2Q_PFU Clock to Q delay latch configuration — 0.74 ns tLD2Q_PFU D to Q throughput delay when latch is enabled — 0.77 ns 0.56 ns PFU Dual Port Memory Mode Timing tCORAM_PFU Clock to Output — tSUDATA_PFU Data Setup Time -0.25 — ns tHDATA_PFU Data Hold Time 0.39 — ns tSUADDR_PFU Address Setup Time tHADDR_PFU Address Hold Time tSUWREN_PFU Write/Read Enable Setup Time tHWREN_PFU Write/Read Enable Hold Time -0.65 — ns 0.99 — ns -0.30 — ns 0.47 — ns PIO Input/Output Buffer Timing tIN_PIO Input Buffer Delay — 1.06 ns tOUT_PIO Output Buffer Delay — 1.80 ns — 3.14 ns EBR Timing (1200 and 2280 Devices Only) tCO_EBR Clock to output from Address or Data with no output register tCOO_EBR Clock to output from EBR output Register tSUDATA_EBR Setup Data to EBR Memory tHDATA_EBR Hold Data to EBR Memory tSUADDR_EBR Setup Address to EBR Memory tHADDR_EBR Hold Address to EBR Memory tSUWREN_EBR Setup Write/Read Enable to EBR Memory — 0.75 ns -0.37 — ns 0.57 — ns -0.37 — ns 0.57 — ns -0.23 — ns tHWREN_EBR Hold Write/Read Enable to EBR Memory 0.36 — ns tSUCE_EBR Clock Enable Setup Time to EBR Output Register 0.27 — ns tHCE_EBR Clock Enable Hold Time to EBR Output Register -0.18 — ns tRSTO_EBR Reset To Output Delay Time from EBR Output Register — 1.44 ns — 1.00 ns 1.00 — ns PLL Parameters (1200 and 2280 Devices Only) tRSTREC Reset Recovery to Rising Clock tRSTSU Reset Signal Setup Time 1. Internal parameters are characterized but not tested on every device. Rev. A 0.19 3-14 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO Family Timing Adders1, 2, 3 Over Recommended Operating Conditions Buffer Type Description -3 Units LVDS 0.61 ns BLVDS25 BLVDS 0.61 ns LVPECL334 LVPECL 0.59 ns LVTTL33 LVTTL 0.01 ns LVCMOS33 LVCMOS 3.3 0.01 ns LVCMOS25 LVCMOS 2.5 0.00 ns LVCMOS18 LVCMOS 1.8 0.10 ns LVCMOS15 LVCMOS 1.5 0.19 ns LVCMOS12 LVCMOS 1.2 0.56 ns PCI 0.01 ns Input Adjusters LVDS254 4 4 PCI33 Output Adjusters LVDS25E LVDS 2.5 E -0.18 ns LVDS254 LVDS 2.5 -0.30 ns BLVDS25 BLVDS 2.5 -0.04 ns LVPECL33 LVPECL 3.3 0.05 ns LVTTL33_4mA LVTTL 4mA drive 0.05 ns LVTTL33_8mA LVTTL 8mA drive 0.08 ns LVTTL33_12mA LVTTL 12mA drive -0.01 ns LVTTL33_16mA LVTTL 16mA drive 0.70 ns LVCMOS33_4mA LVCMOS 3.3 4mA drive 0.05 ns LVCMOS33_8mA LVCMOS 3.3 8mA drive 0.08 ns LVCMOS33_12mA LVCMOS 3.3 12mA drive -0.01 ns LVCMOS33_14mA LVCMOS 3.3 14mA drive 0.70 ns LVCMOS25_4mA LVCMOS 2.5 4mA drive 0.07 ns LVCMOS25_8mA LVCMOS 2.5 8mA drive 0.13 ns LVCMOS25_12mA LVCMOS 2.5 12mA drive 0.00 ns LVCMOS25_14mA LVCMOS 2.5 14mA drive 0.47 ns LVCMOS18_4mA LVCMOS 1.8 4mA drive 0.15 ns LVCMOS18_8mA LVCMOS 1.8 8mA drive 0.06 ns LVCMOS18_12mA LVCMOS 1.8 12mA drive -0.08 ns LVCMOS18_14mA LVCMOS 1.8 14mA drive 0.09 ns LVCMOS15_4mA LVCMOS 1.5 4mA drive 0.22 ns LVCMOS15_8mA LVCMOS 1.5 8mA drive 0.07 ns LVCMOS12_2mA LVCMOS 1.2 2mA drive 0.36 ns LVCMOS12_6mA LVCMOS 1.2 6mA drive 0.07 ns PCI334 PCI33 2.59 ns 1. Timing adders are characterized but not tested on every device. 2. LVCMOS timing is measured with the load specified in Switching Test Conditions table. 3. All other standards tested according to the appropriate specifications. 4. I/O standard only available in LCMXO1200 and LCMXO2280 devices. Rev. A 0.19 3-15 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor sysCLOCK PLL Timing Over Recommended Operating Conditions Parameter Descriptions Conditions Min. Max. Units fIN Input Clock Frequency (CLKI, CLKFB) 25 420 MHz fOUT Output Clock Frequency (CLKOP, CLKOS) 25 420 MHz fOUT2 K-Divider Output Frequency (CLKOK) 0.195 210 MHz fVCO PLL VCO Frequency 420 840 MHz fPFD Phase Detector Input Frequency 25 — MHz AC Characteristics tPH Default duty cycle selected3 Output Clock Duty Cycle tDT 4 45 55 % — 0.05 UI Fout ≥ 100MHz — +/-120 ps Fout < 100MHz — 0.02 UIPP Output Phase Accuracy tOPJIT1 Output Clock Period Jitter tSK Input Clock to Output Clock Skew Divider ratio = integer — +/-200 ps tW Output Clock Pulse Width At 90% or 10%3 1 — ns tLOCK2 PLL Lock-in Time tPA Programmable Delay Unit tIPJIT tFBKDLY tHI Input Clock High Time 90% to 90% 0.5 — ns tLO Input Clock Low Time 10% to 10% 0.5 — ns tRST RST Pulse Width 10 — ns — 150 µs 100 450 ps Input Clock Period Jitter — +/-200 ps External Feedback Delay — 10 ns 1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. 2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment. 3. Using LVDS output buffers. 4. CLKOS as compared to CLKOP output. Rev. A 0.19 LA-MachXO “C” Sleep Mode Timing Symbol tPWRDN Parameter Device SLEEPN Low to Power Down Min. Typ. Max Units All — — 400 ns LCMXO256 — — 400 µs tPWRUP SLEEPN High to Power Up — — 600 µs tWSLEEPN SLEEPN Pulse Width All 400 — — ns tWAWAKE SLEEPN Pulse Rejection All — — 100 ns LCMXO640 Rev. A 0.19 Power Down Mode I/O tPWRUP tPWRDN SLEEPN tWSLEEPN or tWAWAKE 3-16 DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Flash Download Time Symbol Parameter LCMXO256 tREFRESH Minimum VCC or VCCAUX LCMXO640 (later of the two supplies) LCMXO1200 to Device I/O Active LCMXO2280 Min. Typ. Max. Units — — 0.4 ms — — 0.6 ms — — 0.8 ms — — 1.0 ms JTAG Port Timing Specifications Over Recommended Operating Conditions Symbol Parameter Min. Max. Units fMAX TCK [BSCAN] clock frequency — 25 MHz tBTCP TCK [BSCAN] clock pulse width 40 — ns tBTCPH TCK [BSCAN] clock pulse width high 20 — ns tBTCPL TCK [BSCAN] clock pulse width low 20 — ns tBTS TCK [BSCAN] setup time 8 — ns tBTH TCK [BSCAN] hold time 10 — ns tBTRF TCK [BSCAN] rise/fall time 50 — mV/ns tBTCO TAP controller falling edge of clock to output valid — 10 ns tBTCODIS TAP controller falling edge of clock to output disabled — 10 ns tBTCOEN TAP controller falling edge of clock to output enabled — 10 ns tBTCRS BSCAN test capture register setup time 8 — ns tBTCRH BSCAN test capture register hold time 25 — ns tBUTCO BSCAN test update register, falling edge of clock to output valid — 25 ns tBTUODIS BSCAN test update register, falling edge of clock to output disabled — 25 ns tBTUPOEN BSCAN test update register, falling edge of clock to output enabled — 25 ns Rev. A 0.19 Figure 3-5. JTAG Port Timing Waveforms TMS TDI tBTS tBTCPH tBTH tBTCP tBTCPL TCK tBTCO tBTCOEN TDO Valid Data tBTCRS Data to be captured from I/O tBTCODIS Valid Data tBTCRH Data Captured tBTUPOEN tBUTCO Data to be driven out to I/O Valid Data 3-17 tBTUODIS Valid Data DC and Switching Characteristics LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Switching Test Conditions Figure 3-6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5. Figure 3-6. Output Test Load, LVTTL and LVCMOS Standards VT R1 DUT Test Poi nt CL Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces Test Condition LVTTL and LVCMOS settings (L -> H, H -> L) R1 ∞ CL 0pF Timing Ref. LVTTL, LVCMOS 3.3 = 1.5V — LVCMOS 2.5 = VCCIO/2 — LVCMOS 1.8 = VCCIO/2 — LVCMOS 1.5 = VCCIO/2 — LVCMOS 1.2 = VCCIO/2 LVTTL and LVCMOS 3.3 (Z -> H) 1.5 LVTTL and LVCMOS 3.3 (Z -> L) Other LVCMOS (Z -> H) Other LVCMOS (Z -> L) 188 0pF VT — VOL VOH VCCIO/2 VOL VCCIO/2 VOH LVTTL + LVCMOS (H -> Z) VOH - 0.15 VOL LVTTL + LVCMOS (L -> Z) VOL - 0.15 VOH Note: Output test conditions for all other interfaces are determined by the respective standards. 3-18 LA-MachXO Automotive Family Data Sheet Pinout Information November 2007 Data Sheet DS1003 Signal Descriptions Signal Name I/O Descriptions General Purpose [Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top). [Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number. P[Edge] [Row/Column Number]_[A/B/C/D/E/F] I/O [A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected. Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic. During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled. GSRN I Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin. TSALL I TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin. NC — No connect. GND — GND - Ground. Dedicated pins. VCC — VCC - The power supply pins for core logic. Dedicated pins. VCCAUX — VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins. VCCIOx — VCCIO - The power supply pins for I/O Bank x. Dedicated pins. SLEEPN1 I Sleep Mode pin - Active low sleep pin. When this pin is held high, the device operates normally. This pin has a weak internal pull-up, but when unused, an external pull-up to VCC is recommended. When driven low, the device moves into Sleep mode after a specified time. PLL and Clock Functions (Used as user programmable I/O pins when not used for PLL or clock pins) [LOC][0]_PLL[T, C]_IN — Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement. [LOC][0]_PLL[T, C]_FB — Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement. PCLK [n]_[1:0] — Primary Clock Pads, n per side. Test and Programming (Dedicated pins) TMS I Test Mode Select input pin, used to control the 1149.1 state machine. TCK I Test Clock input pin, used to clock the 1149.1 state machine. TDI I Test Data input pin, used to load data into the device using an 1149.1 state machine. TDO O Output pin -Test Data output pin used to shift data out of the device using 1149.1. 1. Applies to LA-MachXO “C” devices only. NC for “E” devices. © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 4-1 DS1003 Pinouts_01.3 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Pin Information Summary LAMXO256C/E Pin Type LAMXO640C/E 100 TQFP 100 TQFP 144 TQFP 256 ftBGA Single Ended User I/O 78 74 113 159 Differential Pair User I/O1 38 17 43 79 Muxed 6 6 6 6 TAP 4 4 4 4 Dedicated (Total Without Supplies) 5 5 5 5 VCC 2 2 4 4 VCCAUX VCCIO 1 1 2 2 Bank0 3 2 2 4 Bank1 3 2 2 4 Bank2 — 2 2 4 Bank3 — 2 2 4 8 10 12 18 GND NC Single Ended/Differential I/O per Bank 0 0 0 52 Bank0 41/20 18/5 29/10 42/21 Bank1 37/18 21/4 30/11 40/20 Bank2 — 14/2 24/9 36/18 Bank3 — 21/6 30/13 40/20 1. These devices support emulated LVDS outputs. LVDS inputs are not supported. LAMXO1200E Pin Type Single Ended User I/O Differential Pair User I/O 1 LAMXO2280E 100 TQFP 144 TQFP 256 ftBGA 100 TQFP 144 TQFP 256 ftBGA 324 ftBGA 73 113 211 73 113 211 271 27 48 105 30 47 105 134 Muxed 6 6 6 6 6 6 6 TAP 4 4 4 4 4 4 4 Dedicated (Total Without Supplies) 5 5 5 5 5 5 5 VCC 4 4 4 2 4 4 6 VCCAUX 2 2 2 2 2 2 2 Bank0 1 1 2 1 1 2 2 Bank1 1 1 2 1 1 2 2 Bank2 1 1 2 1 1 2 2 Bank3 1 1 2 1 1 2 2 Bank4 1 1 2 1 1 2 2 Bank5 1 1 2 1 1 2 2 Bank6 1 1 2 1 1 2 2 Bank7 1 1 2 1 1 2 2 GND 8 12 18 8 12 18 24 NC 0 0 0 0 0 0 0 Bank0 10/3 14/6 26/13 9/3 13/6 24/12 34/17 Bank1 8/2 15/7 28/14 9/3 16/7 30/15 36/18 Bank2 10/4 15/7 26/13 10/4 15/7 26/13 34/17 Single Ended/Differential I/O Bank3 per Bank Bank4 11/5 15/7 28/14 11/5 15/7 28/14 34/17 8/3 14/5 27/13 8/3 14/4 29/14 35/17 Bank5 5/2 10/4 22/11 5/2 10/4 20/10 30/15 Bank6 10/3 15/6 28/14 10/4 15/6 28/14 34/17 Bank7 11/5 15/6 26/13 11/5 15/6 26/13 34/17 VCCIO 1. These devices support on-chip LVDS buffers for left and right I/O Banks. 4-2 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Power Supply and NC Signal 100 TQFP1 144 TQFP1 VCC LAMXO256/640: 35, 90 LAMXO1200/2280: 17, 35, 66, 91 21, 52, 93, 129 VCCIO0 LAMXO256: 60, 74, 92 LAMXO640: 80, 92 LAMXO1200/2280: 94 LAMXO640: 117, 135 LAMXO1200/2280: 135 VCCIO1 LAMXO256: 10, 24, 41 LAMXO640: 60, 74 LAMXO1200/2280: 80 LAMXO640: 82, 98 LAMXO1200/2280: 117 VCCIO2 LAMXO256: None LAMXO640: 29, 41 LAMXO1200/2280: 70 LAMXO640: 38, 63 LAMXO1200/2280: 98 VCCIO3 LAMXO256: None LAMXO640: 10, 24 LAMXO1200/2280: 56 LAMXO640: 10, 26 LAMXO1200/2280: 82 VCCIO4 LAMXO256/640: None LAMXO1200/2280: 44 LAMXO640: None LAMXO1200/2280: 63 VCCIO5 LAMXO256/640: None LAMXO1200/2280: 27 LAMXO640: None LAMXO1200/2280: 38 VCCIO6 LAMXO256/640: None LAMXO1200/2280: 20 LAMXO640: None LAMXO1200/2280: 26 VCCIO7 LAMXO256/640: None LAMXO1200/2280: 6 LAMXO640: None LAMXO1200/2280: 10 VCCAUX LAMXO256/640: 88 LAMXO1200/2280: 36, 90 53, 128 GND2 LAMXO256: 40, 84, 62, 75, 93, 12, 25, 42 LAMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25 LAMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26 16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27 NC3 1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise. 2. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane. 3. NC pins should not be connected to any active signals, VCC or GND. 4-3 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor Power Supply and NC (Cont.) 256 ftBGA1 Signal 324 ftBGA1 VCC G7, G10, K7, K10 F14, G11, G9, H7, L7, M9 VCCIO0 LAMXO640: F8, F7, F9, F10 LAMXO1200/2280: F8, F7 G8, G7 VCCIO1 LAMXO640: H11, G11, K11, J11 LAMXO1200/2280: F9, F10 G12, G10 VCCIO2 LAMXO640: L9, L10, L8, L7 LAMXO1200/2280: H11, G11 J12, H12 VCCIO3 LAMXO640: K6, J6, H6, G6 LAMXO1200/2280: K11, J11 L12, K12 VCCIO4 LAMXO640: None LAMXO1200/2280: L9, L10 M12, M11 VCCIO5 LAMXO640: None LAMXO1200/2280: L8, L7 M8, R9 VCCIO6 LAMXO640: None LAMXO1200/2280: K6, J6 M7, K7 VCCIO7 LAMXO640: None LAMXO1200/2280: H6, G6 H6, J7 VCCAUX T9, A8 M10, F9 GND2 A1, A16, F11, G8, G9, H7, H8, H9, H10, J7, J8, J9, J10, K8, K9, L6, T1, T16 E14, F16, H10, H11, H8, H9, J10, J11, J4, J8, J9, K10, K11, K17, K8, K9, L10, L11, L8, L9, N2, P14, P5, R7 NC3 LAMXO640: E4, E5, F5, F6, C3, C2, G4, G5, H4, H5, — K5, K4, M5, M4, P2, P3, N5, N6, M7, M8, N10, N11, R15, R16, P15, P16, M11, L11, N12, N13, M13, M12, K12, J12, F12, F13, E12, E13, D13, D14, B15, A15, C14, B14, E11, E10, E7, E6, D4, D3, B3, B2 LAMXO1200: None LAMXO2280: None 1. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally. 2. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane. 3. NC pins should not be connected to any active signals, VCC or GND. 4-4 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO256 and LA-MachXO640 Logic Signal Connections: 100 TQFP LAMXO256 Pin Number Ball Function Bank 1 PL2A 2 3 LAMXO640 Differential Ball Function Bank 1 T PL2A 3 PL2B 1 C PL2C 3 T PL3A 1 T PL2B 3 C 4 PL3B 1 C PL2D 3 C 5 PL3C 1 T PL3A 3 T 6 PL3D 1 C PL3B 3 C 7 PL4A 1 T PL3C 3 T 8 PL4B 1 C PL3D 3 C 9 PL5A 1 T PL4A 3 10 VCCIO1 1 11 PL5B 1 12 GNDIO1 1 13 PL5C 1 14 PL5D 1 15 PL6A 1 16 PL6B 1 C PL8C 3 17 PL7A 1 T PL8D 3 18 PL7B 1 C PL9A 3 19 PL7C 1 T PL9C 3 20 PL7D 1 C PL10A 3 21 PL8A 1 T PL10C 3 22 PL8B 1 C PL11A 3 23 PL9A 1 T PL11C 3 24 VCCIO1 1 VCCIO3 3 25 GNDIO1 1 GNDIO3 3 26 TMS 1 27 PL9B 1 28 TCK 1 29 PB2A 1 30 PB2B 1 31 TDO 1 32 PB2C 1 33 TDI 1 34 PB2D 1 35 VCC - 36 PB3A 1 37 PB3B 1 38 PB3C 1 39 PB3D 1 Dual Function C T GSRN TSALL 3 GNDIO3 3 PL4D 3 PL5B 3 T PL7B 3 TMS 2 C PB2C 2 TCK 2 T VCCIO2 2 C GNDIO2 2 TDO 2 PB4C 2 TDI 2 PB4E 2 VCC - TCK TDO T TDI C PCLK1_0** 3 PL4C C TMS PCLK1_1** VCCIO3 T PB5B 2 C PB5D 2 T PB6B 2 C PB6C 2 40 GND - GND - 41 VCCIO1 1 VCCIO2 2 4-5 Dual Function Differential T T C GSRN TSALL T C TMS TCK TDO TDI PCLK2_1** PCLK2_0** Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO256 and LA-MachXO640 Logic Signal Connections: 100 TQFP (Cont.) LAMXO256 Pin Number Ball Function 42 GNDIO1 1 GNDIO2 2 43 PB4A 1 T PB8B 2 Bank Dual Function LAMXO640 Differential Ball Function Bank Dual Function Differential 44 PB4B 1 C PB8C 2 T 45 PB4C 1 T PB8D 2 C 46 PB4D 1 C PB9A 2 47 PB5A 1 PB9C 2 48* SLEEPN - 49 PB5C 1 T 50 PB5D 1 51 PR9B 0 52 PR9A 0 T 53 PR8B 0 C 54 PR8A 0 T PR11A 1 T 55 PR7D 0 C PR10D 1 C 56 PR7C 0 T PR10C 1 T 57 PR7B 0 C PR10B 1 C 58 PR7A 0 T PR10A 1 T 59 PR6B 0 C PR9D 1 60 VCCIO0 0 61 PR6A 0 62 GNDIO0 0 63 PR5D 0 64 PR5C 65 PR5B 66 PR5A 67 PR4B 68 PR4A 69 PR3D 70 PR3C 71 PR3B 72 PR3A 73 PR2B 74 VCCIO0 75 GNDIO0 76 PR2A 0 77 PT5C 0 78 PT5B 0 79 PT5A 0 80 PT4F 0 81 PT4E 0 82 PT4D 0 SLEEPN T SLEEPN - PB9D 2 C PB9F 2 C PR11D 1 C PR11B 1 C PR11C 1 T T VCCIO1 1 PR9B 1 GNDIO1 1 C PR7B 1 0 T PR6C 1 0 C PR6B 1 0 T PR5D 1 0 C PR5B 1 0 T PR4D 1 0 C PR4B 1 0 T PR3D 1 0 C PR3B 1 0 T PR2D 1 0 C PR2B 1 0 VCCIO1 1 0 GNDIO1 1 T SLEEPN C PT9F 0 C PT9E 0 T C PT9C 0 T PT9A 0 C VCCIO0 0 T GNDIO0 0 C PT7E 0 4-6 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO256 and LA-MachXO640 Logic Signal Connections: 100 TQFP (Cont.) LAMXO256 Dual Function LAMXO640 Pin Number Ball Function Bank Differential Ball Function Bank T PT7A 0 GND - 83 PT4C 0 84 GND - 85 PT4B 0 PCLK0_1** C PT6B 0 PCLK0_1** 86 PT4A 0 PCLK0_0** T PT5B 0 PCLK0_0** 87 PT3D 0 88 VCCAUX - 89 PT3C 0 90 VCC - 91 PT3B 0 92 VCCIO0 0 93 GNDIO0 0 GNDIO0 0 94 PT3A 0 T PT3B 0 95 PT2F 0 C PT3A 0 T 96 PT2E 0 T PT2F 0 C 97 PT2D 0 C PT2E 0 T 98 PT2C 0 T PT2B 0 C 99 PT2B 0 C PT2C 0 100 PT2A 0 T PT2A 0 C T C * NC for “E” devices. ** Primary clock inputs are single-ended. 4-7 PT5A 0 VCCAUX - PT4F 0 VCC - PT3F 0 VCCIO0 0 Dual Function Differential C T C T Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 100 TQFP LAMXO1200 Dual Function LAMXO2280 Pin Number Ball Function Differential Ball Function Bank Bank Dual Function 1 PL2A Differential 7 T PL2A 7 LUM0_PLLT_FB_A T 2 3 PL2B 7 C PL2B 7 LUM0_PLLC_FB_A C PL3C 7 T PL3C 7 LUM0_PLLT_IN_A T 4 5 PL3D 7 C PL3D 7 LUM0_PLLC_IN_A C PL4B 7 PL4B 7 6 VCCIO7 7 7 PL6A 7 8 PL6B 7 9 GND - 10 PL7C 7 11 PL7D 7 12 PL8C 7 13 PL8D 7 14 PL9C 6 15 PL10A 6 T* 16 PL10B 6 C* 17 VCC - 18 PL11B 6 19 PL11C 6 20 VCCIO6 6 VCCIO6 6 21 PL13C 6 PL16C 6 22 PL14A 6 LLM0_PLLT_FB_A T* PL17A 6 LLM0_PLLT_FB_A T* 23 PL14B 6 LLM0_PLLC_FB_A C* PL17B 6 LLM0_PLLC_FB_A C* 24 PL15A 6 LLM0_PLLT_IN_A T* PL18A 6 LLM0_PLLT_IN_A T* 25 PL15B 6 LLM0_PLLC_IN_A C* PL18B 6 LLM0_PLLC_IN_A C* 26** GNDIO6 GNDIO5 - GNDIO6 GNDIO5 - 27 VCCIO5 5 28 TMS 5 TMS TCK GSRN VCCIO7 7 T* PL7A 7 C* PL7B 7 GND - T PL9C 7 T C PL9D 7 C T PL10C 7 T C PL10D 7 C PL11C 6 PL13A 6 T* PL13B 6 C* VCC - PL14D 6 PL14C 6 TSALL T* GSRN C* C TSALL VCCIO5 5 TMS 5 TMS TCK 5 TCK PB3B 5 T 29 TCK 5 30 PB3B 5 31 PB4A 5 T PB4A 5 T 32 PB4B 5 C PB4B 5 C 33 TDO 5 TDO TDO 5 TDO 34 TDI 5 TDI TDI 5 TDI 35 VCC - VCC - 36 VCCAUX - VCCAUX - 37 PB6E 5 T PB8E 5 T 38 PB6F 5 C PB8F 5 C 39 PB7B 4 PCLK4_1*** PB10F 4 PCLK4_1*** 40 PB7F 4 PCLK4_0*** PB10B 4 PCLK4_0*** 4-8 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 100 TQFP (Cont.) LAMXO1200 Pin Number Ball Function Bank Dual Function LAMXO2280 Differential Ball Function GND - PB12A 4 T PB12B 4 C VCCIO4 4 Bank Dual Function Differential 41 GND - 42 PB9A 4 T 43 PB9B 4 C 44 VCCIO4 4 45 PB10A 4 T PB13A 4 T 46 PB10B 4 C PB13B 4 C NC - PB16A 4 T C 47 NC - 48 PB11A 4 NC T 49 PB11B 4 C 50** GNDIO3 GNDIO4 51 NC PB16B 4 - GNDIO3 GNDIO4 - PR16B 3 PR19B 3 52 PR15B 3 C* PR18B 3 C* 53 PR15A 3 T* PR18A 3 T* 54 PR14B 3 C* PR17B 3 C* 55 PR14A 3 T* PR17A 3 T* 56 VCCIO3 3 VCCIO3 3 57 PR12B 3 C* PR15B 3 C* 58 PR12A 3 T* PR15A 3 T* 59 GND - GND - 60 PR10B 3 C* PR13B 3 C* 61 PR10A 3 T* PR13A 3 T* 62 PR9B 3 C* PR11B 3 C* 63 PR9A 3 T* PR11A 3 T* 64 PR8B 2 C* PR10B 2 C* 65 PR8A 2 T* PR10A 2 T* 66 VCC - VCC - 67 PR6C 2 PR8C 2 68 PR6B 2 C* PR8B 2 C* 69 PR6A 2 T* PR8A 2 T* 70 VCCIO2 2 VCCIO2 2 71 PR4D 2 PR5D 2 72 PR4B 2 C* PR5B 2 C* 73 PR4A 2 T* PR5A 2 T* 74 PR2B 2 C PR3B 2 C* 75 PR2A 2 T PR3A 2 T* 76** GNDIO1 GNDIO2 - GNDIO1 GNDIO2 - 77 PT11C 1 PT15C 1 78 PT11B 1 C PT14B 1 C 79 PT11A 1 T PT14A 1 T 4-9 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 100 TQFP (Cont.) LAMXO1200 Pin Number Ball Function 80 VCCIO1 1 VCCIO1 1 81 PT9E 1 PT12D 1 C 82 PT9A 1 PT12C 1 T 83 GND - GND - 84 PT8B 1 C PT11B 1 C 85 PT8A 1 T PT11A 1 T 86 PT7D 1 PCLK1_1*** PT10B 1 PCLK1_1*** 87 PT6F 0 PCLK1_0*** PT9B 1 PCLK1_0*** 88 PT6D 0 C PT8F 0 C 89 PT6C 0 T PT8E 0 T 90 VCCAUX - VCCAUX - 91 VCC - VCC - 92 PT5B 0 PT6D 0 93 PT4B 0 PT6F 0 94 VCCIO0 0 VCCIO0 0 95 PT3D 0 C PT4B 0 C 96 PT3C 0 T PT4A 0 T 97 PT3B 0 PT3B 0 98 PT2B 0 C PT2B 0 C 99 PT2A 0 T PT2A 0 T 100** GNDIO0 GNDIO7 - GNDIO0 GNDIO7 - Bank Dual Function LAMXO2280 Differential *Supports true LVDS outputs. **Double bonded to the pin. *** Primary clock inputs are single-ended. 4-10 Ball Function Bank Dual Function Differential Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 144 TQFP LAMXO640 Pin Number Ball Function Bank 1 PL2A 2 Dual Function LAMXO1200 Dual Function LAMXO2280 Differential Ball Function Differential Ball Function Bank Bank Dual Function 3 T PL2A 7 T PL2A 7 LUM0_PLLT_FB_A PL2C 3 T T PL2B 7 C PL2B 7 LUM0_PLLC_FB_A C 3 PL2B 3 4 PL3A 3 C PL3A 7 T* PL3A 7 T* T PL3B 7 C* PL3B 7 C* 5 PL2D 3 C PL3C 6 PL3B 3 C PL3D 7 T PL3C 7 LUM0_PLLT_IN_A T 7 C PL3D 7 LUM0_PLLC_IN_A C 7 PL3C 3 T PL4A 7 T* PL4A 7 T* 8 PL3D 3 C PL4B 7 C* PL4B 7 C* Differential 9 PL4A 3 PL4C 7 PL4C 7 10 VCCIO3 3 VCCIO7 7 VCCIO7 7 11 GNDIO3 3 GNDIO7 7 GNDIO7 7 12 PL4D 3 PL5C 7 PL6C 7 13 PL5A 3 T PL6A 7 14 PL5B 3 C PL6B 7 15 PL5D 3 PL6D 16 GND - GND 17 PL6C 3 T PL7C 7 18 PL6D 3 C PL7D 7 19 PL7A 3 T PL10A 6 T* PL13A 6 T* 20 PL7B 3 C PL10B 6 C* PL13B 6 C* VCC - VCC - T PL11A 6 T* PL13D 6 C* PL14D 6 PL14C 6 PL15B 6 6 GSRN T* PL7A 7 C* PL7B 7 7 PL7D 7 - GND - T PL9C 7 T C PL9D 7 C GSRN T* GSRN C* 21 VCC - 22 PL8A 3 23 PL8B 3 24 PL8C 3 25 PL9C 3 26 VCCIO3 3 VCCIO6 6 VCCIO6 27 GNDIO3 3 GNDIO6 6 GNDIO6 6 28 PL9D 3 C PL13D 6 PL16D 6 29 PL10A 3 T PL14A 6 LLM0_PLLT_FB_A T* PL17A 6 LLM0_PLLT_FB_A T* 30 PL10B 3 C PL14B 6 LLM0_PLLC_FB_A C* PL17B 6 LLM0_PLLC_FB_A C* 31 PL10C 3 T PL14C 6 T PL17C 6 T 32 PL11A 3 T PL14D 6 C PL17D 6 C 33 PL10D 3 C PL15A 6 LLM0_PLLT_IN_A T* PL18A 6 LLM0_PLLT_IN_A T* 34 PL11C 3 T PL15B 6 LLM0_PLLC_IN_A C* PL18B 6 LLM0_PLLC_IN_A C* 35 PL11B 3 C PL16A 6 T PL19A 6 T 36 PL11D 3 C PL16B 6 C PL19B 6 C 37 GNDIO2 2 GNDIO5 5 GNDIO5 5 38 VCCIO2 2 VCCIO5 5 VCCIO5 5 39 TMS 2 40 PB2C 2 41 PB3A 2 42 TCK 2 43 PB3B 44 C TSALL T TMS PL11B 6 PL11C 6 PL12B 6 TSALL T TMS 5 TMS 5 PB2C 5 T PB2A 5 T T PB2D 5 C PB2B 5 C TCK 5 TCK 5 2 C PB3A 5 T PB3A 5 T PB3C 2 T PB3B 5 C PB3B 5 C 45 PB3D 2 C PB4A 5 T PB4A 5 T 46 PB4A 2 T PB4B 5 C PB4B 5 C 47 TDO 2 TDO 5 48 PB4B 2 C PB4D 5 49 PB4C 2 T PB5A 5 50 PB4D 2 C PB5B 5 TCK TDO TMS C TSALL TCK TDO 4-11 TMS TCK TDO 5 PB4D 5 TDO T PB5A 5 T C PB5B 5 C Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 144 TQFP (Cont.) LAMXO640 Pin Number Ball Function Bank Dual Function 51 TDI 2 TDI LAMXO1200 Differential Ball Function Bank Dual Function TDI 5 TDI LAMXO2280 Differential Ball Function Bank Dual Function TDI 5 TDI Differential 52 VCC - VCC - VCC - 53 VCCAUX - VCCAUX - VCCAUX - 54 PB5A 2 T PB6F 5 PB8F 5 55 PB5B 2 C PB7B 4 56 PB5D 2 PB7C 4 57 PB6A 2 T PB7D 4 58 PB6B 2 C PB7F 4 59 GND - GND - 60 PB7C 2 PB9A 4 T PB12A 4 T 61 PB7E 2 PB9B 4 C PB12B 4 C 62 PB8A 2 PB9E 4 PB12E 4 63 VCCIO2 2 VCCIO4 4 VCCIO4 4 64 GNDIO2 2 GNDIO4 4 GNDIO4 4 65 PB8C 2 T PB10A 4 T PB13A 4 T 66 PB8D 2 C PB10B 4 C PB13B 4 C 67 PB9A 2 T PB10C 4 T PB13C 4 T 68 PB9C 2 T PB10D 4 C PB13D 4 C C PB10F 4 PB14D 4 NC - NC - PB11C 4 T PB16C 4 T PB11D 4 C PB16D 4 C C PCLKT2_1*** PCLKT2_0*** PCLK4_1*** PB10F 4 T PB10C 4 T C PB10D 4 C PB10B 4 GND - PCLK4_0*** PCLK4_1*** PCLK4_0*** 69 PB9B 2 70** SLEEPN - 71 PB9D 2 72 PB9F 2 73 PR11D 1 C PR16B 3 C PR20B 3 74 PR11B 1 C PR16A 3 T PR20A 3 T 75 PR11C 1 T PR15B 3 C* PR19B 3 C 76 PR10D 1 C PR15A 3 T* PR19A 3 T 77 PR11A 1 T PR14D 3 C PR17D 3 C 78 PR10B 1 C PR14C 3 T PR17C 3 T 79 PR10C 1 T PR14B 3 C* PR17B 3 C* 80 PR10A 1 T PR14A 3 T* T* 81 PR9D 1 PR13D 3 SLEEPN C PR17A 3 PR16D 3 3 82 VCCIO1 1 VCCIO3 3 VCCIO3 83 GNDIO1 1 GNDIO3 3 GNDIO3 3 84 PR9A 1 PR12B 3 C* PR15B 3 85 PR8C 1 PR12A 3 T* PR15A 3 T* 86 PR8A 1 PR11B 3 C* PR14B 3 C* 87 PR7D 1 PR11A 3 T* PR14A 3 T* 88 GND - GND - GND - 89 PR7B 1 C PR10B 3 C* PR13B 3 90 PR7A 1 T PR10A 3 T* PR13A 3 T* 91 PR6D 1 C PR8B 2 C* PR10B 2 C* 92 PR6C 1 T PR8A 2 T* PR10A 2 T* 93 VCC - VCC - VCC - 94 PR5D 1 PR6B 2 C* PR8B 2 95 PR5B 1 PR6A 2 T* PR8A 2 T* 96 PR4D 1 PR5B 2 C* PR7B 2 C* 97 PR4B 1 T* T* 98 VCCIO1 1 99 GNDIO1 1 100 PR4A 1 C T PR5A 2 PR7A 2 VCCIO2 2 VCCIO2 2 GNDIO2 2 GNDIO2 2 PR4C 2 PR5C 2 4-12 C* C* C* Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 144 TQFP (Cont.) LAMXO640 Pin Number Ball Function Bank 101 PR3D 102 Dual Function LAMXO1200 Differential Ball Function Bank 1 C PR4B PR3C 1 T 103 PR3B 1 104 PR2D 105 LAMXO2280 Differential Ball Function Bank 2 C* PR5B 2 C* PR4A 2 T* PR5A 2 T* C PR3D 2 C PR4D 2 C 1 C PR3C 2 T PR4C 2 T PR3A 1 T PR3B 2 C* PR4B 2 C* 106 PR2B 1 C PR3A 2 T* PR4A 2 T* 107 PR2C 1 T PR2B 2 C PR3B 2 C* 108 PR2A 1 T PR2A 2 T PR3A 2 T* 109 PT9F 0 C PT11D 1 C PT16D 1 C 110 PT9D 0 C PT11C 1 T PT16C 1 T 111 PT9E 0 T PT11B 1 C PT16B 1 C 112 PT9B 0 C PT11A 1 T PT16A 1 T 113 PT9C 0 T PT10F 1 C PT15D 1 C 114 PT9A 0 T 115 PT8C 0 116 PT8B 0 117 VCCIO0 0 118 GNDIO0 0 119 PT8A 0 120 PT7E 121 C Dual Function Dual Function Differential PT10E 1 T PT15C 1 T PT10D 1 C PT14B 1 C PT10C 1 T T VCCIO1 1 PT14A 1 VCCIO1 1 GNDIO1 1 GNDIO1 1 PT9F 1 C PT12F 1 0 PT9E 1 T PT12E 1 T PT7C 0 PT9B 1 C PT12D 1 C 122 PT7A 0 PT9A 1 T PT12C 1 T 123 GND - GND - GND - 124 PT6B 0 125 PT6A 0 126 PT5C 0 127 PT5B 0 128 VCCAUX 129 VCC 130 T PCLK0_1*** C PT7D 1 PT10B 1 T PT7B 1 C PT9D 1 PT7A 1 T PT9C 1 PT6F 0 PT9B 1 - VCCAUX - VCCAUX - - VCC - VCC - PT4D 0 PT5D 0 C PT7B 0 C 131 PT4B 0 C PT5C 0 T PT7A 0 T 132 PT4A 0 T PT5B 0 C PT6D 0 133 PT3F 0 PT5A 0 T PT6E 0 T 134 PT3D 0 PT4B 0 PT6F 0 C PCLK0_0*** PCLK1_1*** C PCLK1_0*** PCLK1_1*** C T PCLK1_0*** 135 VCCIO0 0 VCCIO0 0 VCCIO0 0 136 GNDIO0 0 GNDIO0 0 GNDIO0 0 137 PT3B 0 C PT3D 0 C PT4B 0 T 138 PT2F 0 C PT3C 0 T PT4A 0 C 139 PT3A 0 T PT3B 0 C PT3B 0 C 140 PT2D 0 C PT3A 0 T PT3A 0 T 141 PT2E 0 T PT2D 0 C PT2D 0 C 142 PT2B 0 C PT2C 0 T PT2C 0 T 143 PT2C 0 T PT2B 0 C PT2B 0 C 144 PT2A 0 T PT2A 0 T PT2A 0 T *Supports true LVDS outputs. **NC for “E” devices. ***Primary clock inputs arer single-ended. 4-13 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 256 ftBGA LAMXO640 Ball Ball Number Function Bank Dual Function LAMXO1200 Ball Ball Differential Number Function Bank Dual Function LAMXO2280 Ball Ball Differential Number Function Bank 7 Dual Function Differential GND GNDIO3 3 GND GNDIO7 GND GNDIO7 7 VCCIO3 VCCIO3 3 VCCIO7 VCCIO7 7 E4 NC E4 PL2A 7 T VCCIO7 VCCIO7 7 E4 PL2A 7 E5 NC E5 PL2B 7 C LUM0_PLLT_FB_A T E5 PL2B 7 LUM0_PLLC_FB_A C F5 NC F5 PL3A 7 T** F5 PL3A 7 T** F6 NC F6 PL3B 7 C** F6 PL3B 7 C** F3 PL3A 3 T F3 PL3C 7 T F3 PL3C 7 LUM0_PLLT_IN_A T F4 PL3B 3 C F4 PL3D 7 C F4 PL3D 7 LUM0_PLLC_IN_A C E3 PL2C 3 T E3 PL4A 7 T** E3 PL4A 7 T** E2 PL2D 3 C E2 PL4B 7 C** E2 PL4B 7 C** C3 NC C3 PL4C 7 T C3 PL4C 7 T C2 NC C2 PL4D 7 C C2 PL4D 7 C B1 PL2A 3 T B1 PL5A 7 T** B1 PL5A 7 T** C1 PL2B 3 C C1 PL5B 7 C** C1 PL5B 7 C** VCCIO3 VCCIO3 3 VCCIO7 VCCIO7 7 VCCIO7 VCCIO7 7 GND GNDIO3 3 GND GNDIO7 7 GND GNDIO7 7 D2 PL3C 3 T D2 PL5C 7 T D2 PL6C 7 T D1 PL3D 3 C D1 PL5D 7 C D1 PL6D 7 C F2 PL5A 3 G2 PL5B 3 T F2 PL6A 7 C G2 PL6B 7 E1 PL4A F1 PL4B 3 T E1 PL6C 3 C F1 PL6D G4 G5 NC G4 PL7A 7 T** G4 PL8A 7 T** NC G5 PL7B 7 C** G5 PL8B 7 C** GSRN T** F2 PL7A 7 C** G2 PL7B 7 7 T E1 PL7C 7 T 7 C F1 PL7D 7 C GSRN T** GSRN C** GND GND - GND GND - GND GND - G3 PL4C 3 T G3 PL7C 7 T G3 PL8C 7 T H3 PL4D 3 C H3 PL7D 7 C H3 PL8D 7 C H4 NC H4 PL8A 7 T** H4 PL9A 7 T** H5 NC H5 PL8B 7 C** H5 PL9B 7 C** - - VCCIO7 VCCIO7 7 VCCIO7 VCCIO7 7 - - GND GNDIO7 7 GND GNDIO7 7 G1 PL5C 3 T G1 PL8C 7 T G1 PL10C 7 T H1 PL5D 3 C H1 PL8D 7 C H1 PL10D 7 C H2 PL6A 3 T H2 PL9A 6 T** H2 PL11A 6 T** J2 PL6B 3 C J2 PL9B 6 C** J2 PL11B 6 C** J3 PL7C 3 T J3 PL9C 6 T J3 PL11C 6 T K3 PL7D 3 C K3 PL9D 6 C K3 PL11D 6 C J1 PL6C 3 T T** T** - - J1 PL10A 6 VCCIO6 VCCIO6 6 J1 PL12A 6 VCCIO6 VCCIO6 6 - - GND GNDIO6 6 GND GNDIO6 6 K1 PL6D 3 C K1 PL10B 6 C** K1 PL12B 6 K2 PL9A 3 T K2 PL10C 6 T K2 PL12C 6 T L2 PL9B 3 C L2 PL10D 6 C L2 PL12D 6 C C** L1 PL7A 3 T L1 PL11A 6 T** L1 PL13A 6 T** M1 PL7B 3 C M1 PL11B 6 C** M1 PL13B 6 C** C P1 PL11D 6 C P1 PL14D 6 T N1 PL11C 6 T N1 PL14C 6 PL12A 6 T** L3 PL15A 6 T** C** P1 PL8D 3 N1 PL8C 3 L3 PL10A 3 T L3 M3 PL10B 3 C M3 PL12B 6 C** M3 PL15B 6 M2 PL9C 3 T M2 PL12C 6 T M2 PL15C 6 T N2 PL9D 3 C N2 PL12D 6 C N2 PL15D 6 C TSALL TSALL VCCIO3 VCCIO3 3 VCCIO6 VCCIO6 6 VCCIO6 VCCIO6 6 GND GNDIO3 3 GND GNDIO6 6 GND GNDIO6 6 4-14 C TSALL T Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 256 ftBGA (Cont.) LAMXO640 Ball Ball Number Function Bank Dual Function LAMXO1200 Ball Ball Differential Number Function Bank Dual Function LAMXO2280 Ball Ball Differential Number Function Bank Dual Function Differential J4 PL8A 3 T J4 PL13A 6 T** J4 PL16A 6 T** J5 PL8B 3 C J5 PL13B 6 C** J5 PL16B 6 C** R1 PL11A 3 T R1 PL13C 6 T R1 PL16C 6 T R2 PL11B 3 C R2 PL13D 6 C R2 PL16D 6 C - - - - - - GND GND - K5 NC K5 PL14A 6 LLM0_PLLT_FB_A T** K5 PL17A 6 LLM0_PLLT_FB_A T** K4 NC K4 PL14B 6 LLM0_PLLC_FB_A C** K4 PL17B 6 LLM0_PLLC_FB_A C** L5 PL10C 3 T L5 PL14C 6 T L5 PL17C 6 T L4 PL10D 3 C L4 PL14D 6 C L4 PL17D 6 C M5 NC M5 PL15A 6 LLM0_PLLT_IN_A T** M5 PL18A 6 LLM0_PLLT_IN_A T** M4 NC M4 PL15B 6 LLM0_PLLC_IN_A C** M4 PL18B 6 LLM0_PLLC_IN_A C** N4 PL11C 3 T N4 PL16A 6 T N4 PL19A 6 T N3 PL11D 3 C N3 PL16B 6 C N3 PL19B 6 C VCCIO3 VCCIO3 3 VCCIO6 VCCIO6 6 VCCIO6 VCCIO6 6 GND GNDIO3 3 GND GNDIO6 6 GND GNDIO6 6 5 GND GNDIO2 2 GND GNDIO5 5 GND GNDIO5 VCCIO2 VCCIO2 2 VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5 P4 TMS 2 P4 TMS 5 P4 TMS 5 P2 NC P2 PB2A 5 T P2 PB2A 5 T P3 NC P3 PB2B 5 C P3 PB2B 5 C N5 PB2C 5 T N5 PB2C 5 R3 TCK 5 R3 TCK 5 N5 NC R3 TCK 2 TMS TCK TMS TCK TMS T TCK N6 NC N6 PB2D 5 C N6 PB2D 5 T2 PB2A 2 T T2 PB3A 5 T T2 PB3A 5 T T3 PB2B 2 C T3 PB3B 5 C T3 PB3B 5 C R4 PB2C 2 T R4 PB3C 5 T R4 PB3C 5 T R5 PB2D 2 C R5 PB3D 5 C R5 PB3D 5 C P5 PB3A 2 T P5 PB4A 5 T P5 PB4A 5 T P6 PB3B 2 C P6 PB4B 5 C P6 PB4B 5 C T5 PB3C 2 M6 TDO 2 T TDO T5 PB4C 5 M6 TDO 5 T TDO T5 PB4C 5 M6 TDO 5 C T TDO T4 PB3D 2 C T4 PB4D 5 C T4 PB4D 5 C R6 PB4A 2 T R6 PB5A 5 T R6 PB5A 5 T GND GNDIO2 2 GND GNDIO5 5 GND GNDIO5 5 VCCIO2 VCCIO2 2 VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5 T6 PB4B 2 T6 PB5B 5 T6 PB5B 5 N7 TDI 2 N7 TDI 5 N7 TDI 5 T8 PB4C 2 T T8 PB5C 5 T T8 PB6A 5 T T7 PB4D 2 C T7 PB5D 5 C T7 PB6B 5 C M7 NC M7 PB6A 5 T M7 PB7C 5 T M8 NC M8 PB6B 5 C M8 PB7D 5 C C TDI C TDI C TDI T9 VCCAUX - T9 VCCAUX - T9 VCCAUX - R7 PB4E 2 T R7 PB6C 5 T R7 PB8C 5 T R8 PB4F 2 C R8 PB6D 5 C R8 PB8D 5 C - - VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5 - - GND GNDIO5 5 GND GNDIO5 5 P7 PB5C 2 T P7 PB6E 5 T P7 PB9A 4 T P8 PB5D 2 C P8 PB6F 5 C P8 PB9B 4 C N8 PB5A 2 N9 PB5B 2 PCLK2_1**** T N8 PB7A 4 C N9 PB7B 4 PCLK4_1**** T N8 PB10E 4 C N9 PB10F 4 P10 PB7B 2 C P10 PB7D 4 C P10 PB10D 4 P9 PB7A 2 T P9 PB7C 4 T P9 PB10C 4 M9 PB6B 2 C M9 PB7F 4 C M9 PB10B 4 PCLK2_0**** PCLK4_0**** 4-15 T PCLK4_1**** C C T PCLK4_0**** C Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 256 ftBGA (Cont.) LAMXO640 Ball Ball Number Function Bank - Dual Function LAMXO1200 Ball Ball Differential Number Function Bank - VCCIO4 VCCIO4 Dual Function LAMXO2280 Ball Ball Differential Number Function Bank 4 VCCIO4 VCCIO4 Dual Function Differential 4 - - GND GNDIO4 4 GND GNDIO4 4 M10 PB6A 2 T M10 PB7E 4 T M10 PB10A 4 T R9 PB6C 2 T R9 PB8A 4 T R9 PB11C 4 T R10 PB6D 2 C R10 PB8B 4 C R10 PB11D 4 C T10 PB7C 2 T T10 PB8C 4 T T10 PB12A 4 T T11 PB7D 2 C T11 PB8D 4 C T11 PB12B 4 C N10 NC N10 PB8E 4 T N10 PB12C 4 T N11 NC N11 PB8F 4 C N11 PB12D 4 C VCCIO2 VCCIO2 2 VCCIO4 VCCIO4 4 VCCIO4 VCCIO4 4 GND GNDIO2 2 GND GNDIO4 4 GND GNDIO4 4 R11 PB7E 2 T R11 PB9A 4 T R11 PB13A 4 T R12 PB7F 2 C R12 PB9B 4 C R12 PB13B 4 C P11 PB8A 2 T P11 PB9C 4 T P11 PB13C 4 T P12 PB8B 2 C P12 PB9D 4 C P12 PB13D 4 C T13 PB8C 2 T T13 PB9E 4 T T13 PB14A 4 T T12 PB8D 2 C T12 PB9F 4 C T12 PB14B 4 C R13 PB9A 2 T R13 PB10A 4 T R13 PB14C 4 T R14 PB9B - C R14 PB10B 4 C R14 PB14D 4 C GND GND - GND GND - GND GND - T14 PB9C 2 T T14 PB10C 4 T T14 PB15A 4 T T15 PB9D 2 C T15 PB10D 4 C T15 PB15B 4 C P13*** SLEEPN - P14 PB9F 2 R15 R16 SLEEPN P13 NC - P13 NC - P14 PB10F 4 P14 PB15D 4 NC R15 PB11A 4 T R15 PB16A 4 T NC R16 PB11B 4 C R16 PB16B 4 C P15 NC P15 PB11C 4 T P15 PB16C 4 T P16 NC P16 PB11D 4 C P16 PB16D 4 C VCCIO2 VCCIO2 2 VCCIO4 VCCIO4 4 VCCIO4 VCCIO4 4 GND GNDIO2 2 GND GNDIO4 4 GND GNDIO4 4 3 GND GNDIO1 1 GND GNDIO3 3 GND GNDIO3 VCCIO1 VCCIO1 1 VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3 M11 NC M11 PR16B 3 C M11 PR20B 3 L11 NC L11 PR16A 3 T L11 PR20A 3 T N12 NC N12 PR15B 3 C** N12 PR18B 3 C** C N13 NC N13 PR15A 3 T** N13 PR18A 3 T** M13 NC M13 PR14D 3 C M13 PR17D 3 C M12 NC M12 PR14C 3 T M12 PR17C 3 T N14 PR11D 1 C N14 PR14B 3 C** N14 PR17B 3 C** N15 PR11C 1 T N15 PR14A 3 T** N15 PR17A 3 T** L13 PR11B 1 C L13 PR13D 3 C L13 PR16D 3 C L12 PR11A 1 T L12 PR13C 3 T L12 PR16C 3 T M14 PR10B 1 C M14 PR13B 3 C** M14 PR16B 3 C** VCCIO1 VCCIO1 1 VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3 GND GNDIO1 1 GND GNDIO3 3 GND GNDIO3 3 L14 PR10A 1 T L14 PR13A 3 T** L14 PR16A 3 T** N16 PR10D 1 C N16 PR12D 3 C N16 PR15D 3 C M16 PR10C 1 T M16 PR12C 3 T M16 PR15C 3 T M15 PR9D 1 C M15 PR12B 3 C** M15 PR15B 3 C** L15 PR9C 1 T L15 PR12A 3 T** L15 PR15A 3 T** L16 PR9B 1 C L16 PR11D 3 C L16 PR14D 3 C K16 PR9A 1 T K16 PR11C 3 T K16 PR14C 3 T K13 PR8D 1 C K13 PR11B 3 C** K13 PR14B 3 C** 4-16 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 256 ftBGA (Cont.) LAMXO640 Ball Ball Number Function Bank Dual Function LAMXO1200 Ball Ball Differential Number Function Bank J13 PR8C 1 T GND GND - K14 PR8B 1 C J14 PR8A 1 T K15 PR7D 1 C J15 PR7C 1 T - - J13 PR11A 3 GND GND - K14 PR10D 3 J14 PR10C 3 K15 PR10B J15 GND Dual Function LAMXO2280 Ball Ball Differential Number Function Bank T** Dual Function Differential J13 PR14A 3 GND GND - C K14 PR13D 3 T J14 PR13C 3 T 3 C** K15 PR13B 3 C** PR10A 3 T** T** GNDIO3 3 J15 PR13A 3 GND GNDIO3 3 T** C - - VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3 K12 NC K12 PR9D 3 C K12 PR11D 3 J12 NC J12 PR9C 3 T J12 PR11C 3 T J16 PR7B 1 J16 PR9B 3 C** J16 PR11B 3 C** H16 PR7A 1 T H16 PR9A 3 T** H16 PR11A 3 T** H15 PR6B 1 C H15 PR8D 2 C H15 PR10D 2 C G15 PR6A 1 T G15 PR8C 2 T G15 PR10C 2 T H14 PR5D 1 C H14 PR8B 2 C** H14 PR10B 2 C** T T** T** C G14 PR5C 1 GND GNDIO1 1 G14 PR8A 2 GND GNDIO2 2 VCCIO1 VCCIO1 1 H13 PR6D 1 C VCCIO2 VCCIO2 2 H13 PR7D 2 C H12 PR6C 1 T H12 PR7C 2 G13 PR4D 1 C G13 PR7B G12 PR4C 1 T G12 G16 PR5B 1 C G16 F16 PR5A 1 T F16 F15 PR4B 1 C F15 E15 PR4A 1 T E16 PR3B 1 C D16 PR3A 1 T VCCIO1 VCCIO1 1 GND GNDIO1 1 D15 PR2D 1 C C15 PR2C 1 C16 PR2B B16 C G14 PR10A 2 GND GNDIO2 2 VCCIO2 VCCIO2 2 H13 PR9D 2 T H12 PR9C 2 T 2 C** G13 PR9B 2 C** PR7A 2 T** G12 PR9A 2 T** PR6D 2 C G16 PR7D 2 C PR6C 2 T F16 PR7C 2 T PR6B 2 C** F15 PR7B 2 C** E15 PR6A 2 T** E15 PR7A 2 T** E16 PR5D 2 C E16 PR6D 2 C D16 PR5C 2 T D16 PR6C 2 T VCCIO2 VCCIO2 2 VCCIO2 VCCIO2 2 GND GNDIO2 2 GND GNDIO2 2 D15 PR5B 2 C** D15 PR6B 2 C** T C15 PR5A 2 T** C15 PR6A 2 T** 1 C C16 PR4D 2 C C16 PR5D 2 C PR2A 1 T B16 PR4C 2 T B16 PR5C 2 T F14 PR3D 1 C F14 PR4B 2 C** F14 PR5B 2 C** E14 PR3C 1 T E14 PR4A 2 T** T** - - - - - - F12 NC F12 PR3D 2 F13 NC F13 PR3C 2 E12 NC E12 PR3B E13 NC E13 D13 NC D13 C E14 PR5A 2 GND GND - C F12 PR4D 2 T F13 PR4C 2 T 2 C** E12 PR4B 2 C** PR3A 2 T** E13 PR4A 2 T** PR2B 2 C D13 PR3B 2 C** T T** C D14 NC D14 PR2A 2 D14 PR3A 2 VCCIO0 VCCIO0 0 VCCIO2 VCCIO2 2 VCCIO2 VCCIO2 2 GND GNDIO0 0 GND GNDIO2 2 GND GNDIO2 2 GND GNDIO0 0 GND GNDIO1 1 GND GNDIO1 1 VCCIO0 VCCIO0 0 VCCIO1 VCCIO1 1 VCCIO1 VCCIO1 1 B15 NC B15 PT11D 1 C B15 PT16D 1 A15 NC A15 PT11C 1 T A15 PT16C 1 T C14 NC C14 PT11B 1 C C14 PT16B 1 C C B14 NC B14 PT11A 1 T B14 PT16A 1 T C13 PT9F 0 C C13 PT10F 1 C C13 PT15D 1 C B13 PT9E 0 T B13 PT10E 1 T B13 PT15C 1 T 4-17 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 256 ftBGA (Cont.) LAMXO640 Ball Ball Number Function Bank Dual Function LAMXO1200 Ball Ball Differential Number Function Bank Dual Function LAMXO2280 Ball Ball Differential Number Function Bank Dual Function Differential E11 NC E11 PT10D 1 C E11 PT15B 1 E10 NC E10 PT10C 1 T E10 PT15A 1 C T D12 PT9D 0 C D12 PT10B 1 C D12 PT14D 1 C D11 PT9C 0 T D11 PT10A 1 T D11 PT14C 1 T A14 PT7F 0 C A14 PT9F 1 C A14 PT14B 1 C A13 PT7E 0 T A13 PT9E 1 T A13 PT14A 1 T C12 PT8B 0 C C12 PT9D 1 C C12 PT13D 1 C C11 PT8A 0 T T T - - C11 PT9C 1 VCCIO1 VCCIO1 1 C11 PT13C 1 VCCIO1 VCCIO1 1 - - GND GNDIO1 1 GND GNDIO1 1 B12 PT7B 0 C B12 PT9B 1 C B12 PT12D 1 B11 PT7A 0 T B11 PT9A 1 T B11 PT12C 1 T A12 PT7D 0 C A12 PT8F 1 C A12 PT12B 1 C A11 PT7C 0 T A11 PT8E 1 T A11 PT12A 1 T GND GND - GND GND - GND GND - C B10 PT5D 0 C B10 PT8D 1 C B10 PT11B 1 B9 PT5C 0 T B9 PT8C 1 T B9 PT11A 1 T D10 PT8D 0 C D10 PT8B 1 C D10 PT10F 1 C D9 PT8C 0 T T T - - D9 PT8A 1 VCCIO1 VCCIO1 1 D9 PT10E 1 VCCIO1 VCCIO1 1 - - GND GNDIO1 1 GND GNDIO1 1 C10 PT6D 0 C C10 PT7F 1 C C10 PT10D 1 C9 PT6C 0 T C9 PT7E 1 T C9 PT10C 1 A9 PT6B 0 C A9 PT7D 1 C A9 PT10B 1 PCLK0_1**** PCLK1_1**** C C T PCLK1_1**** C A10 PT6A 0 T A10 PT7C 1 T A10 PT10A 1 T E9 PT9B 0 C E9 PT7B 1 C E9 PT9D 1 C E8 PT9A 0 T E8 PT7A 1 T E8 PT9C 1 D7 PT5B 0 C D7 PT6F 0 C D7 PT9B 1 PCLK0_0**** D8 PT5A 0 VCCIO0 VCCIO0 0 T GND GNDIO0 0 C8 PT4F 0 C B8 PT4E 0 T A8 VCCAUX - A7 PT4D 0 A6 PT4C 0 B7 PT4B PCLK1_0**** D8 PT6E 0 VCCIO0 VCCIO0 0 T GND GNDIO0 0 C8 PT6D 0 C B8 PT6C 0 T A8 VCCAUX - C A7 PT6B 0 T A6 PT6A 0 0 C B7 PT5F T PCLK1_0**** C D8 PT9A 1 VCCIO0 VCCIO0 0 T GND GNDIO0 0 C8 PT8D 0 C B8 PT8C 0 T A8 VCCAUX - C A7 PT7D 0 T A6 PT7C 0 T 0 C B7 PT7B 0 C T C B6 PT4A 0 T B6 PT5E 0 T B6 PT7A 0 C6 PT3C 0 T C6 PT5C 0 T C6 PT6A 0 T C7 PT3D 0 C C7 PT5D 0 C C7 PT6B 0 C A5 PT3E 0 T A5 PT5A 0 T A5 PT6C 0 T A4 PT3F 0 C A4 PT5B 0 C A4 PT6D 0 C E7 NC E7 PT4C 0 T E7 PT6E 0 T E6 NC E6 PT4D 0 C E6 PT6F 0 C B5 PT3B 0 C B5 PT3F 0 C B5 PT5D 0 C B4 PT3A 0 T B4 PT3E 0 T B4 PT5C 0 T D5 PT2D 0 C D5 PT3D 0 C D5 PT5B 0 C D6 PT2C 0 T D6 PT3C 0 T D6 PT5A 0 T C4 PT2E 0 T C4 PT4A 0 T C4 PT4A 0 T C5 PT2F 0 C C5 PT4B 0 C C - - - - - - D4 NC D4 PT2D 0 D3 NC D3 PT2C 0 4-18 C5 PT4B 0 GND GND - C D4 PT3D 0 C T D3 PT3C 0 T Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 256 ftBGA (Cont.) LAMXO640 Ball Ball Number Function Bank Dual Function LAMXO1200 Ball Ball Differential Number Function Bank Dual Function LAMXO2280 Ball Ball Differential Number Function Bank Dual Function Differential A3 PT2B 0 C A3 PT3B 0 C A3 PT3B 0 A2 PT2A 0 T A2 PT3A 0 T A2 PT3A 0 T B3 NC B3 PT2B 0 C B3 PT2D 0 C T T B2 NC B2 PT2A 0 B2 PT2C 0 VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0 GND GNDIO0 0 GND GNDIO0 0 GND GNDIO0 0 A1 GND - A1 GND - A1 GND - A16 GND - A16 GND - A16 GND - F11 GND - F11 GND - F11 GND - G8 GND - G8 GND - G8 GND - G9 GND - G9 GND - G9 GND - H7 GND - H7 GND - H7 GND - H8 GND - H8 GND - H8 GND - H9 GND - H9 GND - H9 GND - H10 GND - H10 GND - H10 GND - J7 GND - J7 GND - J7 GND - J8 GND - J8 GND - J8 GND - J9 GND - J9 GND - J9 GND - J10 GND - J10 GND - J10 GND - K8 GND - K8 GND - K8 GND - K9 GND - K9 GND - K9 GND - L6 GND - L6 GND - L6 GND - T1 GND - T1 GND - T1 GND - T16 GND - T16 GND - T16 GND - G7 VCC - G7 VCC - G7 VCC - G10 VCC - G10 VCC - G10 VCC - K7 VCC - K7 VCC - K7 VCC - K10 VCC - K10 VCC - K10 VCC - H6 VCCIO3 3 H6 VCCIO7 7 H6 VCCIO7 7 G6 VCCIO3 3 G6 VCCIO7 7 G6 VCCIO7 7 K6 VCCIO3 3 K6 VCCIO6 6 K6 VCCIO6 6 J6 VCCIO3 3 J6 VCCIO6 6 J6 VCCIO6 6 L8 VCCIO2 2 L8 VCCIO5 5 L8 VCCIO5 5 L7 VCCIO2 2 L7 VCCIO5 5 L7 VCCIO5 5 L9 VCCIO2 2 L9 VCCIO4 4 L9 VCCIO4 4 L10 VCCIO2 2 L10 VCCIO4 4 L10 VCCIO4 4 K11 VCCIO1 1 K11 VCCIO3 3 K11 VCCIO3 3 J11 VCCIO1 1 J11 VCCIO3 3 J11 VCCIO3 3 H11 VCCIO1 1 H11 VCCIO2 2 H11 VCCIO2 2 G11 VCCIO1 1 G11 VCCIO2 2 G11 VCCIO2 2 F9 VCCIO0 0 F9 VCCIO1 1 F9 VCCIO1 1 F10 VCCIO0 0 F10 VCCIO1 1 F10 VCCIO1 1 F8 VCCIO0 0 F8 VCCIO0 0 F8 VCCIO0 0 F7 VCCIO0 0 F7 VCCIO0 0 F7 VCCIO0 0 * LCMXO640 only. ** Supports true LVDS outputs. *** NC for “E” devices. **** Primary clock inputs are single-ended. 4-19 C Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA LAMXO2280 Ball Number Ball Function Bank GND GNDIO7 7 Dual Function Differential VCCIO7 VCCIO7 7 D4 PL2A 7 LUM0_PLLT_FB_A T LUM0_PLLC_FB_A F5 PL2B 7 B3 PL3A 7 C T* C3 PL3B 7 E4 PL3C 7 LUM0_PLLT_IN_A C* G6 PL3D 7 LUM0_PLLC_IN_A A1 PL4A 7 T* B1 PL4B 7 C* F4 PL4C 7 T T C VCC VCC - E3 PL4D 7 D2 PL5A 7 T* D3 PL5B 7 C* G5 PL5C 7 T F3 PL5D 7 C T* C2 PL6A 7 VCCIO7 VCCIO7 7 GND GNDIO7 7 C1 PL6B 7 C C* H5 PL6C 7 T G4 PL6D 7 C E2 PL7A 7 D1 PL7B 7 T* J6 PL7C 7 T H4 PL7D 7 C GSRN C* F2 PL8A 7 T* E1 PL8B 7 C* GND GND - J3 PL8C 7 J5 PL8D 7 C G3 PL9A 7 T* T H3 PL9B 7 C* K3 PL9C 7 T K5 PL9D 7 C F1 PL10A 7 T* VCCIO7 VCCIO7 7 GND GNDIO7 7 G1 PL10B 7 C* K4 PL10C 7 T K6 PL10D 7 C 4-20 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank Dual Function Differential G2 PL11A 6 T* H2 PL11B 6 C* L3 PL11C 6 T L5 PL11D 6 C T* H1 PL12A 6 VCCIO6 VCCIO6 6 GND GNDIO6 6 J2 PL12B 6 L4 PL12C 6 T L6 PL12D 6 C K2 PL13A 6 T* K1 PL13B 6 C* T J1 PL13C 6 VCC VCC - C* L2 PL13D 6 C M5 PL14D 6 C M3 PL14C 6 L1 PL14B 6 C* M2 PL14A 6 T* M1 PL15A 6 T* N1 PL15B 6 C* M6 PL15C 6 T C TSALL T M4 PL15D 6 VCCIO6 VCCIO6 6 GND GNDIO6 6 P1 PL16A 6 T* P2 PL16B 6 C* N3 PL16C 6 T N4 PL16D 6 C GND GND - T1 PL17A 6 LLM0_PLLT_FB_A T* R1 PL17B 6 LLM0_PLLC_FB_A C* P3 PL17C 6 T N5 PL17D 6 C R3 PL18A 6 LLM0_PLLT_IN_A T* R2 PL18B 6 LLM0_PLLC_IN_A C* P4 PL19A 6 T N6 PL19B 6 C T U1 PL20A 6 VCCIO6 VCCIO6 6 GND GNDIO6 6 GND GNDIO5 5 VCCIO5 VCCIO5 5 4-21 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank T2 PL20B 6 P6 TMS 5 Dual Function Differential C TMS V1 PB2A 5 T U2 PB2B 5 C T3 PB2C 5 N7 TCK 5 T R4 PB2D 5 C R5 PB3A 5 T T4 PB3B 5 C VCC VCC - TCK R6 PB3C 5 T P7 PB3D 5 C U3 PB4A 5 T T5 PB4B 5 C V2 PB4C 5 N8 TDO 5 T V3 PB4D 5 C T6 PB5A 5 T GND GNDIO5 5 VCCIO5 VCCIO5 5 U4 PB5B 5 C P8 PB5C 5 T TDO T7 PB5D 5 V4 TDI 5 C R8 PB6A 5 T N9 PB6B 5 C TDI U5 PB6C 5 T V5 PB6D 5 C U6 PB7A 5 T VCC VCC - V6 PB7B 5 C P9 PB7C 5 T T8 PB7D 5 C U7 PB8A 5 T V7 PB8B 5 C M10 VCCAUX - U8 PB8C 5 T V8 PB8D 5 C VCCIO5 VCCIO5 5 GND GNDIO5 5 T9 PB8E 5 T U9 PB8F 5 C V9 PB9A 4 T 4-22 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank Dual Function Differential V10 PB9B 4 C N10 PB9C 4 T R10 PB9D 4 P10 PB10F 4 C PCLK4_1** C T10 PB10E 4 T U10 PB10D 4 C V11 PB10C 4 U11 PB10B 4 VCCIO4 VCCIO4 4 GND GNDIO4 4 T PCLK4_0** C T11 PB10A 4 T U12 PB11A 4 T R11 PB11B 4 C GND GND - T12 PB11C 4 T P11 PB11D 4 C V12 PB12A 4 T V13 PB12B 4 C R12 PB12C 4 T N11 PB12D 4 C T U13 PB12E 4 VCCIO4 VCCIO4 4 GND GNDIO4 4 V14 PB12F 4 C T13 PB13A 4 T P12 PB13B 4 C R13 PB13C 4 T N12 PB13D 4 C V15 PB14A 4 T U14 PB14B 4 C T V16 PB14C 4 GND GND - T14 PB14D 4 C U15 PB15A 4 T V17 PB15B 4 C P13 NC - T15 PB15D 4 U16 PB16A 4 T V18 PB16B 4 C N13 PB16C 4 T C R14 PB16D 4 VCCIO4 VCCIO4 4 GND GNDIO4 4 4-23 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank GND GNDIO3 3 VCCIO3 VCCIO3 3 Dual Function Differential P15 PR20B 3 C N14 PR20A 3 T N15 PR19B 3 C M13 PR19A 3 T R15 PR18B 3 C* T16 PR18A 3 T* N16 PR17D 3 C M14 PR17C 3 T U17 PR17B 3 C* VCC VCC - U18 PR17A 3 T* R17 PR16D 3 C R16 PR16C 3 T P16 PR16B 3 C* VCCIO3 VCCIO3 3 GND GNDIO3 3 P17 PR16A 3 T* L13 PR15D 3 C M15 PR15C 3 T T17 PR15B 3 C* T18 PR15A 3 T* L14 PR14D 3 C L15 PR14C 3 T R18 PR14B 3 C* T* P18 PR14A 3 GND GND - K15 PR13D 3 C K13 PR13C 3 T N17 PR13B 3 C* N18 PR13A 3 T* K16 PR12D 3 C K14 PR12C 3 T M16 PR12B 3 C* L16 PR12A 3 T* GND GNDIO3 3 VCCIO3 VCCIO3 3 J16 PR11D 3 C J14 PR11C 3 T M17 PR11B 3 C* L17 PR11A 3 T* J15 PR10D 2 C 4-24 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank Dual Function Differential J13 PR10C 2 T M18 PR10B 2 C* T* L18 PR10A 2 GND GNDIO2 2 VCCIO2 VCCIO2 2 H16 PR9D 2 H14 PR9C 2 T K18 PR9B 2 C* C J18 PR9A 2 T* J17 PR8D 2 C VCC VCC - H18 PR8C 2 T H17 PR8B 2 C* G17 PR8A 2 T* H13 PR7D 2 C H15 PR7C 2 T G18 PR7B 2 C* F18 PR7A 2 T* G14 PR6D 2 C G16 PR6C 2 T VCCIO2 VCCIO2 2 GND GNDIO2 2 E18 PR6B 2 C* F17 PR6A 2 T* G13 PR5D 2 C G15 PR5C 2 T E17 PR5B 2 C* E16 PR5A 2 T* GND GND - F15 PR4D 2 E15 PR4C 2 T D17 PR4B 2 C* C D18 PR4A 2 T* B18 PR3D 2 C C18 PR3C 2 T C16 PR3B 2 C* D16 PR3A 2 T* C17 PR2B 2 C T D15 PR2A 2 VCCIO2 VCCIO2 2 GND GNDIO2 2 GND GNDIO1 1 VCCIO1 VCCIO1 1 4-25 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank Dual Function Differential E13 PT16D 1 C C15 PT16C 1 T F13 PT16B 1 C D14 PT16A 1 T A18 PT15D 1 C B17 PT15C 1 T A16 PT15B 1 C A17 PT15A 1 T VCC VCC - D13 PT14D 1 F12 PT14C 1 T C14 PT14B 1 C C E12 PT14A 1 T C13 PT13D 1 C B16 PT13C 1 T B15 PT13B 1 C T A15 PT13A 1 VCCIO1 VCCIO1 1 GND GNDIO1 1 B14 PT12F 1 C A14 PT12E 1 T D12 PT12D 1 C F11 PT12C 1 T B13 PT12B 1 C A13 PT12A 1 T C12 PT11D 1 C GND GND - B12 PT11C 1 T E11 PT11B 1 C D11 PT11A 1 T C11 PT10F 1 C A12 PT10E 1 T VCCIO1 VCCIO1 1 GND GNDIO1 1 F10 PT10D 1 C D10 PT10C 1 T B11 PT10B 1 A11 PT10A 1 T PCLK1_1*** C E10 PT9D 1 C C10 PT9C 1 T D9 PT9B 1 E9 PT9A 1 T B10 PT8F 0 C 4-26 PCLK1_0*** C Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank Dual Function Differential A10 PT8E 0 VCCIO0 VCCIO0 0 T GND GNDIO0 0 A9 PT8D 0 C9 PT8C 0 T B9 PT8B 0 C C F9 VCCAUX - A8 PT8A 0 T B8 PT7D 0 C C8 PT7C 0 T VCC VCC - A7 PT7B 0 C B7 PT7A 0 T A6 PT6A 0 T B6 PT6B 0 C D8 PT6C 0 T F8 PT6D 0 C C7 PT6E 0 T E8 PT6F 0 C D7 PT5D 0 C VCCIO0 VCCIO0 0 GND GNDIO0 0 E7 PT5C 0 T A5 PT5B 0 C C6 PT5A 0 T B5 PT4A 0 T A4 PT4B 0 C D6 PT4C 0 T F7 PT4D 0 C B4 PT4E 0 T GND GND - C5 PT4F 0 C F6 PT3D 0 C E5 PT3C 0 T E6 PT3B 0 C D5 PT3A 0 T A3 PT2D 0 C C4 PT2C 0 T A2 PT2B 0 C B2 PT2A 0 T VCCIO0 VCCIO0 0 GND GNDIO0 0 E14 GND - 4-27 Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank F16 GND - H10 GND - H11 GND - H8 GND - H9 GND - J10 GND - J11 GND - J4 GND - J8 GND - J9 GND - K10 GND - K11 GND - K17 GND - K8 GND - K9 GND - L10 GND - L11 GND - L8 GND - L9 GND - N2 GND - P14 GND - P5 GND - R7 GND - F14 VCC - G11 VCC - G9 VCC - H7 VCC - L7 VCC - M9 VCC - H6 VCCIO7 7 J7 VCCIO7 7 M7 VCCIO6 6 K7 VCCIO6 6 M8 VCCIO5 5 R9 VCCIO5 5 M12 VCCIO4 4 M11 VCCIO4 4 L12 VCCIO3 3 K12 VCCIO3 3 J12 VCCIO2 2 H12 VCCIO2 2 G12 VCCIO1 1 G10 VCCIO1 1 4-28 Dual Function Differential Pinout Information LA-MachXO Automotive Family Data Sheet Lattice Semiconductor LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LAMXO2280 Ball Number Ball Function Bank G8 VCCIO0 0 G7 VCCIO0 0 * Supports true LVDS outputs. ** Primary clock inputs are single-ended. 4-29 Dual Function Differential Lattice Semiconductor Pinout Information LA-MachXO Automotive Family Data Sheet Thermal Management Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values. For Further Information For further information regarding Thermal Management, refer to the following located on the Lattice website at www.latticesemi.com. • Thermal Management document • Technical Note TN1090 - Power Estimation and Management for MachXO Devices • Power Calculator tool included with Lattice’s ispLEVER design tool, or as a standalone download from www.latticesemi.com/software 4-30 LA-MachXO Automotive Family Data Sheet Ordering Information April 2006 Data Sheet DS1003 Part Number Description LAMXO XXXX X – X XXXXXX X Device Family LA-MachXO Automotive Crossover PLD Grade E = Automotive Logic Capacity 256 LUTs = 256 640 LUTs = 640 1200 LUTs = 1200 2280 LUTs = 2280 Package TN100 = 100-pin Lead-Free TQFP TN144 = 144-pin Lead-Free TQFP FTN256 = 256-ball Lead-Free ftBGA FTN324 = 324-ball Lead-Free ftBGA Supply Voltage C = 1.8V/2.5V/3.3V E = 1.2V Speed 3 = -3 Speed Grade Note: Parts dual marked as described. Ordering Information Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LAMXO256C-3TN100E 256 1.8V/2.5V/3.3V 78 -3 Lead-Free TQFP 100 AUTO LAMXO640C-3TN100E 640 1.8V/2.5V/3.3V 74 -3 Lead-Free TQFP 100 AUTO LAMXO640C-3TN144E 640 1.8V/2.5V/3.3V 113 -3 Lead-Free TQFP 144 AUTO LAMXO640C-3FTN256E 640 1.8V/2.5V/3.3V 159 -3 Lead-Free ftBGA 256 AUTO LAMXO256E-3TN100E 256 1.2V 78 -3 Lead-Free TQFP 100 AUTO LAMXO640E-3TN100E 640 1.2V 74 -3 Lead-Free TQFP 100 AUTO LAMXO640E-3TN144E 640 1.2V 113 -3 Lead-Free TQFP 144 AUTO LAMXO640E-3FTN256E 640 1.2V 159 -3 Lead-Free ftBGA 256 AUTO LAMXO1200E-3TN100E 1200 1.2V 73 -3 Lead-Free TQFP 100 AUTO LAMXO1200E-3TN144E 1200 1.2V 113 -3 Lead-Free TQFP 144 AUTO LAMXO1200E-3FTN256E 1200 1.2V 211 -3 Lead-Free ftBGA 256 AUTO LAMXO2280E-3TN100E 2280 1.2V 73 -3 Lead-Free TQFP 100 AUTO LAMXO2280E-3TN144E 2280 1.2V 113 -3 Lead-Free TQFP 144 AUTO LAMXO2280E-3FTN256E 2280 1.2V 211 -3 Lead-Free ftBGA 256 AUTO LAMXO2280E-3FTN324E 2280 1.2V 271 -3 Lead-Free ftBGA 324 AUTO © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 5-1 DS1003 Ordering Information_01.0 LA-MachXO Automotive Family Data Sheet Supplemental Information November 2007 Data Sheet DS1003 For Further Information A variety of technical notes for the LA-MachXO family are available on the Lattice web site at www.latticesemi.com. • • • • • • • • MachXO sysIO Usage Guide (TN1091) MachXO sysCLOCK PLL Design and Usage Guide (TN1089) MachXO Memory Usage Guide (TN1092) Power Estimation and Management for MachXO Devices (TN1090) MachXO JTAG Programming and Configuration User’s Guide (TN1086) Minimizing System Interruption During Configuration Using TransFR Technology (TN1087) MachXO Density Migration (TN1097) IEEE 1149.1 Boundary Scan Testability in Lattice Devices For further information on interface standards refer to the following web sites: • JEDEC Standards (LVTTL, LVCMOS): www.jedec.org • PCI: www.pcisig.com © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 6-1 DS1003 Further Information_01.1 LA-MachXO Automotive Family Data Sheet Revision History November 2007 Data Sheet DS1003 Revision History Date Version Section April 2006 01.0 — May 2006 01.1 Pinout Information Change Summary Initial release. Removed [LOC][0]_PLL_RST from Signal Descriptions table. PCLK footnote added to appropriate pins in Logic Signal Connections tables. November 2006 01.2 DC and Switching Characteristics December 2006 01.3 Architecture February 2007 01.4 Architecture November 2007 01.5 DC and Switching Characteristics Corrections to MachXO “C” Sleep Mode Timing table - value for tWSLEEPN (400ns) changed from max. to min. Value for tWAWAKE (100ns) changed from min. to max. Added Flash Download Time table. Pinout Information EBR Asynchronous Reset section added. Power Supply and NC table: Pin/Ball orientation footnotes added. Updated EBR Asynchronous Reset section. Updated sysIO Single-Ended DC Electrical Characteristics table. Added JTAG Port Timing Waveforms diagram. Pinout Information Supplemental Information Added Thermal Management text section. Updated title list. © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 7-1