TI LT1013DDR

 SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
D
D
D
D
D
D
1IN+
VCC−
2IN+
2IN−
8
2
7
3
6
4
5
1IN−
1OUT
VCC+
2OUT
LT1013, LT1013A . . . FK PACKAGE
(TOP VIEW)
NC
1IN−
NC
1IN+
NC
description/ordering information
The LT1013 devices are dual precision
operational amplifiers, featuring high gain, low
supply current, low noise, and low-offset-voltage
temperature coefficient.
1
NC
1OUT
NC
V CC+
NC
D
− Input Voltage Range Extends to Ground
− Output Swings to Ground While Sinking
Current
Input Offset Voltage
− 150 µV Max at 25°C for LT1013A
Offset-Voltage Temperature Coefficient
− 2.5 µV/°C Max for LT1013A
Input Offset Current
− 0.8 nA Max at 25°C for LT1013A
High Gain . . . 1.5 V/µV Min (RL = 2 kΩ),
0.8 V/µV Min (RL = 600 kΩ) for LT1013A
Low Supply Current . . . 0.5 mA Max at
TA = 25°C for LT1013A
Low Peak-to-Peak Noise Voltage . . . 0.55 µV
Typ
Low Current Noise . . . 0.07 pA/√Hz Typ
LT1013, LT1013D . . . D PACKAGE
(TOP VIEW)
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN−
NC
NC
VCC−
NC
2IN+
NC
D Single-Supply Operation
NC − No internal connection
LT1013, LT1013D . . . JG OR P PACKAGE
(TOP VIEW)
The LT1013 devices can be operated from a
single 5-V power supply; the common-mode input
voltage range includes ground, and the output can
also swing to within a few millivolts of ground.
Crossover distortion is eliminated. The LT1013
can be operated with both dual ±15-V and single
5-V supplies.
1OUT
1IN−
1IN+
VCC−
1
8
2
7
3
6
4
5
VCC+
2OUT
2IN−
2IN+
The LT1013C, LT1013AC, and LT1013D are characterized for operation from 0°C to 70°C. The LT1013I,
LT1013AI, and LT1013DI are characterized for operation from −40°C to 105°C. The LT1013M, LT1013AM, and
LT1013DM are characterized for operation over the full military temperature range of −55°C to 125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
!"# $%
$ ! ! & ' $$ ()% $ !* $ #) #$
* ## !%
!$ !# +
+,-- ## ! $
# &( $% ## & !$ !$
!* $ #) #$ * ## !%
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
ORDERING INFORMATION
TA
VIOmax
AT 25°C
(µV)
P−DIP (P)
300
0°C to 70°C
LT1013CP
Tube of 75
LT1013CD
Reel of 2500
LT1013CDR
Tube of 50
LT1013DP
Tube of 75
LT1013DD
Reel of 2500
LT1013DDR
Tube of 50
LT1013DIP
Tube of 75
LT1013DID
Reel of 2500
LT1013DIDR
C−DIP (JG)
Tube of 50
LT1013AMJG
LT1013AMJG
C−DIP (JGB)
Tube of 50
LT1013AMJGB
LT1013AMJGB
LCCC (FK)
Tube of 55
LT1013AMFK
LT1013AMFK
LCCC (FKB)
Tube of 55
LT1013AMFKB
LT1013AMFKB
C−DIP (JG)
Tube of 50
LT1013MJG
LT1013MJG
C−DIP (JGB)
Tube of 50
LT1013MJGB
LT1013MJGB
LCCC (FKB)
Tube of 55
LT1013MFKB
LT1013MFKB
SOIC (D)
SOIC (D)
P−DIP (P)
−40°C
−40
C to 105
105°C
C
800
150
−55°C to 125°C
300
TOP-SIDE
MARKING
Tube of 50
P−DIP (P)
800
ORDERABLE
PART NUMBER
PACKAGE†
SOIC (D)
LT1013P
1013C
LT1013DP
1013D
LT1013DIP
1013DI
800
SOIC (D)
Tube of 75
LT1013DMD
1013DM
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
400 Ω
400 Ω
Q21
Q1
Q2
Q22
Q5
9 kΩ
Q11
Q9
Q12
Q13
1.6 kΩ
75 pF
Q28
Q27
9 kΩ
Q6
Component values are nominal.
VCC−
IN+
IN−
VCC+
schematic (each amplifier)
5 kΩ
Q7
Q8
Q4
5 kΩ
Q29
Q3
Q16
1.6 kΩ
2 kΩ
Q15
100 Ω
Q17
Q20
Q32
1 kΩ
1.3 kΩ
Q19
2.5 pF
Q18
21 pF
Q10
10 pF
3.9 kΩ
Q14
1.6 kΩ
Q25
Q23
Q31
Q26
2 kΩ
10 pF
2 kΩ
4 pF
2.4 kΩ
Q30
Q24
18 Ω
Q34
Q33
30 Ω
Q40
Q37
42 kΩ
OUT
14 kΩ
Q35
Q38
J1
600 Ω
Q39
Q41
Q36
800 Ω
..
.
.
.
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
3
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) †
Supply voltage (see Note 1): VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V
VCC− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −22 V
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC− − 5 V to VCC+
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited
Package thermal impedance, θJA (see Notes 4 and 5): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W
P package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85°C/W
Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC−.
2. Differential voltages are at IN+ with respect to IN−.
3. The output may be shorted to either supply.
4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. Due to
variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be
activated at power levels slightly above or below the rated dissipation.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Common-mode input resistance
Supply current per amplifier
ICC
† Full range is 0°C to 70°C.
‡ All typical values are at TA = 25°C.
Differential input resistance
VO = ±10 V,
Channel separation
ric
VCC+ = ±2 V to ±18 V
Supply-voltage rejection ratio
(∆VCC/∆VIO)
kSVR
rid
VIC = −15 V to 13.5 V
VIC = −14.9 V to 13 V
Common-mode rejection ratio
VO = ±10 V,
RL = 2 kΩ
RL = 2 kΩ
CMRR
RL = 600 Ω
Large-signal differential voltage
amplification
AVD
VO = ±10 V,
Maximum peak output voltage swing
VOM
RL = 2 kΩ
Common-mode input voltage range
Input bias current
IIB
RS = 50 Ω
TEST CONDITIONS
VICR
Input offset current
IIO
Long-term drift of input offset voltage
Temperature coefficient of input
offset voltage
aV
IO
Input offset voltage
VIO
PARAMETER
−15
to
13.5
0.2
Full range
0.35
25°C
300
137
4
70
120
117
114
7
0.2
25°C
25°C
25°C
97
100
25°C
Full range
94
97
0.7
1.2
0.5
Full range
25°C
Full range
25°C
25°C
0.55
0.7
±13
±12
25°C
Full range
100
123
101
103
98
100
1
1.5
0.8
±12.5
±12.5
Full range
−15
to
13.5
−15
to
13
±14
−15.3
to
13.8
0.35
5
400
140
120
117
8
2.5
±14
−15.3
to
13.8
−12
0.15
0.4
0.3
40
0.55
0.5
−25
−20
1.5
0.8
2
240
150
LT1013AC
MAX
MIN TYP‡
−15
to
13
25°C
25
C
−38
−30
25°C
Full range
2.8
1.5
2.5
Full range
−15
0.5
25°C
0.4
25°C
Full range
400
300
60
25°C
Full range
LT1013C
MAX
MIN TYP‡
TA†
70
120
97
100
94
97
0.7
1.2
0.5
±12
±12.5
−15
to
13
−15
to
13.5
0.35
4
300
137
117
114
7
2
±14
−15.3
to
13.8
−15
0.2
0.5
0.7
200
0.6
0.55
−38
−30
2.8
1.5
5
1000
800
LT1013DC
MAX
MIN TYP‡
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
mA
GΩ
MΩ
dB
dB
dB
V/µV
V
V
nA
nA
µV/mo
µV/°C
V/°C
µV
V
UNIT
..
.
.
.
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
5
6
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Supply current per amplifier
ICC
VO = 5 mV to 4 V,
Output high,
RL = 600 Ω to GND
Output high,
Output low,
Output low,
RL = 600 Ω to GND
Output low,
RS = 50 Ω
RL = 500 Ω
Isink = 1 mA
No load
No load
TEST CONDITIONS
0.32
Full range
25°C
Full range
0.31
1
4
4.4
220
5
15
−0.3
to
3.8
0.5
0.45
350
13
10
25
−55
−35
3.5
1.3
350
250
f = 0.1 Hz to 10 Hz
f = 10 Hz
Peak-to-peak equivalent input noise voltage
Equivalent input noise current
VN(PP)
In
f = 1 kHz
Equivalent input noise voltage
Vn
f = 10 Hz
TEST CONDITIONS
3.3
3.4
4
0
to
3
0
to
3.5
−15
0.2
60
Slew rate
0.55
0.5
350
13
10
25
−90
−50
6
2
570
450
LT1013AC
TYP‡
MAX
MIN
SR
PARAMETER
4
4.4
1
3.2
25°C
25°C
4
3.4
25°C
25°C
220
5
Full range
25°C
−0.3
to
3.8
−18
0.3
90
LT1013C
TYP‡
MAX
15
0
to
3
0
to
3.5
MIN
25°C
Full range
25°C
25
C
Full range
25°C
Full range
25°C
Full range
25°C
TA†
operating characteristics, VCC± = ±15 V, VIC = 0, TA = 25°C
† Full range is 0°C to 70°C.
‡ All typical values are at TA = 25°C.
Large-signal differential
voltage amplification
Common-mode input voltage
range
VICR
AVD
Input bias current
IIB
Maximum peak output voltage
swing
Input offset current
IIO
VOM
Input offset voltage
VIO
PARAMETER
0.2
MIN
3.2
3.4
4
0
to
3
0
to
3.5
0.07
0.55
22
24
0.4
TYP
0.32
1
4
4.4
220
5
15
−0.3
to
3.8
−18
0.3
250
MAX
0.55
0.5
350
13
10
25
−90
−50
6
2
1200
950
LT1013DC
TYP‡
MAX
MIN
pA/√Hz
µV
nV/√Hz
V/µs
UNIT
mA
V/µV
V/ V
V
mV
V
nA
nA
µV
V
UNIT
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC− = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
Template Release Date: 7−11−94
..
.
.
.
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Common-mode input resistance
Supply current per amplifier
ICC
† Full range is −40°C to 105°C.
‡ All typical values are at TA = 25°C.
Differential input resistance
VO = ±10 V,
Channel separation
ric
VCC±
CC = ±2 V to ±18 V
Supply-voltage rejection ratio
(∆VCC/∆VIO)
kSVR
rid
VIC = −15 V to 13.5 V
VIC = −14.9 V to 13 V
Common-mode
rejection ratio
VO = ±10 V,
RL = 2 kΩ
RL = 2 kΩ
CMRR
RL = 600 Ω
Large-signal differential voltage
amplification
AVD
VO = ±10 V,
Maximum peak output voltage
swing
VOM
RL = 2 kΩ
Common-mode input voltage range
Input bias current
IIB
RS = 50 Ω
TEST CONDITIONS
VICR
Input offset current
IIO
Long-term drift of input offset
voltage
Temperature coefficient of input
offset voltage
aV
IO
Input offset voltage
VIO
PARAMETER
−15
to
13.5
0.2
25°C
97
Full range
Full range
0.35
25°C
300
4
70
137
117
114
7
0.2
25°C
25°C
120
100
25°C
25°C
94
97
0.7
1.2
0.5
Full range
25°C
Full range
25°C
25°C
0.55
0.7
±13
±12
25°C
Full range
100
123
101
103
97
100
1
1.5
0.8
±12.5
±12.5
Full range
−15
to
13.5
−15
to
13
±14
−15.3
to
13.8
0.35
5
400
140
120
117
8
2.5
±14
−15.3
to
13.8
−12
0.15
0.4
0.3
40
0.55
0.5
−25
−20
1.5
0.8
2
300
150
LT1013AI
MAX
MIN TYP‡
−15
to
13
25°C
25
C
−38
−30
25°C
Full range
2.8
1.5
2.5
550
300
MAX
Full range
−15
0.5
25°C
Full range
0.4
60
25°C
Full range
LT1013I
MIN TYP‡
TA†
70
120
97
100
94
97
0.7
1.2
0.5
±12
±12.5
−15
to
13
−15
to
13.5
0.35
4
300
137
117
114
7
2
±14
−15.3
to
13.8
−15
0.2
0.5
0.7
200
0.6
0.55
−38
−30
2.8
1.5
5
1000
800
LT1013DI
MAX
MIN TYP‡
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
mA
GΩ
MΩ
dB
dB
dB
V/µV
V
V
nA
nA
µV/mo
V/mo
µV/°C
V/°C
µV
V
UNIT
..
.
.
.
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
7
8
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Supply current per amplifier
ICC
VO = 5 mV to 4 V,
Output high,
RL = 600 Ω to GND
Output high,
Output low,
Output low,
RL = 600 Ω to GND
Output low,
RS = 50 Ω
RL = 500 Ω
Isink = 1 mA
No load
No load
TEST CONDITIONS
0.32
Full range
25°C
Full range
0.31
1
4
4.4
220
5
15
−0.3
to
3.8
−15
0.2
60
0.5
0.45
350
13
10
25
−55
−35
3.5
1.3
350
250
LT1013AI
TYP‡
MAX
f = 0.1 Hz to 10 Hz
f = 10 Hz
Peak-to-peak equivalent input noise voltage
Equivalent input noise current
VN(PP)
In
f = 1 kHz
Equivalent input noise voltage
Vn
f = 10 Hz
TEST CONDITIONS
3.3
3.4
4
0
to
3
0
to
3.5
MIN
Slew rate
0.55
0.5
350
13
10
25
−90
−50
6
2
570
450
MAX
SR
PARAMETER
4
4.4
1
3.2
25°C
25°C
4
3.4
25°C
25°C
220
5
Full range
25°C
−0.3
to
3.8
−18
0.3
90
LT1013I
TYP‡
15
0
to
3
0
to
3.5
MIN
25°C
Full range
25°C
25
C
Full range
25°C
Full range
25°C
Full range
25°C
TA†
operating characteristics, VCC± = ±15 V, VIC = 0, TA = 25°C
† Full range is −40°C to 105°C.
‡ All typical values are at TA = 25°C.
Large-signal differential
voltage amplification
Common-mode input voltage
range
VICR
AVD
Input bias current
IIB
Maximum peak output voltage
swing
Input offset current
IIO
VOM
Input offset voltage
VIO
PARAMETER
0.2
MIN
3.2
3.4
4
0
to
3
0
to
3.5
MIN
0.07
0.55
22
24
0.4
TYP
0.32
1
4
4.4
220
5
15
−0.3
to
3.8
−18
0.3
250
MAX
0.55
0.5
350
13
10
25
−90
−50
6
2
1200
950
LT1013DI
TYP‡
MAX
pA/√Hz
µV
nV/√Hz
V/µs
UNIT
mA
V/µV
V/ V
V
mV
V
nA
nA
µV
V
UNIT
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC− = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
Template Release Date: 7−11−94
..
.
.
.
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Common-mode input resistance
Supply current per amplifier
ICC
RL = 2 kΩ
25°C
−15
to
13.5
Full range
0.35
25°C
300
137
4
70
120
117
117
7
2
25°C
25°C
25°C
97
100
25°C
Full range
94
97
0.25
1.2
0.5
Full range
25°C
Full range
25°C
25°C
0.55
0.7
±11.5
25°C
Full range
100
123
100
103
97
100
0.5
1.5
0.8
±12
±13
±12.5
Full range
−15
to
13.5
−14.9
to
13
±14
−15.3
to
13.8
−45
−30
5
1.5
2.5∗
0.35
5
400
140
120
117
8
2.5
±14
−15.3
to
13.8
−12
0.15
0.4
0.4
40
0.6
0.5
−30
−20
2.5
0.8
2∗
300
150
LT1013AM
MIN TYP‡
MAX
−14.9
to
13
25°C
25
C
Full range
−15
0.2
Full range
0.5
25°C
0.5
25°C
Full range
550
300
60
25°C
Full range
LT1013M
MIN TYP‡
MAX
TA†
∗ On products compliant to MIL-PRF-38535, Class B, this parameter is not production tested.
† Full range is −55°C to 125°C.
‡ All typical values are at TA = 25°C.
Differential input resistance
VO = ±10 V,
Channel separation
ric
VCC±
CC = ±2 V to ±18 V
Supply-voltage rejection ratio
(∆VCC/∆VIO)
kSVR
rid
VIC = −15 V to 13.5 V
VIC = −14.9 V to 13 V
Common-mode rejection ratio
VO = +10 V,
RL = 2 kΩ
CMRR
RL = 600 Ω
Large-signal differential voltage
amplification
AVD
VO = ±10 V,
Maximum peak output voltage swing
VOM
RL = 2 kΩ
Common-mode input voltage range
Input bias current
IIB
RS = 50 Ω
TEST CONDITIONS
VICR
Input offset current
IIO
Long-term drift of input offset voltage
Temperature coefficient of
input offset voltage
aV
IO
Input offset voltage
VIO
PARAMETER
70
120
97
100
94
97
0.25
1.2
0.5
±11.5
±12.5
−14.9
to
13
−15
to
13.5
0.35
4
300
137
117
114
7
2
±14
−15.3
to
13.8
−15
0.2
0.5
0.5
200
0.7
0.55
−45
−30
5
1.5
2.5∗
1000
800
LT1013DM
MIN TYP‡
MAX
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
mA
GΩ
MΩ
dB
dB
dB
V/µV
V
V
nA
nA
µV/mo
µV/°C
V/°C
µV
V
UNIT
..
.
.
.
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
9
10
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Input offset current
Input bias current
Common-mode input voltage
range
Maximum peak output voltage
swing
Large-signal differential
voltage amplification
Supply current per amplifier
IIO
IIB
VICR
VOM
AVD
ICC
VO = 5 mV to 4 V,
Output high,
RL = 600 Ω to GND
Output high,
Output low,
Output low,
RL = 600 Ω to GND
Output low,
RS = 50 Ω,
RS = 50 Ω
RL = 500 Ω
Isink = 1 mA
No load
No load
VIC = 0.1 V
TEST CONDITIONS
Full range
0.32
25°C
3.1
Full range
4
1
3.4
25°C
4.4
25°C
4
25°C
25°C
220
5
Full range
15
25°C
0
to
3
25°C
Full range
25°C
25
C
−0.3
to
3.8
−50
0.31
1
4
4.4
220
5
15
−0.3
to
3.8
0.55
0.45
350
15
10
25
−80
−35
6
1.3
450
f = 0.1 Hz to 10 Hz
f = 10 Hz
Peak-to-peak equivalent input noise voltage
Equivalent input noise current
VN(PP)
In
f = 1 kHz
f = 10 Hz
Equivalent input noise voltage
Vn
TEST CONDITIONS
3.2
3.4
4
0
to
3
0
to
3.5
−15
0.2
120
900
250
Slew rate
0.65
0.5
350
18
10
25
−120
25°C
Full range
10
2
750
250
60
LT1013AM
TYP‡
MAX
MIN
SR
PARAMETER
0
to
3.5
0.3
25°C
450
1500
Full range
−18
200
125°C
90
400
LT1013M
TYP‡
MAX
25°C
MIN
Full range
TA†
operating characteristics, VCC± = ±15 V, VIC = 0, TA = 25°C
† Full range is −55°C to 125°C.
‡ All typical values are at TA = 25°C.
Input offset voltage
VIO
PARAMETER
0.2
MIN
3.1
3.4
4
0
to
3
0
to
3.5
0.07
0.55
22
24
0.4
TYP
0.32
1
4
4.4
220
5
15
−0.3
to
3.8
−18
0.3
560
800
250
MAX
0.65
0.5
350
18
10
25
−120
−50
10
2
1200
2000
950
LT1013DM
TYP‡
MAX
MIN
pA/√Hz
µV
nV/√Hz
V/µs
UNIT
mA
V/ V
V/µV
V
mV
V
nA
nA
µV
UNIT
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC− = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
Template Release Date: 7−11−94
..
.
.
.
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
vs Supply voltage
1
vs Temperature
2
Change in input offset voltage
vs Time
3
Input offset current
vs Temperature
4
Input bias current
vs Temperature
5
Common-mode input voltage
vs Input bias current
6
VIO
Input offset voltage
∆VIO
IIO
IIB
VIC
AVD
Differential voltage amplification
vs Load resistance
7, 8
vs Frequency
9, 10
Channel separation
vs Frequency
11
Output saturation voltage
vs Temperature
12
CMRR
Common-mode rejection ratio
vs Frequency
13
kSVR
Supply-voltage rejection ratio
vs Frequency
14
ICC
IOS
Supply current
vs Temperature
15
Short-circuit output current
vs Time
16
Vn
In
Equivalent input noise voltage
vs Frequency
17
Equivalent input noise current
vs Frequency
17
VN(PP)
Peak-to-peak input noise voltage
vs Time
Pulse response
Phase shift
POST OFFICE BOX 655303
18
Small signal
19, 21
Large signal
20, 22, 23
vs Frequency
9
• DALLAS, TEXAS 75265
11
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
TYPICAL CHARACTERISTICS†
INPUT OFFSET VOLTAGE
OF REPRESENTATIVE UNITS
vs
FREE-AIR TEMPERATURE
INPUT OFFSET VOLTAGE
vs
SUPPLY VOLTAGE
10
250
VCC± = ±15 V
TA = −55°C to 125°C
1
VCC+ = 5 V
VCC− = 0
TA = 25°C
0.1
RS
0.01
1k
−
+
VCC± = ± 15V
TA = 25°C
3k
10 k
1M
150
100
50
0
−50
−100
−150
−200
RS
30 k 100 k 300 k
VCC± = ±15 V
200
VIO
µV
V
IO − Input Offset Voltage − uV
VIO
V IO − Input Offset Voltage − mV
VCC+ = 5 V, VCC− = 0
TA = −55°C to 125°C
3M
−250
−50
10 M
0
−25
Figure 1
50
75
100
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
1
5
VIC = 0
VCC± = ±15 V
TA = 25°C
IIIO
IO − Input Offset Current − nA
4
3
2
JG Package
1
0.8
0.6
VCC± = ±2.5 V
0.4
VCC+ = 5 V, VCC− = 0
0.2
VCC± = ±15 V
0
0
1
2
3
4
5
0
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
t − Time After Power-On − min
Figure 3
Figure 4
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
12
125
Figure 2
WARM-UP CHANGE
IN INPUT OFFSET VOLTAGE
vs
TIME AFTER POWER-ON
XVIO
∆V
µV
IO − Change in Input Offset Voltage − uV
25
TA − Free-Air Temperature − °C
|VCC±| − Supply Voltage − V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
TYPICAL CHARACTERISTICS†
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
vs
INPUT BIAS CURRENT
−30
15
VIC = 0
−20
VCC± = 5 V, VCC− = 0
−15
VCC± = ±2.5 V
VCC± = ±15 V
−5
0
−50
4
10
5
VCC± = ±15 V
(left scale)
0
1
−10
0
−15
−25
0
25
50
100
75
TA − Free-Air Temperature − °C
125
0
−5
−10
−15
−20
−25
IIB − Input Bias Current − nA
TA = 25°C
TA = −55°C
1
TA = 125°C
0.4
400
1k
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
A
AVD
VD − Differential Voltage Amplification − V/ µV
A
AVD
VD − Differential Voltage Amplification − V/ µV
VCC± = ±15 V
VO = ±10 V
4
−1
−30
Figure 6
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
0.1
100
2
−5
Figure 5
10
3
VCC± = 5 V
VCC− = 0
(right scale)
VIC
V IC − Common-Mode Input Voltage − V
VIC
V IC − Common-Mode Input Voltage − V
IIB
I IB − Input Bias Current − nA
−25
−10
5
TA = 25°C
4k
10 k
10
VCC± = 5 V, VCC− = 0
VO = 20 mV to 3.5 V
4
TA = −55°C
1
TA = 25°C
TA = 125°C
0.4
0.1
100
RL − Load Resistance − Ω
400
1k
4k
10 k
RL − Load Resistance − Ω
Figure 7
Figure 8
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
TYPICAL CHARACTERISTICS†
DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE SHIFT
vs
FREQUENCY
80°
VCC± = ±15 V
20
15
VIC = 0
CL = 100 pF
TA = 25°C
120°
Phase Shift
10
VCC+ = 5 V
VCC− = 0
AVD
100°
140°
160°
5
VCC+ = 5 V
VCC− = 0
180°
200°
−5
VCC± = ±15 V
220°
−10
−15
0.01
0.3
140
A
AVD
VD − Differential Voltage Amplification − dB
A
AVD
VD − Differential Voltage Amplification − dB
25
0
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
240°
10
1
3
f − Frequency − MHz
CL = 100 pF
TA = 25°C
120
100
80
VCC+ = 5 V
VCC− = 0
60
40
20
0
−20
0.01 0.1
1
Figure 9
10 100 1 k 10 k 100 k 1 M 10 M
f − Frequency − Hz
Figure 10
OUTPUT SATURATION VOLTAGE
vs
FREE-AIR TEMPERATURE
CHANNEL SEPARATION
vs
FREQUENCY
10
160
VCC+ = 5 V to 30 V
VCC− = 0
Limited by
Thermal
Interaction
120
Output Saturation Voltage − V
VCC± = ±15 V
VI(PP) = 20 V to 5 kHz
RL = 2 kΩ
TA = 25°C
140
Channel Separation − dB
VCC± = ±15 V
RL = 100 Ω
RL = 1 kΩ
100
Limited by
Pin-to-Pin
Capacitance
80
Isink = 10 mA
1
Isink = 5 mA
Isink = 1 mA
0.1
Isink = 100 µA
Isink = 10 µA
Isink = 0
60
10
100
1k
10 k
100 k
1M
0.01
−50
−25
f − Frequency − Hz
Figure 11
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 12
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
TYPICAL CHARACTERISTICS†
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
140
TA = 25°C
kSVR − Supply-Voltage Rejection Ratio − dB
CMRR − Common-Mode Rejection Ratio − dB
120
100
VCC± = ±15 V
VCC+ = 5 V
VCC− = 0
80
60
40
20
0
10
100
1k
10 k
100 k
VCC± = ±15 V
TA = 25°C
120
100
Positive
Supply
80
Negative
Supply
60
40
20
0
0.1
1M
1
100
1k
10 k
100 k
1M
f − Frequency − Hz
f − Frequency − Hz
Figure 13
Figure 14
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
40
I OS − Short-Circuit Output Current − mA
460
I CC − Supply Current Per Amplifier − µ A
10
420
380
VCC+ = +15 V
340
300
VCC+ = +15 V
TA = −55°C
30
TA = 25°C
20
TA = 125°C
10
0
TA = 125°C
−10
TA = 25°C
−20
TA = −55°C
−30
VCC+ = 5 V, VCC− = 0
260
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
125
−40
0
1
2
3
t − Elapsed Time − min
Figure 15
Figure 16
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
AND EQUIVALENT INPUT NOISE CURRENT
vs
FREQUENCY
PEAK-TO-PEAK INPUT NOISE VOLTAGE
OVER A
10-SECOND PERIOD
2000
VCC± = ±2 V to ±18 V
TA = 25°C
V
Vn
nV/Hz
Hz
n − Equivalent Input Noise Voltage − fA/
VN(PP) − Noise Voltage − nV
VN(PP)
Vn − Equivalent Input Noise Voltage − nV/
Vn
nV/Hz
Hz
1000
300 I
n
100
Vn
30
1/f Corner = 2 Hz
10
1
10
1600
1200
800
400
0
1k
100
VCC± = ±2 V to ±18 V
f = 0.1 Hz to 10 Hz
TA = 25°C
0
2
4
f − Frequency − Hz
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
20
VCC± = ±15 V
AV = 1
TA = 25°C
15
40
VCC± = ±15 V
AV = 1
TA = 25°C
10
20
0
−20
−40
−60
−80
5
0
−5
−10
−15
0
2
4
6
8
10
12
14
−20
t − Time − µs
0
50
100 150 200 250 300 350
t − Time − µs
Figure 20
Figure 19
16
10
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VV)
O − Output Voltage − V
VO
VO − Output Voltage − mV
60
8
Figure 18
Figure 17
80
6
t − Time − s
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
6
160
VCC+ = 5 V, VCC− = 0
VI = 0 to 100 mV
RL = 600 Ω to GND
AV = 1
TA = 25°C
100
80
60
40
20
−20
4
3
2
1
0
−1
0
0
20
40
60
80
−2
100 120 140
0
t − Time − µs
10 20 30
t − Time − µs
40
50
60
70
Figure 22
Figure 21
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
6
5
VO
VO − Output Voltage − V
VO
VO − Output Voltage − mV
120
5
VO
VO − Output Voltage − mV
140
VCC+ = 5 V, VCC− = 0
VI = 0 to 4 V
RL = 4.7 kΩ to 5 V
AV = 1
TA = 25°C
4
VCC+ = 5 V, VCC− = 0
VI = 0 to 4 V
RL = 0
AV = 1
TA = 25°C
3
2
1
0
−1
−2
0
10
20
30
40
50
60
70
t − Time − µs
Figure 23
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
APPLICATION INFORMATION
single-supply operation
The LT1013 is fully specified for single-supply operation (VCC− = 0). The common-mode input voltage range
includes ground, and the output swings to within a few millivolts of ground.
Furthermore, the LT1013 has specific circuitry that addresses the difficulties of single-supply operation, both
at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a
transient basis. If the input is more than a few hundred millivolts below ground, the LT1013 is designed to deal
with the following two problems that can occur:
1. On many other operational amplifiers, when the input is more than a diode drop below ground, unlimited
current flows from the substrate (VCC− terminal) to the input, which can destroy the unit. On the LT1013,
the 400-Ω resistors in series with the input [see schematic (each amplifier)] protect the device, even
when the input is 5 V below ground.
2. When the input is more than 400 mV below ground (at TA = 25°C), the input stage of similar operational
amplifiers saturates, and phase reversal occurs at the output. This can cause lockup in servo systems.
Because of unique phase-reversal protection circuitry (Q21, Q22, Q27, and Q28), the LT1013 outputs
do not reverse, even when the inputs are at −1.5 V (see Figure 24).
This phase-reversal protection circuitry does not function when the other operational amplifier on the LT1013
is driven hard into negative saturation at the output. Phase-reversal protection does not work on amplifier 1
when amplifier 2 output is in negative saturation nor on amplifier 2 when amplifier 1 output is in negative
saturation.
At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more
than a few microamperes while swinging to ground. The all-npn output stage of the LT1013 maintains its low
output resistance and high-gain characteristics until the output is saturated. In dual-supply operations, the
output stage is free of crossover distortion.
5
4
3
2
1
0
−1
−2
VO
VO − Output Voltage − V
5
VO
VO − Output Voltage − V
VI(PP)
V
I(PP) − Input Voltage − V
5
4
3
2
1
0
−1
(a) VI(PP) = −1.5 V TO 4.5 V
4
3
2
1
0
−1
(b) OUTPUT PHASE REVERSAL
EXHIBITED BY LM358
(c) NO PHASE REVERSAL
EXHIBITED BY LT1013
Figure 24. Voltage-Follower Response With Input Exceeding
the Negative Common-Mode Input Voltage Range
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
APPLICATION INFORMATION
comparator applications
The single-supply operation of the LT1013 is well suited for use as a precision comparator with TTL-compatible
output. In systems using both operational amplifiers and comparators, the LT1013 can perform multiple duties
(see Figures 25 and 26).
5
10 mV
5 mV
2 mV
3
2
Overdrive
1
0
VO
VO − Output Voltage − V
4
VCC+ = 5 V
VCC− = 0
TA = 25°C
4
3
2
5 mV
10 mV
2 mV
1
Overdrive
Differential
Input Voltage
0
100 mV
0
VCC+ = 5 V
VCC− = 0
TA = 25°C
50 100 150 200 250 300 350 400 450
t − Time − µs
Figure 25. Low-to-High-Level Output
Response for Various Input Overdrives
Differential
Input Voltage
VO
VO − Output Voltage − V
5
100 mV
0
50 100 150 200 250 300 350 400 450
t − Time − µs
Figure 26. High-to-Low-Level Output
Response for Various Input Overdrives
low-supply operation
The minimum supply voltage for proper operation of the LT1013 is 3.4 V (three NiCad batteries). Typical supply
current at this voltage is 290 µA; therefore, power dissipation is only 1 mW per amplifier.
offset voltage and noise testing
The test circuit for measuring input offset voltage and its temperature coefficient is shown in Figure 30. This
circuit, with supply voltages increased to ±20 V, also is used as the burn-in configuration.
The peak-to-peak equivalent input noise voltage of the LT1013 is measured using the test circuit shown in
Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one
zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as
an additional zero to eliminate noise contribution from the frequency band below 0.1 Hz.
An input noise voltage test is recommended when measuring the noise of a large number of units. A 10-Hz input
noise voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are
determined by the white noise and the location of the 1/f corner frequency.
Current noise is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is
subtracted.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
APPLICATION INFORMATION
0.1 µF
100 kΩ
+
10 Ω
2 kΩ
LT1013
+
−
LT1001
4.7 µF
Oscilloscope
Rin = 1 MΩ
2.2 µF
−
AVD = 50,000
22 µF
4.3 kΩ
100 kΩ
110 kΩ
24.3 kΩ
0.1 µF
NOTE A: All capacitor values are for nonpolarized capacitors only.
Figure 27. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit
50 kΩ
(see Note A)
10 kΩ
10 Mن
10 Mن
15 V
+
100 Ω
LT1013
10 Mن 10 Mن
[V
In +
Vn
−
50 kΩ
(see Note A)
VO = 1000 VIO
−15 V
100
† Metal-film resistor
NOTE A: Resistors must have low thermoelectric potential.
Figure 28. Noise-Current Test Circuit
and Formula
20
LT1013
−
2 1ń2
2–(820 nV) ]
no
40 MW
+
100 Ω
(see Note A)
POST OFFICE BOX 655303
Figure 29. Test Circuit for VIO and a V
• DALLAS, TEXAS 75265
IO
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
APPLICATION INFORMATION
typical applications
5V
Q3
2N2905
820 Ω
Q1
2N2905
T1‡
+
68 Ω
+
0.002 µF
10 kΩ
0.33 µF
Q4
2N2222
10 µF
10 µF
SN74HC04 (6)
820 Ω
10 kΩ
Q2
2N2905
100 kΩ
5V
1N4002 (4)
10 kن
−
1/2
LT1013
+
2 kΩ
100 pF
10 kن
20-mA Trim
4 kن
1 kΩ
4-mA
Trim
10 kن
4.3 kΩ
5V
100 Ω†
80 kن
−
1/2
LT1013
+
4 mA to 20 mA
to Load
2.2 kΩ Max
LT1004
1.2 V
IN
0 to 4 V
† 1% film resistor. Match 10-kΩ resistors to within 0.05%.
‡ T1 = PICO-31080
Figure 30. 5-V 4-mA to 20-mA Current-Loop Transmitter With 12-Bit Accuracy
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
APPLICATION INFORMATION
0.1 Ω
5V
100 kΩ
To Inverter
Drive
+
1/2
LT1013
−
T1
1N4002 (4)
+
+
1/2
LT1013
−
68 kن
10 µF
4 mA to 20 mA
Fully Floating
10 kن
4.3 kΩ
5V
LT1004
1.2 V
301 Ω†
4 kن
1 kΩ
20-mA
Trim
2 kΩ
4-mA
Trim
IN
0 to 4 V
† 1% film resistor
Figure 31. Fully Floating Modification to 4-mA to 20-mA Current-Loop Transmitter With 8-Bit Accuracy
5V
1/2 LTC1043
IN+
6
5
1 µF 2
3
5 +
8
1/2
1 µF
LT1013
6
−
4
7
OUT A
R2
15
IN− 18
R1
1/2 LTC1043
IN+
7
8
1 µF 11
12
IN−
13
3
+
1/2
1 µF
2 LT1013
−
1
OUT B
R2
14
0.01 µF
R1
NOTE A: VIO = 150 µV, AVD = (R1/R2) + 1, CMRR = 120 dB, VICR = 0 to 5 V
Figure 32. 5-V Single-Supply Dual Instrumentation Amplifier
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
APPLICATION INFORMATION
10
+
200 kن
LT1013
9
5V
2
‡
20 kW
3
IN−
−
−
LT1013
10 kن
1
10 kن
+
10 kΩ
RG (2 kΩ Typ)
‡
To Input
Cable Shields
8
5V
13 −
4
LT1013
12
1 µF
200 kΩ
6
‡
IN+
OUT
11
−
LT1013
20 kW
+
10 kΩ
14
7
5 +
10 kن
10 kن
‡
5V
† 1% film resistor. Match 10-kΩ resistors to within 0.05%.
‡ For high source impedances, use 2N2222 diodes.
NOTE A: AVD = (400,000/RG) + 1
Figure 33. 5-V Precision Instrumentation Amplifier
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
PACKAGE OPTION ADDENDUM
www.ti.com
18-Feb-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
5962-88760012A
ACTIVE
LCCC
FK
20
1
None
5962-8876001PA
ACTIVE
CDIP
JG
8
1
None
Lead/Ball Finish
MSL Peak Temp (3)
POST-PLATE Level-NC-NC-NC
A42 SNPB
Level-NC-NC-NC
5962-88760022A
ACTIVE
LCCC
FK
20
1
None
5962-8876002PA
ACTIVE
CDIP
JG
8
1
None
A42 SNPB
LT1013ACP
OBSOLETE
PDIP
P
8
None
Call TI
Call TI
Call TI
Call TI
None
POST-PLATE Level-NC-NC-NC
Level-NC-NC-NC
LT1013AIP
OBSOLETE
PDIP
P
8
LT1013AMFKB
ACTIVE
LCCC
FK
20
1
None
LT1013AMJG
ACTIVE
CDIP
JG
8
1
None
A42 SNPB
Level-NC-NC-NC
LT1013AMJGB
ACTIVE
CDIP
JG
8
1
None
A42 SNPB
Level-NC-NC-NC
LT1013AMP
OBSOLETE
PDIP
P
8
None
Call TI
LT1013CD
ACTIVE
SOIC
D
8
75
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR
LT1013CDR
ACTIVE
SOIC
D
8
2500
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR
LT1013CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
LT1013DD
ACTIVE
SOIC
D
8
75
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR
LT1013DDR
ACTIVE
SOIC
D
8
2500
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR
LT1013DID
ACTIVE
SOIC
D
8
75
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR
LT1013DIDR
ACTIVE
SOIC
D
8
2500
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR
LT1013DIP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
LT1013DMD
ACTIVE
SOIC
D
8
75
None
CU NIPDAU
Level-1-220C-UNLIM
LT1013DP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
None
POST-PLATE Level-NC-NC-NC
Call TI
Call TI
LT1013IP
OBSOLETE
PDIP
P
8
LT1013MFKB
ACTIVE
LCCC
FK
20
1
None
Call TI
LT1013MJG
ACTIVE
CDIP
JG
8
1
None
A42 SNPB
Level-NC-NC-NC
LT1013MJGB
ACTIVE
CDIP
JG
8
1
None
A42 SNPB
Level-NC-NC-NC
LT1013MP
OBSOLETE
PDIP
P
8
None
Call TI
Call TI
LT1013Y
OBSOLETE
XCEPT
Y
0
None
Call TI
Call TI
POST-PLATE Level-NC-NC-NC
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional
product content details.
None: Not yet available Lead (Pb-Free).
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
18-Feb-2005
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated