µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 D D D D D D D D D D Rail-To-Rail Input/Output Wide Bandwidth . . . 3 MHz High Slew Rate . . . 2.4 V/µs Supply Voltage Range . . . 2.7 V to 16 V Supply Current . . . 550 µA/Channel Low Power Shutdown Mode IDD(SHDN) . . . 25 µA/Channel Input Noise Voltage . . . 39 nV/√Hz Input Bias Current . . . 1 pA Specified Temperature Range −40°C to 125°C . . . Industrial Grade Ultrasmall Packaging − 5 or 6 Pin SOT-23 (TLV2370/1) − 8 or 10 Pin MSOP (TLV2372/3) Operational Amplifier − + description The TLV237x single supply operational amplifiers provide rail-to-rail input and output capability. The TLV237x takes the minimum operating supply voltage down to 2.7 V over the extended industrial temperature range while adding the rail-to-rail output swing feature. The TLV237x also provides 3-MHz bandwidth from only 550 µA. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from (±8 V supplies down to ±1.35 V) a variety of rechargeable cells. The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making an ideal alternative for the TLC227x in battery-powered applications. The rail-to-rail input stage further increases its versatility. The TLV237x is the seventh member of a rapidly growing number of RRIO products available from TI, and it is the first to allow operation up to 16-V rails with good ac performance. All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP, and quads in the TSSOP package. The 2.7-V operation makes the TLV237x compatible with Li-Ion powered systems and the operating supply voltage range of many micro-power microcontrollers available today including TI’s MSP430. SELECTION OF SIGNAL AMPLIFIER PRODUCTS† VDD (V) VIO (µV) TLV237x 2.7−16 TLC227x 4−16 DEVICE GBW (MHz) SR (V/µs) SHUTDOWN RAILTORAIL SINGLES/DUALS/QUADS 1 3 2.4 Yes I/O S/D/Q 1 2.2 3.6 — O D/Q Iq/Ch (µA) IIB (pA) 500 550 300 1100 TLV27x 2.7−16 500 550 1 3 2.4 — O S/D/Q TLC27x 3−16 1100 675 1 1.7 3.6 — — S/D/Q TLV246x 2.7−6 150 550 1300 6.4 1.6 Yes I/O S/D/Q TLV247x 2.7−6 250 600 2 2.8 1.5 Yes I/O S/D/Q TLV244x 2.7−10 300 † Typical values measured at 5 V, 25°C 725 1 1.8 1.4 — O D/Q Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2001 − 2003, Texas Instruments Incorporated !"#$%&'(!$" !) *+%%,"( ') $# -+./!*'(!$" 0'(,1 %$0+*() *$"#$%& ($ )-,*!#!*'(!$") -,% (, (,%&) $# ,2') ")(%+&,"() )('"0'%0 3'%%'"(41 %$0+*(!$" -%$*,))!"5 0$,) "$( ",*,))'%!/4 !"*/+0, (,)(!"5 $# '// -'%'&,(,%)1 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 1 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 FAMILY PACKAGE TABLE PACKAGE TYPES NUMBER OF CHANNELS PDIP SOIC SOT-23 TSSOP MSOP TLV2370 1 8 8 6 — — Yes TLV2371 1 8 8 5 — — — TLV2372 2 8 8 — — 8 — TLV2373 2 14 14 — — 10 Yes TLV2374 4 14 14 — 14 — — TLV2375 4 16 16 — 16 — Yes DEVICE SHUTDOWN UNIVERSAL EVM BOARD Refer to the EVM Selection Guide (Lit# SLOU060) TLV2370 and TLV2371 AVAILABLE OPTIONS PACKAGED DEVICES VIOMAX AT 25°C TA −40°C to 125°C 4.5 mV SOT-23 SMALL OUTLINE (D)† (DBV)‡ TLV2370ID TLV2371ID PLASTIC DIP (P) SYMBOL TLV2370IDBV TLV2371IDBV VBFI VBGI TLV2370IP TLV2371IP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2370IDR). ‡ This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an R suffix (e.g., TLV2370IDBVR). For smaller quantities (250 pieces per mini-reel), add a T suffix to the part number (e.g., TLV2370IDBVT). TLV2372 AND TLV2373 AVAILABLE OPTIONS PACKAGED DEVICES TA −40°C to 125°C VIOMAX AT 25°C 4.5 mV SMALL OUTLINE (D)§ (DGK)§ SYMBOL (DGS)§ TLV2372ID TLV2373ID TLV2372IDGK — APG — — TLV2373IDGS SYMBOL PLASTIC DIP (N) PLASTIC DIP (P) — API — TLV2373IN TLV2372IP — MSOP § This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2372IDR). TLV2374 and TLV2375 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOMAX AT 25°C −40°C to 125°C 4.5 mV SMALL OUTLINE (D)¶ PLASTIC DIP (N) TSSOP (PW)¶ TLV2374ID TLV2375ID TLV2374IN TLV2375IN TLV2374IPW TLV2375IPW ¶ This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2374IDR). 2 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 TLV237x PACKAGE PINOUTS(1) TLV2370 D OR P PACKAGE (TOP VIEW) TLV2370 DBV PACKAGE (TOP VIEW) OUT 1 6 VDD GND 2 5 SHDN IN+ 3 4 IN − TLV2371 D OR P PACKAGE (TOP VIEW) NC IN − IN + GND 1OUT 1IN − 1IN+ GND NC 1SHDN NC 1 8 2 7 3 6 4 5 NC IN − IN + GND 1 8 2 7 3 6 4 5 TLV2371 DBV PACKAGE (TOP VIEW) SHDN VDD OUT NC 1OUT 1IN − 1IN + GND 1 8 2 7 3 6 4 5 TLV2374 D, N, OR PW PACKAGE (TOP VIEW) (TOP VIEW) 14 13 3 12 4 5 6 7 11 10 9 8 GND 2 IN+ 3 VDD 2OUT 2IN − 2IN+ NC 2SHDN NC 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 5 VDD 4 IN − TLV2373 DGS PACKAGE (TOP VIEW) VDD 2OUT 2IN − 2IN+ TLV2373 D OR N PACKAGE 2 1 TLV2372 D, DGK, OR P PACKAGE (TOP VIEW) NC VDD OUT NC 1 OUT 1OUT 1IN − 1IN+ GND 1SHDN 1 2 3 4 5 10 9 8 7 6 VDD 2OUT 2IN − 2IN+ 2SHDN TLV2375 D, N, OR PW PACKAGE (TOP VIEW) 4OUT 4IN − 4IN+ GND 3IN+ 3IN − 3OUT 1OUT 1IN − 1IN+ VDD+ 2IN+ 2IN − 2OUT 1SHDN 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN − 4IN+ GND 3IN + 3IN− 3OUT 2SHDN NC − No internal connection (1) SOT−23 may or may not be indicated TYPICAL PIN 1 INDICATORS Pin 1 Printed or Molded Dot Pin 1 Pin 1 Bevel Edges Stripe Pin 1 Molded ”U” Shape WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 3 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 V Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to VDD + 0.2 V Input current range, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA Output current range, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 100 mA Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values, except differential voltages, are with respect to GND. DISSIPATION RATING TABLE PACKAGE θJC (°C/W) θJA (°C/W) TA ≤ 25°C POWER RATING D (8) 38.3 176 710 mW D (14) 26.9 122.3 1022 mW D (16) 25.7 114.7 1090 mW DBV (5) 55 324.1 385 mW DBV (6) 55 294.3 425 mW DGK (8) 54.23 259.96 481 mW DGS (10) 54.1 257.71 485 mW N (14, 16) 32 78 1600 mW P (8) 41 104 1200 mW PW (14) 29.3 173.6 720 mW PW (16) 28.7 161.4 774 mW recommended operating conditions Single supply Supply voltage, VDD Split supply Common-mode input voltage range, VICR Operating free-air temperature, TA I-suffix MIN MAX 2.7 16 ±1.35 ±8 0 VDD 125 °C 2 V −40 Turnon voltage level, V(ON), relative to GND pin voltage Turnoff voltage level, V(OFF), relative to GND pin voltage 4 0.8 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • UNIT V V V µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and 15 V (unless otherwise noted) dc performance PARAMETER TEST CONDITIONS TA MIN 25°C VIO Input offset voltage αVIO Offset voltage drift VO = VDD/2, VIC = VDD/2, RS = 50 Ω VIC = 0 to VDD−1.35V, RS = 50 Ω CMRR Common-mode rejection ratio VIC = 0 to VDD, RS = 50 Ω, VIC = 0 to VDD−1.35V, RS = 50 Ω, VIC = 0 to VDD, RS = 50 Ω, VIC = 0 to VDD−1.35V, RS = 50 Ω, VDD = 2.7 V VDD = 5 V VDD = 15 V VDD = 2.7 V AVD Large-signal differential voltage amplification VO(PP) = VDD/2, RL = 10 kkΩ MAX 2 4.5 6 Full range 25°C VIC = 0 to VDD, RS = 50 Ω TYP 50 Full range 49 25°C 56 Full range 54 25°C 55 Full range 54 25°C 67 Full range 64 25°C 64 Full range 63 25°C 67 Full range 66 25°C 98 Full range 76 25°C 100 VDD = 5 V Full range 86 25°C 81 VDD = 15 V Full range 79 mV V/°C µV/°C 2 25°C UNIT 68 70 72 dB 80 82 84 106 110 dB 83 input characteristics PARAMETER IIO TEST CONDITIONS Input offset current VDD = 15 V, VO = VDD/2 IIB VIC = VDD/2, Differential input resistance CIC Common-mode input capacitance f = 21 kHz WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • MIN TYP 1 MAX 70°C 100 1000 1 UNIT 60 125°C 25°C Input bias current ri(d) TA 25°C pA 60 70°C 100 125°C 1000 pA 25°C 1000 GΩ 25°C 8 pF 5 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and 15 V (unless otherwise noted) (continued) output characteristics PARAMETER TEST CONDITIONS VIC = VDD/2, IOH = −1 mA TA MIN TYP 25°C 2.55 2.58 VDD = 2.7 V Full range 2.48 25°C 4.9 VDD = 5 V Full range 4.85 25°C 14.92 Full range 14.9 25°C 1.9 Full range 1.6 25°C 4.6 VDD = 5 V Full range 4.5 25°C 14.7 VDD = 15 V Full range 14.6 VDD = 15 V VOH High-level output voltage VDD = 2.7 V VIC = VDD/2, IOH = −5 mA 25°C VDD = 2.7 V Full range VDD = 15 V Full range Low-level output voltage VDD = 5 V 0.05 IO Output current VDD = 5 V, VO = 0.5 V from rail VDD = 15 V, VO = 0.5 V from rail 0.15 0.1 0.08 0.1 0.52 Full range 0.7 V 1.1 0.28 Full range 0.4 0.5 25°C VDD = 2.7 V, VO = 0.5 V from rail 14.8 0.15 25°C VIC = VDD/2, IOL = 5 mA 4.68 0.22 25°C VDD = 2.7 V V 2 0.05 25°C VOL 14.96 Full range VDD = 5 V UNIT 4.93 0.1 25°C VIC = VDD/2, IOL = 1 mA MAX 0.19 VDD = 15 V Full range Positive rail 25°C 4 Negative rail 25°C 5 Positive rail 25°C 7 Negative rail 25°C 8 Positive rail 25°C 16 Negative rail 25°C 15 0.3 0.35 mA power supply PARAMETER IDD Supply current (per channel) TEST CONDITIONS VDD = 2.7 V VDD = 5 V VO = VDD/2, VDD = 15 V PSRR 6 Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 2.7 V to 15 V, No load VIC = VDD /2, WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • TA 25°C MIN TYP MAX 470 560 25°C 550 660 25°C 750 900 Full range UNIT µA 1200 25°C 70 Full range 65 80 dB µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and 15 V (unless otherwise noted) (continued) dynamic performance PARAMETER UGBW TEST CONDITIONS Unity gain bandwidth RL = 2 kΩ, CL = 10 pF TA 2.4 VDD = 5 V to 15 V 25°C 3 25°C φm ts Slew rate at unity gain VO(PP) = VDD/2, CL = 50 pF, RL = 10 kΩ TYP 25°C VDD = 2.7 V SR MIN VDD = 2.7 V 1.4 Full range 25°C 1.6 Full range 1.2 25°C 1.9 VDD = 15 V Full range 1.4 2 V/ s V/µs 2.4 V/ s V/µs 2.1 V/ s V/µs Phase margin RL = 2 kΩ, CL = 100 pF 25°C 65° Gain margin RL = 2 kΩ, CL = 10 pF 25°C 18 Settling time VDD = 2.7 V, V(STEP)PP = 1 V, CL = 10 pF, VDD = 5 V, 15 V, V(STEP)PP = 1 V, CL = 47 pF, 0.1% AV = −1, RL = 2 kΩ 0.1% UNIT MHz 1 VDD = 5 V AV = −1, RL = 2 kΩ MAX dB 2.9 µss 25°C 2 noise/distortion performance PARAMETER TEST CONDITIONS VDD = 2.7 V, VO(PP) = VDD/2 V, RL = 2 kΩ, k , f = 10 kHz THD + N Total harmonic distortion plus noise VDD = 5 V, 15 V, VO(PP) = VDD/2 V, RL = 2 kΩ, k , f = 10 kHz AV = 1 AV = 10 TA MIN Equivalent input noise voltage In Equivalent input noise current UNIT 0.05% 25°C 25 C 0.18% 0.02% 0.09% 25°C 25 C 0.5% f = 1 kHz Vn MAX 0.02% AV = 100 AV = 1 AV = 10 AV = 100 TYP 39 25°C f = 10 kHz f = 1 kHz nV/√Hz 35 25°C 0.6 fA /√Hz shutdown characteristics PARAMETER IDD(SHDN) t(on) t(off) TEST CONDITIONS VDD = 2.7 V, 5 V, SHDN = 0 V Supply current in shutdown mode (TLV2370, TLV2373, TLV2375) (per channel) VDD = 15 V, SHDN = 0 V Amplifier turnon time (see Note 2) RL = 2 kΩ Amplifier turnoff time (see Note 2) TA 25°C MIN TYP MAX 25 30 Full range 25°C 35 40 Full range 45 50 UNIT µA A A µA 25°C 0.8 µs 25°C 1 µs NOTE 2: Disable time and enable time are defined as the interval between application of the logic signal to the SHDN terminal and the point at which the supply current has reached one half of its final value. WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 7 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO CMRR Input offset voltage vs Common-mode input voltage Common-mode rejection ratio vs Frequency 4 Input bias and offset current vs Free-air temperature 5 VOL VOH Low-level output voltage vs Low-level output current 6, 8, 10 High-level output voltage vs High-level output current 7, 9, 11 VO(PP) IDD Peak-to-peak output voltage vs Frequency 12 Supply current vs Supply voltage 13 PSRR Power supply rejection ratio vs Frequency 14 AVD Differential voltage gain & phase vs Frequency 15 Gain-bandwidth product vs Free-air temperature 16 vs Supply voltage 17 vs Free-air temperature 18 19 SR Slew rate φm Vn Phase margin vs Capacitive load Equivalent input noise voltage vs Frequency 1, 2, 3 20 Voltage-follower large-signal pulse response 21, 22 Voltage-follower small-signal pulse response 23 Inverting large-signal response 24, 25 Inverting small-signal response 26 Crosstalk vs Frequency 27 Shutdown forward & reverse isolation vs Frequency 28 IDD(SHDN) IDD(SHDN) Shutdown supply current vs Supply voltage 29 Shutdown pin leakage current vs Shutdown pin voltage IDD(SHDN) Shutdown supply current/output voltage vs Time 8 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 30 31, 32 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1000 800 600 400 200 0 1000 VDD = 5 V TA = 25 °C 800 600 400 200 0 −200 −200 0.4 0.8 1.2 1.6 2 0 VICR − Common-Mode Input Voltage − V 100 VDD = 5 V, 15 V 80 VDD = 2.7 V 40 20 100 k 10 k 250 200 150 100 50 0 −40 −25 −10 5 1M TA = 70°C TA = 25°C 0.80 TA = 0°C 0.40 0 4.50 4 3.50 1 2 3 4 5 6 7 8 9 10 11 12 IOH − High-Level Output Current − mA Figure 7 1.60 1.20 TA = 70 °C TA = 25 °C 0.80 0.40 TA = 125 °C TA = 70 °C 2.50 TA = 25 °C 2 1.50 1 TA = 0 °C TA = 40 °C 2 4 6 8 10 12 14 16 18 20 22 24 IOL − Low-Level Output Current − mA HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5 VDD = 5 V 3 TA = 0 °C TA = −40 °C 0.50 0 0 TA = 125 °C Figure 6 V OH − High-Level Output Voltage − V TA = 125°C 14 15 2 0 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL − Low-Level Output Voltage − V TA =−40°C 12 0 20 35 50 65 80 95 110 125 5 2.40 10 VDD = 2.7 V 2.40 Figure 5 VDD = 2.7 V 8 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT TA − Free-Air Temperature − °C 2.80 6 2.80 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 1.20 4 Figure 3 VDD = 2.7 V, 5 V and 15 V VIC = VDD/2 Figure 4 1.60 2 VICR − Common-Mode Input Voltage −V 300 f − Frequency − Hz 2 0 0 −50 0 1k 200 INPUT BIAS/OFFSET CURRENT vs FREE-AIR TEMPERATURE I IB / I IO − Input Bias / Offset Current − pA 120 100 400 Figure 2 COMMON-MODE REJECTION RATIO vs FREQUENCY 10 600 1 2 3 4 5 VICR − Common-Mode Input Voltage − V Figure 1 60 VDD =15 V TA = 25 °C 800 −200 2.4 2.7 VOL − Low-Level Output Voltage − V 0 CMRR − Common-Mode Rejection Ratio − dB V IO − Input Offset Voltage − µV VDD = 2.7 V TA = 25°C V IO − Input Offset Voltage − µV V IO − Input Offset Voltage − µV 1000 V OH − High-Level Output Voltage − V INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE VCC = 5 V 4.50 TA = −40°C 4 TA = 0°C 3.50 3 2.50 TA = 25°C 2 1.50 TA = 70°C 1 TA = 125°C 0.50 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 IOL − Low-Level Output Current − mA Figure 8 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 0 5 10 15 20 25 30 35 40 45 IOH − High-Level Output Current − mA Figure 9 9 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 TYPICAL CHARACTERISTICS 12 TA =70°C 10 TA =25°C 8 TA =0°C 6 TA =−40°C 4 2 15 14 VDD = 15 V 12 TA = −40°C V O(PP) − Peak-to-Peak Output Voltage − V VDD = 15 V TA =125°C V OH − High-Level Output Voltage − V VOL − Low-Level Output Voltage − V 15 14 PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 10 TA = 0°C 8 6 TA = 25°C 4 TA = 70°C TA = 125°C 2 0 0 0 0 20 40 60 80 100 120 140 160 IOL − Low-Level Output Current − mA 20 40 60 80 VDD = 2.7 V 100 AV = 1 VIC = VDD / 2 TA = 70°C 0.7 0.6 0.5 0.4 TA = 25°C 0.3 TA = 0°C 0.2 TA = −40°C 0.1 0 120 TA = 25°C 100 VDD = 5 V, 15 V 80 VDD = 2.7 V 60 40 20 0 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VCC − Supply Voltage − V 100 1k Phase 60 45 40 0 Gain −45 20 −90 VDD=5 Vdc RL=2 kΩ CL=10 pF TA=25°C 100 1k Phase − ° 90 −135 10 k 100 k 1 M −180 10 M GBWP − Gain Bandwidth Product − MHz 4 135 100 −40 10 1M GAIN BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 180 120 −20 100 k Figure 14 DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY 0 10 k f − Frequency − Hz Figure 13 80 10 k POWER SUPPLY REJECTION RATIO vs FREQUENCY TA = 125°C 0.8 1k 3.5 VDD = 15 V 3 2.5 2 VDD = 5 V VDD = 2.7 V 1.5 1 0.5 0 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C f − Frequency − Hz Figure 16 Figure 15 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 100 k f − Frequency − Hz Figure 12 PSRR − Power Supply Rejection Ratio − dB I DD − Supply Current − mA/Ch VDD = 5 V Figure 11 1 AVD − Differential Voltage Gain − dB AV = −10 RL = 2 kΩ CL = 10 pF TA = 25°C THD = 5% 10 100 120 140 160 SUPPLY CURRENT vs SUPPLY VOLTAGE 10 VDD = 15 V IOH − High-Level Output Current − mA Figure 10 0.9 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1M 10 M µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 TYPICAL CHARACTERISTICS SLEW RATE vs FREE-AIR TEMPERATURE 3.5 3 100 SR− SR+ 1 AV = 1 RL = 10 kΩ CL = 50 pF TA = 25°C 0.5 8.5 10.5 12.5 1.5 VDD = 5 V AV = 1 RL = 10 kΩ CL = 50 pF VI = 3 V 1 0 −40 −25 −10 5 14.5 50 40 Rnull = 0 30 Rnull = 50 20 10 0 20 35 50 65 80 95 110 125 10 100 CL − Capacitive Load − pF Figure 18 Figure 17 1000 Figure 19 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 100 V − Input Voltage − V I Hz Rnull = 100 60 TA − Free-Air Temperature − °C VCC − Supply Voltage −V VDD = 2.7, 5, 15 V TA = 25°C 90 70 80 70 60 50 4 3 2 1 VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 3 VPP TA = 25°C VI 0 4 40 3 30 2 20 1 VO 10 0 0 10 100 1k 10 k f − Frequency − Hz 100 k 0 2 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 0 VI 12 9 6 3 VO 0 0 2 4 6 8 10 12 14 16 18 V − Input Voltage − mV I 9 VDD = 15 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 9 VPP TA = 25°C 8 10 12 14 16 18 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 12 3 6 Figure 21 Figure 20 6 4 t − Time − µs 0.12 0.08 0.04 0 VI VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 100 mVPP TA = 25°C 0.12 0.08 0.04 VO 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 t − Time − µs t − Time − µs Figure 22 Figure 23 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • V − Output Voltage − mV O 6.5 SR+ V − Output Voltage − V O 4.5 V n − Equivalent Input Noise Voltage − nV/ 2.5 2 0.5 0 80 SR− 2.5 Phase Margin − ° SR − Slew Rate − V/ µs 1.5 V − Input Voltage − V I SR − Slew Rate − V/ µs 2 VDD = 5 V RL= 2 kΩ TA = 25°C AV = Open Loop 90 3 2.5 PHASE MARGIN vs CAPACITIVE LOAD V − Output Voltage − V O SLEW RATE vs SUPPLY VOLTAGE 11 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 TYPICAL CHARACTERISTICS INVERTING LARGE-SIGNAL RESPONSE VI 3 VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 3 VPP TA = 25°C 2 1 0 3 2 1 0 VO 0 2 4 6 8 10 12 14 12 9 VDD = 15 V AV = −1 RL = 2 kΩ CL = 10 pF VI = 9 Vpp TA = 25°C 6 3 0 0 16 0 2 4 VDD = 5 V AV = −1 RL = 2 kΩ CL = 10 pF VI = 100 mVpp TA = 25°C 16 0.1 VO 0.5 1 1.5 2 2.5 3 3.5 4 4.5 −60 −80 Crosstalk in Shutdown −100 −120 Crosstalk −140 10 I DD − Shutdown Supply Current − µ A/Ch 160 VDD = 2.7 V, 5 V & 15 V VI = VDD /2 RL = 2 kΩ CL= 10 pF AV = 1 TA = 25°C 80 60 40 20 1k 10 k 100 k 1 M f − Frequency − Hz Figure 28 1M SHUTDOWN PIN LEAKAGE CURRENT vs SHUTDOWN PIN VOLTAGE SHUTDOWN SUPPLY CURRENT vs SUPPLY VOLTAGE 50 45 40 SHDN = 0 V VI = VDD/2 AV = 1 TA = 125°C 35 30 TA = 70°C 25 TA = 25°C 20 15 10 TA = 0°C TA = −40°C 5 0 0 100 k Figure 27 Figure 26 SHUTDOWN FORWARD AND REVERSE ISOLATION vs FREQUENCY 100 1k 10 k f − Frequency −Hz 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VDD − Supply Voltage − V Figure 29 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • I DD − Shutdown Pin Leakage Current − pA 0 −40 VI Crosstalk − dB 0.05 V O − Output Voltage − V V I − Input Voltage − V 14 VDD = 2.7, 5, & 15 V VI = VDD/2 AV = 1 RL = 2 kΩ TA = 25°C −20 t − Time − µs Shutdown Forward and Reverse Isolation − dB 12 CROSSTALK vs FREQUENCY 0.10 0 12 10 0 0 100 8 Figure 25 0.05 10 6 t − Time − µs INVERTING SMALL-SIGNAL RESPONSE 100 6 3 Figure 24 120 9 VO t − Time − µs 140 VI V O − Output Voltage − V V I − Input Voltage − V 4 VO − Output Voltage − V V − Input Voltage − V I INVERTING LARGE-SIGNAL RESPONSE 250 TA = 125°C 200 150 100 50 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Shutdown Pin Voltage − V Figure 30 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 SHUTDOWN SUPPLY CURRENT/OUTPUT VOLTAGE vs TIME SHUTDOWN SUPPLY CURRENT/OUTPUT VOLTAGE vs TIME 10 6 VDD = 15 V AV = 1 RL = 2 kΩ CL = 10 pF VI = VDD/2 TA = 25° C 8 6 4 SHDN − Shutdown Pulse − V SHDN − Shutdown Pulse − V TYPICAL CHARACTERISTICS SHDN 2 0 5 VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = VDD/2 TA = 25° C 4 3 2 SHDN 1 0 V O − Output Voltage − V 6 4.5 VO 3 1.5 0 I DD − Supply Current − mA/Ch I DD − Supply Current − mA/Ch V O − Output Voltage − V 7.5 −1.5 1 0.75 IDD(SHDN = 0) 0.50 0.25 0 −0.25 −40 −20 0 20 40 60 80 100 120 140 2.5 1.5 1 0.5 0 −0.5 −1.0 1 0.75 0.50 IDD(SHDN = 0) 0.25 0 −0.25 −2 160 VO 2 −1 0 1 2 3 4 5 6 7 8 9 10 t − Time − µs t − Time − µs Figure 32 Figure 31 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 13 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 APPLICATION INFORMATION rail-to-rail input operation The TLV237x input stage consists of two differential transistor pairs, NMOS and PMOS, that operate together to achieve rail-to-rail input operation. The transition point between these two pairs can be seen in Figures 1, 2, and 3 for a 2.7-V, 5-V, and 15-V supply. As the common-mode input voltage approaches the positive supply rail, the input pair switches from the PMOS differential pair to the NMOS differential pair. This transition occurs approximately 1.35 V from the positive rail and results in a change in offset voltage due to different device characteristics between the NMOS and PMOS pairs. If the input signal to the device is large enough to swing between both rails, this transition results in a reduction in common-mode rejection ratio (CMRR). If the input signal does not swing between both rails, it is best to bias the signal in the region where only one input pair is active. This is the region in Figures 1 through 3 where the offset voltage varies slightly across the input range and optimal CMRR can be achieved. This has the greatest impact when operating from a 2.7-V supply voltage. driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 33. A minimum value of 20 Ω should work well for most applications. RF RG RNULL − Input Output + CLOAD VDD/2 Figure 33. Driving a Capacitive Load offset voltage The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: RF IIB− RG + − VI IIB+ V OO +V IO ǒ ǒ ǓǓ 1) R R F VO + RS "I G IB) R S ǒ ǒ ǓǓ 1) R R F G "I IB– Figure 34. Output Offset Voltage Model 14 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • R F µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 APPLICATION INFORMATION general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 35). RG RF VDD/2 − VO + VI R1 C1 f V O + V I ǒ 1) R R F G –3dB Ǔǒ + 1 2pR1C1 Ǔ 1 1 ) sR1C1 Figure 35. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RG RF –3dB RG = + ( 1 2pRC RF 1 2− Q ) VDD/2 Figure 36. 2-Pole Low-Pass Sallen-Key Filter WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 15 µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 APPLICATION INFORMATION circuit layout considerations To achieve the levels of high performance of the TLV237x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. D Ground planes—It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. D Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. D Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. D Short trace runs/compact part placements—Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the input of the amplifier. D Surface-mount passive components—Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. shutdown function Three members of the TLV237x family (TLV2370/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 25 µA/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. 16 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • µ SLOS270C − MARCH 2001 − REVISED DECEMBER 2003 APPLICATION INFORMATION general power dissipation considerations For a given θJA, the maximum power dissipation is shown in Figure 37 and is calculated by the following formula: P D + Where: ǒ T Ǔ –T MAX A q JA PD = Maximum power dissipation of TLV237x IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) θJA = θJC + θCA θJC = Thermal coefficient from junction to case θCA = Thermal coefficient from case to ambient air (°C/W) MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE 2 Maximum Power Dissipation − W 1.75 PDIP Package Low-K Test PCB θJA = 104°C/W 1.5 1.25 TJ = 150°C MSOP Package Low-K Test PCB θJA = 260°C/W SOIC Package Low-K Test PCB θJA = 176°C/W 1 0.75 0.5 0.25 SOT-23 Package Low-K Test PCB θJA = 324°C/W 0 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 37. Maximum Power Dissipation vs Free-Air Temperature WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 17 MECHANICAL DATA MPDI001A – JANUARY 1995 – REVISED JUNE 1999 P (R-PDIP-T8) PLASTIC DUAL-IN-LINE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.325 (8,26) 0.300 (7,62) 0.020 (0,51) MIN 0.015 (0,38) Gage Plane 0.200 (5,08) MAX Seating Plane 0.010 (0,25) NOM 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.430 (10,92) MAX 0.010 (0,25) M 4040082/D 05/98 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2004, Texas Instruments Incorporated