MITSUBISHI HVIGBT MODULES CM1200HA-66H HIGH POWER SWITCHING USE INSULATED TYPE HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules CM1200HA-66H ● IC ................................................................ 1200A ● VCES ....................................................... 3300V ● Insulated Type ● 1-element in a pack APPLICATION Inverters, Converters, DC choppers, Induction heating, DC to DC converters. OUTLINE DRAWING & CIRCUIT DIAGRAM 190 171 57±0.25 6 - M8 NUTS 57±0.25 20 57±0.25 Dimensions in mm C C 40 124±0.25 140 C E CM E C E E C E G C E G CIRCUIT DIAGRAM 20.25 8 - φ 7MOUNTING HOLES 41.25 79.4 15 61.5 61.5 40 13 28 5 38 5.2 LABEL 30 3 - M4 NUTS HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules) Mar. 2003 MITSUBISHI HVIGBT MODULES CM1200HA-66H HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules HIGH POWER SWITCHING USE INSULATED TYPE MAXIMUM RATINGS (Tj = 25°C) Symbol VCES VGES IC ICM IE (Note 2) IEM (Note 2) PC (Note 3) Tj Tstg Viso Item Emitter current Maximum collector dissipation Junction temperature Storage temperature Isolation voltage Mounting torque — Mass ELECTRICAL CHARACTERISTICS ICES VGE(th) IGES VCE(sat) Cies Coes Cres QG td (on) tr td (off) tf VEC (Note 2) trr (Note 2) Qrr (Note 2) Rth(j-c)Q Rth(j-c)R Rth(c-f) Note 1. 2. 3. 4. VGE = 0V VCE = 0V DC, TC = 60°C Pulse Collector current — Symbol Conditions Collector-emitter voltage Gate-emitter voltage (Note 1) — — Charged part to base plate, rms, sinusoidal, AC 60Hz 1min. Main terminals screw M8 Mounting screw M6 Auxiliary terminals screw M4 Typical value Unit V V A A A A W °C °C V N·m N·m N·m kg (Tj = 25°C) Collector cutoff current Gate-emitter threshold voltage Gate-leakage current Collector-emitter saturation voltage Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Emitter-collector voltage Reverse recovery time Reverse recovery charge Contact thermal resistance (Note 1) Pulse TC = 25°C, IGBT part Item Thermal resistance Ratings 3300 ±20 1200 2400 1200 2400 10400 –40 ~ +150 –40 ~ +125 6000 6.67 ~ 13.00 2.84 ~ 6.00 0.88 ~ 2.00 2.2 Conditions Limits Typ — IC = 120mA, VCE = 10V 4.5 6.0 7.5 V VGE = VGES, VCE = 0V Tj = 25°C IC = 1200A, VGE = 15V Tj = 125°C — — — — — — — — — — — — — — — — — — 4.40 4.80 120 12.0 3.6 5.7 — — — — 3.30 — 300 — — 0.006 0.5 5.72 — — — — — 1.60 2.00 2.50 1.00 4.29 1.20 — 0.012 0.024 — µA VCE = 10V VGE = 0V VCC = 1650V, IC = 1200A, VGE = 15V VCC = 1650V, IC = 1200A VGE1 = VGE2 = 15V RG = 2.5Ω Resistive load switching operation IE = 1200A, VGE = 0V IE = 1200A die / dt = –2400A / µs Junction to case, IGBT part Junction to case, FWDi part Case to fin, conductive grease applied (Note 4) Max 15 Unit VCE = VCES, VGE = 0V Min — mA V nF nF nF µC µs µs µs µs V µs µC K/W K/W K/W Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating. IE, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. Junction temperature (T j) should not increase beyond 150°C. Pulse width and repetition rate should be such as to cause negligible temperature rise. HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules) Mar. 2003 MITSUBISHI HVIGBT MODULES CM1200HA-66H HIGH POWER SWITCHING USE INSULATED TYPE HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) 2400 2400 1600 VGE=20V VGE=10V 800 VGE=9V 400 0 2 4 6 VGE=8V VGE=7V 8 10 2000 1600 1200 800 400 0 Tj = 25°C Tj = 125°C 0 4 8 12 16 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 8 VGE=15V 6 4 2 Tj = 25°C Tj = 125°C 0 0 400 800 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) VGE=15V 1200 0 EMITTER-COLLECTOR VOLTAGE VEC (V) VGE=13V VGE=14V COLLECTOR CURRENT IC (A) 2000 VCE=10V VGE=12V VGE=11V 8 IC = 2400A 6 IC = 1200A 4 IC = 480A 2 0 4 8 12 16 20 GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE CHARACTERISTICS (TYPICAL) 6 4 2 Tj = 25°C Tj = 125°C 0 Tj = 25°C COLLECTOR CURRENT IC (A) 8 0 10 0 1200 1600 2000 2400 400 800 1200 1600 2000 2400 EMITTER CURRENT IE (A) CAPACITANCE Cies, Coes, Cres (nF) COLLECTOR CURRENT IC (A) Tj=25°C 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2 VGE = 0V, Tj = 25°C Cies, Coes : f = 100kHz : f = 1MHz Cres Cies Coes Cres 100 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) Mar. 2003 MITSUBISHI HVIGBT MODULES CM1200HA-66H td(off) 100 td(on) 7 5 tr 3 2 10–1 7 5 SWITCHING ENERGY (J/P) REVERSE RECOVERY TIME trr (µs) 3 2 tf VCC = 1650V, VGE = ±15V RG = 2.5Ω, Tj = 125°C Inductive load 5 7 102 5 7 103 2 3 2 3 5 trr 100 7 5 103 7 5 Irr 3 2 10–1 7 5 3 2 5 7 102 2 3 5 7 103 2 3 5 102 7 5 EMITTER CURRENT IE (A) HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 2.4 VCC = 1650V, VGE = ±15V, RG = 2.5Ω, Tj = 125°C, 2.0 Inductive load Eon HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 4 Eon 1.6 1.2 Eoff 0.8 Erec 0.4 0 0 400 800 1200 2 Eoff 1 VCC = 1650V, IC = 1200A, VGE = ±15V, Tj = 125°C, Inductive load 0 5 10 15 CURRENT (A) GATE RESISTANCE (Ω) GATE CHARGE CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j – c) VCC = 1650V IC = 1200A 16 12 8 4 0 3 0 1600 20 GATE-EMITTER VOLTAGE VGE (V) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 5 5 VCC = 1650V, Tj = 125°C 3 Inductive load 3 2 VGE = ±15V, RG = 2.5Ω 2 COLLECTOR CURRENT IC (A) SWITCHING ENERGY (J/P) SWITCHING TIMES (µs) HALF-BRIDGE SWITCHING TIME CHARACTERISTICS (TYPICAL) 5 0 2000 4000 6000 8000 GATE CHARGE QG (nC) 10000 REVERSE RECOVERY CURRENT Irr (A) HIGH POWER SWITCHING USE INSULATED TYPE HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules 101 7 5 3 2 20 Single Pulse TC = 25°C Rth(j – c)Q = 0.012K/W Rth(j – c)R = 0.024K/W 100 7 5 3 2 10–1 7 5 3 2 10–2 10–3 2 3 5 7 10–2 2 3 5 7 10–1 2 3 5 7 100 TIME (s) Mar. 2003