RICOH R1212D100A

R1212D SERIES
STEP-UP DC/DC CONTOLLER
NO.EA-109-0607
OUTLINE
The R1212D Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current.
Each of the R1212D Series consists of an oscillator, a PWM comparator circuit, a reference voltage unit, an
error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low
ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or
an inductor, a diode, a power MOSFET, divider resisters, and capacitors.
Maximum duty cycle and the soft start time are easily adjustable with external resistors and capacitors. In
terms of maximum duty cycle, with or without internal limit can be set by mask options. As for the protection
circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1212D Series
latch the external driver with its off state, or the latch-type protection circuit works.
The delay time for latch the state can be set with an external capacitor.
To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector
threshold level).
FEATURES
•
•
•
•
•
•
•
•
Input Voltage Range ....................................................... 2.2V to 5.5V
Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor)
Two Options of Basic Oscillator Frequency .................... 700kHz, 1.4MHz, 300kHz
Maximum Duty Cycle/Soft-start time ............................. Adjustable with external capacitors
(If internal limit is set by version, Typ. 90% or Typ. 91.5%)
High Reference Voltage Accuracy .................................. ±1.5%
U.V.L.O. Threshold level ................................................. Typ.1.9V/2.1V/2.8V by mask option
Small Temperature Coefficient of Reference Voltage ... Typ.±150ppm/°C
Package .......................................................................... SON-8 ( t=Max. 0.9mm )
APPLICATIONS
• Constant Voltage Power Source for portable equipment.
• Constant Voltage Power Source for LCD and CCD.
1
R1212D
BLOCK DIAGRAM
VIN
Internal VR
VREFOUT
VREFOUT
UVLC
Oscillator
EXT
DTC
PWM Comp
Latch
VREF
VFB
Er.Amp
AMPOUT
GND
DELAY
SELECTION GUIDE
In the R1212D Series, the oscillator frequency, UVLO detector threshold, and with/without internal limit of
maximum duty cycle can be selected at the user's request.
The selection can be made with designating the part number as shown below;
R1212D10xx-TR-x
↑
a
←Part Number
↑
b
Code
Contents
a
b
2
Oscillator Frequency
UVLO Detector Threshold
Internal Maximum Duty Limit
0A
Typ. 700kHz
Typ. 1.9V
No
0B
Typ. 1.4MHz
Typ. 1.9V
No
1A
Typ. 700kHz
Typ. 2.1V
Typ. 90%
1C
Typ. 300kHz
Typ. 2.1V
Typ. 91.5%
2A
Typ. 700kHz
Typ. 2.8V
Typ. 90%
2C
Typ. 300kHz
Typ. 2.8V
Typ. 91.5%
Designation of composition of pin plating
-F: Lead free plating
R1212D
PIN CONFIGURATION
SON-8
Top View
8
7
Bottom View
6 5
5
∗
1
2
6
7
8
∗
3 4
∗
4
3
2
1
PIN DESCRIPTION
Pin No
Symbol
Description
1
EXT
External FET Drive Pin (CMOS Output)
2
GND
Ground Pin
3
DTC
Pin for Setting Maximum Duty Cycle and Soft start time
4
DELAY
5
VFB
6
VREFOUT
7
AMPOUT
8
VIN
Pin for External Capacitor
(for Setting Output Delay of Protection)
Feedback Pin for monitoring Output Voltage
Reference Voltage Output Pin
Amplifier Output Pin
Power Supply Pin for the IC
ABSOLUTE MAXIMUM RATINGS
(GND=0V)
Symbol
Item
Rating
Unit
6.5
V
VIN
VIN Pin Voltage
VEXT
EXT Pin Output Voltage
−0.3 ~ VIN+0.3
V
VDLY
DELAY Pin Voltage
−0.3 ~ VIN+0.3
V
VREFOUT
VREFOUT Pin Voltage
−0.3 ~ VIN+0.3
V
VAMP
AMPOUT Pin Voltage
−0.3 ~ VIN+0.3
V
VDTC
DTC Pin Voltage
−0.3 ~ VIN+0.3
V
VFB
VFB Pin Voltage
−0.3 ~ VIN+0.3
V
IAMP
AMPOUT Pin Current
V
IROUT
VREFOUT Pin Current
±10
30
IEXT
EXT Pin Inductor Drive Output Current
PD
1
Power Dissipation (SON-8)*
mA
±80
480
mW
mA
Topt
Operating Temperature Range
−40 ~ +85
°C
Tstg
Storage Temperature Range
−55 ~ +125
°C
∗1) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
3
R1212D
ELECTRICAL CHARACTERISTICS
•
Topt=25°C
R1212D100A
Symbol
Item
VIN
Operating Input Voltage
VFB
VFB Voltage Tolerance
∆VFB/∆VIN VFB Voltage Line Regulation
∆VFB/
∆Topt
Min.
Typ.
2.2
VIN=3.3V
VFB Voltage Temperature
Coefficient
−40°C
<
=
Topt
<
=
VFB Input Current
VIN=5.5V, VFB=0V or 5.5V
Open Loop Voltage Gain
fT
Unit
5.5
V
V
3
mV
±150
ppm/
°C
85°C
IFB
Max.
0.985 1.000 1.015
VIN: from 2.2V to 5.5V
AV
−0.1
0.1
µA
VIN=3.3V
100
dB
Unity Gain Frequency Band
VIN=3.3V, AV=0
1.0
MHz
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
∆fosc/
∆VIN
Oscillator Frequency Line
Regulation
VIN: from 2.2V to 5.5V
∆fosc/
∆Topt
Oscillator Frequency
Temperature Coefficient
−40°C
Supply Current 1
VIN=5.5V, VDLY=VFB=0V EXT at no load
VREFOUT Voltage
VIN=3.3V,IROUT=1mA
VREFOUT Maximum Output
Current
VIN=3.3V
∆VREFOUT/
∆VIN
VREFOUT Line Regulation
VIN: from 2.2V to 5.5V
5
10
mV
∆VREFOUT/
∆IROUT
VREFOUT Load Regulation
VIN=3.3V, IROUT: from 0.1mA to 5.0mA
6
15
mV
VREFOUT Short Current Limit
VIN=3.3V, VREFOUT=0V
20
mA
VREFOUT Voltage Temperature
Coefficient
−40°C <
=
±150
ppm/
°C
REXTH
EXT "H" ON Resistance
VIN=3.3V, IEXT=−50mA
2.5
6.0
Ω
REXTL
EXT "L" ON Resistance
VIN=3.3V, IEXT=50mA
1.5
4.0
Ω
tr
EXT Rising Time
VIN=3.3V, CL=1000pF
12
ns
tf
EXT Falling Time
VIN=3.3V, CL=1000pF
8
ns
DELAY Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
3.0
5.5
8.0
µA
IDLY2
DELAY Pin Discharge Current
VIN=VFB=2.2V, VDLY=0.1V
0.08
0.20
0.36
mA
VDLY
DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V
0.95
1.00
1.05
V
1.8
1.9
2.0
V
VUVLO1
+ 0.2
2.2
V
0.18
0.25
V
fosc
IDD1
VREFOUT
IOUT
Ilim
∆VREFOUT/
∆Topt
IDLY1
4
Conditions
<
=
Topt
<
=
595
85°C
700
805
50
KHz
±1.0
KHz/
°C
600
1000
µA
1.478 1.500 1.522
V
10
Topt
<
=
KHz
85°C
mA
VUVLO1
UVLO Detector Threshold
VIN=3.3V to 0V, VDLY=VFB=0V
VUVLO2
UVLO Released Voltage
VIN=0V to 3.3V, VDLY=VFB=0V
VDTC0
Duty=0% DTC Pin Voltage
VIN=3.3V
VDTC20
Duty=20% DTC Pin Voltage
VIN=3.3V
0.3
V
VDTC80
Duty=80% DTC Pin Voltage
VIN=3.3V
0.75
V
VDTC100
Duty=100% DTC Pin Voltage
VIN=3.3V
0.80
IAMPH
AMP "H" Output Current
VIN=3.3V, VAMP=1.0V, VFB=0.9V
0.5
IAMPL
AMP "L" Output Current
VIN=3.3V, VAMP=1.0V, VFB=1.1V
60
0.05
0.87
1.00
V
1.0
1.8
mA
100
160
µA
R1212D
•
Topt=25°C
R1212D100B
Symbol
Item
VIN
Operating Input Voltage
VFB
VFB Voltage Tolerance
∆VFB/∆VIN VFB Voltage Line Regulation
∆VFB/
∆Topt
Conditions
Min.
Typ.
Max.
5.5
V
1.000
1.015
V
2.2
VIN=3.3V
0.985
VIN: from 2.2V to 5.5V
Unit
3
mV
±150
ppm/
°C
VFB Voltage Temperature
Coefficient
−40°C <
=
IFB
VFB Input Current
VIN=5.5V, VFB=0V or 5.5V
AV
Open Loop Voltage Gain
VIN=3.3V
100
dB
fT
Unity Gain Frequency Band
VIN=3.3V, AV=0
1.0
MHz
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
∆fosc/
∆VIN
Oscillator Frequency Line
Regulation
VIN: from 2.2V to 5.5V
100
KHz
∆fosc/
∆Topt
Oscillator Frequency
Temperature Coefficient
−40°C <
=
±2.0
KHz
/°C
Supply Current 1
VIN=5.5V, VDLY=VFB=0V EXT at no load
VREFOUT Voltage
VIN=3.3V, IROUT=1mA
VREFOUT Maximum Output
Current
VIN=3.3V
fosc
IDD1
VREFOUT
IOUT
Topt
Topt
<
=
<
=
85°C
−0.1
1.19
85°C
1.478
0.1
1.40
1.61
µA
MHz
900
1800
µA
1.500
1.522
V
10
mA
∆VREFOUT/
VREFOUT Line Regulation
∆VIN
VIN: from 2.2V to 5.5V
5
10
mV
∆VREFOUT/
VREFOUT Load Regulation
∆IROUT
VIN=3.3V, IROUT: from 0.1mA to 5.0mA
6
15
mV
VIN=3.3V, VREFOUT=0V
20
mA
±150
ppm/
°C
Ilim
VREFOUT Short Current Limit
∆VREFOUT/ VREFOUT Voltage Temperature
Coefficient
∆Topt
REXTH
−40°C <
=
Topt
<
=
85°C
EXT "H" ON Resistance
VIN=3.3V, IEXT=−50mA
2.5
6.0
4.0
Ω
EXT "L" ON Resistance
VIN=3.3V, IEXT=50mA
1.5
tr
EXT Rising Time
VIN=3.3V, CL=1000pF
12
ns
tf
EXT Falling Time
VIN=3.3V, CL=1000pF
8
ns
IDLY1
DELAY Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
IDLY2
DELAY Pin Discharge Current VIN=VFB=2.2V, VDLY=0.1V
DELAY Pin Detector
VFB=0V, VDLY=0V to 2V
Threshold
REXTL
VDLY
VUVLO1
UVLO Detector Threshold
VIN=3.3V to 0V, VDLY=VFB=0V
Ω
3.0
5.5
8.0
µA
0.08
0.20
0.36
mA
0.95
1.00
1.05
V
1.8
1.9
2.0
V
VUVLO1
+ 0.2
2.2
V
0.18
0.25
V
VUVLO2
UVLO Released Voltage
VIN=0V to 3.3V, VDLY=VFB=0V
VDTC0
Duty=0% DTC Pin Voltage
VIN=3.3V
VDTC20
Duty=20% DTC Pin Voltage
VIN=3.3V
0.3
V
VDTC80
Duty=80% DTC Pin Voltage
VIN=3.3V
0.75
V
VDTC100
Duty=100% DTC Pin Voltage
VIN=3.3V
0.80
0.87
1.00
V
IAMPH
AMP "H" Output Current
VIN=3.3V, VAMP=1.0V, VFB=0.9V
0.5
1.0
1.8
mA
IAMPL
AMP "L" Output Current
VIN=3.3V, VAMP=1.0V, VFB=1.1V
60
100
160
µA
0.05
5
R1212D
•
Symbol
Item
Conditions
VIN
Operating Input Voltage
VFB
VFB Voltage Tolerance
VIN=3.3V
VFB Voltage Line Regulation
VIN: from 2.2V to 5.5V
VFB Voltage Temperature
Coefficient
−40°C
∆VFB/∆VIN
∆VFB/
∆Topt
Min.
Typ.
2.2
<
=
Topt
<
=
IFB
VFB Input Current
VIN=5.5V, VFB=0V or 5.5V
Open Loop Voltage Gain
fT
Max.
Unit
5.5
V
0.985 1.000 1.015
V
3
mV
±150
ppm/
°C
85°C
AV
−0.1
0.1
µA
VIN=3.3V
100
dB
Unity Gain Frequency Band
VIN=3.3V, AV=0
1.0
MHz
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
∆fosc/
∆VIN
Oscillator Frequency Line
Regulation
VIN: from 2.2V to 5.5V
∆fosc/
∆Topt
Oscillator Frequency
Temperature Coefficient
−40°C <
=
Supply Current 1
VIN=5.5V, VDLY=VFB=0V EXT at no load
VREFOUT Voltage
VIN=3.3V,IROUT=1mA
VREFOUT Maximum Output
Current
VIN=3.3V
∆VREFOUT/
∆VIN
VREFOUT Line Regulation
VIN: from 2.2V to 5.5V
5
10
mV
∆VREFOUT/
∆IROUT
VREFOUT Load Regulation
VIN=3.3V, IROUT: from 0.1mA to 5.0mA
6
15
mV
VREFOUT Short Current Limit
VIN=3.3V, VREFOUT=0V
20
mA
VREFOUT Voltage Temperature
Coefficient
−40°C <
=
±150
ppm/
°C
REXTH
EXT "H" ON Resistance
VIN=3.3V, IEXT=−50mA
2.5
6.0
Ω
REXTL
EXT "L" ON Resistance
VIN=3.3V, IEXT=50mA
1.5
4.0
Ω
tr
EXT Rising Time
VIN=3.3V, CL=1000pF
12
ns
tf
EXT Falling Time
VIN=3.3V, CL=1000pF
8
ns
DELAY Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
3.0
5.5
8.0
µA
IDLY2
DELAY Pin Discharge Current
VIN=VFB=2.2V, VDLY=0.1V
0.08
0.20
0.36
mA
VDLY
DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V
0.95
1.00
1.05
V
2.0
2.1
2.2
V
VUVLO1
+ 0.2
2.45
V
0.18
0.25
V
fosc
IDD1
VREFOUT
IOUT
Ilim
∆VREFOUT/
∆Topt
IDLY1
Topt
<
=
595
85°C
700
805
50
KHz
±1.0
KHz/
°C
600
1000
µA
1.478 1.500 1.522
V
10
Topt
<
=
KHz
85°C
mA
VUVLO1
UVLO Detector Threshold
VIN=3.3V to 0V, VDLY=VFB=0V
VUVLO2
UVLO Released Voltage
VIN=0V to 3.3V, VDLY=VFB=0V
VDTC0
Duty=0% DTC Pin Voltage
VIN=3.3V
VDTC20
Duty=20% DTC Pin Voltage
VIN=3.3V
0.3
V
VDTC80
Duty=80% DTC Pin Voltage
VIN=3.3V
0.75
V
0.05
Maximum Duty Cycle
VIN=3.3V
84
90
96
%
IAMPH
AMP "H" Output Current
VIN=3.3V, VAMP=1.0V, VFB=0.9V
0.5
1.0
1.8
mA
IAMPL
AMP "L" Output Current
VIN=3.3V, VAMP=1.0V, VFB=1.1V
60
100
160
µA
Maxduty
6
Topt=25°C
R1212D101A
R1212D
•
Topt=25°C
R1212D101C
Symbol
Item
Conditions
Min.
Typ.
VIN
Operating Input Voltage
VFB Voltage Tolerance
VIN=3.3V
VFB Voltage Line Regulation
VIN: from 2.2V to 5.5V
VFB Voltage Temperature
Coefficient
−40°C
IFB
VFB Input Current
VIN=5.5V, VFB=0V or 5.5V
AV
Open Loop Voltage Gain
VIN=3.3V
100
dB
fT
Unity Gain Frequency Band
VIN=3.3V, AV=0
1.0
MHz
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
∆fosc/
∆VIN
Oscillator Frequency Line
Regulation
VIN: from 2.2V to 5.5V
∆fosc/
∆Topt
Oscillator Frequency
Temperature Coefficient
−40°C
Supply Current 1
VIN=5.5V, VDLY=VFB=0V EXT at no load
VREFOUT Voltage
VIN=3.3V, IROUT=1mA
VREFOUT Maximum Output
Current
VIN=3.3V
∆VREFOUT/
∆VIN
VREFOUT Line Regulation
VIN: from 2.2V to 5.5V
5
10
mV
∆VREFOUT/
∆IROUT
VREFOUT Load Regulation
VIN=3.3V, IROUT: from 0.1mA to 5.0mA
6
15
mV
VREFOUT Short Current Limit
VIN=3.3V, VREFOUT=0V
20
mA
VREFOUT Voltage Temperature
Coefficient
−40°C <
=
±150
ppm/
°C
EXT "H" ON Resistance
VIN=3.3V, IEXT=−50mA
2.5
6.0
4.0
∆VFB/
∆Topt
fosc
IDD1
VREFOUT
IOUT
Ilim
∆VREFOUT/
∆Topt
REXTH
<
=
<
=
Topt
Topt
<
=
<
=
5.5
Unit
VFB
∆VFB/∆VIN
2.2
Max.
V
3
mV
±150
ppm/
°C
85°C
−0.1
240
85°C
0.1
300
360
<
=
KHz
KHz
±0.5
KHz/
°C
400
800
1.478 1.500 1.522
85°C
µA
25
10
Topt
V
0.985 1.000 1.015
µA
V
mA
Ω
EXT "L" ON Resistance
VIN=3.3V, IEXT=50mA
1.5
tr
EXT Rising Time
VIN=3.3V, CL=1000pF
12
ns
tf
EXT Falling Time
VIN=3.3V, CL=1000pF
8
ns
IDLY1
DELAY Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
2.0
4.5
7.0
µA
IDLY2
DELAY Pin Discharge Current
VIN=VFB=2.2V, VDLY=0.1V
0.08
0.20
0.36
mA
VDLY
DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V
0.95
1.00
1.05
V
2.0
2.1
2.2
V
VUVLO1
+ 0.2
2.45
V
0.18
0.25
V
REXTL
Ω
VUVLO1
UVLO Detector Threshold
VIN=3.3V to 0V, VDLY=VFB=0V
VUVLO2
UVLO Released Voltage
VIN=0V to 3.3V, VDLY=VFB=0V
VDTC0
Duty=0% DTC Pin Voltage
VIN=3.3V
VDTC20
Duty=20% DTC Pin Voltage
VIN=3.3V
0.3
V
VDTC80
Duty=80% DTC Pin Voltage
VIN=3.3V
0.75
V
Maximum Duty Cycle
VIN=3.3V
85.5
91.5
97.5
%
IAMPH
AMP "H" Output Current
VIN=3.3V, VAMP=1.0V, VFB=0.9V
0.5
1.0
1.8
mA
IAMPL
AMP "L" Output Current
VIN=3.3V, VAMP=1.0V, VFB=1.1V
50
90
150
µA
Maxduty
0.05
7
R1212D
•
Symbol
Item
Conditions
Min.
Typ.
Operating Input Voltage
VFB Voltage Tolerance
VIN=3.3V
VFB Voltage Line Regulation
VIN: from 2.2V to 5.5V
VFB Voltage Temperature
Coefficient
−40°C
IFB
VFB Input Current
VIN=5.5V, VFB=0V or 5.5V
AV
Open Loop Voltage Gain
VIN=3.3V
100
dB
fT
Unity Gain Frequency Band
VIN=3.3V, AV=0
1.0
MHz
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
∆fosc/
∆VIN
Oscillator Frequency Line
Regulation
VIN: from 2.2V to 5.5V
∆fosc/
∆Topt
Oscillator Frequency
Temperature Coefficient
−40°C
fosc
<
=
<
=
Topt
Topt
<
=
<
=
5.5
Unit
VIN
∆VFB/
∆Topt
3.3
Max.
VFB
∆VFB/∆VIN
V
0.985 1.000 1.015
V
3
mV
±150
ppm/
°C
85°C
−0.1
595
85°C
0.1
700
805
µA
KHz
50
KHz
±1.0
KHz/
°C
Supply Current 1
VIN=5.5V, VDLY=VFB=0V EXT at no load
VREFOUT Voltage
VIN=3.3V, IROUT=1mA
VREFOUT Maximum Output
Current
VIN=3.3V
∆VREFOUT/
∆VIN
VREFOUT Line Regulation
VIN: from 2.2V to 5.5V
5
10
mV
∆VREFOUT/
∆IROUT
VREFOUT Load Regulation
VIN=3.3V, IROUT: from 0.1mA to 5.0mA
6
15
mV
VREFOUT Short Current Limit
VIN=3.3V, VREFOUT=0V
20
mA
VREFOUT Voltage Temperature
Coefficient
−40°C <
=
±150
ppm/
°C
EXT "H" ON Resistance
VIN=3.3V, IEXT=−50mA
2.5
6.0
4.0
IDD1
VREFOUT
IOUT
Ilim
∆VREFOUT/
∆Topt
REXTH
1000
µA
1.478 1.500 1.522
600
V
10
Topt
<
=
85°C
mA
Ω
EXT "L" ON Resistance
VIN=3.3V, IEXT=50mA
1.5
tr
EXT Rising Time
VIN=3.3V, CL=1000pF
12
ns
tf
EXT Falling Time
VIN=3.3V, CL=1000pF
8
ns
IDLY1
DELAY Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
3.0
5.5
8.0
µA
IDLY2
DELAY Pin Discharge Current
VIN=VFB=2.2V, VDLY=0.1V
0.08
0.20
0.36
mA
VDLY
DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V
0.95
1.00
1.05
V
2.6
2.8
3.0
V
VUVLO1
+ 0.25
3.3
V
0.18
0.25
V
REXTL
Ω
VUVLO1
UVLO Detector Threshold
VIN=3.3V to 0V, VDLY=VFB=0V
VUVLO2
UVLO Released Voltage
VIN=0V to 3.3V, VDLY=VFB=0V
VDTC0
Duty=0% DTC Pin Voltage
VIN=3.3V
VDTC20
Duty=20% DTC Pin Voltage
VIN=3.3V
0.3
V
VDTC80
Duty=80% DTC Pin Voltage
VIN=3.3V
0.75
V
Maximum Duty Cycle
VIN=3.3V
84
90
96
%
IAMPH
AMP "H" Output Current
VIN=3.3V, VAMP=1.0V, VFB=0.9V
0.5
1.0
1.8
mA
IAMPL
AMP "L" Output Current
VIN=3.3V, VAMP=1.0V, VFB=1.1V
60
100
160
µA
Maxduty
8
Topt=25°C
R1212D102A
0.05
R1212D
•
Topt=25°C
R1212D102C
Symbol
Item
Conditions
Min.
Typ.
VIN
Operating Input Voltage
VFB Voltage Tolerance
VIN=3.3V
VFB Voltage Line Regulation
VIN: from 2.2V to 5.5V
VFB Voltage Temperature
Coefficient
−40°C
IFB
VFB Input Current
VIN=5.5V, VFB=0V or 5.5V
AV
Open Loop Voltage Gain
VIN=3.3V
100
dB
fT
Unity Gain Frequency Band
VIN=3.3V, AV=0
1.0
MHz
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
Oscillator Frequency Line
Regulation
VIN: from 2.2V to 5.5V
Oscillator Frequency
Temperature Coefficient
−40°C <
=
Supply Current 1
VIN=5.5V, VDLY=VFB=0V EXT at no load
VREFOUT Voltage
VIN=3.3V, IROUT=1mA
VREFOUT Maximum Output
Current
VIN=3.3V
∆VREFOUT/
∆VIN
VREFOUT Line Regulation
VIN: from 2.2V to 5.5V
5
10
mV
∆VREFOUT/
∆IROUT
VREFOUT Load Regulation
VIN=3.3V, IROUT: from 0.1mA to 5.0mA
6
15
mV
VREFOUT Short Current Limit
VIN=3.3V, VREFOUT=0V
20
mA
VREFOUT Voltage Temperature
Coefficient
−40°C <
=
±150
ppm/
°C
REXTH
EXT "H" ON Resistance
VIN=3.3V, IEXT=−50mA
2.5
6.0
Ω
REXTL
EXT "L" ON Resistance
VIN=3.3V, IEXT=50mA
1.5
4.0
Ω
tr
EXT Rising Time
VIN=3.3V, CL=1000pF
12
ns
tf
EXT Falling Time
VIN=3.3V, CL=1000pF
8
ns
IDLY1
DELAY Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
2.0
4.5
7.0
µA
IDLY2
DELAY Pin Discharge Current
VIN=VFB=2.2V, VDLY=0.1V
0.08
0.20
0.36
mA
0.95
1.00
1.05
V
2.6
2.8
3.0
V
VUVLO1
+ 0.25
3.30
V
0.18
0.25
V
∆VFB/
∆Topt
fosc
∆fosc/∆VIN
∆fosc/
∆Topt
IDD1
VREFOUT
IOUT
Ilim
∆VREFOUT/
∆Topt
VDLY
<
=
Topt
Topt
<
=
<
=
5.5
Unit
VFB
∆VFB/∆VIN
3.3
Max.
V
3
mV
±150
ppm/
°C
85°C
−0.1
240
85°C
0.1
300
360
<
=
DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V
KHz
KHz
±0.5
KHz/
°C
400
800
1.478 1.500 1.522
85°C
µA
25
10
Topt
V
0.985 1.000 1.015
µA
V
mA
VUVLO1
UVLO Detector Threshold
VIN=3.3V to 0V, VDLY=VFB=0V
VUVLO2
UVLO Released Voltage
VIN=0V to 3.3V, VDLY=VFB=0V
VDTC0
Duty=0% DTC Pin Voltage
VIN=3.3V
VDTC20
Duty=20% DTC Pin Voltage
VIN=3.3V
0.3
V
VDTC80
Duty=80% DTC Pin Voltage
VIN=3.3V
0.75
V
Maximum Duty Cycle
VIN=3.3V
85.5
91.5
97.5
%
IAMPH
AMP "H" Output Current
VIN=3.3V, VAMP=1.0V, VFB=0.9V
0.5
1.0
1.8
mA
IAMPL
AMP "L" Output Current
VIN=3.3V, VAMP=1.0V, VFB=1.1V
50
90
150
µA
Maxduty
0.05
9
R1212D
TYPICAL APPLICATIONS AND TECHNICAL NOTES
Inductor
Diode
VOUT
R3
VIN
C1
NMOS
EXT
DELAY
C4
R1
C3
VFB
C2
R2
GND
AMPOUT
C5
C6
VREFOUT
R5
Inductor
R6
CPH6415 (Sanyo)
Diode
CRS02 (Toshiba)
C1
2.2µF
C2
C4
C5
C7
LDR655312T-100(TDK) [R1212DxxxA]
LDR655312T-4R7(TDK) [R1212DxxxB]
LDR655312T-220(TDK) [R1212DxxxC]
NMOS
C3
R4
DTC
C6
0.1µF
1µF
C7
0.1µF
1.5µF
1000pF[R1212DxxxA]
680pF[R1212DxxxB]
1500pF[R1212DxxxC]
1000pF[R1212DxxxA]
680pF[R1212DxxxB]
1500pF[R1212DxxxC]
Set V
5V
10V
15V
R1
R2
R3
R4
R5
R6
120kΩ
30kΩ
180kΩ
20kΩ
1kΩ
4.7kΩ
240kΩ
300kΩ
140kΩ
10kΩ
Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the
typical application above. Connect the capacitor as short as possible to the IC.
• In terms of the capacitor for setting delay time of the latch protection, C2 is shown in typical application above.
Latch delay time depends on this C2 value. Refer to the Latch Protection Operation Timing Chart.
• Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical application above.
(Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC converter may be
unstable, use a tantalum type capacitor instead of ceramic type
• Connect a capacitor between VREFOUT and GND, C6 as shown in typical application of the previous page.
The capacitance value of C6 is between 0.1µF and 1.0µF.
10
R1212D
•
Output Voltage Setting Method and Phase Compensation Making Method
• The feedback voltage is controlled into 1.0V. The output voltage can be set with divider resistors for voltage
setting, R1 and R2 as shown in typical application of the previous page. Refer to the next formula.
Output Voltage = VFB× (R1+R2)/R2
Output Voltage is adjustable with setting various resistor values combination.
R1+R2 should be equal or less than 500kΩ
As for the DC/DC converter, depending on the load current and external components such as L and C, phase
may loss around 180°. In such case, phase margin becomes less and may be unstable. To avoid this situation,
make the phase margin more. The pole is made with external components L and C.
Fpole∼1/{2×π× (L × C3 ) }
C4, C5, R3, and R4 shown in the diagram are for making phase compensation. The gain of the system can be
set with using these resistors and capacitors. Each value in the diagram is just an example.
R4 and C5 make zero (the backward phase).
Fzero∼1/(2×π×R4×C5)
Choose the R4 and C5 value so as to make the cutoff frequency of this zero point close to the cutoff frequency of
the pole by external components, L and C.
For example, supposed that L=10µH and COUT (C3) =10µF, the cutoff frequency of the pole is approximately
16kHz. Therefore make the cutoff frequency of the zero point close to 16kHz. Then R4=4.7kΩ and C5=1000pF
are appropriate values.
As for setting the gain, the ratio of the composite resistor (RT: RT=R1×R2/(R1+R2)) to R4 is the key.
If the R4 against the composite resistor, RT, is large, the gain becomes also large. If the gain is large, the
response characteristic is improved, however, too large gain makes the system be unstable.
If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin, and the unstable operation
may result. In this case, a resistor R3, shown in typical application of the previous page. The recommended
resistance value of R3 is in the range from 1kΩ to 5kΩ. Then, noise level will be decreased.
Further, R1 and C4 makes another zero point (the backward phase).
Fzero∼1/(2×π×R1×C4)
Make the cutoff frequency of this zero point be lower than the cutoff frequency of the pole by external
components, or, L and C. Herein, R1=180kΩ and C4=1000pF are appropriate values.
• Select the Power MOSFET, the diode, capacitors and the inductor within ratings (Voltage, Current, Power) of
this IC. Choose the power MOSFET with low threshold voltage depending on the input voltage to be able to
turn on the FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR,
and with fast switching speed. When an external transistor is switching, spike voltage may be generated
caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is twice as
much as the setting voltage or more.
• The soft-start time and the maximum duty cycle setting method
The soft-start time and the maximum duty cycle can be set with R5, R6, and C7 values connected to the
VREFOUT pin and the DTC pin. (Refer to the timing chart: Soft-start operation.)
11
R1212D
Output Current and Selection of External Components
<Basic Circuit>
i2
Diode
Inductor
IOUT
VIN
VOUT
i1
CL
Lx Tr
<Circuit through L>
Discontinuous Mode
IL
IL
Continuous Mode
ILxmax
ILxmax
ILxmin
ILxmin
Tf
t
Ton
Toff
Iconst
Ton
T=1/fosc
1/ton
Toff
T=1/fosc
1/ton
There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator
depending on the continuous characteristic of inductor current.
During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is
VIN × t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next
formula.
∫
Ton
2
IN
0
PON = V
× t / L dt .....................................................................................................Formula 1
With the step-up circuit, electric power is supplied from power source also during off time. In this case, input
current is described as (VOUT − VIN) ×t/L, therefore electric power, POFF is described as in next formula.
∫
Tf
POFF = VIN × ( VOUT − VIN) × t / L dt ................................................................................Formula 2
0
In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average
electric power, or PAV is described as in the next formula.
∫
Ton
2
IN
0
PAV = 1/( TON + TOFF ) × { V
∫
Tf
× t / L dt + VIN × ( VOUT − VIN) × t / L dt } ...............................Formula 3
0
In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of switching
regulator becomes continuous mode.
12
R1212D
In the continuous mode, the deviation of the current is equal between on time and off time.
VIN = TON / L = ( VOUT − VIN) × Toff / L ............................................................................. Formula 4
Further, the electric power, PAV is equal to output electric power, VOUT × IOUT, thus,
IOUT = fOSC × VIN 2 × TON 2 /{2 × L × ( VOUT − VIN)} = VIN 2 × TON /( 2 × L × VOUT ) ..................... Formula 5
When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes
continuous. The continuous current through the inductor is described as Iconst, then,
IOUT = fOSC × VIN 2 × TON 2 /{2 × L × ( VOUT − VIN)} + VIN × Iconst / VOUT ................................ Formula 6
In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as
follows:
ILx max = Iconst + VIN × TON / L ..................................................................................... Formula 7
With the formula 4,6, and ILxmax is,
ILx max = VOUT / VIN × IOUT + VIN × TON /( 2 × L ) ................................................................ Formula 8
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output,
and external components should be selected.
In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula.
The explanation above is based on the ideal calculation, and the loss caused by LX switch and external
components is not included. The actual maximum output current is between 50% and 80% of the calculation.
Especially, when the ILX is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As
for VOUT, Vf (as much as 0.3V) of the diode should be considered.
13
R1212D
TIMING CHART
<Soft-start Operation>
The timing chart below describes the state of each pin from the power-on until the IC entering the stable
operation.
By raising the voltage of the DTC pin slowly, the switching duty cycle is limited, and prevent the drastic voltage
rising (over-shoot) and inrush current.
When the VIN voltage becomes equal or more than the UVLO released voltage (VUVLO+VHYS), VREFOUT operation
starts. Following with the increase of the voltage level of VREFOUT, the internal oscillator begins to operate, then
the DTC voltage is also rising, then, soft-start operation starts. When the DTC voltage crosses the chopping
wave level inside the IC, EXT pin starts switching, then, step-up operation begins. During this term, the output
voltage does not reach the set output voltage. Therefore the output of the amplifier is "H". Besides, the protection
circuit may work and the IC charges the DELAY pin. Because of this, the soft-start time should be set shorter
than the latch protection delay time.
After the initial stage, when the output voltage reaches the set output voltage, the level of AMPOUT becomes
the normal state. In other words, the level is determined with the input voltage, the output voltage, and the output
current. When the level of AMPOUT becomes falling, charging the DELAY pin stops and discharges to the GND.
The soft-start time (the time for the DTC pin voltage becoming to VDTC level) can be estimated with the next
formula.
T≅1/α×ln(VDTC×α/β+1), herein, α=−1/C7×(1/R5+1/R6), and β=VREFOUT/(C7×R5).
VIN
(VUVLO+VHYS)
VREFOUT
OSC
DTC
AMPOUT
DELAY
Soft-start Time
EXT
VREFOUT
R5
DTC
R6
14
C7
R1212D
<Latch Protection Operation>
The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects
maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. The maximum duty cycle continues
and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off
the external power MOSFET.
To release the latch protection operation, make the supply voltage down to UVLO detector threshold or lower,
and make it rise up to the normal input voltage.
Once after becoming the maximum duty cycle, if the duty cycle decreases before latch operation works, the
charging the capacitor stops immediately, and the DELAY pin voltage is fixed at GND level with IDLY2.
The delay time of latch protection can be calculated with C2, VDLY, and the delay pin charge current, IDLY1, as in
the next formula.
t=C2 × VDLY/IDLY1
DELAY
Output Short
AMPOUT
VDLY
DTC
Normal
Maxduty Operation
Latched
EXT
IDLY1
DELAY
VDLY
C2
15
R1212D
TEST CIRCUITS
VIN
VIN
EXT
A
VREFOUT
VREFOUT
AMPOUT
AMPOUT
DTC
DTC
VFB
VFB
DELAY
GND
GND
Fig.1 Consumption Current Test Circuit
VIN
VREFOUT
AMPOUT
DELAY
Fig.2 Oscillator Frequency, VFB Voltage,
Duty Cycle, EXT rising time/falling time Test Circuit
VIN
EXT
EXT
VREFOUT
A
AMPOUT
DTC
DTC
VFB
VFB
DELAY
GND
EXT
Fig.3 AMP "L" Output Current/
"H" Output Current Test Circuit
GND
DELAY
A
Fig.4 DELAY Pin Charge Current/
Discharge Current Test Circuit
V
VIN
GND
EXT
EXT
VREFOUT
VREFOUT
AMPOUT
AMPOUT
DTC
DTC
VFB
VFB
DELAY
Fig.5 EXT "H" ON Resistance Test Circuit
16
VIN
GND
V
DELAY
Fig.6 EXT "L" ON Resistance Test Circuit
R1212D
EXT
VIN
VIN
EXT
VREFOUT
VREFOUT
AMPOUT
AMPOUT
DTC
DTC
VFB
VFB
GND
DELAY
GND
Fig.7 DELAY Pin Detector Threshold Test Circuit
VIN
EXT
Fig.8 UVLO Detector Threshold/Released
Voltage Test Circuit
VIN
VREFOUT
AMPOUT
AMPOUT
100kΩ
DTC
VFB
DELAY
VFB
10kΩ
Fig.9 Error AMP Gain/Phase Test Circuit
VIN
EXT
VREFOUT
DTC
GND
DELAY
GND
A
V
DELAY
Fig.10 VREFOUT Voltage Test Current
EXT
VREFOUT
AMPOUT
DTC
VFB
GND
DELAY
A
Fig.11 VFB Leakage Current Test Circuit
17
R1212D
Inductor
VOUT
Diode
R3
C1
VIN
EXT
DELAY
VFB
NMOS
C4
R1
C3
C2
R2
GND
AMPOUT
C5
C6
VREFOUT
R4
DTC
R5
R6
C7
Fig.12 Output Current vs. Output Voltage/Efficiency, Response Characteristics Test Circuit
Inductor
NMOS
CPH6415 (Sanyo)
Diode
CRS02 (Toshiba)
C1
2.2µF
C6
0.1µF
C2
1µF
C7
0.1µF
C3
15µF
1000pF[R1212DxxxA]
680pF[R1212DxxxB]
1500pF[R1212DxxxC]
1000pF[R1212DxxxA]
680pF[R1212DxxxB]
1500pF[R1212DxxxC]
SetV
5V
10V
15V
R1
R2
R3
R4
R5
R6
120kΩ
30kΩ
180kΩ
20kΩ
1kΩ
4.7kΩ
240kΩ
300kΩ
140kΩ
10kΩ
C4
C5
18
LDR655312T-100(TDK) [R1212DxxxA]
LDR655312T-4R7(TDK) [R1212DxxxB]
LDR655312T-220(TDK) [R1212DxxxC]
R1212D
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current (Topt=25°C)
R1212D100A
VOUT=5V
5.10
2.2V
3.3V
5.05
5.00
4.95
VOUT=10V
10.2
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1212D100A
4.90
2.2V
3.3V
5.5V
10.1
10.0
9.9
9.8
0
100
200
300
400
Output Current IOUT(mA)
500
0
R1212D100A
15.2
15.1
15.0
14.9
2.2V
3.3V
5.5V
14.8
VOUT=5V
5.10
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1212D100B
VOUT=15V
15.3
14.7
2.2V
3.3V
5.05
5.00
4.95
4.90
0
50
100
150
200
Output Current IOUT(mA)
0
250
R1212D100B
500
10.0
9.9
9.8
VOUT=15V
15.3
Output Voltage VOUT(V)
2.2V
3.3V
5.5V
10.1
100
200
300
400
Output Current IOUT(mA)
R1212D100B
VOUT=10V
10.2
Output Voltage VOUT(V)
50 100 150 200 250 300 350 400
Output Current IOUT(mA)
15.2
15.1
15.0
14.9
2.2V
3.3V
5.5V
14.8
14.7
0
50 100 150 200 250 300 350 400
Output Current IOUT(mA)
0
50
100
150
200
Output Current IOUT(mA)
250
19
R1212D
R1212D101C
2.2V
3.3V
5.05
5.00
4.95
VOUT=10V
10.2
Output Voltage VOUT(V)
5.10
Output Voltage VOUT(V)
R1212D101C
VOUT=5V
10.1
10.0
4.90
2.2V
3.3V
5.5V
9.9
9.8
0
100
200
300
400
Output Current IOUT(mA)
500
0
50 100 150 200 250 300 350 400
Output Current IOUT(mA)
R1212D101C
VOUT=15V
Output Voltage VOUT(V)
15.3
2.2V
3.3V
5.5V
15.2
15.1
15.0
14.9
14.8
14.7
0
50
100
150
200
Output Current IOUT(mA)
250
2) Efficiency vs. Output Current (Topt=25°C)
VOUT=5V
100
90
80
70
60
50
40
30
20
10
0
2.2V
3.3V
0
20
R1212D100A
Efficiency η (%)
Efficiency η (%)
R1212D100A
100
200
300
400
Output Current IOUT(mA)
500
VOUT=10V
100
90
80
70
60
50
40
30
20
10
0
2.2V
3.3V
5.5V
0
50 100 150 200 250 300 350 400
Output Current IOUT(mA)
R1212D
R1212D100B
VOUT=15V
100
90
80
70
60
50
40
30
20
10
0
Efficiency η (%)
Efficiency η (%)
R1212D100A
2.2V
3.3V
5.5V
0
50
100
150
200
Output Current IOUT(mA)
VOUT=5V
100
90
80
70
60
50
40
30
20
10
0
250
2.2V
3.3V
0
VOUT=10V
100
90
80
70
60
50
40
30
20
10
0
2.2V
3.3V
5.5V
0
VOUT=15V
100
90
80
70
60
50
40
30
20
10
0
50 100 150 200 250 300 350 400
Output Current IOUT(mA)
2.2V
3.3V
5.5V
0
VOUT=5V
2.2V
3.3V
0
50
100
150
200
Output Current IOUT(mA)
250
R1212D101C
Efficiency η (%)
Efficiency η (%)
R1212D101C
100
90
80
70
60
50
40
30
20
10
0
500
R1212D100B
Efficiency η (%)
Efficiency η (%)
R1212D100B
100
200
300
400
Output Current IOUT(mA)
100
200
300
400
Output Current IOUT(mA)
500
VOUT=10V
100
90
80
70
60
50
40
30
20
10
0
2.2V
3.3V
5.5V
0
50 100 150 200 250 300 350 400
Output Current IOUT(mA)
21
R1212D
Efficiency η (%)
R1212D101C
VOUT=15V
100
90
80
70
60
50
40
30
20
10
0
2.2V
3.3V
5.5V
0
50
100
150
200
Output Current IOUT(mA)
250
3) VFB Voltage vs. Input Voltage (Topt =25°C)
4) VFB Voltage vs. Temperature
R1212D100x
R1212D100x
VIN=3.3V
1010
Feedback Voltage VFB(mV)
Feedback Voltage VFB(mV)
1010
1005
1000
995
990
985
980
2
3
4
5
Input Voltage VIN(V)
1005
1000
995
990
985
980
-50
6
-25
0
25
50
75
Temperature Topt(°C)
100
5) Oscillator Frequency vs. Input Voltage (Topt=25°C)
775
750
725
700
675
650
625
600
2
22
R1212D100B
Oscillator Frequency fosc(kHz)
Oscillator Frequency fosc(kHz)
R1212D100A
800
3
4
5
Input Voltage VIN(V)
6
1600
1500
1400
1300
1200
2
3
4
5
Input Voltage VIN(V)
6
R1212D
Oscillator Frequency fosc(kHz)
R1212D101C
350
330
310
290
270
250
2
3
4
5
Input Voltage VIN(V)
6
6) Oscillator Frequency vs. Temperature
R1212D10xB
VIN=3.3V
800
Oscillator Frequency fosc(kHz)
Oscillator Frequency fosc(kHz)
R1212D10xA
775
750
725
700
675
650
625
600
-50
-25
0
25
50
75
Temperature Topt(°C)
100
VIN=3.3V
1600
1550
1500
1450
1400
1350
1300
1250
1200
-50
-25
0
25
50
75
Temperature Topt(°C)
100
Oscillator Frequency fosc(kHz)
R1212D10xC
VIN=3.3V
350
330
310
290
270
250
-50
-25
0
25
50
75
Temperature Topt(°C)
100
23
R1212D
7) Supply Current vs. Input Voltage (Topt=25°C at no load)
R1212D100A
500
450
400
350
300
250
EXT at no load
800
Supply Current IDD(uA)
Supply Current IDD(uA)
R1212D100B
EXT at no load
200
700
600
500
400
300
2
3
4
5
Input Voltage VIN(V)
2
6
3
4
5
Input Voltage VIN(V)
6
R1212D101C
EXT at no load
Supply Current IDD(uA)
400
350
300
250
200
150
100
2
3
4
5
Input Voltage VIN(V)
6
8) Supply Current vs. Temperature
R1212D10xA
450
400
350
300
250
200
-50
-25
0
25
50
75
Temperature Topt(°C)
100
VIN=5.5V, EXT at no load
900
Supply Current IDD(uA)
Supply Current IDD(uA)
500
24
R1212D10xB
VIN=5.5V, EXT at no load
800
700
600
500
-50
-25
0
25
50
75
Temperature Topt(°C)
100
R1212D
R1212D10xC
VIN=5.5V, EXT at no load
Supply Current IDD(uA)
400
350
300
250
200
150
100
-50
-25
0
25
50
75
Temperature Topt(°C)
100
9) EXT "L" On Resistance vs. Temperature
10) EXT "H" On Resistance vs. Temperature
R1212D10xx
3
2
1
0
-50
-25
0
25
50
75
Temperature Topt(°C)
3
2
1
0
-50
100
11) EXT Rising Time vs. Temperature
VIN=3.3V, IEXT=50mA
4
EXT "H" ON Resistance(Ω)
4
EXT "L" ON Resistance(Ω)
R1212D10xx
VIN=3.3V, IEXT=50mA
-25
VIN=3.3V, CEXT=1000pF
6
4
2
-25
0
25
50
75
Temperature Topt(°C)
100
VIN=3.3V, CEXT=1000pF
10
EXT Falling Time tf(ns)
EXT Rising Time tr(ns)
R1212D10xx
8
0
-50
100
12) EXT Falling Time vs. Temperature
R1212D10xx
10
0
25
50
75
Temperature Topt(°C)
8
6
4
2
0
-50
-25
0
25
50
75
Temperature Topt(°C)
100
25
R1212D
13) Duty Cycle vs. DTC Voltage (0% to 100%) (Topt=25°C)
R1212D100A
R1212D100B
100
90
80
70
60
50
40
30
20
10
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DTC Voltage VDTC(V)
Duty Cycle Duty(%)
Duty Cycle Duty(%)
CEXT=1000pF
CEXT=1000pF
100
90
80
70
60
50
40
30
20
10
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DTC Voltage VDTC(V)
R1212D101A
R1212D101C
100
90
80
70
60
50
40
30
20
10
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DTC Voltage VDTC(V)
Duty Cycle Duty(%)
Duty Cycle Duty(%)
CEXT=1000pF
CEXT=1000pF
100
90
80
70
60
50
40
30
20
10
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DTC Voltage VDTC(V)
14) Duty Cycle vs. Temperature
R1212D100A
83
80
77
74
-50
-25
0
25
50
75
Temperature Topt(°C)
100
VDTC=0.75V, CEXT=1000pF
86
Duty Cycle Duty(%)
Duty Cycle Duty(%)
86
26
R1212D100B
VDTC=0.75V, CEXT=1000pF
83
80
77
74
-50
-25
0
25
50
75
Temperature Topt(°C)
100
R1212D
15) Maxduty vs. Temperature
R1212D101A
R1212D101C
CEXT=1000pF
96
95
Maxduty(%)
Maxduty(%)
93
90
87
84
-50
CEXT=1000pF
98
92
89
-25
0
25
50
75
Temperature Topt(°C)
86
-50
100
-25
0
25
50
75
Temperature Topt(°C)
100
16) AMP "L" Output Current vs. Temperature
R1212D10xC
VIN=3.3V, AMPOUT=1V
140
AMP "L" Output Current IAMPL(uA)
AMP "L" Output Current IAMPL(uA)
R1212D10xA/B
130
120
110
100
90
80
-50
-25
0
25
50
75
Temperature Topt(°C)
100
VIN=3.3V, AMPOUT=1V
130
120
110
100
90
80
70
-50
-25
0
25
50
75
Temperature Topt(°C)
100
AMP "H" Output Current IAMPL(mA)
17) AMP "H" Output Current vs. Temperature
R1212D10xx
VIN=3.3V, AMPOUT=1V
2.0
1.5
1.0
0.5
0.0
-50
-25
0
25
50
75
Temperature Topt(°C)
100
27
R1212D
18) UVLO Detector Threshold UVLO Released Voltage vs. Temperature
R1212D100x
R1212D101x
2.05
Released Voltage
2.00
1.95
Detector Threshold
1.90
1.85
-50
-25
0
25
50
75
Temperature Topt(°C)
UVLO Detector Threshold/
Released Voltage (V)
3.1
Released Voltage
2.9
2.7
-50
Detector Threshold
-25
Released Voltage
2.25
2.20
2.15
Detector Threshold
2.10
-25
0
25
50
75
Temperature Topt(°C)
100
19) DELAY Pin Detector Threshold vs. Temperature
R1212D10xx
3.2
2.8
2.30
2.05
-50
100
R1212D102x
3.0
UVLO Detector Threshold/
Released Voltage (V)
2.35
0
25
50
75
Temperature Topt(°C)
100
DELAY Pin Detector Voltage VDLY(V)
UVLO Detector Threshold/
Released Voltage (V)
2.10
VIN=3.3V
1050
1025
1000
975
950
-50
-25
0
25
50
75
Temperature Topt(°C)
100
20) DELAY Pin Charge Current vs. Temperature
28
R1212D10xC
VIN=3.3V
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
-50
-25
0
25
50
75
Temperature Topt(°C)
100
DELAY Pin Charge Current IDLY1(uA)
DELAY Pin Charge Current IDLY1(uA)
R1212D10xA/B
VIN=3.3V
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
-50
-25
0
25
50
75
Temperature Topt(°C)
100
R1212D
22) VREFOUT Voltage vs. Temperature
R1212D10xx
VIN=2.2V, VDLY=0.1V
300
250
200
150
100
50
0
-50
-25
0
25
50
75
Temperature Topt(°C)
VIN=3.3V
1.53
VREFOUT Voltage(V)
DELAY Pin Discharge Current IDLY2(uA)
21) DELAY Pin Discharge Current vs. Temperature
R1212D10xx
1.52
1.51
1.50
1.49
1.48
-50
100
-25
0
25
50
75
Temperature Topt(°C)
100
23) VREFOUT Voltage vs. Input Voltage (Topt=25°C) 24) VREFOUT Voltage vs. Output Current (1) (Topt=25°C)
R1212D10xx
1515
1.52
1510
VREFOUT Voltage(mV)
VREFOUT Voltage (V)
R1212D10xx
1.53
1.51
1.50
1.49
1.48
1505
1500
1495
VIN=2.2V
VIN=3.3V
VIN=5.5V
1490
1485
2
3
4
5
Input Voltage VIN(V)
6
0
2
4
6
8
Output Current IROUT(mA)
10
25) VREFOUT Voltage vs. Output Current (2) (Topt=25°C) 26) Error Amplifier Gain/Phase vs. Frequency (Topt=25°C)
R1212D10xx
R1212D10xx
1600
Gain(dB) / Phase(deg)
VREFOUT Voltage(mV)
1400
1200
1000
800
600
VIN=2.2V
VIN=3.3V
VIN=5.5V
400
200
0
0
20
40
60
Output Current IROUT(mA)
80
VIN=3.3V
180
160
140
120
100
80
60
40
20
0
-20
Phase
Gain
0
10
100
1000
Frequency freq.(kHz)
10000
29
R1212D
27) Power-on Response (VIN=3.3V, Topt=25°C)
5.0
4.0
VIN
3.0
3.0
2.0
2.0
DTC
1.0
1.0
0.0
10
20
30
Time (ms)
40
5.0
4.0
3.0
3.0
2.0
2.0
DTC
0.0
0
10
10.0
8.0
VIN
3.0
6.0
2.0
4.0
DTC
1.0
2.0
0.0
10
20
30
Time (ms)
40
4.0
6.0
2.0
4.0
DTC
1.0
0.0
0.0
0
15.0
5.0
3.0
9.0
2.0
6.0
DTC
3.0
0.0
0.0
0
10
20
30
Time (ms)
40
50
Voltage (V)
Voltage (V)
6.0
12.0
VIN
1.0
30
18.0
Output Voltage VOUT(V)
VOUT
4.0
2.0
10
20
30
Time (ms)
40
50
R1212D100A
Set VOUT=15V, IOUT=10mA
5.0
8.0
3.0
50
12.0
10.0
VIN
R1212D100A
6.0
50
VOUT
5.0
0.0
0
40
Set VOUT=10V, IOUT=100mA
6.0
Voltage (V)
Voltage (V)
12.0
Output Voltage VOUT(V)
VOUT
4.0
20
30
Time (ms)
R1212D100A
Set VOUT=10V, IOUT=10mA
5.0
1.0
0.0
50
R1212D100A
6.0
4.0
VIN
1.0
0.0
0
6.0
VOUT
Output Voltage VOUT(V)
4.0
5.0
Set VOUT=5V, IOUT=100mA
Set VOUT=15V, IOUT=100mA
VOUT
18.0
15.0
4.0
12.0
VIN
3.0
9.0
2.0
6.0
DTC
1.0
3.0
0.0
0.0
0
10
20
30
Time (ms)
40
50
Output Voltage VOUT(V)
5.0
6.0
Voltage (V)
VOUT
6.0
Output Voltage VOUT(V)
6.0
Voltage (V)
R1212D100A
Set VOUT=5V, IOUT=10mA
Output Voltage VOUT(V)
R1212D100A
R1212D
5.0
4.0
VIN
3.0
3.0
2.0
2.0
DTC
1.0
1.0
0.0
10
20
30
Time (ms)
40
5.0
4.0
3.0
3.0
2.0
2.0
DTC
0.0
0
10
4.0
10.0
8.0
VIN
3.0
6.0
2.0
4.0
DTC
1.0
2.0
0.0
40
4.0
6.0
2.0
4.0
DTC
1.0
0.0
0.0
0
6.0
15.0
5.0
12.0
VIN
3.0
9.0
2.0
6.0
DTC
1.0
3.0
0.0
0.0
40
50
Voltage (V)
4.0
18.0
Output Voltage VOUT(V)
Voltage (V)
5.0
20
30
Time (ms)
2.0
10
20
30
Time (ms)
40
50
R1212D100B
VOUT
10
8.0
3.0
50
Set VOUT=15V, IOUT=10mA
0
12.0
10.0
VIN
R1212D100B
6.0
50
VOUT
5.0
0.0
20
30
Time (ms)
40
Set VOUT=10V, IOUT=100mA
6.0
Voltage (V)
Voltage (V)
5.0
12.0
Output Voltage VOUT(V)
VOUT
10
20
30
Time (ms)
R1212D100B
Set VOUT=10V, IOUT=10mA
0
1.0
0.0
50
R1212D100B
6.0
4.0
VIN
1.0
0.0
0
6.0
VOUT
Output Voltage VOUT(V)
4.0
5.0
Set VOUT=5V, IOUT=100mA
Set VOUT=15V, IOUT=100mA
VOUT
18.0
15.0
4.0
12.0
VIN
3.0
9.0
2.0
6.0
DTC
1.0
3.0
0.0
Output Voltage VOUT(V)
5.0
6.0
Voltage (V)
VOUT
6.0
Output Voltage VOUT(V)
6.0
Voltage (V)
R1212D100B
Set VOUT=5V, IOUT=10mA
Output Voltage VOUT(V)
R1212D100B
0.0
0
10
20
30
Time (ms)
40
50
31
R1212D
5.0
12.0
VIN
3.0
9.0
2.0
6.0
DTC
1.0
3.0
0.0
10
20
30
Time (ms)
40
5.0
4.0
3.0
3.0
2.0
2.0
DTC
0.0
0
10
6.0
10.0
5.0
8.0
VIN
3.0
6.0
2.0
4.0
DTC
2.0
0.0
Voltage (V)
Voltage (V)
5.0
12.0
Output Voltage VOUT(V)
VOUT
1.0
10
20
30
Time (ms)
40
3.0
2.0
4.0
DTC
18.0
6.0
15.0
5.0
12.0
3.0
9.0
2.0
6.0
DTC
3.0
0.0
0.0
32
20
30
Time (ms)
2.0
0.0
0
40
50
Voltage (V)
VIN
10
6.0
VIN
0.0
Output Voltage VOUT(V)
Voltage (V)
5.0
0
8.0
10
20
30
Time (ms)
40
50
R1212D101C
VOUT
1.0
12.0
VOUT
4.0
50
Set VOUT=15V, IOUT=10mA
4.0
50
10.0
R1212D101C
6.0
40
Set VOUT=10V, IOUT=100mA
1.0
0.0
0
20
30
Time (ms)
R1212D101C
Set VOUT=10V, IOUT=10mA
4.0
1.0
0.0
50
R1212D101C
6.0
4.0
VIN
1.0
0.0
0
6.0
VOUT
Output Voltage VOUT(V)
4.0
15.0
Set VOUT=5V, IOUT=100mA
Set VOUT=15V, IOUT=10mA
VOUT
18.0
15.0
4.0
VIN
12.0
3.0
9.0
2.0
6.0
DTC
1.0
3.0
0.0
0.0
0
10
20
30
Time (ms)
40
50
Output Voltage VOUT(V)
5.0
6.0
Voltage (V)
VOUT
18.0
Output Voltage VOUT(V)
6.0
Voltage (V)
R1212D101C
Set VOUT=15V, IOUT=10mA
Output Voltage VOUT(V)
R1212D101C
R1212D
28) Load Transient Response (VIN=3.3V, Topt=25°C)
R1212D100A
IOUT=1mA-30mA
5.1
250
5.0
VOUT
200
4.9
150
4.8
100
4.7
50
4.6
IOUT
0
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
300
4.5
5
10
Time (ms)
15
20
R1212D100A
IOUT=10mA-100mA
5.1
250
5.0
VOUT
200
4.9
150
4.8
100
4.7
50
4.6
IOUT
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
300
4.5
0
5
10
Time (ms)
15
20
R1212D100A
Output Current IOUT(mA)
10.2
10.0
250
VOUT
200
9.8
150
9.6
100
9.4
50
9.2
IOUT
0
0
Output Voltage VOUT(V)
IOUT=1mA-30mA
300
9.0
5
10
Time (ms)
15
20
33
R1212D
R1212D100A
Output Current IOUT(mA)
250
10.2
10.0
VOUT
200
9.8
150
9.6
100
9.4
50
9.2
IOUT
0
Output Voltage VOUT(V)
IOUT=10mA-100mA
300
9.0
0
5
10
Time (ms)
15
20
R1212D100A
Output Current IOUT(mA)
250
15.6
15.3
VOUT
200
15.0
150
14.7
100
14.4
50
14.1
IOUT
0
0
Output Voltage VOUT(V)
IOUT=1mA-30mA
300
13.8
5
10
Time (ms)
15
20
R1212D100A
Output Current IOUT(mA)
15.3
250
VOUT
200
15.0
150
14.7
100
14.4
50
14.1
IOUT
0
13.8
0
34
15.6
5
10
Time (ms)
15
20
Output Voltage VOUT(V)
IOUT=10mA-100mA
300
R1212D
R1212D100B
IOUT=1mA-30mA
5.1
250
5.0
VOUT
200
4.9
150
4.8
100
4.7
50
4.6
IOUT
0
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
300
4.5
5
10
Time (ms)
15
20
R1212D100B
IOUT=10mA-100mA
5.1
250
5.0
VOUT
200
4.9
150
4.8
100
4.7
50
4.6
IOUT
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
300
4.5
0
5
10
Time (ms)
15
20
R1212D100B
Output Current IOUT(mA)
10.2
10.0
250
VOUT
200
9.8
150
9.6
100
9.4
50
9.2
IOUT
0
0
Output Voltage VOUT(V)
IOUT=1mA-30mA
300
9.0
5
10
Time (ms)
15
20
35
R1212D
R1212D100B
Output Current IOUT(mA)
250
10.2
10.0
VOUT
200
9.8
150
9.6
100
9.4
50
9.2
IOUT
0
Output Voltage VOUT(V)
IOUT=10mA-100mA
300
9.0
0
5
10
Time (ms)
15
20
R1212D100B
Output Current IOUT(mA)
250
15.6
15.3
VOUT
200
15.0
150
14.7
100
14.4
50
14.1
IOUT
0
Output Voltage VOUT(V)
IOUT=1mA-30mA
300
13.8
0
5
10
Time (ms)
15
20
R1212D100B
Output Current IOUT(mA)
15.3
250
VOUT
200
15.0
150
14.7
100
14.4
50
14.1
IOUT
0
13.8
0
36
15.6
5
10
Time (ms)
15
20
Output Voltage VOUT(V)
IOUT=10mA-100mA
300
R1212D
R1212D101C
IOUT=1mA-30mA
5.1
250
5.0
VOUT
200
4.9
150
4.8
100
4.7
50
4.6
IOUT
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
300
4.5
0
5
10
Time (ms)
15
20
R1212D101C
IOUT=10mA-100mA
5.1
250
5.0
VOUT
200
4.9
150
4.8
100
4.7
50
4.6
IOUT
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
300
4.5
0
5
10
Time (ms)
15
20
R1212D101C
Output Current IOUT(mA)
250
10.4
10.2
VOUT
200
10.0
150
9.8
100
9.6
50
9.4
IOUT
0
Output Voltage VOUT(V)
IOUT=1mA-30mA
300
9.2
0
5
10
Time (ms)
15
20
37
R1212D
R1212D101C
Output Current IOUT(mA)
250
10.4
10.2
VOUT
200
10.0
150
9.8
100
9.6
50
9.4
IOUT
0
Output Voltage VOUT(V)
IOUT=10mA-100mA
300
9.2
0
5
10
Time (ms)
15
20
R1212D101C
Output Current IOUT(mA)
250
15.6
15.3
VOUT
200
15.0
150
14.7
100
14.4
50
14.1
IOUT
0
Output Voltage VOUT(V)
IOUT=1mA-30mA
300
13.8
0
5
10
Time (ms)
15
20
R1212D101C
Output Current IOUT(mA)
250
15.3
VOUT
200
15.0
150
14.7
100
14.4
50
14.1
IOUT
0
13.8
0
38
15.6
5
10
Time (ms)
15
20
Output Voltage VOUT(V)
IOUT=10mA-100mA
300
PACKAGE INFORMATION
•
PE-SON-8-0510
SON-8
Unit: mm
PACKAGE DIMENSIONS
2.9±0.2
0.15 +0.1
−0.15
0.13±0.05
0.475TYP
1
0.23±0.1
0.2±0.1
5
0.2±0.1
2.8±0.2
3.0±0.2
8
0.15 +0.1
−0.15
4
Attention : Tab suspension leads in the
parts have VDD or GND level. (They are
connected to the reverse side of this IC.)
Refer to PIN DISCRIPTION.
Do not connect to other wires or land patterns.
0.9MAX.
0.13±0.05
Bottom View
0.1
0.65
0.3±0.1
0.1 M
TAPING SPECIFICATION
4.0±0.1
+0.1
φ1.5 0
2.0±0.05
3.3
4.0±0.1
2.0MAX.
∅1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
2±0.5
0
∅ 180 −1.5
∅ 60 +1
0
21±0.8
∅13±0.2
11.4±1.0
9.0±0.3
8.0±0.3
3.2
3.5±0.05
1.75±0.1
0.2±0.1
PACKAGE INFORMATION
PE-SON-8-0510
POWER DISSIPATION (SON-8)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Free Air
Power Dissipation
480mW
300mW
Thermal Resistance
θja=(125−25°C)/0.48W=208°C/W
333°C/W
On Board
480
500
400
40
Free Air
300
200
40
Power Dissipation PD(mW)
600
100
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area (Unit : mm)
RECOMMENDED LAND PATTERN
0.65
0.65
1.15
0.35
(Unit: mm)
MARK INFORMATION
ME-R1212D-0409
R1212D SERIES MARK SPECIFICATION
• SON-8
to
1
5
1
•
2
3
4
5
6
,
4
6
Part Number vs. Product Code
Part Number
Product Code
1
2
3
4
R1212D002A
F
0
2
A
R1212D100A
F
1
0
A
R1212D100B
F
1
0
B
R1212D101A
F
1
1
A
R1212D102A
F
1
2
A
R1212D101C
F
1
1
C
R1212D102C
F
1
2
C
: Product Code (refer to Part Number vs. Product Code)
: Lot Number