R1212D SERIES STEP-UP DC/DC CONTOLLER NO.EA-109-0607 OUTLINE The R1212D Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current. Each of the R1212D Series consists of an oscillator, a PWM comparator circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resisters, and capacitors. Maximum duty cycle and the soft start time are easily adjustable with external resistors and capacitors. In terms of maximum duty cycle, with or without internal limit can be set by mask options. As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1212D Series latch the external driver with its off state, or the latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level). FEATURES • • • • • • • • Input Voltage Range ....................................................... 2.2V to 5.5V Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor) Two Options of Basic Oscillator Frequency .................... 700kHz, 1.4MHz, 300kHz Maximum Duty Cycle/Soft-start time ............................. Adjustable with external capacitors (If internal limit is set by version, Typ. 90% or Typ. 91.5%) High Reference Voltage Accuracy .................................. ±1.5% U.V.L.O. Threshold level ................................................. Typ.1.9V/2.1V/2.8V by mask option Small Temperature Coefficient of Reference Voltage ... Typ.±150ppm/°C Package .......................................................................... SON-8 ( t=Max. 0.9mm ) APPLICATIONS • Constant Voltage Power Source for portable equipment. • Constant Voltage Power Source for LCD and CCD. 1 R1212D BLOCK DIAGRAM VIN Internal VR VREFOUT VREFOUT UVLC Oscillator EXT DTC PWM Comp Latch VREF VFB Er.Amp AMPOUT GND DELAY SELECTION GUIDE In the R1212D Series, the oscillator frequency, UVLO detector threshold, and with/without internal limit of maximum duty cycle can be selected at the user's request. The selection can be made with designating the part number as shown below; R1212D10xx-TR-x ↑ a ←Part Number ↑ b Code Contents a b 2 Oscillator Frequency UVLO Detector Threshold Internal Maximum Duty Limit 0A Typ. 700kHz Typ. 1.9V No 0B Typ. 1.4MHz Typ. 1.9V No 1A Typ. 700kHz Typ. 2.1V Typ. 90% 1C Typ. 300kHz Typ. 2.1V Typ. 91.5% 2A Typ. 700kHz Typ. 2.8V Typ. 90% 2C Typ. 300kHz Typ. 2.8V Typ. 91.5% Designation of composition of pin plating -F: Lead free plating R1212D PIN CONFIGURATION SON-8 Top View 8 7 Bottom View 6 5 5 ∗ 1 2 6 7 8 ∗ 3 4 ∗ 4 3 2 1 PIN DESCRIPTION Pin No Symbol Description 1 EXT External FET Drive Pin (CMOS Output) 2 GND Ground Pin 3 DTC Pin for Setting Maximum Duty Cycle and Soft start time 4 DELAY 5 VFB 6 VREFOUT 7 AMPOUT 8 VIN Pin for External Capacitor (for Setting Output Delay of Protection) Feedback Pin for monitoring Output Voltage Reference Voltage Output Pin Amplifier Output Pin Power Supply Pin for the IC ABSOLUTE MAXIMUM RATINGS (GND=0V) Symbol Item Rating Unit 6.5 V VIN VIN Pin Voltage VEXT EXT Pin Output Voltage −0.3 ~ VIN+0.3 V VDLY DELAY Pin Voltage −0.3 ~ VIN+0.3 V VREFOUT VREFOUT Pin Voltage −0.3 ~ VIN+0.3 V VAMP AMPOUT Pin Voltage −0.3 ~ VIN+0.3 V VDTC DTC Pin Voltage −0.3 ~ VIN+0.3 V VFB VFB Pin Voltage −0.3 ~ VIN+0.3 V IAMP AMPOUT Pin Current V IROUT VREFOUT Pin Current ±10 30 IEXT EXT Pin Inductor Drive Output Current PD 1 Power Dissipation (SON-8)* mA ±80 480 mW mA Topt Operating Temperature Range −40 ~ +85 °C Tstg Storage Temperature Range −55 ~ +125 °C ∗1) For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 3 R1212D ELECTRICAL CHARACTERISTICS • Topt=25°C R1212D100A Symbol Item VIN Operating Input Voltage VFB VFB Voltage Tolerance ∆VFB/∆VIN VFB Voltage Line Regulation ∆VFB/ ∆Topt Min. Typ. 2.2 VIN=3.3V VFB Voltage Temperature Coefficient −40°C < = Topt < = VFB Input Current VIN=5.5V, VFB=0V or 5.5V Open Loop Voltage Gain fT Unit 5.5 V V 3 mV ±150 ppm/ °C 85°C IFB Max. 0.985 1.000 1.015 VIN: from 2.2V to 5.5V AV −0.1 0.1 µA VIN=3.3V 100 dB Unity Gain Frequency Band VIN=3.3V, AV=0 1.0 MHz Oscillator Frequency VIN=3.3V, VDLY=VFB=0V ∆fosc/ ∆VIN Oscillator Frequency Line Regulation VIN: from 2.2V to 5.5V ∆fosc/ ∆Topt Oscillator Frequency Temperature Coefficient −40°C Supply Current 1 VIN=5.5V, VDLY=VFB=0V EXT at no load VREFOUT Voltage VIN=3.3V,IROUT=1mA VREFOUT Maximum Output Current VIN=3.3V ∆VREFOUT/ ∆VIN VREFOUT Line Regulation VIN: from 2.2V to 5.5V 5 10 mV ∆VREFOUT/ ∆IROUT VREFOUT Load Regulation VIN=3.3V, IROUT: from 0.1mA to 5.0mA 6 15 mV VREFOUT Short Current Limit VIN=3.3V, VREFOUT=0V 20 mA VREFOUT Voltage Temperature Coefficient −40°C < = ±150 ppm/ °C REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−50mA 2.5 6.0 Ω REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=50mA 1.5 4.0 Ω tr EXT Rising Time VIN=3.3V, CL=1000pF 12 ns tf EXT Falling Time VIN=3.3V, CL=1000pF 8 ns DELAY Pin Charge Current VIN=3.3V, VDLY=VFB=0V 3.0 5.5 8.0 µA IDLY2 DELAY Pin Discharge Current VIN=VFB=2.2V, VDLY=0.1V 0.08 0.20 0.36 mA VDLY DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 0.95 1.00 1.05 V 1.8 1.9 2.0 V VUVLO1 + 0.2 2.2 V 0.18 0.25 V fosc IDD1 VREFOUT IOUT Ilim ∆VREFOUT/ ∆Topt IDLY1 4 Conditions < = Topt < = 595 85°C 700 805 50 KHz ±1.0 KHz/ °C 600 1000 µA 1.478 1.500 1.522 V 10 Topt < = KHz 85°C mA VUVLO1 UVLO Detector Threshold VIN=3.3V to 0V, VDLY=VFB=0V VUVLO2 UVLO Released Voltage VIN=0V to 3.3V, VDLY=VFB=0V VDTC0 Duty=0% DTC Pin Voltage VIN=3.3V VDTC20 Duty=20% DTC Pin Voltage VIN=3.3V 0.3 V VDTC80 Duty=80% DTC Pin Voltage VIN=3.3V 0.75 V VDTC100 Duty=100% DTC Pin Voltage VIN=3.3V 0.80 IAMPH AMP "H" Output Current VIN=3.3V, VAMP=1.0V, VFB=0.9V 0.5 IAMPL AMP "L" Output Current VIN=3.3V, VAMP=1.0V, VFB=1.1V 60 0.05 0.87 1.00 V 1.0 1.8 mA 100 160 µA R1212D • Topt=25°C R1212D100B Symbol Item VIN Operating Input Voltage VFB VFB Voltage Tolerance ∆VFB/∆VIN VFB Voltage Line Regulation ∆VFB/ ∆Topt Conditions Min. Typ. Max. 5.5 V 1.000 1.015 V 2.2 VIN=3.3V 0.985 VIN: from 2.2V to 5.5V Unit 3 mV ±150 ppm/ °C VFB Voltage Temperature Coefficient −40°C < = IFB VFB Input Current VIN=5.5V, VFB=0V or 5.5V AV Open Loop Voltage Gain VIN=3.3V 100 dB fT Unity Gain Frequency Band VIN=3.3V, AV=0 1.0 MHz Oscillator Frequency VIN=3.3V, VDLY=VFB=0V ∆fosc/ ∆VIN Oscillator Frequency Line Regulation VIN: from 2.2V to 5.5V 100 KHz ∆fosc/ ∆Topt Oscillator Frequency Temperature Coefficient −40°C < = ±2.0 KHz /°C Supply Current 1 VIN=5.5V, VDLY=VFB=0V EXT at no load VREFOUT Voltage VIN=3.3V, IROUT=1mA VREFOUT Maximum Output Current VIN=3.3V fosc IDD1 VREFOUT IOUT Topt Topt < = < = 85°C −0.1 1.19 85°C 1.478 0.1 1.40 1.61 µA MHz 900 1800 µA 1.500 1.522 V 10 mA ∆VREFOUT/ VREFOUT Line Regulation ∆VIN VIN: from 2.2V to 5.5V 5 10 mV ∆VREFOUT/ VREFOUT Load Regulation ∆IROUT VIN=3.3V, IROUT: from 0.1mA to 5.0mA 6 15 mV VIN=3.3V, VREFOUT=0V 20 mA ±150 ppm/ °C Ilim VREFOUT Short Current Limit ∆VREFOUT/ VREFOUT Voltage Temperature Coefficient ∆Topt REXTH −40°C < = Topt < = 85°C EXT "H" ON Resistance VIN=3.3V, IEXT=−50mA 2.5 6.0 4.0 Ω EXT "L" ON Resistance VIN=3.3V, IEXT=50mA 1.5 tr EXT Rising Time VIN=3.3V, CL=1000pF 12 ns tf EXT Falling Time VIN=3.3V, CL=1000pF 8 ns IDLY1 DELAY Pin Charge Current VIN=3.3V, VDLY=VFB=0V IDLY2 DELAY Pin Discharge Current VIN=VFB=2.2V, VDLY=0.1V DELAY Pin Detector VFB=0V, VDLY=0V to 2V Threshold REXTL VDLY VUVLO1 UVLO Detector Threshold VIN=3.3V to 0V, VDLY=VFB=0V Ω 3.0 5.5 8.0 µA 0.08 0.20 0.36 mA 0.95 1.00 1.05 V 1.8 1.9 2.0 V VUVLO1 + 0.2 2.2 V 0.18 0.25 V VUVLO2 UVLO Released Voltage VIN=0V to 3.3V, VDLY=VFB=0V VDTC0 Duty=0% DTC Pin Voltage VIN=3.3V VDTC20 Duty=20% DTC Pin Voltage VIN=3.3V 0.3 V VDTC80 Duty=80% DTC Pin Voltage VIN=3.3V 0.75 V VDTC100 Duty=100% DTC Pin Voltage VIN=3.3V 0.80 0.87 1.00 V IAMPH AMP "H" Output Current VIN=3.3V, VAMP=1.0V, VFB=0.9V 0.5 1.0 1.8 mA IAMPL AMP "L" Output Current VIN=3.3V, VAMP=1.0V, VFB=1.1V 60 100 160 µA 0.05 5 R1212D • Symbol Item Conditions VIN Operating Input Voltage VFB VFB Voltage Tolerance VIN=3.3V VFB Voltage Line Regulation VIN: from 2.2V to 5.5V VFB Voltage Temperature Coefficient −40°C ∆VFB/∆VIN ∆VFB/ ∆Topt Min. Typ. 2.2 < = Topt < = IFB VFB Input Current VIN=5.5V, VFB=0V or 5.5V Open Loop Voltage Gain fT Max. Unit 5.5 V 0.985 1.000 1.015 V 3 mV ±150 ppm/ °C 85°C AV −0.1 0.1 µA VIN=3.3V 100 dB Unity Gain Frequency Band VIN=3.3V, AV=0 1.0 MHz Oscillator Frequency VIN=3.3V, VDLY=VFB=0V ∆fosc/ ∆VIN Oscillator Frequency Line Regulation VIN: from 2.2V to 5.5V ∆fosc/ ∆Topt Oscillator Frequency Temperature Coefficient −40°C < = Supply Current 1 VIN=5.5V, VDLY=VFB=0V EXT at no load VREFOUT Voltage VIN=3.3V,IROUT=1mA VREFOUT Maximum Output Current VIN=3.3V ∆VREFOUT/ ∆VIN VREFOUT Line Regulation VIN: from 2.2V to 5.5V 5 10 mV ∆VREFOUT/ ∆IROUT VREFOUT Load Regulation VIN=3.3V, IROUT: from 0.1mA to 5.0mA 6 15 mV VREFOUT Short Current Limit VIN=3.3V, VREFOUT=0V 20 mA VREFOUT Voltage Temperature Coefficient −40°C < = ±150 ppm/ °C REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−50mA 2.5 6.0 Ω REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=50mA 1.5 4.0 Ω tr EXT Rising Time VIN=3.3V, CL=1000pF 12 ns tf EXT Falling Time VIN=3.3V, CL=1000pF 8 ns DELAY Pin Charge Current VIN=3.3V, VDLY=VFB=0V 3.0 5.5 8.0 µA IDLY2 DELAY Pin Discharge Current VIN=VFB=2.2V, VDLY=0.1V 0.08 0.20 0.36 mA VDLY DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 0.95 1.00 1.05 V 2.0 2.1 2.2 V VUVLO1 + 0.2 2.45 V 0.18 0.25 V fosc IDD1 VREFOUT IOUT Ilim ∆VREFOUT/ ∆Topt IDLY1 Topt < = 595 85°C 700 805 50 KHz ±1.0 KHz/ °C 600 1000 µA 1.478 1.500 1.522 V 10 Topt < = KHz 85°C mA VUVLO1 UVLO Detector Threshold VIN=3.3V to 0V, VDLY=VFB=0V VUVLO2 UVLO Released Voltage VIN=0V to 3.3V, VDLY=VFB=0V VDTC0 Duty=0% DTC Pin Voltage VIN=3.3V VDTC20 Duty=20% DTC Pin Voltage VIN=3.3V 0.3 V VDTC80 Duty=80% DTC Pin Voltage VIN=3.3V 0.75 V 0.05 Maximum Duty Cycle VIN=3.3V 84 90 96 % IAMPH AMP "H" Output Current VIN=3.3V, VAMP=1.0V, VFB=0.9V 0.5 1.0 1.8 mA IAMPL AMP "L" Output Current VIN=3.3V, VAMP=1.0V, VFB=1.1V 60 100 160 µA Maxduty 6 Topt=25°C R1212D101A R1212D • Topt=25°C R1212D101C Symbol Item Conditions Min. Typ. VIN Operating Input Voltage VFB Voltage Tolerance VIN=3.3V VFB Voltage Line Regulation VIN: from 2.2V to 5.5V VFB Voltage Temperature Coefficient −40°C IFB VFB Input Current VIN=5.5V, VFB=0V or 5.5V AV Open Loop Voltage Gain VIN=3.3V 100 dB fT Unity Gain Frequency Band VIN=3.3V, AV=0 1.0 MHz Oscillator Frequency VIN=3.3V, VDLY=VFB=0V ∆fosc/ ∆VIN Oscillator Frequency Line Regulation VIN: from 2.2V to 5.5V ∆fosc/ ∆Topt Oscillator Frequency Temperature Coefficient −40°C Supply Current 1 VIN=5.5V, VDLY=VFB=0V EXT at no load VREFOUT Voltage VIN=3.3V, IROUT=1mA VREFOUT Maximum Output Current VIN=3.3V ∆VREFOUT/ ∆VIN VREFOUT Line Regulation VIN: from 2.2V to 5.5V 5 10 mV ∆VREFOUT/ ∆IROUT VREFOUT Load Regulation VIN=3.3V, IROUT: from 0.1mA to 5.0mA 6 15 mV VREFOUT Short Current Limit VIN=3.3V, VREFOUT=0V 20 mA VREFOUT Voltage Temperature Coefficient −40°C < = ±150 ppm/ °C EXT "H" ON Resistance VIN=3.3V, IEXT=−50mA 2.5 6.0 4.0 ∆VFB/ ∆Topt fosc IDD1 VREFOUT IOUT Ilim ∆VREFOUT/ ∆Topt REXTH < = < = Topt Topt < = < = 5.5 Unit VFB ∆VFB/∆VIN 2.2 Max. V 3 mV ±150 ppm/ °C 85°C −0.1 240 85°C 0.1 300 360 < = KHz KHz ±0.5 KHz/ °C 400 800 1.478 1.500 1.522 85°C µA 25 10 Topt V 0.985 1.000 1.015 µA V mA Ω EXT "L" ON Resistance VIN=3.3V, IEXT=50mA 1.5 tr EXT Rising Time VIN=3.3V, CL=1000pF 12 ns tf EXT Falling Time VIN=3.3V, CL=1000pF 8 ns IDLY1 DELAY Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.0 4.5 7.0 µA IDLY2 DELAY Pin Discharge Current VIN=VFB=2.2V, VDLY=0.1V 0.08 0.20 0.36 mA VDLY DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 0.95 1.00 1.05 V 2.0 2.1 2.2 V VUVLO1 + 0.2 2.45 V 0.18 0.25 V REXTL Ω VUVLO1 UVLO Detector Threshold VIN=3.3V to 0V, VDLY=VFB=0V VUVLO2 UVLO Released Voltage VIN=0V to 3.3V, VDLY=VFB=0V VDTC0 Duty=0% DTC Pin Voltage VIN=3.3V VDTC20 Duty=20% DTC Pin Voltage VIN=3.3V 0.3 V VDTC80 Duty=80% DTC Pin Voltage VIN=3.3V 0.75 V Maximum Duty Cycle VIN=3.3V 85.5 91.5 97.5 % IAMPH AMP "H" Output Current VIN=3.3V, VAMP=1.0V, VFB=0.9V 0.5 1.0 1.8 mA IAMPL AMP "L" Output Current VIN=3.3V, VAMP=1.0V, VFB=1.1V 50 90 150 µA Maxduty 0.05 7 R1212D • Symbol Item Conditions Min. Typ. Operating Input Voltage VFB Voltage Tolerance VIN=3.3V VFB Voltage Line Regulation VIN: from 2.2V to 5.5V VFB Voltage Temperature Coefficient −40°C IFB VFB Input Current VIN=5.5V, VFB=0V or 5.5V AV Open Loop Voltage Gain VIN=3.3V 100 dB fT Unity Gain Frequency Band VIN=3.3V, AV=0 1.0 MHz Oscillator Frequency VIN=3.3V, VDLY=VFB=0V ∆fosc/ ∆VIN Oscillator Frequency Line Regulation VIN: from 2.2V to 5.5V ∆fosc/ ∆Topt Oscillator Frequency Temperature Coefficient −40°C fosc < = < = Topt Topt < = < = 5.5 Unit VIN ∆VFB/ ∆Topt 3.3 Max. VFB ∆VFB/∆VIN V 0.985 1.000 1.015 V 3 mV ±150 ppm/ °C 85°C −0.1 595 85°C 0.1 700 805 µA KHz 50 KHz ±1.0 KHz/ °C Supply Current 1 VIN=5.5V, VDLY=VFB=0V EXT at no load VREFOUT Voltage VIN=3.3V, IROUT=1mA VREFOUT Maximum Output Current VIN=3.3V ∆VREFOUT/ ∆VIN VREFOUT Line Regulation VIN: from 2.2V to 5.5V 5 10 mV ∆VREFOUT/ ∆IROUT VREFOUT Load Regulation VIN=3.3V, IROUT: from 0.1mA to 5.0mA 6 15 mV VREFOUT Short Current Limit VIN=3.3V, VREFOUT=0V 20 mA VREFOUT Voltage Temperature Coefficient −40°C < = ±150 ppm/ °C EXT "H" ON Resistance VIN=3.3V, IEXT=−50mA 2.5 6.0 4.0 IDD1 VREFOUT IOUT Ilim ∆VREFOUT/ ∆Topt REXTH 1000 µA 1.478 1.500 1.522 600 V 10 Topt < = 85°C mA Ω EXT "L" ON Resistance VIN=3.3V, IEXT=50mA 1.5 tr EXT Rising Time VIN=3.3V, CL=1000pF 12 ns tf EXT Falling Time VIN=3.3V, CL=1000pF 8 ns IDLY1 DELAY Pin Charge Current VIN=3.3V, VDLY=VFB=0V 3.0 5.5 8.0 µA IDLY2 DELAY Pin Discharge Current VIN=VFB=2.2V, VDLY=0.1V 0.08 0.20 0.36 mA VDLY DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 0.95 1.00 1.05 V 2.6 2.8 3.0 V VUVLO1 + 0.25 3.3 V 0.18 0.25 V REXTL Ω VUVLO1 UVLO Detector Threshold VIN=3.3V to 0V, VDLY=VFB=0V VUVLO2 UVLO Released Voltage VIN=0V to 3.3V, VDLY=VFB=0V VDTC0 Duty=0% DTC Pin Voltage VIN=3.3V VDTC20 Duty=20% DTC Pin Voltage VIN=3.3V 0.3 V VDTC80 Duty=80% DTC Pin Voltage VIN=3.3V 0.75 V Maximum Duty Cycle VIN=3.3V 84 90 96 % IAMPH AMP "H" Output Current VIN=3.3V, VAMP=1.0V, VFB=0.9V 0.5 1.0 1.8 mA IAMPL AMP "L" Output Current VIN=3.3V, VAMP=1.0V, VFB=1.1V 60 100 160 µA Maxduty 8 Topt=25°C R1212D102A 0.05 R1212D • Topt=25°C R1212D102C Symbol Item Conditions Min. Typ. VIN Operating Input Voltage VFB Voltage Tolerance VIN=3.3V VFB Voltage Line Regulation VIN: from 2.2V to 5.5V VFB Voltage Temperature Coefficient −40°C IFB VFB Input Current VIN=5.5V, VFB=0V or 5.5V AV Open Loop Voltage Gain VIN=3.3V 100 dB fT Unity Gain Frequency Band VIN=3.3V, AV=0 1.0 MHz Oscillator Frequency VIN=3.3V, VDLY=VFB=0V Oscillator Frequency Line Regulation VIN: from 2.2V to 5.5V Oscillator Frequency Temperature Coefficient −40°C < = Supply Current 1 VIN=5.5V, VDLY=VFB=0V EXT at no load VREFOUT Voltage VIN=3.3V, IROUT=1mA VREFOUT Maximum Output Current VIN=3.3V ∆VREFOUT/ ∆VIN VREFOUT Line Regulation VIN: from 2.2V to 5.5V 5 10 mV ∆VREFOUT/ ∆IROUT VREFOUT Load Regulation VIN=3.3V, IROUT: from 0.1mA to 5.0mA 6 15 mV VREFOUT Short Current Limit VIN=3.3V, VREFOUT=0V 20 mA VREFOUT Voltage Temperature Coefficient −40°C < = ±150 ppm/ °C REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−50mA 2.5 6.0 Ω REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=50mA 1.5 4.0 Ω tr EXT Rising Time VIN=3.3V, CL=1000pF 12 ns tf EXT Falling Time VIN=3.3V, CL=1000pF 8 ns IDLY1 DELAY Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.0 4.5 7.0 µA IDLY2 DELAY Pin Discharge Current VIN=VFB=2.2V, VDLY=0.1V 0.08 0.20 0.36 mA 0.95 1.00 1.05 V 2.6 2.8 3.0 V VUVLO1 + 0.25 3.30 V 0.18 0.25 V ∆VFB/ ∆Topt fosc ∆fosc/∆VIN ∆fosc/ ∆Topt IDD1 VREFOUT IOUT Ilim ∆VREFOUT/ ∆Topt VDLY < = Topt Topt < = < = 5.5 Unit VFB ∆VFB/∆VIN 3.3 Max. V 3 mV ±150 ppm/ °C 85°C −0.1 240 85°C 0.1 300 360 < = DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V KHz KHz ±0.5 KHz/ °C 400 800 1.478 1.500 1.522 85°C µA 25 10 Topt V 0.985 1.000 1.015 µA V mA VUVLO1 UVLO Detector Threshold VIN=3.3V to 0V, VDLY=VFB=0V VUVLO2 UVLO Released Voltage VIN=0V to 3.3V, VDLY=VFB=0V VDTC0 Duty=0% DTC Pin Voltage VIN=3.3V VDTC20 Duty=20% DTC Pin Voltage VIN=3.3V 0.3 V VDTC80 Duty=80% DTC Pin Voltage VIN=3.3V 0.75 V Maximum Duty Cycle VIN=3.3V 85.5 91.5 97.5 % IAMPH AMP "H" Output Current VIN=3.3V, VAMP=1.0V, VFB=0.9V 0.5 1.0 1.8 mA IAMPL AMP "L" Output Current VIN=3.3V, VAMP=1.0V, VFB=1.1V 50 90 150 µA Maxduty 0.05 9 R1212D TYPICAL APPLICATIONS AND TECHNICAL NOTES Inductor Diode VOUT R3 VIN C1 NMOS EXT DELAY C4 R1 C3 VFB C2 R2 GND AMPOUT C5 C6 VREFOUT R5 Inductor R6 CPH6415 (Sanyo) Diode CRS02 (Toshiba) C1 2.2µF C2 C4 C5 C7 LDR655312T-100(TDK) [R1212DxxxA] LDR655312T-4R7(TDK) [R1212DxxxB] LDR655312T-220(TDK) [R1212DxxxC] NMOS C3 R4 DTC C6 0.1µF 1µF C7 0.1µF 1.5µF 1000pF[R1212DxxxA] 680pF[R1212DxxxB] 1500pF[R1212DxxxC] 1000pF[R1212DxxxA] 680pF[R1212DxxxB] 1500pF[R1212DxxxC] Set V 5V 10V 15V R1 R2 R3 R4 R5 R6 120kΩ 30kΩ 180kΩ 20kΩ 1kΩ 4.7kΩ 240kΩ 300kΩ 140kΩ 10kΩ Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical application above. Connect the capacitor as short as possible to the IC. • In terms of the capacitor for setting delay time of the latch protection, C2 is shown in typical application above. Latch delay time depends on this C2 value. Refer to the Latch Protection Operation Timing Chart. • Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical application above. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type • Connect a capacitor between VREFOUT and GND, C6 as shown in typical application of the previous page. The capacitance value of C6 is between 0.1µF and 1.0µF. 10 R1212D • Output Voltage Setting Method and Phase Compensation Making Method • The feedback voltage is controlled into 1.0V. The output voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical application of the previous page. Refer to the next formula. Output Voltage = VFB× (R1+R2)/R2 Output Voltage is adjustable with setting various resistor values combination. R1+R2 should be equal or less than 500kΩ As for the DC/DC converter, depending on the load current and external components such as L and C, phase may loss around 180°. In such case, phase margin becomes less and may be unstable. To avoid this situation, make the phase margin more. The pole is made with external components L and C. Fpole∼1/{2×π× (L × C3 ) } C4, C5, R3, and R4 shown in the diagram are for making phase compensation. The gain of the system can be set with using these resistors and capacitors. Each value in the diagram is just an example. R4 and C5 make zero (the backward phase). Fzero∼1/(2×π×R4×C5) Choose the R4 and C5 value so as to make the cutoff frequency of this zero point close to the cutoff frequency of the pole by external components, L and C. For example, supposed that L=10µH and COUT (C3) =10µF, the cutoff frequency of the pole is approximately 16kHz. Therefore make the cutoff frequency of the zero point close to 16kHz. Then R4=4.7kΩ and C5=1000pF are appropriate values. As for setting the gain, the ratio of the composite resistor (RT: RT=R1×R2/(R1+R2)) to R4 is the key. If the R4 against the composite resistor, RT, is large, the gain becomes also large. If the gain is large, the response characteristic is improved, however, too large gain makes the system be unstable. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin, and the unstable operation may result. In this case, a resistor R3, shown in typical application of the previous page. The recommended resistance value of R3 is in the range from 1kΩ to 5kΩ. Then, noise level will be decreased. Further, R1 and C4 makes another zero point (the backward phase). Fzero∼1/(2×π×R1×C4) Make the cutoff frequency of this zero point be lower than the cutoff frequency of the pole by external components, or, L and C. Herein, R1=180kΩ and C4=1000pF are appropriate values. • Select the Power MOSFET, the diode, capacitors and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on the input voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is twice as much as the setting voltage or more. • The soft-start time and the maximum duty cycle setting method The soft-start time and the maximum duty cycle can be set with R5, R6, and C7 values connected to the VREFOUT pin and the DTC pin. (Refer to the timing chart: Soft-start operation.) 11 R1212D Output Current and Selection of External Components <Basic Circuit> i2 Diode Inductor IOUT VIN VOUT i1 CL Lx Tr <Circuit through L> Discontinuous Mode IL IL Continuous Mode ILxmax ILxmax ILxmin ILxmin Tf t Ton Toff Iconst Ton T=1/fosc 1/ton Toff T=1/fosc 1/ton There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN × t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula. ∫ Ton 2 IN 0 PON = V × t / L dt .....................................................................................................Formula 1 With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT − VIN) ×t/L, therefore electric power, POFF is described as in next formula. ∫ Tf POFF = VIN × ( VOUT − VIN) × t / L dt ................................................................................Formula 2 0 In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, or PAV is described as in the next formula. ∫ Ton 2 IN 0 PAV = 1/( TON + TOFF ) × { V ∫ Tf × t / L dt + VIN × ( VOUT − VIN) × t / L dt } ...............................Formula 3 0 In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. 12 R1212D In the continuous mode, the deviation of the current is equal between on time and off time. VIN = TON / L = ( VOUT − VIN) × Toff / L ............................................................................. Formula 4 Further, the electric power, PAV is equal to output electric power, VOUT × IOUT, thus, IOUT = fOSC × VIN 2 × TON 2 /{2 × L × ( VOUT − VIN)} = VIN 2 × TON /( 2 × L × VOUT ) ..................... Formula 5 When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as Iconst, then, IOUT = fOSC × VIN 2 × TON 2 /{2 × L × ( VOUT − VIN)} + VIN × Iconst / VOUT ................................ Formula 6 In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: ILx max = Iconst + VIN × TON / L ..................................................................................... Formula 7 With the formula 4,6, and ILxmax is, ILx max = VOUT / VIN × IOUT + VIN × TON /( 2 × L ) ................................................................ Formula 8 Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by LX switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILX is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. 13 R1212D TIMING CHART <Soft-start Operation> The timing chart below describes the state of each pin from the power-on until the IC entering the stable operation. By raising the voltage of the DTC pin slowly, the switching duty cycle is limited, and prevent the drastic voltage rising (over-shoot) and inrush current. When the VIN voltage becomes equal or more than the UVLO released voltage (VUVLO+VHYS), VREFOUT operation starts. Following with the increase of the voltage level of VREFOUT, the internal oscillator begins to operate, then the DTC voltage is also rising, then, soft-start operation starts. When the DTC voltage crosses the chopping wave level inside the IC, EXT pin starts switching, then, step-up operation begins. During this term, the output voltage does not reach the set output voltage. Therefore the output of the amplifier is "H". Besides, the protection circuit may work and the IC charges the DELAY pin. Because of this, the soft-start time should be set shorter than the latch protection delay time. After the initial stage, when the output voltage reaches the set output voltage, the level of AMPOUT becomes the normal state. In other words, the level is determined with the input voltage, the output voltage, and the output current. When the level of AMPOUT becomes falling, charging the DELAY pin stops and discharges to the GND. The soft-start time (the time for the DTC pin voltage becoming to VDTC level) can be estimated with the next formula. T≅1/α×ln(VDTC×α/β+1), herein, α=−1/C7×(1/R5+1/R6), and β=VREFOUT/(C7×R5). VIN (VUVLO+VHYS) VREFOUT OSC DTC AMPOUT DELAY Soft-start Time EXT VREFOUT R5 DTC R6 14 C7 R1212D <Latch Protection Operation> The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. The maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. Once after becoming the maximum duty cycle, if the duty cycle decreases before latch operation works, the charging the capacitor stops immediately, and the DELAY pin voltage is fixed at GND level with IDLY2. The delay time of latch protection can be calculated with C2, VDLY, and the delay pin charge current, IDLY1, as in the next formula. t=C2 × VDLY/IDLY1 DELAY Output Short AMPOUT VDLY DTC Normal Maxduty Operation Latched EXT IDLY1 DELAY VDLY C2 15 R1212D TEST CIRCUITS VIN VIN EXT A VREFOUT VREFOUT AMPOUT AMPOUT DTC DTC VFB VFB DELAY GND GND Fig.1 Consumption Current Test Circuit VIN VREFOUT AMPOUT DELAY Fig.2 Oscillator Frequency, VFB Voltage, Duty Cycle, EXT rising time/falling time Test Circuit VIN EXT EXT VREFOUT A AMPOUT DTC DTC VFB VFB DELAY GND EXT Fig.3 AMP "L" Output Current/ "H" Output Current Test Circuit GND DELAY A Fig.4 DELAY Pin Charge Current/ Discharge Current Test Circuit V VIN GND EXT EXT VREFOUT VREFOUT AMPOUT AMPOUT DTC DTC VFB VFB DELAY Fig.5 EXT "H" ON Resistance Test Circuit 16 VIN GND V DELAY Fig.6 EXT "L" ON Resistance Test Circuit R1212D EXT VIN VIN EXT VREFOUT VREFOUT AMPOUT AMPOUT DTC DTC VFB VFB GND DELAY GND Fig.7 DELAY Pin Detector Threshold Test Circuit VIN EXT Fig.8 UVLO Detector Threshold/Released Voltage Test Circuit VIN VREFOUT AMPOUT AMPOUT 100kΩ DTC VFB DELAY VFB 10kΩ Fig.9 Error AMP Gain/Phase Test Circuit VIN EXT VREFOUT DTC GND DELAY GND A V DELAY Fig.10 VREFOUT Voltage Test Current EXT VREFOUT AMPOUT DTC VFB GND DELAY A Fig.11 VFB Leakage Current Test Circuit 17 R1212D Inductor VOUT Diode R3 C1 VIN EXT DELAY VFB NMOS C4 R1 C3 C2 R2 GND AMPOUT C5 C6 VREFOUT R4 DTC R5 R6 C7 Fig.12 Output Current vs. Output Voltage/Efficiency, Response Characteristics Test Circuit Inductor NMOS CPH6415 (Sanyo) Diode CRS02 (Toshiba) C1 2.2µF C6 0.1µF C2 1µF C7 0.1µF C3 15µF 1000pF[R1212DxxxA] 680pF[R1212DxxxB] 1500pF[R1212DxxxC] 1000pF[R1212DxxxA] 680pF[R1212DxxxB] 1500pF[R1212DxxxC] SetV 5V 10V 15V R1 R2 R3 R4 R5 R6 120kΩ 30kΩ 180kΩ 20kΩ 1kΩ 4.7kΩ 240kΩ 300kΩ 140kΩ 10kΩ C4 C5 18 LDR655312T-100(TDK) [R1212DxxxA] LDR655312T-4R7(TDK) [R1212DxxxB] LDR655312T-220(TDK) [R1212DxxxC] R1212D TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current (Topt=25°C) R1212D100A VOUT=5V 5.10 2.2V 3.3V 5.05 5.00 4.95 VOUT=10V 10.2 Output Voltage VOUT(V) Output Voltage VOUT(V) R1212D100A 4.90 2.2V 3.3V 5.5V 10.1 10.0 9.9 9.8 0 100 200 300 400 Output Current IOUT(mA) 500 0 R1212D100A 15.2 15.1 15.0 14.9 2.2V 3.3V 5.5V 14.8 VOUT=5V 5.10 Output Voltage VOUT(V) Output Voltage VOUT(V) R1212D100B VOUT=15V 15.3 14.7 2.2V 3.3V 5.05 5.00 4.95 4.90 0 50 100 150 200 Output Current IOUT(mA) 0 250 R1212D100B 500 10.0 9.9 9.8 VOUT=15V 15.3 Output Voltage VOUT(V) 2.2V 3.3V 5.5V 10.1 100 200 300 400 Output Current IOUT(mA) R1212D100B VOUT=10V 10.2 Output Voltage VOUT(V) 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 15.2 15.1 15.0 14.9 2.2V 3.3V 5.5V 14.8 14.7 0 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 0 50 100 150 200 Output Current IOUT(mA) 250 19 R1212D R1212D101C 2.2V 3.3V 5.05 5.00 4.95 VOUT=10V 10.2 Output Voltage VOUT(V) 5.10 Output Voltage VOUT(V) R1212D101C VOUT=5V 10.1 10.0 4.90 2.2V 3.3V 5.5V 9.9 9.8 0 100 200 300 400 Output Current IOUT(mA) 500 0 50 100 150 200 250 300 350 400 Output Current IOUT(mA) R1212D101C VOUT=15V Output Voltage VOUT(V) 15.3 2.2V 3.3V 5.5V 15.2 15.1 15.0 14.9 14.8 14.7 0 50 100 150 200 Output Current IOUT(mA) 250 2) Efficiency vs. Output Current (Topt=25°C) VOUT=5V 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 0 20 R1212D100A Efficiency η (%) Efficiency η (%) R1212D100A 100 200 300 400 Output Current IOUT(mA) 500 VOUT=10V 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 5.5V 0 50 100 150 200 250 300 350 400 Output Current IOUT(mA) R1212D R1212D100B VOUT=15V 100 90 80 70 60 50 40 30 20 10 0 Efficiency η (%) Efficiency η (%) R1212D100A 2.2V 3.3V 5.5V 0 50 100 150 200 Output Current IOUT(mA) VOUT=5V 100 90 80 70 60 50 40 30 20 10 0 250 2.2V 3.3V 0 VOUT=10V 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 5.5V 0 VOUT=15V 100 90 80 70 60 50 40 30 20 10 0 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 2.2V 3.3V 5.5V 0 VOUT=5V 2.2V 3.3V 0 50 100 150 200 Output Current IOUT(mA) 250 R1212D101C Efficiency η (%) Efficiency η (%) R1212D101C 100 90 80 70 60 50 40 30 20 10 0 500 R1212D100B Efficiency η (%) Efficiency η (%) R1212D100B 100 200 300 400 Output Current IOUT(mA) 100 200 300 400 Output Current IOUT(mA) 500 VOUT=10V 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 5.5V 0 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 21 R1212D Efficiency η (%) R1212D101C VOUT=15V 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 5.5V 0 50 100 150 200 Output Current IOUT(mA) 250 3) VFB Voltage vs. Input Voltage (Topt =25°C) 4) VFB Voltage vs. Temperature R1212D100x R1212D100x VIN=3.3V 1010 Feedback Voltage VFB(mV) Feedback Voltage VFB(mV) 1010 1005 1000 995 990 985 980 2 3 4 5 Input Voltage VIN(V) 1005 1000 995 990 985 980 -50 6 -25 0 25 50 75 Temperature Topt(°C) 100 5) Oscillator Frequency vs. Input Voltage (Topt=25°C) 775 750 725 700 675 650 625 600 2 22 R1212D100B Oscillator Frequency fosc(kHz) Oscillator Frequency fosc(kHz) R1212D100A 800 3 4 5 Input Voltage VIN(V) 6 1600 1500 1400 1300 1200 2 3 4 5 Input Voltage VIN(V) 6 R1212D Oscillator Frequency fosc(kHz) R1212D101C 350 330 310 290 270 250 2 3 4 5 Input Voltage VIN(V) 6 6) Oscillator Frequency vs. Temperature R1212D10xB VIN=3.3V 800 Oscillator Frequency fosc(kHz) Oscillator Frequency fosc(kHz) R1212D10xA 775 750 725 700 675 650 625 600 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V 1600 1550 1500 1450 1400 1350 1300 1250 1200 -50 -25 0 25 50 75 Temperature Topt(°C) 100 Oscillator Frequency fosc(kHz) R1212D10xC VIN=3.3V 350 330 310 290 270 250 -50 -25 0 25 50 75 Temperature Topt(°C) 100 23 R1212D 7) Supply Current vs. Input Voltage (Topt=25°C at no load) R1212D100A 500 450 400 350 300 250 EXT at no load 800 Supply Current IDD(uA) Supply Current IDD(uA) R1212D100B EXT at no load 200 700 600 500 400 300 2 3 4 5 Input Voltage VIN(V) 2 6 3 4 5 Input Voltage VIN(V) 6 R1212D101C EXT at no load Supply Current IDD(uA) 400 350 300 250 200 150 100 2 3 4 5 Input Voltage VIN(V) 6 8) Supply Current vs. Temperature R1212D10xA 450 400 350 300 250 200 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=5.5V, EXT at no load 900 Supply Current IDD(uA) Supply Current IDD(uA) 500 24 R1212D10xB VIN=5.5V, EXT at no load 800 700 600 500 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D R1212D10xC VIN=5.5V, EXT at no load Supply Current IDD(uA) 400 350 300 250 200 150 100 -50 -25 0 25 50 75 Temperature Topt(°C) 100 9) EXT "L" On Resistance vs. Temperature 10) EXT "H" On Resistance vs. Temperature R1212D10xx 3 2 1 0 -50 -25 0 25 50 75 Temperature Topt(°C) 3 2 1 0 -50 100 11) EXT Rising Time vs. Temperature VIN=3.3V, IEXT=50mA 4 EXT "H" ON Resistance(Ω) 4 EXT "L" ON Resistance(Ω) R1212D10xx VIN=3.3V, IEXT=50mA -25 VIN=3.3V, CEXT=1000pF 6 4 2 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V, CEXT=1000pF 10 EXT Falling Time tf(ns) EXT Rising Time tr(ns) R1212D10xx 8 0 -50 100 12) EXT Falling Time vs. Temperature R1212D10xx 10 0 25 50 75 Temperature Topt(°C) 8 6 4 2 0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 25 R1212D 13) Duty Cycle vs. DTC Voltage (0% to 100%) (Topt=25°C) R1212D100A R1212D100B 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) Duty Cycle Duty(%) Duty Cycle Duty(%) CEXT=1000pF CEXT=1000pF 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) R1212D101A R1212D101C 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) Duty Cycle Duty(%) Duty Cycle Duty(%) CEXT=1000pF CEXT=1000pF 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) 14) Duty Cycle vs. Temperature R1212D100A 83 80 77 74 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VDTC=0.75V, CEXT=1000pF 86 Duty Cycle Duty(%) Duty Cycle Duty(%) 86 26 R1212D100B VDTC=0.75V, CEXT=1000pF 83 80 77 74 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D 15) Maxduty vs. Temperature R1212D101A R1212D101C CEXT=1000pF 96 95 Maxduty(%) Maxduty(%) 93 90 87 84 -50 CEXT=1000pF 98 92 89 -25 0 25 50 75 Temperature Topt(°C) 86 -50 100 -25 0 25 50 75 Temperature Topt(°C) 100 16) AMP "L" Output Current vs. Temperature R1212D10xC VIN=3.3V, AMPOUT=1V 140 AMP "L" Output Current IAMPL(uA) AMP "L" Output Current IAMPL(uA) R1212D10xA/B 130 120 110 100 90 80 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V, AMPOUT=1V 130 120 110 100 90 80 70 -50 -25 0 25 50 75 Temperature Topt(°C) 100 AMP "H" Output Current IAMPL(mA) 17) AMP "H" Output Current vs. Temperature R1212D10xx VIN=3.3V, AMPOUT=1V 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 27 R1212D 18) UVLO Detector Threshold UVLO Released Voltage vs. Temperature R1212D100x R1212D101x 2.05 Released Voltage 2.00 1.95 Detector Threshold 1.90 1.85 -50 -25 0 25 50 75 Temperature Topt(°C) UVLO Detector Threshold/ Released Voltage (V) 3.1 Released Voltage 2.9 2.7 -50 Detector Threshold -25 Released Voltage 2.25 2.20 2.15 Detector Threshold 2.10 -25 0 25 50 75 Temperature Topt(°C) 100 19) DELAY Pin Detector Threshold vs. Temperature R1212D10xx 3.2 2.8 2.30 2.05 -50 100 R1212D102x 3.0 UVLO Detector Threshold/ Released Voltage (V) 2.35 0 25 50 75 Temperature Topt(°C) 100 DELAY Pin Detector Voltage VDLY(V) UVLO Detector Threshold/ Released Voltage (V) 2.10 VIN=3.3V 1050 1025 1000 975 950 -50 -25 0 25 50 75 Temperature Topt(°C) 100 20) DELAY Pin Charge Current vs. Temperature 28 R1212D10xC VIN=3.3V 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 DELAY Pin Charge Current IDLY1(uA) DELAY Pin Charge Current IDLY1(uA) R1212D10xA/B VIN=3.3V 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D 22) VREFOUT Voltage vs. Temperature R1212D10xx VIN=2.2V, VDLY=0.1V 300 250 200 150 100 50 0 -50 -25 0 25 50 75 Temperature Topt(°C) VIN=3.3V 1.53 VREFOUT Voltage(V) DELAY Pin Discharge Current IDLY2(uA) 21) DELAY Pin Discharge Current vs. Temperature R1212D10xx 1.52 1.51 1.50 1.49 1.48 -50 100 -25 0 25 50 75 Temperature Topt(°C) 100 23) VREFOUT Voltage vs. Input Voltage (Topt=25°C) 24) VREFOUT Voltage vs. Output Current (1) (Topt=25°C) R1212D10xx 1515 1.52 1510 VREFOUT Voltage(mV) VREFOUT Voltage (V) R1212D10xx 1.53 1.51 1.50 1.49 1.48 1505 1500 1495 VIN=2.2V VIN=3.3V VIN=5.5V 1490 1485 2 3 4 5 Input Voltage VIN(V) 6 0 2 4 6 8 Output Current IROUT(mA) 10 25) VREFOUT Voltage vs. Output Current (2) (Topt=25°C) 26) Error Amplifier Gain/Phase vs. Frequency (Topt=25°C) R1212D10xx R1212D10xx 1600 Gain(dB) / Phase(deg) VREFOUT Voltage(mV) 1400 1200 1000 800 600 VIN=2.2V VIN=3.3V VIN=5.5V 400 200 0 0 20 40 60 Output Current IROUT(mA) 80 VIN=3.3V 180 160 140 120 100 80 60 40 20 0 -20 Phase Gain 0 10 100 1000 Frequency freq.(kHz) 10000 29 R1212D 27) Power-on Response (VIN=3.3V, Topt=25°C) 5.0 4.0 VIN 3.0 3.0 2.0 2.0 DTC 1.0 1.0 0.0 10 20 30 Time (ms) 40 5.0 4.0 3.0 3.0 2.0 2.0 DTC 0.0 0 10 10.0 8.0 VIN 3.0 6.0 2.0 4.0 DTC 1.0 2.0 0.0 10 20 30 Time (ms) 40 4.0 6.0 2.0 4.0 DTC 1.0 0.0 0.0 0 15.0 5.0 3.0 9.0 2.0 6.0 DTC 3.0 0.0 0.0 0 10 20 30 Time (ms) 40 50 Voltage (V) Voltage (V) 6.0 12.0 VIN 1.0 30 18.0 Output Voltage VOUT(V) VOUT 4.0 2.0 10 20 30 Time (ms) 40 50 R1212D100A Set VOUT=15V, IOUT=10mA 5.0 8.0 3.0 50 12.0 10.0 VIN R1212D100A 6.0 50 VOUT 5.0 0.0 0 40 Set VOUT=10V, IOUT=100mA 6.0 Voltage (V) Voltage (V) 12.0 Output Voltage VOUT(V) VOUT 4.0 20 30 Time (ms) R1212D100A Set VOUT=10V, IOUT=10mA 5.0 1.0 0.0 50 R1212D100A 6.0 4.0 VIN 1.0 0.0 0 6.0 VOUT Output Voltage VOUT(V) 4.0 5.0 Set VOUT=5V, IOUT=100mA Set VOUT=15V, IOUT=100mA VOUT 18.0 15.0 4.0 12.0 VIN 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 0.0 0 10 20 30 Time (ms) 40 50 Output Voltage VOUT(V) 5.0 6.0 Voltage (V) VOUT 6.0 Output Voltage VOUT(V) 6.0 Voltage (V) R1212D100A Set VOUT=5V, IOUT=10mA Output Voltage VOUT(V) R1212D100A R1212D 5.0 4.0 VIN 3.0 3.0 2.0 2.0 DTC 1.0 1.0 0.0 10 20 30 Time (ms) 40 5.0 4.0 3.0 3.0 2.0 2.0 DTC 0.0 0 10 4.0 10.0 8.0 VIN 3.0 6.0 2.0 4.0 DTC 1.0 2.0 0.0 40 4.0 6.0 2.0 4.0 DTC 1.0 0.0 0.0 0 6.0 15.0 5.0 12.0 VIN 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 0.0 40 50 Voltage (V) 4.0 18.0 Output Voltage VOUT(V) Voltage (V) 5.0 20 30 Time (ms) 2.0 10 20 30 Time (ms) 40 50 R1212D100B VOUT 10 8.0 3.0 50 Set VOUT=15V, IOUT=10mA 0 12.0 10.0 VIN R1212D100B 6.0 50 VOUT 5.0 0.0 20 30 Time (ms) 40 Set VOUT=10V, IOUT=100mA 6.0 Voltage (V) Voltage (V) 5.0 12.0 Output Voltage VOUT(V) VOUT 10 20 30 Time (ms) R1212D100B Set VOUT=10V, IOUT=10mA 0 1.0 0.0 50 R1212D100B 6.0 4.0 VIN 1.0 0.0 0 6.0 VOUT Output Voltage VOUT(V) 4.0 5.0 Set VOUT=5V, IOUT=100mA Set VOUT=15V, IOUT=100mA VOUT 18.0 15.0 4.0 12.0 VIN 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 Output Voltage VOUT(V) 5.0 6.0 Voltage (V) VOUT 6.0 Output Voltage VOUT(V) 6.0 Voltage (V) R1212D100B Set VOUT=5V, IOUT=10mA Output Voltage VOUT(V) R1212D100B 0.0 0 10 20 30 Time (ms) 40 50 31 R1212D 5.0 12.0 VIN 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 10 20 30 Time (ms) 40 5.0 4.0 3.0 3.0 2.0 2.0 DTC 0.0 0 10 6.0 10.0 5.0 8.0 VIN 3.0 6.0 2.0 4.0 DTC 2.0 0.0 Voltage (V) Voltage (V) 5.0 12.0 Output Voltage VOUT(V) VOUT 1.0 10 20 30 Time (ms) 40 3.0 2.0 4.0 DTC 18.0 6.0 15.0 5.0 12.0 3.0 9.0 2.0 6.0 DTC 3.0 0.0 0.0 32 20 30 Time (ms) 2.0 0.0 0 40 50 Voltage (V) VIN 10 6.0 VIN 0.0 Output Voltage VOUT(V) Voltage (V) 5.0 0 8.0 10 20 30 Time (ms) 40 50 R1212D101C VOUT 1.0 12.0 VOUT 4.0 50 Set VOUT=15V, IOUT=10mA 4.0 50 10.0 R1212D101C 6.0 40 Set VOUT=10V, IOUT=100mA 1.0 0.0 0 20 30 Time (ms) R1212D101C Set VOUT=10V, IOUT=10mA 4.0 1.0 0.0 50 R1212D101C 6.0 4.0 VIN 1.0 0.0 0 6.0 VOUT Output Voltage VOUT(V) 4.0 15.0 Set VOUT=5V, IOUT=100mA Set VOUT=15V, IOUT=10mA VOUT 18.0 15.0 4.0 VIN 12.0 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 0.0 0 10 20 30 Time (ms) 40 50 Output Voltage VOUT(V) 5.0 6.0 Voltage (V) VOUT 18.0 Output Voltage VOUT(V) 6.0 Voltage (V) R1212D101C Set VOUT=15V, IOUT=10mA Output Voltage VOUT(V) R1212D101C R1212D 28) Load Transient Response (VIN=3.3V, Topt=25°C) R1212D100A IOUT=1mA-30mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 5 10 Time (ms) 15 20 R1212D100A IOUT=10mA-100mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 0 5 10 Time (ms) 15 20 R1212D100A Output Current IOUT(mA) 10.2 10.0 250 VOUT 200 9.8 150 9.6 100 9.4 50 9.2 IOUT 0 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 9.0 5 10 Time (ms) 15 20 33 R1212D R1212D100A Output Current IOUT(mA) 250 10.2 10.0 VOUT 200 9.8 150 9.6 100 9.4 50 9.2 IOUT 0 Output Voltage VOUT(V) IOUT=10mA-100mA 300 9.0 0 5 10 Time (ms) 15 20 R1212D100A Output Current IOUT(mA) 250 15.6 15.3 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 13.8 5 10 Time (ms) 15 20 R1212D100A Output Current IOUT(mA) 15.3 250 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 13.8 0 34 15.6 5 10 Time (ms) 15 20 Output Voltage VOUT(V) IOUT=10mA-100mA 300 R1212D R1212D100B IOUT=1mA-30mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 5 10 Time (ms) 15 20 R1212D100B IOUT=10mA-100mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 0 5 10 Time (ms) 15 20 R1212D100B Output Current IOUT(mA) 10.2 10.0 250 VOUT 200 9.8 150 9.6 100 9.4 50 9.2 IOUT 0 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 9.0 5 10 Time (ms) 15 20 35 R1212D R1212D100B Output Current IOUT(mA) 250 10.2 10.0 VOUT 200 9.8 150 9.6 100 9.4 50 9.2 IOUT 0 Output Voltage VOUT(V) IOUT=10mA-100mA 300 9.0 0 5 10 Time (ms) 15 20 R1212D100B Output Current IOUT(mA) 250 15.6 15.3 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 13.8 0 5 10 Time (ms) 15 20 R1212D100B Output Current IOUT(mA) 15.3 250 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 13.8 0 36 15.6 5 10 Time (ms) 15 20 Output Voltage VOUT(V) IOUT=10mA-100mA 300 R1212D R1212D101C IOUT=1mA-30mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 0 5 10 Time (ms) 15 20 R1212D101C IOUT=10mA-100mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 0 5 10 Time (ms) 15 20 R1212D101C Output Current IOUT(mA) 250 10.4 10.2 VOUT 200 10.0 150 9.8 100 9.6 50 9.4 IOUT 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 9.2 0 5 10 Time (ms) 15 20 37 R1212D R1212D101C Output Current IOUT(mA) 250 10.4 10.2 VOUT 200 10.0 150 9.8 100 9.6 50 9.4 IOUT 0 Output Voltage VOUT(V) IOUT=10mA-100mA 300 9.2 0 5 10 Time (ms) 15 20 R1212D101C Output Current IOUT(mA) 250 15.6 15.3 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 13.8 0 5 10 Time (ms) 15 20 R1212D101C Output Current IOUT(mA) 250 15.3 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 13.8 0 38 15.6 5 10 Time (ms) 15 20 Output Voltage VOUT(V) IOUT=10mA-100mA 300 PACKAGE INFORMATION • PE-SON-8-0510 SON-8 Unit: mm PACKAGE DIMENSIONS 2.9±0.2 0.15 +0.1 −0.15 0.13±0.05 0.475TYP 1 0.23±0.1 0.2±0.1 5 0.2±0.1 2.8±0.2 3.0±0.2 8 0.15 +0.1 −0.15 4 Attention : Tab suspension leads in the parts have VDD or GND level. (They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.9MAX. 0.13±0.05 Bottom View 0.1 0.65 0.3±0.1 0.1 M TAPING SPECIFICATION 4.0±0.1 +0.1 φ1.5 0 2.0±0.05 3.3 4.0±0.1 2.0MAX. ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 2±0.5 0 ∅ 180 −1.5 ∅ 60 +1 0 21±0.8 ∅13±0.2 11.4±1.0 9.0±0.3 8.0±0.3 3.2 3.5±0.05 1.75±0.1 0.2±0.1 PACKAGE INFORMATION PE-SON-8-0510 POWER DISSIPATION (SON-8) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Free Air Power Dissipation 480mW 300mW Thermal Resistance θja=(125−25°C)/0.48W=208°C/W 333°C/W On Board 480 500 400 40 Free Air 300 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 0.65 0.65 1.15 0.35 (Unit: mm) MARK INFORMATION ME-R1212D-0409 R1212D SERIES MARK SPECIFICATION • SON-8 to 1 5 1 • 2 3 4 5 6 , 4 6 Part Number vs. Product Code Part Number Product Code 1 2 3 4 R1212D002A F 0 2 A R1212D100A F 1 0 A R1212D100B F 1 0 B R1212D101A F 1 1 A R1212D102A F 1 2 A R1212D101C F 1 1 C R1212D102C F 1 2 C : Product Code (refer to Part Number vs. Product Code) : Lot Number