R1211x SERIES STEP-UP DC/DC CONTROLLER NO.EA-088-0604 OUTLINE The R1211x Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current. Each of the R1211x Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resisters, and capacitors. Phase compensation has been made internally in the R1211x002B/D Series, while phase compensation can be made externally as for R1211x002A/C Series. B/D version has stand-by mode. Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211x Series latch the external driver with its off state, or Latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again. FEATURES • • • • • • • • Standby Current ................................................Typ. 0µA (for B/D version) Input Voltage Range .........................................2.5V to 6.0V Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor) Two Options of Basic Oscillator Frequency ......300kHz, 700kHz Max Duty Cycle.................................................Typ. 90% High Reference Voltage Accuracy ....................±1.5% U.V.L.O. Threshold level ...................................Typ. 2.2V (Hysteresis Typ. 0.13V) Small Packages ................................................SOT-23-6W or thin (package height Max. 0.85mm) SON-6 APPLICATIONS • Constant Voltage Power Source for portable equipment. • Constant Voltage Power Source for LCD and CCD. 1 R1211x BLOCK DIAGRAMS Version A/C Version B/D OSC VFB EXT DTC AMPOUT Vref + DTC VIN + - - OSC VFB + - Vref GND EXT + VIN GND UVLO UVLO + + DELAY DELAY + + Latch Latch - - CE Chip Enable SELECTION GUIDE In the R1211x Series, the oscillator frequency, the optional function, and the package type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R1211x002x-TR ↑ a Code a b 2 ↑ b ←Part Number Contents Designation of Package Type: D: SON-6 N: SOT23-6W Designation of Optional Function A : 700kHz, with AMPOUT pin (External Phase Compensation Type) B : 700kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) C : 300kHz, with AMPOUT pin (External Phase Compensation Type) D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) R1211x PIN CONFIGURATIONS SON-6 Top View 6 5 SOT-23-6W Bottom View 4 4 5 6 5 4 EXT GND VIN 6 (MARK SIDE) DELAY AMPOUT/CE 1 2 3 3 2 1 1 VFB 2 3 PIN DESCRIPTIONS Pin No Symbol Pin Description SON6 SOT23-6W 1 1 DELAY 2 5 GND Ground Pin 3 6 EXT External FET Drive Pin (CMOS Output) 4 4 VIN Power Supply Pin 5 3 VFB Feedback Pin for monitoring Output Voltage 6 2 AMPOUT or CE Amplifier Output Pin(A/C Version) or Chip Enable Pin(B/D Version, Active at "H") Pin for External Capacitor (for Setting Output Delay of Protection) * Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS Symbol Item Rating Unit 6.5 V VIN VIN Pin Voltage VEXT EXT Pin Output Voltage −0.3 ~ VIN+0.3 V VDLY DELAY Pin Voltage −0.3 ~ VIN+0.3 V VAMP AMPOUT Pin Voltage −0.3 ~ VIN+0.3 V VCE CE Pin Input Voltage −0.3 ~ VIN+0.3 V VFB VFB Pin Voltage −0.3 ~ VIN+0.3 V IAMP AMPOUT Pin Current ±10 mA IEXT EXT Pin Inductor Drive Output Current ±50 mA Power Dissipation (SOT-23-6W)* 430 Power Dissipation (SON-6)* 500 mW PD Topt Operating Temperature Range −40 ~ +85 °C Tstg Storage Temperature Range −55 ~ +125 °C * ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 3 R1211x ELECTRICAL CHARACTERISTICS • R1211x002A Topt=25°C Symbol Conditions Min. Typ. Unit 6.0 V 1.015 V Operating Input Voltage VFB VFB Voltage Tolerance VIN=3.3V VFB Voltage Temperature Coefficient −40°C IFB VFB Input Current VIN=6V, VFB=0V or 6V −0.1 fOSc Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 595 Oscillator Frequency Temperature Coefficient −40°C 85°C ±1.4 Supply Current 1 VIN=6V, VDLY=VFB=0V, EXT at no load 600 900 µA Maximum Duty Cycle VIN=3.3V, EXT "H" side 90 94 % REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−20mA 5 10 Ω REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6 Ω IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.5 5.0 7.5 µA IDLY2 Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA VDLY Delay Pin Detector Threshold VIN=3.3V, VFB=0V,VDLY=0V→2V 0.95 1.00 1.05 V TSTART Soft-start Time VIN=3.3V at 90% of rising edge 4.5 9.0 13.5 ms VUVLO1 UVLO Detector Threshold VIN=3.3V→0V, VDLY=VFB=0V 2.1 2.2 2.3 V VUVLO2 UVLO Detector Hysteresis VIN=0V→3.3V, VDLY=VFB=0V 0.08 0.13 0.18 V IAMP1 AMP "H" Output Current VIN=3.3V, VAMP=1V, VFB=0.9V 0.45 0.90 1.50 mA IAMP2 AMP "L" Output Current VIN=3.3V, VAMP=1V, VFB=1.1V 30 60 90 µA ∆fOSc/∆T IDD1 maxdty 2.5 Max. VIN ∆VFB/∆T 4 Item < = < = 0.985 Topt Topt < = < = 1.000 ±150 85°C 82 700 ppm/°C 0.1 µA 805 kHz kHz/°C R1211x • R1211x002B Topt=25°C Symbol Item Conditions Min. Typ. Unit 6.0 V 1.015 V VIN Operating Input Voltage VFB VFB Voltage Tolerance VIN=3.3V VFB Voltage Temperature Coefficient −40°C IFB VFB Input Current VIN=6V, VFB=0V or 6V −0.1 fOSC Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 595 Oscillator Frequency Temperature Coefficient −40°C 85°C ±1.4 Supply Current 1 VIN=6V, VDLY=VFB=0V, EXT at no load 600 900 µA Maximum Duty Cycle VIN=3.3V, EXT "H" side 90 94 % REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−20mA 5 10 Ω REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6 Ω IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.5 5.0 7.5 µA IDLY2 Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA VDLY Delay Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V→2V 0.95 1.00 1.05 V TSTART Soft-start Time VIN=3.3V 4.5 9.0 13.5 ms VUVLO1 UVLO Detector Threshold VIN=3.3V→0V, VDLY=VFB=0V 2.1 2.2 2.3 V VUVLO2 UVLO Detector Hysteresis VIN=0V→3.3V, VDLY=VFB=0V 0.08 0.13 0.18 V ISTB Standby Current VIN=6V, VCE=0V 0 1 µA ICEH CE "H" Input Current VIN=6V, VCE=6V −0.5 0.5 µA ICEL CE "L" Input Current VIN=6V, VCE=0V −0.5 0.5 µA VCEH CE "H" Input Voltage VIN=6V, VCE=0V→6V 1.5 VCEL CE "L" Input Voltage VIN=2.5V, VCE=2V→0V ∆VFB/∆T ∆fOSC/ ∆T IDD1 maxdty 2.5 Max. < = < = 0.985 Topt Topt < = < = 1.000 ±150 85°C 82 700 ppm/°C 0.1 µA 805 kHz kHz/°C V 0.3 V 5 R1211x • R1211x002C Topt=25°C Symbol Conditions Min. Typ. Unit 6.0 V 1.015 V Operating Input Voltage VFB VFB Voltage Tolerance VIN=3.3V VFB Voltage Temperature Coefficient −40°C IFB VFB Input Current VIN=6V, VFB=0V or 6V −0.1 fOSC Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 240 Oscillator Frequency Temperature Coefficient −40°C 85°C ±0.6 Supply Current 1 VIN=6V, VDLY=VFB=0V, EXT at no load 300 500 µA Maximum Duty Cycle VIN=3.3V, EXT "H" side 90 94 % REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−20mA 5 10 Ω REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6 Ω IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.0 4.5 7.0 µA IDLY2 Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA VDLY Delay Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V→2V 0.95 1.00 1.05 V TSTART Soft-start Time VIN=3.3V 5.0 10.5 16.0 ms VUVLO1 UVLO Detector Threshold VIN=3.3V→0V, VDLY=VFB=0V 2.1 2.2 2.3 V VUVLO2 UVLO Detector Hysteresis VIN=0V→3.3V, VDLY=VFB=0V 0.08 0.13 0.18 V IAMP1 AMP "H" Output Current VIN=3.3V, VAMP=1V, VFB=0.9V 0.45 0.90 1.50 mA IAMP2 AMP "L" Output Current VIN=3.3V, VAMP=1V, VFB=1.1V 25 50 75 µA ∆fOSC/∆T IDD1 maxdty 2.5 Max. VIN ∆VFB/∆T 6 Item < = < = 0.985 Topt Topt < = < = 1.000 ±150 85°C 82 300 ppm/°C 0.1 µA 360 kHz kHz/°C R1211x • R1211x002D Topt=25°C Symbol Item Conditions Min. Typ. Unit 6.0 V 1.015 V VIN Operating Input Voltage VFB VFB Voltage Tolerance VIN=3.3V VFB Voltage Temperature Coefficient −40°C IFB VFB Input Current VIN=6V, VFB=0V or 6V −0.1 fOSC Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 240 Oscillator Frequency Temperature Coefficient −40°C 85°C ±0.6 Supply Current 1 VIN=6V, VDLY=VFB=0V, EXT at no load 300 500 µA Maximum Duty Cycle VIN=3.3V, EXT "H" side 90 94 % REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−20mA 5 10 Ω REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6 Ω IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.0 4.5 7.0 µA IDLY2 Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA VDLY Delay Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V→2V 0.95 1.00 1.05 V TSTART Soft-start Time VIN=3.3V 5.0 10.5 16.0 ms VUVLO1 UVLO Detector Threshold VIN=3.3V→0V, VDLY=VFB=0V 2.1 2.2 2.3 V VUVLO2 UVLO Detector Hysteresis VIN=0V→3.3V, VDLY=VFB=0V 0.08 0.13 0.18 V ISTB Standby Current VIN=6V, VCE=0V 0 1 µA ICEH CE "H" Input Current VIN=6V, VCE=6V −0.5 0.5 µA ICEL CE "L" Input Current VIN=6V, VCE=0V −0.5 0.5 µA VCEH CE "H" Input Voltage VIN=6V, VCE=0V→6V 1.5 VCEL CE "L" Input Voltage VIN=2.5V, VCE=2V→0V ∆VFB/∆T ∆fOSC/∆T IDD1 maxdty 2.5 Max. < = < = 0.985 Topt Topt < = < = 1.000 ±150 85°C 82 300 ppm/°C 0.1 µA 360 kHz kHz/°C V 0.3 V 7 R1211x TYPICAL APPLICATIONS AND TECHNICAL NOTES <R1211x002A/R1211x002C> Inductor VIN VOUT Diode NMOS C4 EXT R1 C3 DELAY C1 VFB C2 R3 R2 GND AMPOUT C5 R4 NMOS : IRF7601 (International Rectifier) Inductor : LDR655312T-100 10µH (TDK) for R1211x002A : LDR655312T-220 22µH (TDK) for R1211x002C Diode : CRS02 (Toshiba) C1 : 4.7µF (Ceramic) C2 : 0.22µF (Ceramic) C3 : 10µF (Ceramic) C4 : 680pF (Ceramic) C5 : 2200pF (Ceramic) R1 : Output Voltage Setting Resistor 1 R2 : Output Voltage Setting Resistor 2 R3 : 30kΩ R4 : 30kΩ <R1211x002B/R1211x002D> Inductor VIN Diode EXT NMOS C4 VOUT R1 C3 C1 DELAY VFB R3 C2 GND R2 CE CE Control NMOS : IRF7601 (International Rectifier) Inductor : LDR655312T-100 10µH (TDK) for R1211x002B : LDR655312T-220 22µH (TDK) for R1211x002D Diode : CRS02 (Toshiba) C1 : 4.7µF (Ceramic) C2 : 0.22µF (Ceramic) C3 : 10µF (Ceramic) C4 : 680pF (Ceramic) R1 : Setting Output Voltage Resistor 1 R2 : Setting Output Voltage Resistor 2 R3 : 30kΩ [Note] These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose other external components. 8 R1211x Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical applications above. • In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of the previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance. • Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the previous page. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type. • Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is between 100pF and 1000pF. • Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical applications of the previous page. Refer to the next formula. Output Voltage = VFB × (R1+R2)/R2 R1+R2=100kΩ is recommended range of resistances. • The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of B/D version. Otherwise, restart with power on. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2×VDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L". • As for R1211x002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram are just an example combination. These are for making phase compensation. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the range from 10kΩ to 50kΩ. Then, noise level will be decreased. • As for R1211x002B/D version, EXT pin outputs GND level at standby mode. • Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting voltage or more. ∗ The performance of power circuit with using this IC depends on external components. Choose the most suitable components for your application. 9 R1211x Output Current and Selection of External Components <Basic Circuit> i2 Inductor Diode IOUT VIN VOUT i1 LX Tr CL GND <Circuit through L> Discontinuous Mode Continuous Mode IL ILxmax IL ILxmax ILxmin ILxmin Tf Iconst t Ton T=1/fosc Toff t Ton T=1/fosc Toff There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN×t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula. ∫ Ton PON = V IN 2 × t/L dt .............................................................................................................................. Formula 1 0 With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT − VIN) ×t/L, therefore electric power, POFF is described as in next formula. POFF = ∫ Tf 0 VIN × (VOUT − VIN) × t/L dt ........................................................................................................ Formula 2 In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, PAV is described as in the next formula. PAV = 1/(TON + TOFF) × { ∫ Ton 0 VIN 2 × t/L dt + ∫ Tf 0 VIN × (VOUT − VIN) × t/L dt} ................................................... Formula 3 In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. In the continuous mode, the deviation of the current is equal between on time and off time. VIN × TON/L = (VOUT − VIN) × Toff/L ................................................................................................... Formula 4 Further, the electric power, PAV is equal to output electric power, VOUT × IOUT, thus, IOUT = fOSC × VIN 2 × TON 2 /{2 × L × (VOUT − VIN)} = VIN 2 × TON/(2 × L × VOUT) .................................................... Formula 5 10 R1211x When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as Iconst, then, IOUT = fOSC × VIN 2 × TON 2 /{2 × L × (VOUT − VIN)} + VIN × Iconst/V OUT ...............................................................Formula 6 In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: ILxmax = Iconst + VIN × TON/L .................................................................................................................Formula 7 With the formula 4,6, and ILxmax is, ILxmax = VOUT/VIN × IOUT + VIN × TON/(2 × L) ..............................................................................................Formula 8 Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. 11 R1211x TIMING CHART • R1211x002A/R1211x002C DTC SS VREF + VOUT VFB AMPOUT - + EXT R1 EXT PWM Comparator OP AMP R2 • R1211x002B/R1211x002D DTC SS VREF + VOUT EXT VFB AMPOUT - + EXT R1 PWM Comparator R2 OP AMP <Soft-start Operation> Soft-start operation is starting from power-on as follows: (Step1) The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on, therefore, VFB voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT is at "L", and switching does not start. (Step2) When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM comparator. 12 R1211x (Step3) When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching operation becomes normal mode. SS,VREF SS VFB,VREF DTC VFB AMPOUT AMPOUT Step1 Step2 Step3 VOUT VIN <Latch Protection Operation> The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of R1211x002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY pin is fixed at GND level. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2 × VDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L". Output Short AMPOUT AMPOUT VDLY DTC DELAY Normal Maxduty Operation Latched EXT 13 R1211x TEST CIRCUITS • R1211x002A/R1211x002C ∗Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test ∗Consumption Current Test 6V 3.3V A VIN VIN EXT OSCILLOSCOPE VFB VFB GND DELAY GND DELAY ∗EXT "H" ON Resistance ∗EXT "L" ON Resistance 3.3V 3.3V VIN EXT VIN EXT 150Ω OSCILLOSCOPE 150Ω V VFB VFB GND DELAY GND DELAY ∗DELAY Pin Charge Current ∗DELAY Pin Discharge Current 2.5V 3.3V VIN VIN VFB VFB GND DELAY 14 GND DELAY A A 0.1V R1211x ∗DELAY Pin Detector Threshold Voltage Test ∗AMP "H" Output Current/"L" Output Current Test 3.3V 3.3V EXT VIN VIN OSCILLOSCOPE AMPOUT VFB VFB GND DELAY GND DELAY A 1V 0.9V/1.1V ∗UVLO Detector Threshold/Hysteresis Range Test VIN EXT OSCILLOSCOPE VFB GND DELAY ∗Soft-start Time Test Diode Coil C5 VOUT C2 NMOS VIN Rout EXT AMPOUT C3 VFB OSCILLOSCOPE C4 R4 C1 R1 R3 GND DELAY <Components> Inductor (L) Diode (SD) Capacitors NMOS Transistor Resistors R2 : 22µH (TDK LDR655312T-220) : CRS02 (Toshiba) C1:680pF(Ceramic), C2:22µF (Tantalum)+2.2µF (Ceramic), C3:68µF (Tantalum)+2.2µF (Ceramic), C4:2200pF(Ceramic), C5:22µF(Tantalum) : IRF7601 (International Rectifier) : R1: 90kΩ, R2:10kΩ, R3:30kΩ, R4:30kΩ, Rout:1kΩ/330Ω 15 R1211x • R1211x002B/R1211x002D ∗Oscillator Frequency, ∗Consumption Current Test Maximum Duty Cycle, VFB Voltage Test 6V 3.3V VIN CE VIN A EXT CE OSCILLOSCOPE VFB VFB GND DELAY GND DELAY ∗EXT "H" ON Resistance ∗EXT "L" ON Resistance 3.3V VIN 3.3V EXT EXT VIN 150Ω OSCILLOSCOPE CE CE 150Ω V VFB VFB GND DELAY GND DELAY ∗DELAY Pin Charge Current ∗DELAY Pin Discharge Current 3.3V 2.5V VIN VIN CE CE VFB VFB GND DELAY GND DELAY A A 0.1V ∗DELAY Pin Detector Threshold Voltage Test 6V 3.3V VIN ∗Standby Current Test A EXT CE OSCILLOSCOPE VIN CE VFB VFB GND DELAY GND DELAY 16 R1211x ∗UVLO Detector Threshold/ ∗ CE "L" Input Current/"H" Input Current Test Hysteresis Range Test 6V VIN EXT VIN CE OSCILLOSCOPE CE VFB VFB GND DELAY GND DELAY A 0V/6V ∗CE "L" Input Voltage/"H" Input Voltage Test 2.5V/6V VIN EXT CE OSCILLOSCOPE VFB GND DELAY ∗Soft-start Time Test Diode Coil C5 VOUT C2 NMOS VIN Rout EXT C1 CE R1 0V/3.3V C3 VFB GND DELAY OSCILLOSCOPE R3 R2 <Components> Inductor (L) Diode (SD) Capacitors : 22µH (TDK LDR655312T-220) : CRS02 (Toshiba) C1 : 680pF (Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic), C3 : 68µF (Tantalum)+2.2µF (Ceramic), C5: 22µF (Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90kΩ, R2: 10kΩ, R3: 30kΩ 17 R1211x TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current R1211x002A R1211x002A L=10µH VOUT=5V 10.2 Output Voltage VOUT(V) Output Voltage VOUT(V) 5.1 L=10µH VOUT=10V 10.0 5.0 VIN=2.5V VIN=3.3V VIN=2.5V VIN=3.3V VIN=5.0V 9.8 4.9 1 10 100 1 1000 R1211x002A 100 1000 R1211x002B L=10µH VOUT=15V 15.0 VIN=2.5V VIN=3.3V VIN=5.0V L=10µH VOUT=5V 5.1 Output Voltage VOUT(V) Output Voltage VOUT(V) 15.3 5.0 VIN=2.5V VIN=3.3V 14.7 4.9 1 10 100 1 1000 10 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) R1211x002B R1211x002B Output Voltage VOUT(V) 10.0 L=10µH VOUT=15V 15.3 Output Voltage VOUT(V) L=10µH VOUT=10V 10.2 15.0 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 VIN=2.5V VIN=3.3V VIN=5.0V 14.7 1 10 100 Output Current IOUT(mA) 18 10 Output Current IOUT(mA) Output Current IOUT(mA) 1000 1 10 100 Output Current IOUT(mA) 1000 R1211x R1211x002C R1211x002C L=22µH VOUT=5V 10.2 Output Voltage VOUT(V) Output Voltage VOUT(V) 5.1 L=22µH VOUT=10V 10.0 5.0 VIN=2.5V VIN=3.3V VIN=2.5V VIN=3.3V VIN=5.0V 9.8 4.9 1 10 100 1 1000 10 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) R1211x002C R1211x002D L=22µH VOUT=15V 15.0 VIN=2.5V VIN=3.3V VIN=5.0V L=22µH VOUT=5V 5.1 Output Voltage VOUT(V) Output Voltage VOUT(V) 15.3 5.0 VIN=2.5V VIN=3.3V 14.7 4.9 1 10 100 1000 1 Output Current IOUT(mA) 10 100 1000 Output Current IOUT(mA) R1211x002D R1211x002D Output Voltage VOUT(V) 10.2 10.0 L=22µH VOUT=15V 15.3 Output Voltage VOUT(V) L=22µH VOUT=10V 15.0 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 VIN=2.5V VIN=3.3V VIN=5.0V 14.7 1 10 100 Output Current IOUT(mA) 1000 1 10 100 1000 Output Current IOUT(mA) 19 R1211x 2) Efficiency vs. Output Current R1211x002A R1211x002A L=10µH VOUT=5V 100 100 80 80 Efficiency η(%) Efficiency η(%) L=10µH VOUT=10V 60 40 20 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 VIN=2.5V VIN=3.3V 0 0 1 10 100 1000 1 Output Current IOUT(mA) R1211x002A 80 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 Efficiency η(%) Efficiency η(%) 1000 L=10µH VOUT=5V 100 80 60 40 20 0 VIN=2.5V VIN=3.3V 0 1 10 100 1000 1 Output Current IOUT(mA) 100 1000 R1211x002B L=10µH VOUT=10V 100 10 Output Current IOUT(mA) R1211x002B L=10µH VOUT=15V 100 80 80 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 0 Efficiency η(%) Efficiency η(%) 100 R1211x002B L=10µH VOUT=15V 100 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 0 1 10 100 Output Current IOUT(mA) 20 10 Output Current IOUT(mA) 1000 1 10 100 Output Current IOUT(mA) 1000 R1211x R1211x002C R1211x002C L=22µH VOUT=5V 100 80 80 Efficiency η(%) Efficiency η(%) L=22∝H VOUT=10V 100 60 40 20 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 VIN=2.5V VIN=3.3V 0 0 1 10 100 1000 1 Output Current IOUT(mA) R1211x002C 1000 L=22µH VOUT=5V 100 80 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 Efficiency η(%) 80 Efficiency η(%) 100 R1211x002D L=22µH VOUT=15V 100 60 40 20 VIN=2.5V VIN=3.3V 0 0 1 10 100 1 1000 10 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) R1211x002D R1211x002D L=22µH VOUT=10V 100 L=22µH VOUT=15V 100 80 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 0 Efficiency η(%) 80 Efficiency η(%) 10 Output Current IOUT(mA) 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 0 1 10 100 Output Current IOUT(mA) 1000 1 10 100 1000 Output Current IOUT(mA) 21 R1211x 3) VFB Voltage vs. Input Voltage (Topt=25°C) R1211x002x Topt=25°C 1015 VFB Voltage(mV) 1010 1005 1000 995 990 985 2 3 4 5 6 Input Voltage VIN(V) 4) Oscillator Frequency vs. Input Voltage (Topt=25°C) R1211x002A/B R1211x002C/D Topt=25°C 800 700 600 Topt=25°C 400 Oscillator Frequency(kHz) Oscillator Frequency(kHz) 900 500 350 300 250 200 2 3 4 5 6 2 Input Voltage VIN(V) 3 4 5 6 Input Voltage VIN(V) 5) Supply Current vs. Input Voltage (Topt=25°C) R1211x002A R1211x002B Topt=25°C 500 400 300 200 100 500 400 300 200 100 0 0 2 3 4 5 Input Voltage VIN(V) 22 Topt=25°C 600 Supply Current(µA) Supply Current(µA) 600 6 2 3 4 5 Input Voltage VIN(V) 6 R1211x R1211x002C R1211x002D Topt=25°C 300 200 100 Topt=25°C 400 Supply Current(µA) Supply Current(µA) 400 300 200 100 0 0 2 3 4 5 2 6 3 4 5 6 Input Voltage VIN(V) Input Voltage VIN(V) 6) Maximum Duty Cycle vs. Input Voltage (Topt=25°C) R1211x002A/B R1211x002C/D Topt=25°C 94 92 90 88 86 84 82 Topt=25°C 96 Maximum Duty Cycle(%) Maximum Duty Cycle(%) 96 94 92 90 88 86 84 82 80 80 2 3 4 5 2 6 3 4 5 6 Input Voltage VIN(V) Input Voltage VIN(V) 7) VFB Voltage vs. Temperature R1211x002x VIN=3.3V 1015 VFB Voltage(mV) 1010 1005 1000 995 990 985 -50 -25 0 25 50 75 100 Temperature Topt(°C) 23 R1211x 8) Oscillator Frequency vs. Temperature R1211x002A/B 800 700 600 500 -50 -25 0 25 50 75 VIN=3.3V 400 Oscillator Frequency(kHz) 900 Oscillator Frequency(kHz) R1211x002C/D VIN=3.3V 350 300 250 200 -50 100 Temperature Topt(°C) -25 0 25 50 75 100 Temperature Topt(°C) 9) Supply Current vs. Temperature R1211x002A R1211x002B VIN=3.3V 500 400 300 200 100 0 -50 VIN=3.3V 600 Supply Current(µA) Supply Current( A) 600 500 400 300 200 100 -25 0 25 50 75 0 -50 100 Temperature Topt(°C) -25 R1211x002C 200 100 0 25 50 Temperature Topt(°C) 24 50 75 100 75 100 VIN=3.3V 400 Supply Current(µA) Supply Current(µA) 300 -25 25 R1211x002D VIN=3.3V 400 0 -50 0 Temperature Topt(°C) 300 200 100 0 -50 -25 0 25 50 Temperature Topt(°C) 75 100 R1211x 10) Maximum Duty Cycle vs. Temperature R1211x002A/B 96 94 92 90 88 86 84 82 80 -50 -25 0 25 50 75 100 VIN=3.3V 96 Maximum Duty Cycle(%) Maximum Duty Cycle(%) R1211x002C/D VIN=3.3V 94 92 90 88 86 84 82 80 -50 -25 0 25 50 75 100 Temperature Topt(°C) Temperature Topt(°C) 11) EXT "H" On Resistance vs. Temperature R1211x002x VIN=3.3V EXT "H" ON Resistance(Ω) 8 7 6 5 4 3 2 -50 -25 0 25 50 75 100 Temperature Topt(°C) 12) EXT "L" On Resistance vs. Temperature R1211x002x VIN=3.3V EXT "L" ON Resistance(Ω) 5 4 3 2 1 -50 -25 0 25 50 75 100 Temperature Topt(°C) 25 R1211x 13) Soft-start Time vs. Temperature R1211x002A/B R1211x002C/D VIN=3.3V 14 12 10 8 6 -50 -25 0 25 50 75 100 Temperature Topt(°C) UVLO Detector Threshold(mV) R1211x002x VIN=3.3V 2250 2200 2150 2100 -50 -25 0 25 50 75 100 Temperature Topt(°C) 15) AMP "H" Output Current vs. Temperature R1211x002A/C VIN=3.3V AMP "H" Output Current(µA) 1600 1400 1200 1000 800 600 400 -50 -25 0 25 50 Temperature Topt(°C) 26 14 12 10 8 6 -50 -25 0 25 50 Temperature Topt(°C) 14) UVLO Detector Threshold vs. Temperature 2300 VIN=3.3V 16 Soft-start Time(ms) Soft-start Time(ms) 16 75 100 75 100 R1211x 16) AMP "L" Output Current vs. Temperature R1211x002A R1211x002C VIN=3.3V 70 60 50 40 30 20 -50 -25 0 25 50 75 VIN=3.3V 80 AMP "L" Output Current(µA) AMP "L" Output Current(µA) 80 70 60 50 40 30 20 -50 100 Temperature Topt(°C) -25 0 25 50 75 100 Temperature Topt(°C) 17) DELAY Pin Charge Current vs. Temperature R1211x002C/D VIN=3.3V 7 DELAY Pin Charge Current(µA) DELAY Pin Charge Current(µA) R1211x002A/B 6 5 4 3 2 -50 -25 0 25 50 75 100 Temperature Topt(°C) VIN=3.3V 7 6 5 4 3 2 -50 -25 0 25 50 75 100 Temperature Topt(°C) 18) DELAY Pin Detector Threshold vs. Temperature DELAY Pin Detector Threshold(mV) R1211x002x VIN=3.3V 1040 1020 1000 980 960 -50 -25 0 25 50 75 100 Temperature Topt(°C) 27 R1211x 19) DELAY Pin Discharge Current vs. Temperature DELAY Pin Discharge Current(µA) R1211x002x VIN=2.5V 10 8 6 4 2 0 -50 -25 0 25 50 75 100 Temperature Topt(°C) 20) CE "L" Input Voltage vs. Temperature R1211x002B/D VIN=2.5V CE "L" Input Voltage(mV) 1200 1100 1000 900 800 700 600 -50 -25 0 25 50 75 100 Temperature Topt(°C) 21) CE "H" Input Voltage vs. Temperature R1211x002B/D VIN=6.0V CE "H" Input Voltage(mV) 1200 1100 1000 900 800 700 600 -50 -25 0 25 50 Temperature Topt(°C) 28 75 100 R1211x 22) Standby Current vs. Temperature R1211x002B/D VIN=6.0V Standby Current(µA) 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -50 -25 0 25 50 75 100 Temperature Topt(°C) 23) Load Transient Response R1211x002A L=10µH VIN=3.3V, C3=22µF VOUT=5V, IOUT=1-100mA VOUT 5.0 200 100 Output Current IOUT(mA) Output Voltage VOUT(V) 5.6 IOUT 0 4.4 Time (5ms/div) R1211x002A 29 R1211x R1211x002A L=10µH VIN=3.3V, C3=22µF VOUT=15V, IOUT=1-50mA 300 200 VOUT 15.0 100 Output Current IOUT(mA) Output Voltage VOUT(V) 16.8 IOUT 0 13.2 Time (5ms/div) R1211x002B L=10µH VIN=3.3V, C3=22µF VOUT=5V, IOUT=1-100mA 300 200 VOUT 5.0 100 Output Current IOUT(mA) Output Voltage VOUT(V) 5.6 IOUT 4.4 0 Time (5ms/div) R1211x002B L=10µH VIN=3.3V, C3=22µF VOUT=10V, IOUT=1-100mA 300 200 VOUT 10.0 100 IOUT 8.8 0 Time (5ms/div) 30 Output Current IOUT(mA) Output Voltage VOUT(V) 11.2 R1211x R1211x002B L=10µH VIN=3.3V, C3=22µF VOUT=15V, IOUT=1-50mA 300 200 VOUT 15.0 100 Output Current IOUT(mA) Output Voltage VOUT(V) 16.8 IOUT 13.2 0 Time (5ms/div) R1211x002C L=22µH VIN=3.3V, C3=22µF VOUT=5V, IOUT=1-100mA VOUT 5.0 200 100 Output Current IOUT(mA) Output Voltage VOUT(V) 5.6 IOUT 4.4 0 Time (5ms/div) R1211x002C L=22µH VIN=3.3V, C3=22µF VOUT=10V, IOUT=1-100mA VOUT 10.0 200 100 Output Current IOUT(mA) Output Voltage VOUT(V) 11.2 IOUT 0 8.8 Time (5ms/div) 31 R1211x R1211x002C L=22µH VIN=3.3V, C3=22µF VOUT=15V, IOUT=1-50mA Output Voltage VOUT(V) 200 VOUT 15.0 100 Output Current IOUT(mA) 300 16.8 IOUT 13.2 0 Time (5ms/div) R1211x002D L=22µH VIN=3.3V, C3=22µF VOUT=5V, IOUT=1-100mA VOUT 5.0 200 100 Output Current IOUT(mA) Output Voltage VOUT(V) 5.6 IOUT 0 4.4 Time (5ms/div) R1211x002D L=22µH VIN=3.3V, C3=22µF VOUT=10V, IOUT=1-100mA VOUT 10.0 200 100 IOUT 8.8 0 Time (5ms/div) 32 Output Current IOUT(mA) Output Voltage VOUT(V) 11.2 R1211x R1211x002D L=22µH VIN=3.3V, C3=22µF VOUT=15V, IOUT=1-50mA Output Voltage VOUT(V) 200 VOUT 15.0 100 Output Current IOUT(mA) 300 16.8 IOUT 13.2 0 Time (5ms/div) 24) Power-on Response R1211x002A 16 14 14 (c)VOUT=15V 12 10 (b)VOUT=10V 8 (a)VOUT=5V 6 4 2 L=10µH VIN=3.3V, IOUT=10mA 16 Output Voltage(V) Output Voltage(V) R1211x002B L=10µH VIN=3.3V, IOUT=10mA (c)VOUT=15V 12 10 (b)VOUT=10V 8 (a)VOUT=5V 6 4 2 VIN 0 VIN 0 0 5 10 15 20 25 0 5 Time (5ms/div) R1211x002C 15 20 25 R1211x002D L=22µH VIN=3.3V, IOUT=10mA 16 10 Time (5ms/div) L=22µH VIN=3.3V, IOUT=10mA 16 (c)VOUT=15V 14 12 (b)VOUT=10V 10 8 6 (a)VOUT=5V 4 VIN 2 Output Voltage(V) Output Voltage(V) 14 (c)VOUT=15V 12 10 (b)VOUT=10V 8 6 (a)VOUT=5V 4 2 0 VIN 0 0 5 10 15 Time (5ms/div) 20 25 0 5 10 15 20 25 Time (5ms/div) 33 R1211x 25) Turn-on speed with CE pin R1211x002B 16 14 14 (c)VOUT=15V 12 10 (b)VOUT=10V 8 (a)VOUT=5V 6 4 2 (c)VOUT=15V 12 (b)VOUT=10V 10 8 6 (a)VOUT=5V 4 CE 2 CE 0 0 0 5 10 15 Time (5ms/div) 34 L=22µH VIN=3.3V, IOUT=10mA 16 Output Voltage(V) Output Voltage(V) R1211x002D L=10µH VIN=3.3V, IOUT=10mA 20 25 0 5 10 15 Time (5ms/div) 20 25 PACKAGE INFORMATION • PE-SOT-23-6W-0512 SOT-23-6W Unit: mm PACKAGE DIMENSIONS 2.9±0.2 1.1 1.9±0.2 (0.95) (0.95) 6 5 0.8±0.1 2.8±0.3 4 1.8±0.2 0 to 0.1 2 +0.1 0.4 −0.2 0.15 +0.1 −0.075 0.2 MIN. 1 +0.2 −0.1 TAPING SPECIFICATION +0.1 ∅1.5 0 4.0±0.1 2.0±0.05 4 1 2 3 3.3 4.0±0.1 2.0MAX. 3.5±0.05 5 3.2 6 8.0±0.3 1.75±0.1 0.3±0.1 ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 13±0.2 11.4±1.0 9.0±0.3 21±0.8 0 180 −1.5 +1 60 0 2±0.5 PACKAGE INFORMATION PE-SOT-23-6W-0512 POWER DISSIPATION (SOT-23-6W) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Power Dissipation 430mW Thermal Resistance θja=(125−25°C)/0.43W=233°C/W On Board 500 40 430 400 300 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN (SOT-23-6W) 2.4 1.0 0.7 MAX. 0.95 0.95 1.9 (Unit: mm) PACKAGE INFORMATION • PE-SON-6-0510 SON-6 Unit: mm PACKAGE DIMENSIONS 3 0.85MAX. 0.13±0.05 0.1 1.34 Bottom View (0.3) 1 2.6±0.2 3.0±0.15 4 (0.3) 1.6±0.2 6 Attention: Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.2±0.1 0.5 4.0±0.1 3.2 3.5±0.05 2.0±0.05 1.9 4.0±0.1 1.7MAX. ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) +1 60 0 2±0.5 21±0.8 0 180 −1.5 13±0.2 11.4±1.0 9.0±0.3 8.0±0.3 ∅ 1.5+0.1 0 0.2±0.1 1.75±0.1 TAPING SPECIFICATION PACKAGE INFORMATION PE-SON-6-0510 POWER DISSIPATION (SON-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Free Air Power Dissipation 500mW 250mW Thermal Resistance θja=(125−25°C)/0.5W=200°C/W - On Board 500 40 400 300 Free Air 250 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 1.05 0.75 0.25 0.5 (Unit: mm) MARK INFORMATION ME-R1211N-0310 R1211N SERIES MARK SPECIFICATION • SOT-23-6W 1 • 2 3 1 , 2 : Product Code (refer to Part Number vs. Product Code) 3 , 4 : Lot Number 4 Part Number vs. Product Code Part Number Product Code 1 2 R1211N002A L 0 R1211N002B L 1 R1211N002C L 2 R1211N002D L 3 MARK INFORMATION ME-R1211D-0310 R1211D SERIES MARK SPECIFICATION • SON-6 • 1 2 3 4 1 , 2 : Product Code (refer to Part Number vs. Product Code) 3 , 4 : Lot Number Part Number vs. Product Code Part Number Product Code 1 Part Number 2 Product Code 1 2 R1211D002A L 0 R1211D102A L 6 R1211D002B L 1 R1211D101C L 7 R1211D002C L 2 R1211D102C L 8 R1211D002D L 3 R1211D103A L 9 R1211D100A L 4 R1211D103C L A R1211D101A L 5 R1211D104A L B