RICOH R1211N002D

R1211x SERIES
STEP-UP DC/DC CONTROLLER
NO.EA-088-0604
OUTLINE
The R1211x Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current.
Each of the R1211x Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error
amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple,
high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an
inductor, a diode, a power MOSFET, divider resisters, and capacitors.
Phase compensation has been made internally in the R1211x002B/D Series, while phase compensation can
be made externally as for R1211x002A/C Series. B/D version has stand-by mode.
Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set
typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the
soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211x Series latch the
external driver with its off state, or Latch-type protection circuit works.
The delay time for latch the state can be set with an external capacitor.
To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector
threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again.
FEATURES
•
•
•
•
•
•
•
•
Standby Current ................................................Typ. 0µA (for B/D version)
Input Voltage Range .........................................2.5V to 6.0V
Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor)
Two Options of Basic Oscillator Frequency ......300kHz, 700kHz
Max Duty Cycle.................................................Typ. 90%
High Reference Voltage Accuracy ....................±1.5%
U.V.L.O. Threshold level ...................................Typ. 2.2V (Hysteresis Typ. 0.13V)
Small Packages ................................................SOT-23-6W or thin (package height Max. 0.85mm) SON-6
APPLICATIONS
• Constant Voltage Power Source for portable equipment.
• Constant Voltage Power Source for LCD and CCD.
1
R1211x
BLOCK DIAGRAMS
Version A/C
Version B/D
OSC
VFB
EXT
DTC
AMPOUT
Vref
+
DTC
VIN
+
-
-
OSC
VFB
+
-
Vref
GND
EXT
+
VIN
GND
UVLO
UVLO
+
+
DELAY
DELAY
+
+
Latch
Latch
-
-
CE
Chip
Enable
SELECTION GUIDE
In the R1211x Series, the oscillator frequency, the optional function, and the package type for the ICs can be
selected at the user's request.
The selection can be made with designating the part number as shown below;
R1211x002x-TR
↑
a
Code
a
b
2
↑
b
←Part Number
Contents
Designation of Package Type:
D: SON-6
N: SOT23-6W
Designation of Optional Function
A : 700kHz, with AMPOUT pin (External Phase Compensation Type)
B : 700kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)
C : 300kHz, with AMPOUT pin (External Phase Compensation Type)
D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)
R1211x
PIN CONFIGURATIONS
SON-6
Top View
6
5
SOT-23-6W
Bottom View
4
4
5
6
5
4
EXT
GND
VIN
6
(MARK SIDE)
DELAY AMPOUT/CE
1
2
3
3
2
1
1
VFB
2
3
PIN DESCRIPTIONS
Pin No
Symbol
Pin Description
SON6
SOT23-6W
1
1
DELAY
2
5
GND
Ground Pin
3
6
EXT
External FET Drive Pin (CMOS Output)
4
4
VIN
Power Supply Pin
5
3
VFB
Feedback Pin for monitoring Output Voltage
6
2
AMPOUT or CE
Amplifier Output Pin(A/C Version) or
Chip Enable Pin(B/D Version, Active at "H")
Pin for External Capacitor
(for Setting Output Delay of Protection)
* Tab in the
parts have GND level. (They are connected to the reverse side of this IC.)
Do not connect to other wires or land patterns.
ABSOLUTE MAXIMUM RATINGS
Symbol
Item
Rating
Unit
6.5
V
VIN
VIN Pin Voltage
VEXT
EXT Pin Output Voltage
−0.3 ~ VIN+0.3
V
VDLY
DELAY Pin Voltage
−0.3 ~ VIN+0.3
V
VAMP
AMPOUT Pin Voltage
−0.3 ~ VIN+0.3
V
VCE
CE Pin Input Voltage
−0.3 ~ VIN+0.3
V
VFB
VFB Pin Voltage
−0.3 ~ VIN+0.3
V
IAMP
AMPOUT Pin Current
±10
mA
IEXT
EXT Pin Inductor Drive Output Current
±50
mA
Power Dissipation (SOT-23-6W)*
430
Power Dissipation (SON-6)*
500
mW
PD
Topt
Operating Temperature Range
−40 ~ +85
°C
Tstg
Storage Temperature Range
−55 ~ +125
°C
* ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
3
R1211x
ELECTRICAL CHARACTERISTICS
•
R1211x002A
Topt=25°C
Symbol
Conditions
Min.
Typ.
Unit
6.0
V
1.015
V
Operating Input Voltage
VFB
VFB Voltage Tolerance
VIN=3.3V
VFB Voltage
Temperature Coefficient
−40°C
IFB
VFB Input Current
VIN=6V, VFB=0V or 6V
−0.1
fOSc
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
595
Oscillator Frequency
Temperature Coefficient
−40°C
85°C
±1.4
Supply Current 1
VIN=6V, VDLY=VFB=0V,
EXT at no load
600
900
µA
Maximum Duty Cycle
VIN=3.3V,
EXT "H" side
90
94
%
REXTH
EXT "H" ON Resistance
VIN=3.3V, IEXT=−20mA
5
10
Ω
REXTL
EXT "L" ON Resistance
VIN=3.3V, IEXT=20mA
3
6
Ω
IDLY1
Delay Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
2.5
5.0
7.5
µA
IDLY2
Delay Pin Discharge Current
VIN=VFB=2.5V,
VDLY=0.1V
2.5
5.5
9.0
mA
VDLY
Delay Pin Detector Threshold
VIN=3.3V,
VFB=0V,VDLY=0V→2V
0.95
1.00
1.05
V
TSTART
Soft-start Time
VIN=3.3V at 90% of
rising edge
4.5
9.0
13.5
ms
VUVLO1
UVLO Detector Threshold
VIN=3.3V→0V,
VDLY=VFB=0V
2.1
2.2
2.3
V
VUVLO2
UVLO Detector Hysteresis
VIN=0V→3.3V,
VDLY=VFB=0V
0.08
0.13
0.18
V
IAMP1
AMP "H" Output Current
VIN=3.3V, VAMP=1V,
VFB=0.9V
0.45
0.90
1.50
mA
IAMP2
AMP "L" Output Current
VIN=3.3V, VAMP=1V,
VFB=1.1V
30
60
90
µA
∆fOSc/∆T
IDD1
maxdty
2.5
Max.
VIN
∆VFB/∆T
4
Item
<
=
<
=
0.985
Topt
Topt
<
=
<
=
1.000
±150
85°C
82
700
ppm/°C
0.1
µA
805
kHz
kHz/°C
R1211x
•
R1211x002B
Topt=25°C
Symbol
Item
Conditions
Min.
Typ.
Unit
6.0
V
1.015
V
VIN
Operating Input Voltage
VFB
VFB Voltage Tolerance
VIN=3.3V
VFB Voltage
Temperature Coefficient
−40°C
IFB
VFB Input Current
VIN=6V, VFB=0V or 6V
−0.1
fOSC
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
595
Oscillator Frequency
Temperature Coefficient
−40°C
85°C
±1.4
Supply Current 1
VIN=6V, VDLY=VFB=0V,
EXT at no load
600
900
µA
Maximum Duty Cycle
VIN=3.3V, EXT "H" side
90
94
%
REXTH
EXT "H" ON Resistance
VIN=3.3V, IEXT=−20mA
5
10
Ω
REXTL
EXT "L" ON Resistance
VIN=3.3V, IEXT=20mA
3
6
Ω
IDLY1
Delay Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
2.5
5.0
7.5
µA
IDLY2
Delay Pin Discharge Current
VIN=VFB=2.5V, VDLY=0.1V
2.5
5.5
9.0
mA
VDLY
Delay Pin Detector Threshold
VIN=3.3V, VFB=0V,
VDLY=0V→2V
0.95
1.00
1.05
V
TSTART
Soft-start Time
VIN=3.3V
4.5
9.0
13.5
ms
VUVLO1
UVLO Detector Threshold
VIN=3.3V→0V,
VDLY=VFB=0V
2.1
2.2
2.3
V
VUVLO2
UVLO Detector Hysteresis
VIN=0V→3.3V,
VDLY=VFB=0V
0.08
0.13
0.18
V
ISTB
Standby Current
VIN=6V, VCE=0V
0
1
µA
ICEH
CE "H" Input Current
VIN=6V, VCE=6V
−0.5
0.5
µA
ICEL
CE "L" Input Current
VIN=6V, VCE=0V
−0.5
0.5
µA
VCEH
CE "H" Input Voltage
VIN=6V, VCE=0V→6V
1.5
VCEL
CE "L" Input Voltage
VIN=2.5V, VCE=2V→0V
∆VFB/∆T
∆fOSC/ ∆T
IDD1
maxdty
2.5
Max.
<
=
<
=
0.985
Topt
Topt
<
=
<
=
1.000
±150
85°C
82
700
ppm/°C
0.1
µA
805
kHz
kHz/°C
V
0.3
V
5
R1211x
•
R1211x002C
Topt=25°C
Symbol
Conditions
Min.
Typ.
Unit
6.0
V
1.015
V
Operating Input Voltage
VFB
VFB Voltage Tolerance
VIN=3.3V
VFB Voltage
Temperature Coefficient
−40°C
IFB
VFB Input Current
VIN=6V, VFB=0V or 6V
−0.1
fOSC
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
240
Oscillator Frequency
Temperature Coefficient
−40°C
85°C
±0.6
Supply Current 1
VIN=6V, VDLY=VFB=0V,
EXT at no load
300
500
µA
Maximum Duty Cycle
VIN=3.3V, EXT "H" side
90
94
%
REXTH
EXT "H" ON Resistance
VIN=3.3V, IEXT=−20mA
5
10
Ω
REXTL
EXT "L" ON Resistance
VIN=3.3V, IEXT=20mA
3
6
Ω
IDLY1
Delay Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
2.0
4.5
7.0
µA
IDLY2
Delay Pin Discharge Current
VIN=VFB=2.5V, VDLY=0.1V
2.5
5.5
9.0
mA
VDLY
Delay Pin Detector Threshold
VIN=3.3V, VFB=0V,
VDLY=0V→2V
0.95
1.00
1.05
V
TSTART
Soft-start Time
VIN=3.3V
5.0
10.5
16.0
ms
VUVLO1
UVLO Detector Threshold
VIN=3.3V→0V,
VDLY=VFB=0V
2.1
2.2
2.3
V
VUVLO2
UVLO Detector Hysteresis
VIN=0V→3.3V,
VDLY=VFB=0V
0.08
0.13
0.18
V
IAMP1
AMP "H" Output Current
VIN=3.3V, VAMP=1V,
VFB=0.9V
0.45
0.90
1.50
mA
IAMP2
AMP "L" Output Current
VIN=3.3V, VAMP=1V,
VFB=1.1V
25
50
75
µA
∆fOSC/∆T
IDD1
maxdty
2.5
Max.
VIN
∆VFB/∆T
6
Item
<
=
<
=
0.985
Topt
Topt
<
=
<
=
1.000
±150
85°C
82
300
ppm/°C
0.1
µA
360
kHz
kHz/°C
R1211x
•
R1211x002D
Topt=25°C
Symbol
Item
Conditions
Min.
Typ.
Unit
6.0
V
1.015
V
VIN
Operating Input Voltage
VFB
VFB Voltage Tolerance
VIN=3.3V
VFB Voltage
Temperature Coefficient
−40°C
IFB
VFB Input Current
VIN=6V, VFB=0V or 6V
−0.1
fOSC
Oscillator Frequency
VIN=3.3V, VDLY=VFB=0V
240
Oscillator Frequency
Temperature Coefficient
−40°C
85°C
±0.6
Supply Current 1
VIN=6V, VDLY=VFB=0V,
EXT at no load
300
500
µA
Maximum Duty Cycle
VIN=3.3V, EXT "H" side
90
94
%
REXTH
EXT "H" ON Resistance
VIN=3.3V, IEXT=−20mA
5
10
Ω
REXTL
EXT "L" ON Resistance
VIN=3.3V, IEXT=20mA
3
6
Ω
IDLY1
Delay Pin Charge Current
VIN=3.3V, VDLY=VFB=0V
2.0
4.5
7.0
µA
IDLY2
Delay Pin Discharge Current
VIN=VFB=2.5V, VDLY=0.1V
2.5
5.5
9.0
mA
VDLY
Delay Pin Detector Threshold
VIN=3.3V, VFB=0V,
VDLY=0V→2V
0.95
1.00
1.05
V
TSTART
Soft-start Time
VIN=3.3V
5.0
10.5
16.0
ms
VUVLO1
UVLO Detector Threshold
VIN=3.3V→0V,
VDLY=VFB=0V
2.1
2.2
2.3
V
VUVLO2
UVLO Detector Hysteresis
VIN=0V→3.3V,
VDLY=VFB=0V
0.08
0.13
0.18
V
ISTB
Standby Current
VIN=6V, VCE=0V
0
1
µA
ICEH
CE "H" Input Current
VIN=6V, VCE=6V
−0.5
0.5
µA
ICEL
CE "L" Input Current
VIN=6V, VCE=0V
−0.5
0.5
µA
VCEH
CE "H" Input Voltage
VIN=6V, VCE=0V→6V
1.5
VCEL
CE "L" Input Voltage
VIN=2.5V, VCE=2V→0V
∆VFB/∆T
∆fOSC/∆T
IDD1
maxdty
2.5
Max.
<
=
<
=
0.985
Topt
Topt
<
=
<
=
1.000
±150
85°C
82
300
ppm/°C
0.1
µA
360
kHz
kHz/°C
V
0.3
V
7
R1211x
TYPICAL APPLICATIONS AND TECHNICAL NOTES
<R1211x002A/R1211x002C>
Inductor
VIN
VOUT
Diode
NMOS
C4
EXT
R1
C3
DELAY
C1
VFB
C2
R3
R2
GND AMPOUT
C5 R4
NMOS : IRF7601 (International Rectifier)
Inductor : LDR655312T-100 10µH (TDK) for R1211x002A
: LDR655312T-220 22µH (TDK) for R1211x002C
Diode
: CRS02 (Toshiba)
C1 : 4.7µF (Ceramic)
C2 : 0.22µF (Ceramic)
C3 : 10µF (Ceramic)
C4 : 680pF (Ceramic)
C5 : 2200pF (Ceramic)
R1 : Output Voltage Setting Resistor 1
R2 : Output Voltage Setting Resistor 2
R3 : 30kΩ
R4 : 30kΩ
<R1211x002B/R1211x002D>
Inductor
VIN
Diode
EXT
NMOS
C4
VOUT
R1
C3
C1
DELAY
VFB
R3
C2
GND
R2
CE
CE Control
NMOS : IRF7601 (International Rectifier)
Inductor : LDR655312T-100 10µH (TDK) for R1211x002B
: LDR655312T-220 22µH (TDK) for R1211x002D
Diode
: CRS02 (Toshiba)
C1 : 4.7µF (Ceramic)
C2 : 0.22µF (Ceramic)
C3 : 10µF (Ceramic)
C4 : 680pF (Ceramic)
R1 : Setting Output Voltage Resistor 1
R2 : Setting Output Voltage Resistor 2
R3 : 30kΩ
[Note]
These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage
requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose
other external components.
8
R1211x
Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the
typical applications above.
• In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of
the previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance.
• Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the
previous page. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC
converter may be unstable, use a tantalum type capacitor instead of ceramic type.
• Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous
page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is
between 100pF and 1000pF.
• Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical
applications of the previous page. Refer to the next formula.
Output Voltage = VFB × (R1+R2)/R2
R1+R2=100kΩ is recommended range of resistances.
• The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to
an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY
pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power
MOSFET.
To release the latch protection operation, make the IC be standby mode with CE pin and make it active in
terms of B/D version. Otherwise, restart with power on.
The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in
the next formula.
t=C2×VDLY/IDLY1
Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and
delay pin outputs "L".
• As for R1211x002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram
are just an example combination. These are for making phase compensation. If the spike noise of VOUT may
be large, the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor
R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the
range from 10kΩ to 50kΩ. Then, noise level will be decreased.
• As for R1211x002B/D version, EXT pin outputs GND level at standby mode.
• Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC.
Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the
FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast
switching speed. When an external transistor is switching, spike voltage may be generated caused by an
inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting
voltage or more.
∗ The performance of power circuit with using this IC depends on external components. Choose the most
suitable components for your application.
9
R1211x
Output Current and Selection of External Components
<Basic Circuit>
i2
Inductor
Diode
IOUT
VIN
VOUT
i1
LX Tr
CL
GND
<Circuit through L>
Discontinuous Mode
Continuous Mode
IL
ILxmax
IL
ILxmax
ILxmin
ILxmin
Tf
Iconst
t
Ton
T=1/fosc
Toff
t
Ton
T=1/fosc
Toff
There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator
depending on the continuous characteristic of inductor current.
During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is
VIN×t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula.
∫
Ton
PON = V IN 2 × t/L dt .............................................................................................................................. Formula 1
0
With the step-up circuit, electric power is supplied from power source also during off time. In this case, input
current is described as (VOUT − VIN) ×t/L, therefore electric power, POFF is described as in next formula.
POFF =
∫
Tf
0
VIN × (VOUT − VIN) × t/L dt ........................................................................................................ Formula 2
In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average
electric power, PAV is described as in the next formula.
PAV = 1/(TON + TOFF) × {
∫
Ton
0
VIN 2 × t/L dt +
∫
Tf
0
VIN × (VOUT − VIN) × t/L dt} ................................................... Formula 3
In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of
switching regulator becomes continuous mode.
In the continuous mode, the deviation of the current is equal between on time and off time.
VIN × TON/L = (VOUT − VIN) × Toff/L ................................................................................................... Formula 4
Further, the electric power, PAV is equal to output electric power, VOUT × IOUT, thus,
IOUT = fOSC × VIN 2 × TON 2 /{2 × L × (VOUT − VIN)} = VIN 2 × TON/(2 × L × VOUT) .................................................... Formula 5
10
R1211x
When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes
continuous. The continuous current through the inductor is described as Iconst, then,
IOUT = fOSC × VIN 2 × TON 2 /{2 × L × (VOUT − VIN)} + VIN × Iconst/V OUT ...............................................................Formula 6
In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as
follows:
ILxmax = Iconst + VIN × TON/L .................................................................................................................Formula 7
With the formula 4,6, and ILxmax is,
ILxmax = VOUT/VIN × IOUT + VIN × TON/(2 × L) ..............................................................................................Formula 8
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output,
and external components should be selected.
In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula.
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external
components is not included. The actual maximum output current is between 50% and 80% of the calculation.
Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As
for VOUT, Vf (as much as 0.3V) of the diode should be considered.
11
R1211x
TIMING CHART
•
R1211x002A/R1211x002C
DTC
SS
VREF
+
VOUT
VFB
AMPOUT
-
+
EXT
R1
EXT
PWM Comparator
OP AMP
R2
•
R1211x002B/R1211x002D
DTC
SS
VREF
+
VOUT
EXT
VFB
AMPOUT
-
+
EXT
R1
PWM Comparator
R2
OP AMP
<Soft-start Operation>
Soft-start operation is starting from power-on as follows:
(Step1)
The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which
is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on,
therefore, VFB voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT
is at "L", and switching does not start.
(Step2)
When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching
operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and
VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM
comparator.
12
R1211x
(Step3)
When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching
operation becomes normal mode.
SS,VREF
SS
VFB,VREF
DTC
VFB
AMPOUT
AMPOUT
Step1
Step2
Step3
VOUT
VIN
<Latch Protection Operation>
The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects
maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle
continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin
and turns off the external power MOSFET.
To release the latch protection operation, make the IC be standby mode with CE pin and make it active in
terms of R1211x002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower,
and make it rise up to the normal input voltage.
During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY
pin is fixed at GND level.
The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in
the next formula.
t=C2 × VDLY/IDLY1
Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and
delay pin outputs "L".
Output Short
AMPOUT
AMPOUT
VDLY
DTC
DELAY
Normal
Maxduty Operation
Latched
EXT
13
R1211x
TEST CIRCUITS
•
R1211x002A/R1211x002C
∗Oscillator Frequency,
Maximum Duty Cycle, VFB Voltage Test
∗Consumption Current Test
6V
3.3V
A
VIN
VIN
EXT
OSCILLOSCOPE
VFB
VFB
GND DELAY
GND DELAY
∗EXT "H" ON Resistance
∗EXT "L" ON Resistance
3.3V
3.3V
VIN
EXT
VIN
EXT
150Ω
OSCILLOSCOPE
150Ω
V
VFB
VFB
GND DELAY
GND DELAY
∗DELAY Pin Charge Current
∗DELAY Pin Discharge Current
2.5V
3.3V
VIN
VIN
VFB
VFB
GND DELAY
14
GND DELAY
A
A
0.1V
R1211x
∗DELAY Pin Detector Threshold Voltage Test
∗AMP "H" Output Current/"L"
Output Current Test
3.3V
3.3V
EXT
VIN
VIN
OSCILLOSCOPE
AMPOUT
VFB
VFB
GND DELAY
GND DELAY
A
1V
0.9V/1.1V
∗UVLO Detector Threshold/Hysteresis Range Test
VIN
EXT
OSCILLOSCOPE
VFB
GND DELAY
∗Soft-start Time Test
Diode
Coil
C5
VOUT
C2
NMOS
VIN
Rout
EXT
AMPOUT
C3
VFB
OSCILLOSCOPE
C4 R4
C1
R1
R3
GND DELAY
<Components>
Inductor (L)
Diode (SD)
Capacitors
NMOS Transistor
Resistors
R2
: 22µH (TDK LDR655312T-220)
: CRS02 (Toshiba)
C1:680pF(Ceramic), C2:22µF (Tantalum)+2.2µF (Ceramic),
C3:68µF (Tantalum)+2.2µF (Ceramic), C4:2200pF(Ceramic), C5:22µF(Tantalum)
: IRF7601 (International Rectifier)
: R1: 90kΩ, R2:10kΩ, R3:30kΩ, R4:30kΩ, Rout:1kΩ/330Ω
15
R1211x
•
R1211x002B/R1211x002D
∗Oscillator Frequency,
∗Consumption Current Test
Maximum Duty Cycle, VFB Voltage Test
6V
3.3V
VIN
CE
VIN
A
EXT
CE
OSCILLOSCOPE
VFB
VFB
GND DELAY
GND DELAY
∗EXT "H" ON Resistance
∗EXT "L" ON Resistance
3.3V
VIN
3.3V
EXT
EXT
VIN
150Ω
OSCILLOSCOPE
CE
CE
150Ω
V
VFB
VFB
GND DELAY
GND DELAY
∗DELAY Pin Charge Current
∗DELAY Pin Discharge Current
3.3V
2.5V
VIN
VIN
CE
CE
VFB
VFB
GND DELAY
GND DELAY
A
A
0.1V
∗DELAY Pin Detector Threshold Voltage Test
6V
3.3V
VIN
∗Standby Current Test
A
EXT
CE
OSCILLOSCOPE
VIN
CE
VFB
VFB
GND DELAY
GND DELAY
16
R1211x
∗UVLO Detector Threshold/
∗ CE "L" Input Current/"H" Input Current Test
Hysteresis Range Test
6V
VIN
EXT
VIN
CE
OSCILLOSCOPE
CE
VFB
VFB
GND DELAY
GND DELAY
A
0V/6V
∗CE "L" Input Voltage/"H" Input Voltage Test
2.5V/6V
VIN
EXT
CE
OSCILLOSCOPE
VFB
GND DELAY
∗Soft-start Time Test
Diode
Coil
C5
VOUT
C2
NMOS
VIN
Rout
EXT
C1
CE
R1
0V/3.3V
C3
VFB
GND DELAY
OSCILLOSCOPE
R3
R2
<Components>
Inductor (L)
Diode (SD)
Capacitors
: 22µH (TDK LDR655312T-220)
: CRS02 (Toshiba)
C1 : 680pF (Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic),
C3 : 68µF (Tantalum)+2.2µF (Ceramic), C5: 22µF (Tantalum)
NMOS Transistor : IRF7601 (International Rectifier)
Resistors
: R1: 90kΩ, R2: 10kΩ, R3: 30kΩ
17
R1211x
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
R1211x002A
R1211x002A
L=10µH
VOUT=5V
10.2
Output Voltage VOUT(V)
Output Voltage VOUT(V)
5.1
L=10µH
VOUT=10V
10.0
5.0
VIN=2.5V
VIN=3.3V
VIN=2.5V
VIN=3.3V
VIN=5.0V
9.8
4.9
1
10
100
1
1000
R1211x002A
100
1000
R1211x002B
L=10µH
VOUT=15V
15.0
VIN=2.5V
VIN=3.3V
VIN=5.0V
L=10µH
VOUT=5V
5.1
Output Voltage VOUT(V)
Output Voltage VOUT(V)
15.3
5.0
VIN=2.5V
VIN=3.3V
14.7
4.9
1
10
100
1
1000
10
100
1000
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002B
R1211x002B
Output Voltage VOUT(V)
10.0
L=10µH
VOUT=15V
15.3
Output Voltage VOUT(V)
L=10µH
VOUT=10V
10.2
15.0
VIN=2.5V
VIN=3.3V
VIN=5.0V
9.8
VIN=2.5V
VIN=3.3V
VIN=5.0V
14.7
1
10
100
Output Current IOUT(mA)
18
10
Output Current IOUT(mA)
Output Current IOUT(mA)
1000
1
10
100
Output Current IOUT(mA)
1000
R1211x
R1211x002C
R1211x002C
L=22µH
VOUT=5V
10.2
Output Voltage VOUT(V)
Output Voltage VOUT(V)
5.1
L=22µH
VOUT=10V
10.0
5.0
VIN=2.5V
VIN=3.3V
VIN=2.5V
VIN=3.3V
VIN=5.0V
9.8
4.9
1
10
100
1
1000
10
100
1000
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002C
R1211x002D
L=22µH
VOUT=15V
15.0
VIN=2.5V
VIN=3.3V
VIN=5.0V
L=22µH
VOUT=5V
5.1
Output Voltage VOUT(V)
Output Voltage VOUT(V)
15.3
5.0
VIN=2.5V
VIN=3.3V
14.7
4.9
1
10
100
1000
1
Output Current IOUT(mA)
10
100
1000
Output Current IOUT(mA)
R1211x002D
R1211x002D
Output Voltage VOUT(V)
10.2
10.0
L=22µH
VOUT=15V
15.3
Output Voltage VOUT(V)
L=22µH
VOUT=10V
15.0
VIN=2.5V
VIN=3.3V
VIN=5.0V
9.8
VIN=2.5V
VIN=3.3V
VIN=5.0V
14.7
1
10
100
Output Current IOUT(mA)
1000
1
10
100
1000
Output Current IOUT(mA)
19
R1211x
2) Efficiency vs. Output Current
R1211x002A
R1211x002A
L=10µH
VOUT=5V
100
100
80
80
Efficiency η(%)
Efficiency η(%)
L=10µH
VOUT=10V
60
40
20
60
40
VIN=2.5V
VIN=3.3V
VIN=5.0V
20
VIN=2.5V
VIN=3.3V
0
0
1
10
100
1000
1
Output Current IOUT(mA)
R1211x002A
80
60
40
VIN=2.5V
VIN=3.3V
VIN=5.0V
20
Efficiency η(%)
Efficiency η(%)
1000
L=10µH
VOUT=5V
100
80
60
40
20
0
VIN=2.5V
VIN=3.3V
0
1
10
100
1000
1
Output Current IOUT(mA)
100
1000
R1211x002B
L=10µH
VOUT=10V
100
10
Output Current IOUT(mA)
R1211x002B
L=10µH
VOUT=15V
100
80
80
60
40
VIN=2.5V
VIN=3.3V
VIN=5.0V
20
0
Efficiency η(%)
Efficiency η(%)
100
R1211x002B
L=10µH
VOUT=15V
100
60
40
VIN=2.5V
VIN=3.3V
VIN=5.0V
20
0
1
10
100
Output Current IOUT(mA)
20
10
Output Current IOUT(mA)
1000
1
10
100
Output Current IOUT(mA)
1000
R1211x
R1211x002C
R1211x002C
L=22µH
VOUT=5V
100
80
80
Efficiency η(%)
Efficiency η(%)
L=22∝H
VOUT=10V
100
60
40
20
60
40
VIN=2.5V
VIN=3.3V
VIN=5.0V
20
VIN=2.5V
VIN=3.3V
0
0
1
10
100
1000
1
Output Current IOUT(mA)
R1211x002C
1000
L=22µH
VOUT=5V
100
80
60
40
VIN=2.5V
VIN=3.3V
VIN=5.0V
20
Efficiency η(%)
80
Efficiency η(%)
100
R1211x002D
L=22µH
VOUT=15V
100
60
40
20
VIN=2.5V
VIN=3.3V
0
0
1
10
100
1
1000
10
100
1000
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002D
R1211x002D
L=22µH
VOUT=10V
100
L=22µH
VOUT=15V
100
80
60
40
VIN=2.5V
VIN=3.3V
VIN=5.0V
20
0
Efficiency η(%)
80
Efficiency η(%)
10
Output Current IOUT(mA)
60
40
VIN=2.5V
VIN=3.3V
VIN=5.0V
20
0
1
10
100
Output Current IOUT(mA)
1000
1
10
100
1000
Output Current IOUT(mA)
21
R1211x
3) VFB Voltage vs. Input Voltage (Topt=25°C)
R1211x002x
Topt=25°C
1015
VFB Voltage(mV)
1010
1005
1000
995
990
985
2
3
4
5
6
Input Voltage VIN(V)
4) Oscillator Frequency vs. Input Voltage (Topt=25°C)
R1211x002A/B
R1211x002C/D
Topt=25°C
800
700
600
Topt=25°C
400
Oscillator Frequency(kHz)
Oscillator Frequency(kHz)
900
500
350
300
250
200
2
3
4
5
6
2
Input Voltage VIN(V)
3
4
5
6
Input Voltage VIN(V)
5) Supply Current vs. Input Voltage (Topt=25°C)
R1211x002A
R1211x002B
Topt=25°C
500
400
300
200
100
500
400
300
200
100
0
0
2
3
4
5
Input Voltage VIN(V)
22
Topt=25°C
600
Supply Current(µA)
Supply Current(µA)
600
6
2
3
4
5
Input Voltage VIN(V)
6
R1211x
R1211x002C
R1211x002D
Topt=25°C
300
200
100
Topt=25°C
400
Supply Current(µA)
Supply Current(µA)
400
300
200
100
0
0
2
3
4
5
2
6
3
4
5
6
Input Voltage VIN(V)
Input Voltage VIN(V)
6) Maximum Duty Cycle vs. Input Voltage (Topt=25°C)
R1211x002A/B
R1211x002C/D
Topt=25°C
94
92
90
88
86
84
82
Topt=25°C
96
Maximum Duty Cycle(%)
Maximum Duty Cycle(%)
96
94
92
90
88
86
84
82
80
80
2
3
4
5
2
6
3
4
5
6
Input Voltage VIN(V)
Input Voltage VIN(V)
7) VFB Voltage vs. Temperature
R1211x002x
VIN=3.3V
1015
VFB Voltage(mV)
1010
1005
1000
995
990
985
-50
-25
0
25
50
75
100
Temperature Topt(°C)
23
R1211x
8) Oscillator Frequency vs. Temperature
R1211x002A/B
800
700
600
500
-50
-25
0
25
50
75
VIN=3.3V
400
Oscillator Frequency(kHz)
900
Oscillator Frequency(kHz)
R1211x002C/D
VIN=3.3V
350
300
250
200
-50
100
Temperature Topt(°C)
-25
0
25
50
75
100
Temperature Topt(°C)
9) Supply Current vs. Temperature
R1211x002A
R1211x002B
VIN=3.3V
500
400
300
200
100
0
-50
VIN=3.3V
600
Supply Current(µA)
Supply Current( A)
600
500
400
300
200
100
-25
0
25
50
75
0
-50
100
Temperature Topt(°C)
-25
R1211x002C
200
100
0
25
50
Temperature Topt(°C)
24
50
75
100
75
100
VIN=3.3V
400
Supply Current(µA)
Supply Current(µA)
300
-25
25
R1211x002D
VIN=3.3V
400
0
-50
0
Temperature Topt(°C)
300
200
100
0
-50
-25
0
25
50
Temperature Topt(°C)
75
100
R1211x
10) Maximum Duty Cycle vs. Temperature
R1211x002A/B
96
94
92
90
88
86
84
82
80
-50
-25
0
25
50
75
100
VIN=3.3V
96
Maximum Duty Cycle(%)
Maximum Duty Cycle(%)
R1211x002C/D
VIN=3.3V
94
92
90
88
86
84
82
80
-50
-25
0
25
50
75
100
Temperature Topt(°C)
Temperature Topt(°C)
11) EXT "H" On Resistance vs. Temperature
R1211x002x
VIN=3.3V
EXT "H" ON Resistance(Ω)
8
7
6
5
4
3
2
-50
-25
0
25
50
75
100
Temperature Topt(°C)
12) EXT "L" On Resistance vs. Temperature
R1211x002x
VIN=3.3V
EXT "L" ON Resistance(Ω)
5
4
3
2
1
-50
-25
0
25
50
75
100
Temperature Topt(°C)
25
R1211x
13) Soft-start Time vs. Temperature
R1211x002A/B
R1211x002C/D
VIN=3.3V
14
12
10
8
6
-50
-25
0
25
50
75
100
Temperature Topt(°C)
UVLO Detector Threshold(mV)
R1211x002x
VIN=3.3V
2250
2200
2150
2100
-50
-25
0
25
50
75
100
Temperature Topt(°C)
15) AMP "H" Output Current vs. Temperature
R1211x002A/C
VIN=3.3V
AMP "H" Output Current(µA)
1600
1400
1200
1000
800
600
400
-50
-25
0
25
50
Temperature Topt(°C)
26
14
12
10
8
6
-50
-25
0
25
50
Temperature Topt(°C)
14) UVLO Detector Threshold vs. Temperature
2300
VIN=3.3V
16
Soft-start Time(ms)
Soft-start Time(ms)
16
75
100
75
100
R1211x
16) AMP "L" Output Current vs. Temperature
R1211x002A
R1211x002C
VIN=3.3V
70
60
50
40
30
20
-50
-25
0
25
50
75
VIN=3.3V
80
AMP "L" Output Current(µA)
AMP "L" Output Current(µA)
80
70
60
50
40
30
20
-50
100
Temperature Topt(°C)
-25
0
25
50
75
100
Temperature Topt(°C)
17) DELAY Pin Charge Current vs. Temperature
R1211x002C/D
VIN=3.3V
7
DELAY Pin Charge Current(µA)
DELAY Pin Charge Current(µA)
R1211x002A/B
6
5
4
3
2
-50
-25
0
25
50
75
100
Temperature Topt(°C)
VIN=3.3V
7
6
5
4
3
2
-50
-25
0
25
50
75
100
Temperature Topt(°C)
18) DELAY Pin Detector Threshold vs. Temperature
DELAY Pin Detector Threshold(mV)
R1211x002x
VIN=3.3V
1040
1020
1000
980
960
-50
-25
0
25
50
75
100
Temperature Topt(°C)
27
R1211x
19) DELAY Pin Discharge Current vs. Temperature
DELAY Pin Discharge Current(µA)
R1211x002x
VIN=2.5V
10
8
6
4
2
0
-50
-25
0
25
50
75
100
Temperature Topt(°C)
20) CE "L" Input Voltage vs. Temperature
R1211x002B/D
VIN=2.5V
CE "L" Input Voltage(mV)
1200
1100
1000
900
800
700
600
-50
-25
0
25
50
75
100
Temperature Topt(°C)
21) CE "H" Input Voltage vs. Temperature
R1211x002B/D
VIN=6.0V
CE "H" Input Voltage(mV)
1200
1100
1000
900
800
700
600
-50
-25
0
25
50
Temperature Topt(°C)
28
75
100
R1211x
22) Standby Current vs. Temperature
R1211x002B/D
VIN=6.0V
Standby Current(µA)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-50
-25
0
25
50
75
100
Temperature Topt(°C)
23) Load Transient Response
R1211x002A
L=10µH
VIN=3.3V, C3=22µF
VOUT=5V, IOUT=1-100mA
VOUT
5.0
200
100
Output Current IOUT(mA)
Output Voltage VOUT(V)
5.6
IOUT
0
4.4
Time (5ms/div)
R1211x002A
29
R1211x
R1211x002A
L=10µH
VIN=3.3V, C3=22µF
VOUT=15V, IOUT=1-50mA
300
200
VOUT
15.0
100
Output Current IOUT(mA)
Output Voltage VOUT(V)
16.8
IOUT
0
13.2
Time (5ms/div)
R1211x002B
L=10µH
VIN=3.3V, C3=22µF
VOUT=5V, IOUT=1-100mA
300
200
VOUT
5.0
100
Output Current IOUT(mA)
Output Voltage VOUT(V)
5.6
IOUT
4.4
0
Time (5ms/div)
R1211x002B
L=10µH
VIN=3.3V, C3=22µF
VOUT=10V, IOUT=1-100mA
300
200
VOUT
10.0
100
IOUT
8.8
0
Time (5ms/div)
30
Output Current IOUT(mA)
Output Voltage VOUT(V)
11.2
R1211x
R1211x002B
L=10µH
VIN=3.3V, C3=22µF
VOUT=15V, IOUT=1-50mA
300
200
VOUT
15.0
100
Output Current IOUT(mA)
Output Voltage VOUT(V)
16.8
IOUT
13.2
0
Time (5ms/div)
R1211x002C
L=22µH
VIN=3.3V, C3=22µF
VOUT=5V, IOUT=1-100mA
VOUT
5.0
200
100
Output Current IOUT(mA)
Output Voltage VOUT(V)
5.6
IOUT
4.4
0
Time (5ms/div)
R1211x002C
L=22µH
VIN=3.3V, C3=22µF
VOUT=10V, IOUT=1-100mA
VOUT
10.0
200
100
Output Current IOUT(mA)
Output Voltage VOUT(V)
11.2
IOUT
0
8.8
Time (5ms/div)
31
R1211x
R1211x002C
L=22µH
VIN=3.3V, C3=22µF
VOUT=15V, IOUT=1-50mA
Output Voltage VOUT(V)
200
VOUT
15.0
100
Output Current IOUT(mA)
300
16.8
IOUT
13.2
0
Time (5ms/div)
R1211x002D
L=22µH
VIN=3.3V, C3=22µF
VOUT=5V, IOUT=1-100mA
VOUT
5.0
200
100
Output Current IOUT(mA)
Output Voltage VOUT(V)
5.6
IOUT
0
4.4
Time (5ms/div)
R1211x002D
L=22µH
VIN=3.3V, C3=22µF
VOUT=10V, IOUT=1-100mA
VOUT
10.0
200
100
IOUT
8.8
0
Time (5ms/div)
32
Output Current IOUT(mA)
Output Voltage VOUT(V)
11.2
R1211x
R1211x002D
L=22µH
VIN=3.3V, C3=22µF
VOUT=15V, IOUT=1-50mA
Output Voltage VOUT(V)
200
VOUT
15.0
100
Output Current IOUT(mA)
300
16.8
IOUT
13.2
0
Time (5ms/div)
24) Power-on Response
R1211x002A
16
14
14
(c)VOUT=15V
12
10
(b)VOUT=10V
8
(a)VOUT=5V
6
4
2
L=10µH
VIN=3.3V, IOUT=10mA
16
Output Voltage(V)
Output Voltage(V)
R1211x002B
L=10µH
VIN=3.3V, IOUT=10mA
(c)VOUT=15V
12
10
(b)VOUT=10V
8
(a)VOUT=5V
6
4
2
VIN
0
VIN
0
0
5
10
15
20
25
0
5
Time (5ms/div)
R1211x002C
15
20
25
R1211x002D
L=22µH
VIN=3.3V, IOUT=10mA
16
10
Time (5ms/div)
L=22µH
VIN=3.3V, IOUT=10mA
16
(c)VOUT=15V
14
12
(b)VOUT=10V
10
8
6
(a)VOUT=5V
4
VIN
2
Output Voltage(V)
Output Voltage(V)
14
(c)VOUT=15V
12
10
(b)VOUT=10V
8
6
(a)VOUT=5V
4
2
0
VIN
0
0
5
10
15
Time (5ms/div)
20
25
0
5
10
15
20
25
Time (5ms/div)
33
R1211x
25) Turn-on speed with CE pin
R1211x002B
16
14
14
(c)VOUT=15V
12
10
(b)VOUT=10V
8
(a)VOUT=5V
6
4
2
(c)VOUT=15V
12
(b)VOUT=10V
10
8
6
(a)VOUT=5V
4
CE
2
CE
0
0
0
5
10
15
Time (5ms/div)
34
L=22µH
VIN=3.3V, IOUT=10mA
16
Output Voltage(V)
Output Voltage(V)
R1211x002D
L=10µH
VIN=3.3V, IOUT=10mA
20
25
0
5
10
15
Time (5ms/div)
20
25
PACKAGE INFORMATION
•
PE-SOT-23-6W-0512
SOT-23-6W
Unit: mm
PACKAGE DIMENSIONS
2.9±0.2
1.1
1.9±0.2
(0.95)
(0.95)
6
5
0.8±0.1
2.8±0.3
4
1.8±0.2
0 to 0.1
2
+0.1
0.4
−0.2
0.15
+0.1
−0.075
0.2 MIN.
1
+0.2
−0.1
TAPING SPECIFICATION
+0.1
∅1.5 0
4.0±0.1
2.0±0.05
4
1
2
3
3.3
4.0±0.1
2.0MAX.
3.5±0.05
5
3.2
6
8.0±0.3
1.75±0.1
0.3±0.1
∅1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
13±0.2
11.4±1.0
9.0±0.3
21±0.8
0
180 −1.5
+1
60 0
2±0.5
PACKAGE INFORMATION
PE-SOT-23-6W-0512
POWER DISSIPATION (SOT-23-6W)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Power Dissipation
430mW
Thermal Resistance
θja=(125−25°C)/0.43W=233°C/W
On Board
500
40
430
400
300
200
40
Power Dissipation PD(mW)
600
100
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN (SOT-23-6W)
2.4
1.0
0.7 MAX.
0.95 0.95
1.9
(Unit: mm)
PACKAGE INFORMATION
•
PE-SON-6-0510
SON-6
Unit: mm
PACKAGE DIMENSIONS
3
0.85MAX.
0.13±0.05
0.1
1.34
Bottom View
(0.3)
1
2.6±0.2
3.0±0.15
4
(0.3)
1.6±0.2
6
Attention: Tab suspension leads in the
parts have VDD or GND level.(They are
connected to the reverse side of this IC.)
Refer to PIN DISCRIPTION.
Do not connect to other wires or land patterns.
0.2±0.1
0.5
4.0±0.1
3.2
3.5±0.05
2.0±0.05
1.9
4.0±0.1
1.7MAX.
∅1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
+1
60 0
2±0.5
21±0.8
0
180 −1.5
13±0.2
11.4±1.0
9.0±0.3
8.0±0.3
∅ 1.5+0.1
0
0.2±0.1
1.75±0.1
TAPING SPECIFICATION
PACKAGE INFORMATION
PE-SON-6-0510
POWER DISSIPATION (SON-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Free Air
Power Dissipation
500mW
250mW
Thermal Resistance
θja=(125−25°C)/0.5W=200°C/W
-
On Board
500
40
400
300
Free Air
250
200
40
Power Dissipation PD(mW)
600
100
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area (Unit : mm)
RECOMMENDED LAND PATTERN
1.05 0.75
0.25 0.5
(Unit: mm)
MARK INFORMATION
ME-R1211N-0310
R1211N SERIES MARK SPECIFICATION
• SOT-23-6W
1
•
2
3
1
,
2
: Product Code (refer to Part Number vs. Product Code)
3
,
4
: Lot Number
4
Part Number vs. Product Code
Part Number
Product Code
1
2
R1211N002A
L
0
R1211N002B
L
1
R1211N002C
L
2
R1211N002D
L
3
MARK INFORMATION
ME-R1211D-0310
R1211D SERIES MARK SPECIFICATION
• SON-6
•
1
2
3
4
1
,
2
: Product Code (refer to Part Number vs. Product Code)
3
,
4
: Lot Number
Part Number vs. Product Code
Part Number
Product Code
1
Part Number
2
Product Code
1
2
R1211D002A
L
0
R1211D102A
L
6
R1211D002B
L
1
R1211D101C
L
7
R1211D002C
L
2
R1211D102C
L
8
R1211D002D
L
3
R1211D103A
L
9
R1211D100A
L
4
R1211D103C
L
A
R1211D101A
L
5
R1211D104A
L
B