SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 D D D D D D D 2.7-V and 5-V Performance −405C to 1255C Operation Low-Power Shutdown Mode (LMV324S) No Crossover Distortion Low Supply Current − LMV321 . . . 130 µA Typ − LMV358 . . . 210 µA Typ − LMV324 . . . 410 µA Typ − LMV324S . . . 410 µA Typ Rail-to-Rail Output Swing ESD Protection Exceeds JESD 22 − 2000-V Human-Body Model (A114-A) − 1000-V Charged-Device Model (C101) description/ordering information The LMV321, LMV358, and LMV324/LMV324S are single, dual, and quad low-voltage (2.7 V to 5.5 V), operational amplifiers with rail-to-rail output swing. The LMV324S, which is a variation of the standard LMV324, includes a power-saving shutdown feature that reduces supply current to a maximum of 5 µA per channel when the amplifiers are not needed. Channels 1 and 2 together are put in shutdown, as are channels 3 and 4. While in shutdown, the outputs actively are pulled low. The LMV321, LMV358, LMV324, and LMV324S are the most cost-effective solutions for applications where low-voltage operation, space saving, and low cost are needed. These amplifiers were designed specifically for low-voltage (2.7 V to 5 V) operation, with performance specifications meeting or exceeding the LM358 and LM324 devices that operate from 5 V to 30 V. Additional features of the LMV3xx devices are a common-mode input voltage range that includes ground, 1-MHz unity-gain bandwidth, and 1-V/µs slew rate. LMV324 . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW) 1OUT 1IN− 1IN+ VCC+ 2IN+ 2IN− 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN− 4IN+ GND 3IN+ 3IN− 3OUT LMV324S . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW) 1OUT 1IN− 1IN+ VCC 2IN+ 2IN− 2OUT 1/2 SHDN 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN− 4IN+ GND 3IN+ 3IN− 3OUT 3/4 SHDN LMV358 . . . D (SOIC), DDU (VSSOP), DGK (MSOP), OR PW (TSSOP PACKAGE (TOP VIEW) 1OUT 1IN− 1IN+ GND 1 8 2 7 3 6 4 5 VCC+ 2OUT 2IN− 2IN+ LMV321 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE (TOP VIEW) 1IN+ 1 GND 2 IN− 3 5 VCC+ 4 OUT The LMV321 is available in the ultra-small DCK (SC-70) package, which is approximately one-half the size of the DBV (SOT-23) package. This package saves space on printed circuit boards and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity. Copyright 2004, Texas Instruments Incorporated !"#$%! & '("")% $& ! *(+,'$%! -$%). "!-('%& '!!"# %! &*)''$%!& *)" %/) %)"#& ! )0$& &%"(#)%& &%$-$"- 1$""$%2. "!-('%! *"!')&&3 -!)& !% )')&&$",2 ',(-) %)&%3 ! $,, *$"$#)%)"&. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA SC-70 (DCK) Single SOT23-5 (DBV) MSOP/VSSOP (DGK) Dual SOIC (D) −40°C −40 C to 85 85°C C TSSOP (PW) VSSOP (DDU) SOIC (D) Quad TSSOP (PW) Dual SOIC (D) TSSOP (PW) −40°C 125°C −40 C to 125 C Reel of 3000 LMV321IDCKR Reel of 250 LMV321IDCKT Reel of 3000 LMV321IDBVR Reel of 250 LMV321IDBVT Reel of 2500 LMV358IDGKR R5_ Reel of 250 LMV358IDGKT PREVIEW Tube of 75 LMV358ID Reel of 2500 LMV358IDR Tube of 150 LMV358IPW Reel of 2000 LMV358IPWR Reel of 3000 LMV358IDDUR Tube of 50 LMV324ID Reel of 2500 LMV324IDR Tube of 40 LMV324SID Reel of 2500 LMV324SIDR Reel of 2000 MSOP/VSSOP (DGK) VSSOP (DDU) SOIC (D) Quad TSSOP (PW) TOP-SIDE MARKING‡ R3_ RC1_ MV358I MV358I RA56 LMV324I LMV324SI LMV324IPWR MV324I LMV324SIPWR MV324SI Reel of 2500 LMV358QDGKR Reel of 250 LMV358QDGKT Tube of 75 LMV358QD Reel of 2500 LMV358QDR Tube of 150 LMV358QPW Reel of 2000 LMV358QPWR Reel of 3000 LMV358QDDUR Tube of 50 LMV324QD Reel of 2500 LMV324QDR Tube of 90 LMV324QPW Reel of 2000 LMV324QPWR RH_ MV358Q MV358Q RAH_ LMV324Q MV324Q † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DCK/DGK: The actual top-side marking has one additional character that designates the assembly/test site. symbol (each amplifier) − IN− OUT 2 + IN+ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 LMV324 simplified schematic VCC VBIAS1 + VCC − VBIAS2 + Output − VCC VCC VBIAS3 + IN− IN+ − VBIAS4 + − POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5.5 V Input voltage, VI (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 5.5 V Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C, VCC ≤ 5.5 V (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited Package thermal impedance, qJA (see Notes 4 and 5): D (8-pin) package . . . . . . . . . . . . . . . . . . . . . . 97°C/W D (14-pin) package . . . . . . . . . . . . . . . . . . . . 86°C/W D (16-pin) package . . . . . . . . . . . . . . . . . . . . 73°C/W DBV (5-pin) package . . . . . . . . . . . . . . . . . . 206°C/W DCK (5-pin) package . . . . . . . . . . . . . . . . . . 252°C/W DDU (8-pin) package . . . . . . . . . . . . . . . . . TBD°C/W DGK (8-pin) package . . . . . . . . . . . . . . . . . . 172°C/W PW (8-pin) package . . . . . . . . . . . . . . . . . . . 149°C/W PW (14-pin) package . . . . . . . . . . . . . . . . . . 113°C/W PW (16-pin) package . . . . . . . . . . . . . . . . . . 108°C/W Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND. 2. Differential voltages are at IN+ with respect to IN−. 3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction. 4. Maximum power dissipation is a function of TJ(max), qJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/qJA. Selecting the maximum of 150°C can affect reliability. 5. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 6) VCC Supply voltage (single-supply operation) VIH Amplifier turnon voltage level (LMV324S)‡ VCC = 2.7 V VCC = 5 V VIL Amplifier turnoff voltage level (LMV324S) VCC = 2.7 V VCC = 5 V TA Operating free-air temperature MIN MAX 2.7 5.5 UNIT V 1.7 V 3.5 0.7 1.5 I-Temp −40 85 Q-Temp −40 125 V °C ‡ VIH should not be allowed to exceed VCC. NOTE 6: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 electrical characteristics at TA = 25°C and VCC+ = 2.7 V (unless otherwise noted) PARAMETER VIO Input offset voltage aV Average temperature coefficient of input offset voltage IO TEST CONDITIONS MIN TYP MAX 1.7 7 UNIT mV mV/°C 5 IIB IIO Input bias current 11 250 nA Input offset current 5 50 nA CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio VCM = 0 to 1.7 V VCC = 2.7 V to 5 V, VICR Common-mode input voltage range CMRR w 50 dB Output swing 50 63 dB VO = 1 V 50 60 dB 0 to 1.7 −0.2 to 1.9 V High level VCC − 100 VCC − 10 60 180 80 170 LMV358I (both amplifiers) 140 340 LMV324I/LMV324SI (all four amplifiers) 260 680 RL = 10 kΩ to 1.35 V Low level LMV321I ICC Supply current CL = 200 pF mV mA B1 Fm Unity-gain bandwidth 1 MHz Phase margin 60 deg Gm Gain margin 10 dB Vn In Equivalent input noise voltage f = 1 kHz 46 nV/√Hz Equivalent input noise current f = 1 kHz 0.17 pA/√Hz shutdown characteristics (LMV324S) at TA = 25°C and VCC+ = 2.7 V (unless otherwise noted) PARAMETER ICC(SHDN) t(on) t(off) TEST CONDITIONS Supply current in shutdown mode (per channel) SHDN ≤ 0.6 V Amplifier turnon time AV = 1, RL = Open (measured at 50% point) AV = 1, RL = Open (measured at 50% point) Amplifier turnoff time POST OFFICE BOX 655303 MIN TYP MAX 5 • DALLAS, TEXAS 75265 UNIT mA 2 ms 40 ns 5 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 electrical characteristics at specified free-air temperature range, VCC+ = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage aV Average temperature coefficient of input offset voltage IO IIB Input bias current IIO Input offset current CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio VICR Common-mode input voltage range TEST CONDITIONS TA† 25°C MIN 9 25°C 5 25°C 15 5 UNIT mV mV/°C 250 500 Full range nA 50 150 nA VCM = 0 to 4 V VCC= 2.7 V to 5 V, VO = 1 V, VCM = 1 V 25°C 50 65 dB 25°C 50 60 dB CMMR w 50 dB 25°C 0 to 4 −0.2 to 4.2 V 25°C VCC − 300 VCC − 400 VCC − 40 RL = 2 kΩ to 2.5 V Full range 25°C Low level Output swing High level Large-signal differential voltage gain RL = 2 kΩ IOS Output short-circuit current Sourcing, VO = 0 V Sinking, VO = 5 V Full range VCC − 100 VCC − 200 Full range 10 CL = 200 pF 100 V/mV 5 60 10 160 130 Full range LMV358I (both amplifiers) mA 250 350 210 Full range 25°C 180 280 15 25°C LMV324I/LMV324SI (all four amplifiers) 65 25°C 25°C LMV321I mV VCC − 10 Full range 25°C 300 400 25°C Low level AVD 120 Full range 25°C RL = 10 kΩ to 2.5 V 440 615 410 Full range A mA 830 1160 B1 fm Unity-gain bandwidth 25°C 1 MHz Phase margin 25°C 60 deg Gm Gain margin 25°C 10 dB Vn In Equivalent input noise voltage f = 1 kHz 25°C 39 nV/√Hz Equivalent input noise current f = 1 kHz 25°C 0.21 pA/√Hz 25°C 1 SR Slew rate † Full range: −40°C to 85°C for I-temp, −40°C to 125°C for Q-temp. 6 7 Full range High level Supply current MAX 1.7 Full range 25°C ICC TYP POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V/ms SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 shutdown characteristics (LMV324S) at TA = 25°C and VCC+ = 5 V (unless otherwise noted) PARAMETER ICC(SHDN) t(on) t(off) TEST CONDITIONS TA Supply current in shutdown mode (per channel) SHDN ≤ 0.6 V Amplifier turnon time AV = 1, RL = Open (measured at 50% point) AV = 1, RL = Open (measured at 50% point) Amplifier turnoff time POST OFFICE BOX 655303 MIN TYP −40°C to 85°C • DALLAS, TEXAS 75265 MAX 5 UNIT mA 2 ms 40 ns 7 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS LMV321 FREQUENCY RESPONSE vs RESISTIVE LOAD LMV321 FREQUENCY RESPONSE vs RESISTIVE LOAD Vs = 2.7 V RL = 100 kΩ, 2 kΩ, 600 Ω 70 Phase 60 Gain − dB 40 70 90 60 75 60 2 kΩ 100 kΩ 30 105 45 Gain 20 30 600 Ω 10 100 kΩ −10 1k 10 k 100 k Frequency − Hz 600 Ω Phase 50 75 2 kΩ 60 40 100 kΩ 30 45 Gain 20 10 15 15 2 kΩ 1M 0 0 −15 10 M −10 1k 10 k LMV321 FREQUENCY RESPONSE vs CAPACITIVE LOAD LMV321 FREQUENCY RESPONSE vs CAPACITIVE LOAD 70 100 60 100 Phase 0 pF 50 80 60 60 50 80 0 pF 60 100 pF Vs = 5.0 V RL = 600 Ω CL = 0 pF 100 pF 500 pF 1000 pF −30 10 k −20 100 pF −40 500 pF 0 pF −60 1000 pF −80 100 k 1M Frequency − Hz −100 10 M Gain − dB Gain − dB Gain 40 40 30 0 10 −20 Vs = 5.0 V 0 pF RL = 100 kΩ 100 pF −10 CL = 0 pF 100 pF 500 pF 500 pF −20 1000 pF 1000 pF −30 10 k 100 k 1M Frequency − Hz 0 Figure 4 POST OFFICE BOX 655303 20 20 Figure 3 8 500 pF Gain • DALLAS, TEXAS 75265 −40 Phase Margin − Deg 0 20 −20 20 Phase Margin − Deg 500 pF 1000 pF 100 pF 1000 pF 40 40 −10 −15 10 M 100 k 1M Frequency − Hz Phase 0 0 600 Ω Figure 2 70 10 30 100 kΩ Figure 1 30 105 90 2 kΩ 0 120 Vs = 5.0 V RL = 100 kΩ, 2 kΩ, 600 Ω Phase Margin − Deg 600 Ω 80 Phase Margin − Deg 50 120 Gain − dB 80 −60 −80 −100 10 M SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS STABILITY vs CAPACITIVE LOAD LMV321 FREQUENCY RESPONSE vs TEMPERATURE 120 80 Vs = 5.0 V RL = 2 kΩ 60 75 Gain − dB 25°C 60 40 −40°C 45 Gain 20 30 85°C 25°C 0 −10 1k 10 k 100 VCC = ±2.5 V AV = +1 RL = 2 kΩ VO = 100 mVPP 10 −2 −15 10 M 100 k 1M Frequency − Hz 0 STABILITY vs CAPACITIVE LOAD STABILITY vs CAPACITIVE LOAD 2.5 V _ 1000 VO + RL 2.5 V CL Capacitive Load − nF Capacitive Load − pF −0.5 Figure 6 10000 LMV324S (25% Overshoot) 100 LMV3xx (25% Overshoot) −1.5 −1 −1 −0.5 0 Output Voltage − V VCC = ±2.5 V RL = 2 kΩ AV = 10 VO = 100 mVPP 1 1.5 1 LMV324S (25% Overshoot) 1000 LMV3xx (25% Overshoot) 100 134 kΩ 1.21 MΩ +2.5 V VCC = ±2.5 V AV = +1 RL = 1 MΩ VO = 100 mVPP 0.5 0.5 Output Voltage − V 10000 10 −2.0 −1.5 Figure 5 VI CL LMV3xx (25% Overshoot) 0 −40°C VO RL −2.5 V 1000 15 10 + VI Phase Margin − Deg Phase 30 _ 90 85°C 50 2.5 V LMV324S (25% Overshoot) 105 Capacitive Load − pF 70 10000 _ VI + RL VO CL −2.5 V 1.5 10 −2.0 −1.5 −1 −0.5 0 Output Voltage − V 0.5 1 1.5 Figure 8 Figure 7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS SLEW RATE vs SUPPLY VOLTAGE STABILITY vs CAPACITIVE LOAD 10000 1.500 1.400 LMV3xx (25% Overshoot) 1000 LMV324S (25% Overshoot) 100 134 kΩ 1.21 MΩ _ −1.5 NSLEW 1.100 LMV3xx 1.000 PSLEW 0.900 + VO CL RL NSLEW 0.700 LMV324S 0.600 −2.5 V 10 −2.0 Gain 1.200 0.800 +2.5 V VI RL = 100 kΩ 1.300 Slew Rate − V/µs Capacitive Load − nF VCC = ±2.5 V RL = 1 MΩ AV = 10 VO = 100 mVPP PSLEW −1 −0.5 0 0.5 1 0.500 2.5 1.5 3.0 3.5 4.5 5.0 V CC − Supply Voltage − V Output Voltage − V Figure 9 Figure 10 SUPPLY CURRENT vs SUPPLY VOLTAGE − QUAD AMPLIFIER INPUT CURRENT vs TEMPERATURE 700 −10 VCC = 5 V VI = VCC/2 LMV3xx 600 LMV324S −20 TA = 85°C 500 Input Current − nA Supply Current − µA 4.0 TA = 25°C 400 300 TA = −40°C 200 −30 LMV3xx −40 −50 100 LMV324S 0 0 1 2 3 4 5 6 −60 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80 TA − °C VCC − Supply Voltage − V Figure 11 10 Figure 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS SOURCE CURRENT vs OUTPUT VOLTAGE SOURCE CURRENT vs OUTPUT VOLTAGE 100 100 VCC = 2.7 V VCC = 5 V 10 Sourcing Current − mA Sourcing Current − mA 10 LMV3xx 1 LMV324S 0.1 LMV3xx 1 LMV324S 0.1 0.01 0.01 0.001 0.001 0.01 0.1 1 10 0.001 0.001 Output Voltage Referenced to VCC+ − V 0.01 0.1 Figure 13 SINKING CURRENT vs OUTPUT VOLTAGE 100 100 VCC = 2.7 V VCC = 5 V 10 10 LMV324S Sinking Current − mA Sinking Current − mA 10 Figure 14 SINKING CURRENT vs OUTPUT VOLTAGE 1 LMV3xx 0.1 0.01 0.001 0.001 1 Output Voltage Referenced to VCC+ − V LMV324S 1 LMV324 0.1 0.01 0.01 0.1 1 10 Output Voltage Referenced to GND − V 0.001 0.001 0.01 0.1 1 10 Output Voltage Referenced to GND − V Figure 16 Figure 15 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS SHORT-CIRCUIT CURRENT vs TEMPERATURE SHORT-CIRCUIT CURRENT vs TEMPERATURE 120 300 LMV324S VCC = 5 V 270 Sinking Current − mA LMV324S VCC = 5 V 210 LMV3xx VCC = 5 V 180 150 120 LMV3xx VCC = 2.7 V 90 60 LMV324S VCC = 2.7 V Sourcing Current − mA 100 240 80 LMV3xx VCC = 5 V 60 LMV3xx VCC = 2.7 V 40 LMV324S VCC = 2.7 V 20 30 0 −40 −30 −20 −10 0 0 10 20 30 40 50 60 70 80 90 TA − °C 10 20 30 40 50 60 70 80 90 TA − °C Figure 17 Figure 18 −kSVR vs FREQUENCY +kSVR vs FREQUENCY 90 80 LMV324S VCC = −5 V RL = 10 kΩ 70 LMV324S VCC = 5 V RL = 10 kΩ 80 70 60 LMV3xx LMV3xx 60 50 +k SVR − dB −k SVR − dB −40 −30 −20−10 0 40 30 50 40 30 20 20 10 10 0 0 .1 1 10 100 1,000 .1 10 Frequency − Hz Frequency − kHz Figure 19 12 1 Figure 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 1,000 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS −kSVR vs FREQUENCY +kSVR vs FREQUENCY 80 80 VCC = −2.7 V RL = 10 kΩ LMV324S 70 70 LMV3xx +k SVR − dB 50 40 30 LMV3xx 50 40 30 20 20 10 10 0 0 .1 1 10 100 .1 1,000 1 10 Frequency − kHz Figure 21 Figure 22 6 RL = 10 kΩ THD > 5% AV = 3 RL = 10 kΩ 60 Peak Output Voltage − V OPP 5 LMV3xx LMV324S Negative Swing 1,000 OUTPUT VOLTAGE vs FREQUENCY 70 50 100 Frequency − kHz OUTPUT VOLTAGE SWING FROM RAILS vs SUPPLY VOLTAGE Output Voltage Swing vs Supply Voltage − mV VCC = 2.7 V RL = 10 kΩ 60 60 −k SVR − dB LMV324S 40 30 20 Positive Swing LMV3xx VCC = 5 V 4 LMV324S VCC = 5 V 3 LMV3xx VCC = 2.7 V 2 LMV324S VCC = 2.7 V 1 10 0 0 2.5 3.0 3.5 4.0 4.5 5.0 1 10 100 1000 10000 Frequency − kHz VCC − Supply Voltage − V Figure 24 Figure 23 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS OPEN-LOOP OUTPUT IMPEDANCE vs FREQUENCY CROSSTALK REJECTION vs FREQUENCY 150 110 LMV3xx VCC = 5 V Impedance − Ω 90 80 70 LMV324S VCC = 2.7 V 60 50 LMV324S VCC = 5 V 40 VCC = 5 V RL = 5 kΩ AV = 1 VO = 3 VPP 140 Crosstalk Rejection − dB 100 LMV3xx VCC = 2.7 V 130 120 110 100 30 20 1 1000 2000 3000 4000 90 .1 Frequency − kHz 10 Frequency − kHz Figure 25 14 1 Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS NONINVERTING LARGE-SIGNAL PULSE RESPONSE NONINVERTING LARGE-SIGNAL PULSE RESPONSE Input LMV3xx LMV3xx 1 V/Div 1 V/Div Input LMV324S VCC = ±2.5 V RL = 2 kΩ T = 25°C LMV324S VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div 1 µs/Div Figure 27 Figure 28 NONINVERTING LARGE-SIGNAL PULSE RESPONSE Input 1 V/Div LMV3xx LMV324S VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div Figure 29 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS NONINVERTING SMALL-SIGNAL PULSE RESPONSE NONINVERTING SMALL-SIGNAL PULSE RESPONSE Input Input LMV3xx 50 mV/Div 50 mV/Div LMV3xx LMV324S LMV324S VCC = ±2.5 V RL = 2 kΩ TA = 25°C VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div 1 µs/Div Figure 30 Figure 31 NONINVERTING SMALL-SIGNAL PULSE RESPONSE 50 mV/Div Input LMV3xx LMV324S VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div Figure 32 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS INVERTING LARGE-SIGNAL PULSE RESPONSE INVERTING LARGE-SIGNAL PULSE RESPONSE Input Input LMV3xx 1 V/Div 1 V/Div LMV3xx LMV324S LMV324S VCC = ±2.5 V RL = 2 kΩ TA = 25°C VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div 1 µs/Div Figure 33 Figure 34 INVERTING LARGE-SIGNAL PULSE RESPONSE Input 1 V/Div LMV3xx LMV324S VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div Figure 35 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE INVERTING SMALL-SIGNAL PULSE RESPONSE Input Input LMV3xx 50 mV/Div 50 mV/Div LMV3xx LMV324S LMV324S VCC = ±2.5 V RL = 2 kΩ TA = 25°C VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div 1 µs/Div Figure 36 Figure 37 INVERTING SMALL-SIGNAL PULSE RESPONSE 50 mV/Div Input LMV3xx LMV324S VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div Figure 38 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS INPUT CURRENT NOISE vs FREQUENCY INPUT CURRENT NOISE vs FREQUENCY 0.80 0.50 0.60 0.40 0.20 VCC = 5 V 0.45 Input Current Noise − pA/ Hz Input Current Noise − pA/ Hz VCC = 2.7 V 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.00 10 Hz 100 Hz 1 KHz 10 KHz 10 Hz 100 Hz 1 kHz 10 kHz Frequency Frequency Figure 39 Figure 40 INPUT VOLTAGE NOISE vs FREQUENCY 200 Input Voltage Noise − nV/ Hz 180 160 140 120 100 80 VCC = 2.7 V 60 40 VCC = 5 V 20 10 Hz 100 Hz 1 kHz 10 kHz Frequency Figure 41 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004 TYPICAL CHARACTERISTICS THD + N vs FREQUENCY THD + N vs FREQUENCY 10.000 1.000 10.000 VCC = 2.7 V RL = 10 kΩ AV = 1 VO = 1 VPP VCC = 2.7 V RL = 10 kΩ AV = 10 VO = 1 VPP 1.000 THD − % THD − % LMV324S LMV3xx 0.100 0.100 LMV3xx 0.010 0.010 LMV324S 0.001 0.001 10 100 1000 10000 10 100000 1.000 10000 Frequency − Hz Frequency − Hz Figure 42 Figure 43 THD + N vs FREQUENCY 10.000 1000 100 100000 THD + N vs FREQUENCY 10.000 VCC = 5 V RL = 10 kΩ AV = 1 VO = 1 VPP VCC = 5 V RL = 10 kΩ AV = 10 VO = 2.5 VPP 1.000 0.100 THD − % THD − % LMV324S LMV324S 0.100 0.010 0.010 LMV3xx LMV3xx 0.001 0.001 10 20 100 1000 10000 100000 10 100 1000 Frequency − Hz Frequency − Hz Figure 44 Figure 45 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10000 100000 PACKAGE OPTION ADDENDUM www.ti.com 4-Mar-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty LMV321IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV321IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV321IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV321IDCKT ACTIVE SC70 DCK 5 250 Pb-Free (RoHS) CU NIPDAU Level-1-260C-UNLIM LMV324ID ACTIVE SOIC D 14 50 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV324IDR ACTIVE SOIC D 14 2500 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV324IPWR ACTIVE TSSOP PW 14 2000 Pb-Free (RoHS) CU NIPDAU Level-1-250C-UNLIM LMV324QD ACTIVE SOIC D 14 50 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV324QDR ACTIVE SOIC D 14 2500 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV324QPW ACTIVE TSSOP PW 14 90 Pb-Free (RoHS) CU NIPDAU Level-1-250C-UNLIM LMV324QPWR ACTIVE TSSOP PW 14 2000 Pb-Free (RoHS) CU NIPDAU Level-1-250C-UNLIM LMV324SID ACTIVE SOIC D 16 40 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV324SIDR ACTIVE SOIC D 16 2500 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV324SIPWR ACTIVE TSSOP PW 16 2000 Pb-Free (RoHS) CU NIPDAU Level-1-250C-UNLIM LMV358ID ACTIVE SOIC D 8 75 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV358IDDUR ACTIVE VSSOP DDU 8 3000 Pb-Free (RoHS) CU NIPDAU Level-1-260C-UNLIM LMV358IDGKR ACTIVE MSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1YEAR LMV358IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV358IPW ACTIVE TSSOP PW 8 150 Pb-Free (RoHS) CU NIPDAU Level-1-250C-UNLIM LMV358IPWR ACTIVE TSSOP PW 8 2000 Pb-Free (RoHS) CU NIPDAU Level-1-250C-UNLIM LMV358QD ACTIVE SOIC D 8 75 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV358QDDUR ACTIVE VSSOP DDU 8 3000 Pb-Free (RoHS) CU NIPDAU Level-1-260C-UNLIM LMV358QDGKR ACTIVE MSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1YEAR LMV358QDR ACTIVE SOIC D 8 2500 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1 YEAR/ Level-1-235C-UNLIM LMV358QPW ACTIVE TSSOP PW 8 150 Pb-Free (RoHS) CU NIPDAU Level-1-250C-UNLIM Addendum-Page 1 Lead/Ball Finish MSL Peak Temp (3) PACKAGE OPTION ADDENDUM www.ti.com 4-Mar-2005 Orderable Device Status (1) Package Type Package Drawing LMV358QPWR ACTIVE TSSOP PW Pins Package Eco Plan (2) Qty 8 2000 Pb-Free (RoHS) Lead/Ball Finish CU NIPDAU MSL Peak Temp (3) Level-1-250C-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not yet available Lead (Pb-Free). Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MPDS025C – FEBRUARY 1997 – REVISED FEBRUARY 2002 DCK (R-PDSO-G5) PLASTIC SMALL-OUTLINE PACKAGE 0,30 0,15 0,65 5 0,10 M 4 1,40 1,10 1 0,13 NOM 2,40 1,80 3 Gage Plane 2,15 1,85 0,15 0°–8° 0,46 0,26 Seating Plane 1,10 0,80 0,10 0,00 0,10 4093553-2/D 01/02 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion. Falls within JEDEC MO-203 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated