M65KA512AB 512Mbit (4 Banks x 8M x 16), 133 MHz Clock Rate, Bare Die, 1.8 V Supply, Low Power SDRAM Features ■ 512 Mbit Synchronous Dynamic Ram – Organized as 4 Banks of 8 Mwords, each 16 bits wide ■ Supply voltage – VDD = 1.7 to 1.9 V (1.8 V typical in accordance with JEDEC standard) – VDDQ = 1.7 to 1.9 V for Input/Output ■ Synchronous Burst Read and Write – Fixed Burst Lengths: 1, 2, 4, 8 words or Full Page – Burst Types: Sequential and Interleaved. – Clock Frequency: 133 MHz (7.5 ns speed class) – Clock Valid to Output Delay (CAS Latency): 3 at 133 MHz – Burst Control by Burst Terminate and Precharge Command ■ Automatic and controlled Precharge ■ Byte control by LDQM and UDQM ■ Low-power features: – Partial Array Self Refresh (PASR), – Automatic Temperature Compensated Self Refresh (TCSR) – Driver Strength (DS) – Deep Power-Down Mode ■ Auto Refresh and Self Refresh ■ LVCMOS Interface compatible with multiplexed addressing ■ Operating temperature range – − 30to 85 °C Wafer M65KA512AB is only available as part of a multiple memory product March 2007 Rev 3 1/55 www.st.com 1 Contents M65KA512AB Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 4 2/55 2.1 Address Inputs (A0-A12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Bank Select Address Inputs (BA0-BA1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Data Inputs/Outputs (DQ0-DQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 Column Address Strobe (CAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Row Address Strobe (RAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.7 Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.8 Clock Input (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.9 Clock Enable (KE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.10 Lower/Upper Data Input/Output Mask (LDQM, UDQM) . . . . . . . . . . . . . . 10 2.11 VDD Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.12 VDDQ Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.13 VSS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.14 VSSQ Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Burst Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Auto Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6 Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.7 Deep Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Mode Register Set command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Extended Mode Register Set command . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Bank (Row) Activate command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 Write command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 M65KA512AB 5 Contents 4.5 Read command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.6 Precharge command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.7 Auto Precharge command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.8 Burst Terminate command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.9 Data Mask command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.10 Clock Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.11 Auto Refresh command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.12 Self Refresh command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.13 Power-Down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.14 Deep Power-Down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 Mode Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 Burst Length bits (MR0 to MR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Burst Type bit (MR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4 CAS Latency bits (MR4 to MR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5 Extended Mode Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.5.1 Partial Array Self Refresh bits (EMR0-EMR2) . . . . . . . . . . . . . . . . . . . . 22 5.5.2 Driver Strength bit (EMR5-EMR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.5.3 Automatic Temperature Compensated Self Refresh bits (EMR3-EMR4) . 22 6 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 DC and ac parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3/55 List of tables M65KA512AB List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. 4/55 Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Extended mode Register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Operating and ac measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DC characteristics 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DC characteristics 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Self-Refresh current values in Normal Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 AC characteristics 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 AC characteristics 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 M65KA512AB List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Chip Enable Signal during Read, Write and Precharge ac waveforms. . . . . . . . . . . . . . . . 30 Read with Precharge ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Read with Auto Precharge ac waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Clock Suspend during Burst Read ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Random Column Read ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Random Row Read ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Column Interleaved Read ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Burst Column Read followed by Auto Precharge ac waveforms . . . . . . . . . . . . . . . . . . . . 37 Write ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Byte Write ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Mode Register Set ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Clock Suspend during Burst Write ac waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Random Column Write ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Random Row Write ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Column Interleaved Write ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Burst Column Write followed by Auto Precharge ac waveforms. . . . . . . . . . . . . . . . . . . . . 45 Precharge termination ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Power-On sequence ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Power-Down mode and Clock Masking ac waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Auto refresh ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Self refresh ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Deep Power-Down Entry ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Deep Power-Down Exit ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5/55 Description 1 M65KA512AB Description The M65KA512AB is a 512 Mbit Low Power Synchronous DRAM (SDRAM). The memory array is organized as 4 Banks of 8,388,608 words of 16 bits each. The LPSDRAM achieves low power consumption and high-speed data transfer using the pipeline architecture. The device architecture is illustrated in Figure 2: Functional block diagram. It uses Burst mode to read and write data. It is capable of one, two, four, eight-word and full-page, sequential and interleaved Burst. To minimize current consumption during self-refresh operations, the M65KA512AB includes three mechanisms configured via the Extended Mode Register: ● Automatic Temperature Compensated Self Refresh (ATCSR) used to adapt the refresh time according to the operating temperature (see Table 5: Extended mode Register definition) ● Partial Array Self Refresh (PASR) performs a limited refresh of part of the PSRAM memory array. This area can be configured to half bank, a quarter of bank, one bank, two banks or all banks. This mechanism allows to reduce the device Standby current by refreshing only the part of the memory array that contains essential data. ● The Deep Power-Down (DPD) mode completely halts the refresh operation and achieves minimum current consumption by cutting off the supply voltage from the whole memory array. The device is programmable through two registers, the Mode Register and the Extended Mode Register: 6/55 ● The Mode Register is used to select the CAS Latency, the Burst Type (sequential, interleaved) and the Burst Length (1-, 2-, 4-, 8-word width or full page) through programming the A6 to A4 bits, the A3 bit and the A2 to A0 bits, respectively (see Table 4). ● The Extended Mode Register is used to program the low-power features (PASR, ATCSR) and Driver Strength) to reduce the current consumption during the Self Refresh operations. For more details, refer to Table 5: Extended mode Register definition, and to Section 4.2: Extended Mode Register Set command. M65KA512AB Figure 1. Description Logic diagram VDD VDDQ 13 16 A0-A12 DQ0-DQ15 2 BA0-BA1 E RAS UDQM M65KA512AB LDQM CAS K KE W VSS Table 1. VSSQ AI12117 Signal names Name A0-A12 Description Direction Address Inputs Inputs BA0-BA1 Bank Select Inputs Inputs DQ0-DQ15 Data Inputs/Outputs Input/Outputs K Clock Input Input KE Clock Enable Input Input E Chip Enable Input Input W Write Enable Input Input RAS Row Address Strobe Input Input CAS Column Address Strobe Input Input UDQM Upper Data Input/Output Mask Input LDQM Lower Data Input/Output Mask Input VDD VDDQ VSS VSSQ Supply voltage Supply Input/Output Supply voltage Supply Ground - Input/Output Ground - 7/55 Description Figure 2. M65KA512AB Functional block diagram TCSR, PASR Extended Mode Register Self Refresh Logic & Timer Internal Row Counter K DQ0 ... I/O Buffer & Logic Column Decoders ... Column PreDecoders U/LDQM Memory Cell Array Sense AMP & I/O Gate Column Active 8 Mb x 16 Bank 0 ... W 8 Mb x 16 Bank 1 Row Decoders CAS Refresh 8 Mb x 16 Bank 2 Row Decoders RAS 8 Mb x 16 Bank 3 Row Decoders State Machine E Row PreDecoders Row Decoders Row Active KE DQ15 Column Add Counter Bank Select A0 Address Registers A1 Burst Length BA0 Address Buffers BA1 ... ... A12 Mode Register Burst Counter CAS Latency Data Out Control ai12118 8/55 M65KA512AB 2 Signal descriptions Signal descriptions See Figure 1: Logic diagram, and Table 1: Signal names, for a brief overview of the signals connected to this device. 2.1 Address Inputs (A0-A12) The A0-A12 Address Inputs are used to select the row or column to be made active. If a row is selected, all thirteen A0-A12 Address Inputs are used. If a column is selected, only the ten least significant Address Inputs, A0-A9, are used. In this latter case, A10 determines whether Auto Precharge is used. If A10 is High (set to ‘1’) during Read or Write, the Read or Write operation includes an Auto Precharge cycle. If A10 is Low (set to ‘0’) during Read or Write, the Read or Write cycle does not include an Auto Precharge cycle. 2.2 Bank Select Address Inputs (BA0-BA1) The BA0 and BA1 Banks Select Address Inputs are used to select the bank to be made active. The device must be enabled, the Row Address Strobe, RAS, must be Low, VIL, the Column Address Strobe, CAS, and W must be High, VIH, when selecting the addresses. The address inputs are latched on the rising edge of the clock signal, K. 2.3 Data Inputs/Outputs (DQ0-DQ15) The Data Inputs/Outputs output the data stored at the selected address during a Read operation, or are used to input the data during a write operation. 2.4 Chip Enable (E) The Chip Enable input E activates the memory state machine, address buffers and decoders when driven Low, VIL. When High, VIH, the device is not selected. 2.5 Column Address Strobe (CAS) The Column Address Strobe, CAS, is used in conjunction with Address Inputs A0-A9 and BA1-BA0, to select the starting column location prior to a Read or Write. 2.6 Row Address Strobe (RAS) The Row Address Strobe, RAS, is used in conjunction with Address Inputs A0-A12 and BA1-BA0, to select the starting address location prior to a Read or Write. 9/55 Signal descriptions 2.7 M65KA512AB Write Enable (W) The Write Enable input, W, controls writing. 2.8 Clock Input (K) The Clock signal, K, is used to clock the Read and Write cycles. During normal operation, the Clock Enable pin, KE, is High, VIH. The clock signal K can be suspended to switch the device to the Self-Refresh, Power-Down or Deep Power-Down mode by driving KE Low, VIL. 2.9 Clock Enable (KE) The Clock Enable, KE, pin is used to control the synchronizing of the signals with Clock signal K. If KE is High, VIH, the next Clock rising edge is valid. When KE is Low, VIL, the signals are no longer clocked and data Read and Write cycles are extended. KE is also involved in switching the device to the Self-Refresh, Power-Down and Deep Power-Down modes. 2.10 Lower/Upper Data Input/Output Mask (LDQM, UDQM) Lower Data Input/Output Mask and Upper Data Input/Output Mask pins are input signals used to mask the Read or Write data. The DQM latency is two clock cycles for read operations and there is no latency for write operations. 2.11 VDD Supply voltage VDD provides the power supply to the internal core of the memory device. It is the main power supply for all operations (Read and Write). 2.12 VDDQ Supply voltage VDDQ provides the power supply to the I/O pins and enables all Outputs to be powered independently of VDD. VDDQ can be tied to VDD or can use a separate supply. It is recommended to power-up and power-down VDD and VDDQ together to avoid certain conditions that would result in data corruption. 2.13 VSS Ground Ground, VSS, is the reference for the core power supply. It must be connected to the system ground. 10/55 M65KA512AB 2.14 Signal descriptions VSSQ Ground VSSQ ground is the reference for the input/output circuitry driven by VDDQ. VSSQ must be connected to VSS. Note: Each device in a system should have VDD and VDDQ decoupled with a 0.1µF ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should be as close as possible to the package). 11/55 Operations 3 M65KA512AB Operations There are 7 operating modes that control the memory. Each of these is described in this section, see Table 2: Operating mode, for a summary. 3.1 Power-Up The Low-Power SDRAM has to be powered up and initialized in a well determined manner. Power must be applied to VDD and VDDQ simultaneously and, at the same time, the clock signal must be started. After Power-Up, a minimum initial pause of 200µs is required. From power-up until the Precharge command is issued, the KE and DQM signals must be held High. The Precharge command must then be issued to all banks, and 2 or more Auto Refresh cycles must be executed after the precharge is completed and the minimum tRP is satisfied. Once these cycles are completed, a Mode Register Set command must be issued to program the specific operation mode (CAS Latency, Burst Length, etc.). After issuing the Mode Register Set command, the device will not accept any other command for tRSC. After issuing the Extended Mode Register Set command the device will not accept any other command for tRSC. The device is now ready for normal operation. Refer to Figure 22 for a detailed description of the Power-Up ac waveforms. 3.2 Burst Read The Read command is used to switch the device to Burst Read mode (see Section 4.5: Read command for details). In Burst Read mode the data is output in bursts synchronized with the clock. Burst Read opertions are initiated by driving E and CAS Low, VIL, W and RAS High, and VIH, at the positive edge of the clock signal, K. Burst Read can be accompanied by an Auto Precharge cycle depending on the state of the A10 Address Input. If A10 is High (set to ‘1’) when the Burst Read command is issued, the Burst Read operation is followed by an Auto Precharge cycle. If A10 is Low (set to ‘0’), the row will remain active for subsequent accesses. BA1 and BA0 are used to select the bank, and the A0-A9 address inputs are used to select the starting column location. The Burst Length, Burst Type, and CAS Latency depend on the values programmed by issuing a Mode Register Set command (see Section 5.1: Mode Register description). After a Burst Read operation is completed, data outputs become High-Z. Refer to Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12 for a detailed description of Burst Read ac waveforms. 12/55 M65KA512AB 3.3 Operations Burst Write The Write command is used to switch the device to Burst Write mode (see Section 4.4: Write command for details). In Burst Write mode the data is input in bursts synchronized with the clock. Burst Write operations are initiated by driving E, CAS and W Low, VIL, and RAS High, and VIH, at the positive edge of the clock signal, K. Burst Write can be accompanied by an Auto Precharge cycle depending on the state of the A10 Address Input. If A10 is High (set to ‘1’) when the Write command is issued, the Write operation is followed by an Auto Precharge cycle. If A10 is Low (set to ‘0’), Auto Precharge is not selected and the row will remain active for subsequent accesses. BA1 and BA0 are used to select the bank, and the A0-A9 address inputs are used to select the starting column location. Refer to Figure 13, Figure 14, Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20 for a detailed description of Burst Write ac waveforms. 3.4 Self Refresh In Self Refresh mode, the data contained in the Low-Power SDRAM memory array is retained and refreshed. The Low-Power SDRAM refresh cycles are asynchronous. All banks must be precharged prior to executing a Self-Refresh operation. The Self-Refresh mode is entered by driving KE Low (set to ‘0’), with E, RAS, and CAS Low, and W High (set to ‘1’). When in this mode, the device is not clocked any more. The Self Refresh mode is exited by driving KE from Low to High, with E High, RAS, CAS and W Don’t Care, or with E Low and RAS, CAS and W High. The Self Refresh operation is performed according to the settings of Extended Mode Register bits EMR0 to EMR2. They configure the amount of the memory to be refreshed (Partial Array Self Refresh). 3.5 Auto Refresh The Auto Refresh mode is used to refresh the Low-Power SDRAM in normal operation mode whenever needed. All banks must be precharged prior to executing an Auto Refresh operation. During the Auto Refresh, the address bits are “Don’t Care”, because the specific address bits are generated by the internal refresh address counter. 3.6 Power-Down In Power-Down mode, the current is reduced to the standby current (IDD3P). All banks must be precharged before entering Power-Down mode. For the memory to enter the Power-Down mode, KE must be held Low (set to ‘0’), after the Precharge Time tRP, with E High (set to ‘1’), RAS, CAS and W Don’t Care, or with E Low, RAS, CAS and W High. 13/55 Operations 3.7 M65KA512AB Deep Power-Down The purpose of this mode is to achieve maximum power reduction by cutting the power supply to the whole memory array. Data is no longer retained when the device enters Deep Power-Down Mode. All banks must be precharged before entering Deep Power-Down mode. The M65KA512ABM65KA512AB enters Deep Power Down Mode by holding E and W Low with RAS and CAS High at the rising edge of the clock, K, while driving KE Low (see Figure 26: Deep Power-Down Entry ac waveforms). The M65KA512AB exits Deep Power-Down mode by asserting KE High. A special sequence is then required before the device can take any new command into account: 1. Maintain No Operation status conditions for a minimum of 200µs, 2. Issue a Precharge command to all banks of the device (see Section 4.6: Precharge command for details), 3. Issue a Mode Register Set command to initialize the Mode Register bits, 4. Issue an Extended Mode Register Set command to initialize the Extended Mode Register bits, 5. Issue 2 or more Auto Refresh commands. The Deep Power-Down mode exit sequence is illustrated in Figure 27: Deep Power-Down Exit ac waveforms. Note: 14/55 The 2 Auto Refresh commands can be issued either after or before the configuration of the Mode and Extended Mode Registers. M65KA512AB Table 2. Operations Operating mode(1) Operating mode KEn-1 KEn E RAS CAS W A10 A11, A12 A0-A9 BA0BA1 UDQM/L DQM Burst Read VIH X VIL VIH VIL VIH VIL Valid Start Column Address Bank Select Valid Burst Write VIH X VIL VIH VIL VIL VIL Valid Start Column Address Bank Select X Self Refresh VIH VIL VIL VIL VIL VIH X X X Auto Refresh VIH VIH VIL VIL VIL VIH X X X Power-Down with Precharge VIH VIL VIL VIH VIH VIH X X X VIH X X X Deep PowerDown VIH VIL VIL VIH VIH VIL X X X Device Deselect VIH X VIH X X X X X No operation VIH X VIL VIH VIH VIH X X X X X 1. X = Don’t Care VIL or VIH. 15/55 Commands 4 M65KA512AB Commands There are 14 basic commands that control the memory. They can be combined to obtain 21 higher level commands shown in Table 3: Commands. 4.1 Mode Register Set command The Mode Register Set command is issued by applying VIL to E, RAS, CAS and W and by setting BA0 and BA1 to ‘0’. The Mode Register Set command is used to configure the specific mode of operation of the device by programming the Mode Register: ● Burst Length (1, 2, 4, 8, Full Page), ● CAS Latency (2, or 3), ● Burst Type (sequential or interleaved). The Mode Register Set command must be executed after the Power-Up sequence prior to issuing a Bank(Row) Activate command (see Figure 15: Mode Register Set ac waveforms). 4.2 Extended Mode Register Set command The Extended Mode Register Set command is issued by applying VIL to E, RAS, CAS and W, and then by setting BA0 to ‘0’, and BA1 to ‘1’. The Extended Mode Register Set command is used to configure the self refresh operation of the device and the driver strength by programming the Extended Mode Register bits: ● Partial arrays to be refreshed (all banks, two banks, one bank), ● Driver strength (full, 1/2 strength, 1/4 strength, 1/8 strength). The Extended Mode Register bit controlling the Automatic TSCR (A9) should always be cleared to ‘0’ (A9 = ‘1’ is reserved). The Extended Mode Register Set command must be executed after the Power-Up sequence prior to issuing a Bank(Row) Activate command. 4.3 Bank (Row) Activate command The Bank (Row) Activate command is used to activate a row in a specific bank of the device. This command is initiated by driving E and RAS Low, and CAS and W High, VIH, at the positive edge of the clock signal, K. The value on BA1 and BA0 selects the bank, and the value on A0-A12 selects the row. The selected row remains active for column access until a Precharge command is issued to that bank. A minimum time of tRCD is required after issuing the Bank (Row) Active command prior to initiating Read and Write operations from and to the activated bank. 16/55 M65KA512AB 4.4 Commands Write command The Write command is used to switch the Low-Power SDRAM to Burst Write mode (see Section 3.3: Burst Write mode). 4.5 Read command The Read command is used to switch the Low-Power SDRAM to Burst Read mode (see Section 3.2: Burst Read). 4.6 Precharge command The Precharge command is used to close the open row in a particular bank or the open row in all banks. When the precharge command is issued with address A10 driven High, all banks will be precharged. If A10 is driven Low, the open row in a particular bank will be precharged. The bank(s) will be available when the minimum tRP time has elapsed after the precharge command has been issued. 4.7 Auto Precharge command The Auto Precharge command is used to close the open row in a specific bank after a Read or Write operation. A10 is High, VIH, when a Read (or Write) command is issued. 4.8 Burst Terminate command The Burst Terminate command is used to terminate a Burst operation. A Burst operation can be interrupted by using the Precharge command (see Section 4.6: Precharge command for details), or by issuing the Burst Terminate command. Issuing the Burst Terminate command during a Burst Read or Write cycle will terminate the burst while leaving the bank open. 4.9 Data Mask command The Data Mask command is used to mask Read or Write data.A Data Mask command issued during a Read operation will disable the data outputs, switching them to the high impedance state after a delay of two clock cycles. A Data Mask command issued during a Write operation will disable the data inputs with no delay. 4.10 Clock Suspend command The Clock Suspend command is used to interrupt the internal clock of the LPSDRAM. The command is controlled by the Clock Enable input, KE, which is kept High, VIH, in normal access mode.The Clock Suspend command is issued by driving KE Low,VIL, thus freezing the internal clock, and extending data Read and Write operations. 17/55 Commands 4.11 M65KA512AB Auto Refresh command The Auto Refresh command is used to put the device in Auto refresh mode (see Section 3.5: Auto Refresh and Figure 24: Auto refresh ac waveforms). 4.12 Self Refresh command The purpose of the Self Refresh command is used to put the device in Self Refresh mode to retain and refresh the data contained in the Low-Power SDRAM memory array. In Self Refresh mode, the Low-Power SDRAM runs Refresh cycles asynchronously. The Self Refresh cycle is performed according to the Extended Mode Register bits EMR0 to EMR2 that configure the part of the memory array being refreshed (Partial Array Self Refresh). For more information on how the command is issued, refer to Figure 25: Self refresh ac waveforms. 4.13 Power-Down command The Power-Down command is used to put the device in Power-Down mode where the operating current is reduced to the Standby current. All banks must be precharged and a minimum time of tRP must elapse before issuing the Power-Down command. 4.14 Deep Power-Down command The Deep Power-Down command is used to switch the Low-Power SDRAM to Deep PowerDown Mode. This mode provides maximum power reduction as it cuts the power of the entire memory array of the device. For more information on how the command is issued and its exit sequence, see Section 3.7: Deep Power-Down, Figure 26: Deep Power-Down Entry ac waveforms, and Figure 27: Deep Power-Down Exit ac waveforms. 18/55 M65KA512AB Table 3. Commands Commands(1) Command KEn-1 KE E RAS CAS W UDQM/ LDQM DQ0DQ15 Mode Register Set VIH X VIL VIL VIL VIL X X X (3) Extended Mode Register Set VIH X VIL VIL VIL VIL X X X (4) Bank (Row) Activate VIH X VIL VIL VIH VIH X X Row address V Read VIH X VIL VIH VIL VIH VIL X Column VIL V Read with Auto Precharge VIH X VIL VIH VIL VIH VIL X Column VIH V Write VIH X VIL VIH VIL VIL VIL X Column VIL V Write with Auto Precharge VIH X VIL VIH VIL VIL VIL X Column VIH V Precharge all BANKS VIH X VIL VIL VIH VIL X X X VIH X Precharge selected Bank VIH X VIL VIL VIH VIL X X X VIL V Burst Terminate VIH VIH VIL VIH VIH VIL X X X X Clock Suspend Entry VIH VIL X X X X X X X X Clock Suspend Exit VIL VIH X X X X X X X X Data Mask / Output Enable VIH X X X X X VIL X X X Data Mask / Output Disable VIH X X X X X VIH High-Z X X Auto-Refresh VIH VIH VIL VIL VIL VIH X X X X Self-Refresh Entry VIH VIL VIL VIL VIL VIH X X X X Self-Refresh Exit(5) X X X VIH VIH X VIL X X X VIL VIH VIH VIH X X X X VIL VIH X VIH X X X VIL VIH VIH VIH X X X X VIH VIH X VIL X X X VIL VIH VIH VIH X Deep Power-down Entry VIH VIL VIL VIH VIH VIL X X X X Deep Power-down Exit VIL VIH X X X X X X X X Power-down Entry Power-down Exit Addr. A10 (2) BA0BA1 1. X = Don’t Care (VIL or VIH), V = Valid Data. 2. Addresses AO to A12 except A10. 3. BA1 and BA0 must both be set to ‘0’ to issue the Mode Register Set Command. 4. BA1 and BA0 must be set to ‘1’ and ‘0’, respectively, to issue the Extended Mode Register Set Command. 5. The Self-Refresh mode is exited by asynchronously driving KE from Low to High 19/55 Register descriptions M65KA512AB 5 Register descriptions 5.1 Mode Register description The Mode Register is used to select the CAS Latency (2 or 3), the Burst Type (sequential, interleaved), the Burst Length (1-, 2-, 4-, 8-word width or full page). It is loaded by issuing a Mode Register Set command that programs A0 to A12 address bits. The values placed on the address lines are then latched into the Mode Register. BA0-BA1 must be set to ‘0’. See Table 4: Mode Register Definition, for more details. 5.2 Burst Length bits (MR0 to MR2) Bits 0 to 2 (MR0 to MR2) of the Mode Register are used to configure the Burst Length. The burst Length is the number of words that are output or input during a read or a write operation, respectively. It can be set to 1, 2, 4, 8 words or full page. 5.3 Burst Type bit (MR3) Bit 3 (MR3) of the Mode Register is used to set the Burst Type. The Burst Type defines the order in which the address locations are accessed during a burst operation. It can be either sequential or interleaved. The type of application microprocessor must be taken into account when selecting the Burst Type: some microprocessor cache systems are optimized for sequential addressing and others for interleaved addressing. Both Burst Types support burst length of 1, 2, 4 or 8 words. Full page burst is also available when the sequential burst type is selected. 5.4 CAS Latency bits (MR4 to MR6) The CAS latency is the most critical of the Mode Register parameters. It defines the number of clocks cycles between the detection of a Read command to the first data output valid. It can be set to two or three clock cycles. The value of this parameter is determined by the frequency of the clock and the speed grade of the device. Table 4. Mode Register Definition Address Bits Mode Register bit Register description A12-A7 - - A6-A4 MR6-MR4 CAS Latency bits Value Description 0000000 010 2 clock cycles 011 3 clock cycles(1) Other configurations reserved 20/55 M65KA512AB Register descriptions Table 4. Mode Register Definition Address Bits Mode Register bit Register description A3 MR3 Burst type A2-A0 MR2-MR0 Burst Length bit Value Description 0 Sequential 1 Interleaved 000 1 word (A3 is Don’t Care) 001 2 words (A3 is Don’t Care) 010 4 words (A3 is Don’t Care) 011 8 words (A3 is Don’t Care) 111 Full Page if A3 = 0 Reserved if A3 = 1 Other configurations reserved BA1-BA0 - - 00 1. At 133MHz, the CAS Latency must be set to 3. 21/55 Register descriptions 5.5 M65KA512AB Extended Mode Register description The Extended Mode Register is used to configure the low-power self-refresh operation of the device (PASR, DS). It is used to select the area of the memory array refreshed during Partial Array Self Refresh operations, and the driver strength. It is loaded by issuing a Extended Mode Register Set command that programs A0 to A12 address bits. The values placed on the address lines are then latched into the Extended Mode Register. BA0 and BA1 must be set to ‘0’ and ‘1’ respectively. See Table 5: Extended mode Register definition, for more details. 5.5.1 Partial Array Self Refresh bits (EMR0-EMR2) Bits EMR0 to EMR2 of the Extended Mode Register allow to configure the amount of memory that will be refreshed during a Self Refresh operation (see Section 3.4: Self Refresh). It can be set to: ● All Banks (banks 0, 1, 2, and 3) ● Two Banks (banks 0 and 1) ● One Bank (bank 0). It is important to note that the data stored in the banks or portion of banks which are not refreshed, are lost. As an example, data stored in banks 1, 2 and 3 are lost when the PASR is set to one bank (bank 0 refreshed). 5.5.2 Driver Strength bit (EMR5-EMR6) Extended Mode Register bits, EMR5 and EMR6, can be used to select the driver strength of data outputs. This value should be set according to the application requirements. 5.5.3 Automatic Temperature Compensated Self Refresh bits (EMR3-EMR4) The M65KA512ABM65KA512ABhas a built-in temperature sensor that controls automatically the internal self refresh rate. 22/55 M65KA512AB Register descriptions Table 5. Extended mode Register definition Address bits Mode Register bit Description A12-A10 - - 0 Enabled EMR9 Automatic Temperature Compensated Self-Refresh (ATCSR) 1 Reserved - 00 A9 A8-A7 A6-A5 A4-A3 - EMR6-EMR5 - Driver strength bits - Value 0000 00 Full strength 01 1/2 strength 10 1/4 strength 11 1/8 strength 00 000 A2-A0 EMR2-EMR0 Description Partial Array Self- 001 Refresh bits 010 All Banks Two Banks (BA1=0) One Bank (BA0 and BA1 =0) Other configurations reserved BA1-BA0 - - 10 23/55 Maximum rating 6 M65KA512AB Maximum rating Stressing the device above the ratings listed in Table 6: Absolute maximum ratings, may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 6. Absolute maximum ratings Value Symbol Unit Min Max TJ Junction temperature − 30 85 °C TSTG Storage temperature − 55 125 °C Input or Output voltage − 0.5 2.3 V Supply voltage − 0.5 2.3 V VIO VDD, VDDQ IOS 24/55 Parameter Short Circuit Output current 50 mA M65KA512AB 7 DC and ac parameters DC and ac parameters This section summarizes the operating and measurement conditions, and the dc and ac characteristics of the device. The parameters in the dc and ac characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 7: Operating and ac measurement conditions. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 7. Operating and ac measurement conditions Parameter(1) Symbol M65KA512AB Units Min Max Supply voltage 1.7 1.9 V Input/Output supply voltage 1.7 1.9 V TJ Junction temperature − 30 85 °C CL Load capacitance 30 pF Input Transition Time between VIL and VIH Input Rise/Fall time 0.5 ns VIL Input Pulses Low voltage 0.2 V VIH Input Pulses High voltage 1.6 V Input and Output Timing ref. voltages 0.9 V VDD VDDQ tT, tR, tF VREF 1. All voltages are referenced to VSS = 0 V. Figure 3. AC measurement I/O waveform Input Timing Reference Voltage 1.6V VDDQ/2 0.2V Output Transition Timing Reference Voltage VDDQ VDDQ/2 0V AI08009c 25/55 DC and ac parameters Figure 4. M65KA512AB AC measurement load circuit Output CL AI12109 Table 8. Symbol Capacitance Parameter Signal Input capacitance CIO Unit Min Max K 2.0 4.5 pF A0-A11, BA0, BA1, KE, E, RAS, CAS, W, UDQM, LDQM 2.0 4.5 pF DQ0-DQ15 3.5 6.0 pF CI1 CI2 M65KA512ABM65 KA512AB(1) Data I/O capacitance 1. TJ = 25 °C, f = 1 MHz Table 9. DC characteristics 1 Symbol Parameter M65KA512ABM65KA5 12AB Min Max Unit ILI Input Leakage current 0V≤ VIN ≤ 1.8V −2 2 µA ILO Output Leakage current 0V≤ VOUT ≤1.8V − 1.5 1.5 µA (2) Input Low voltage VIN = 0V − 0.3 0.3 V VIH(3) Input High voltage VIN = 0V 0.8 VDDQ VDDQ + 0.3 V VOL Output Low voltage IOUT = 100µA VIN = 0V 0.2 V VOH Output High voltage IOUT = –100µA VIN = 0V VDDQ− 0.2 VIL 1. TJ = –30 to 85 °C. 2. VIL (min.) = −0.5 V (pulse width ≤ 5 ns) 3. VIH (max.) = 2.3 V (pulse width ≤ 5 ns). 26/55 Test condition(1) V M65KA512AB Table 10. DC and ac parameters DC characteristics 2 Symbol M65KA512AB Test condition(1) Parameter Unit Max Operating current IDD2P Precharge Standby current in Power-Down Mode IDD2PS IDD2N Precharge Standby current in Non Power-Down Mode IDD2NS IDD3P IDD3PS IDD3N Active Standby current in Power-Down Mode Active Standby current in Non Power-Down Mode IDD3NS IDD4(2) 70 CAS Latency = 2 Burst length = 1, one bank active CAS Latency = 3 tRC ≥ tRC(min), IOL = 0 mA IDD1(2) Burst Mode current mA 70 KE ≤ VIL(max), tK = tK(min) 0.8 KE ≤ VIL(max), tK = ∞ 0.6 KE ≥ VIH (min), E ≥ VIH (min), tK = tK(min) Input signals changed once in 30 ns All other pins ≥ VDD − 0.2 V or ≤ 0.2 V 4.0 KE ≥ VIH (min), tK = ∞ Input signals are stable 2.0 KE ≤ VIL(max), tK = tK(min) 3.0 KE ≤ VIL(max), tK = ∞ 1.2 KE ≥ VIH (min), E ≥ VIH (min), tK= tK(min) Input signals changed once in 30 ns All other pins ≥ VDD − 0.2 V or ≤ 0.2 V 10 KE ≥ VIH (min), tK = ∞ Input signals are stable 7 mA mA mA mA CAS Latency = 2 tK ≥ tK (min), IOL = 0 mA CAS Latency = 3 All banks active 50 mA 85 IDD5 Auto-Refresh current tRRC ≥ tRRC (min), All banks active IDD6 Self-Refresh current IDD7 Standby current in Deep Power-Down Mode 90 mA KE ≤ 0.2 V See Table 11 µA KE ≤ 0.2 V 10 µA 1. TJ = –30 to 85 °C. 2. IDD1 and IDD4 depend on output loading and cycle rates. Specified values are measured with the output open. Table 11. Self-Refresh current values in Normal Operating Mode Memory array(1) Temperature in °C 4 Banks Typ 2 Banks Max Typ 1 Bank Max Typ Unit Max 70 ≤ TJ ≤ 85 800 650 490 µA 40 ≤ TJ ≤ 70 550 380 290 µA –30 ≤ TJ ≤ 40 300 240 210 µA 1. VDD = 1.8 ± 0.1 V, VDDQ = 1.8 ± 0.1 V, VSSQ = 0 V. 27/55 DC and ac parameters M65KA512AB Table 12. AC characteristics 1 Symbol Alt. tAC M65KA512AB M65KA512AB Parameter Min. Max. CAS Latency=3 - 6 ns CAS Latency=2 - 8 ns Access Time from clock tAS(1) Address Setup Time 1.9 - ns tAH(1) Address Hold Time 0.9 - ns CAS Latency=3 7.5 - ns CAS Latency=2 15 - ns tCK Clock Cycle Time tCHW tCH Clock High Pulse Width 2.5 - ns tCLW tCL Clock Low Pulse Width 2.5 - ns tCKS(1) Clock Enable Setup Time 1.9 - ns tCKSP(1) Clock Enable Setup Time (Power-Down Exit) 1.9 - ns tCKH(1) Clock enable Hold Time 0.9 - ns tCS tCMS(1) Command Setup Time 1.9 - ns tCH tCMH(1) Command Hold Time 0.9 - ns tDS(1) Data-Input Setup Time 1.9 - ns tDH(1) Data-Input Hold Time 0.9 - ns Data-out Hold Time 2 - ns 0 - ns CAS Latency=3 0 6 ns CAS Latency=2 0 8 ns tOH tOLZ tLZ Clock to Data Output in Low-Z Time tOHZ tHZ Clock to Data Output in High-Z Time 1. If tT is greater than 0.5 ns, (tT− 0.5) or ((tR + tF)/2 − 0.5) should be added. 28/55 Unit M65KA512AB Table 13. Symbol DC and ac parameters AC characteristics 2 Alt. M65KA512ABM65KA51 2AB Parameter tDPL Delay Time, Write Command to Data Input tDAL Data Input Valid to Precharge Command Min. Max. 2 - (1) - ns - ns CAS Latency = 2 CAS Latency = 3 Unit 2*tCK + 22.5 Mode Register Set Cycle Time 2 - (1) tRC(2) RAS Cycle Time (normal operation) 90 - ns tRC RAS Cycle Time (refresh operation) 112.5 - ns tRC2 RAS Cycle Time (Self Refresh Exit to Refresh or Bank/Row Activate Command) 120 - ns tRCD Delay Time, RAS Active to CAS Active 27.5 - ns tRAS RAS Active Time 60 120000 ns tRP RAS Precharge Time 22.5 - ns tRSC tMRD tRRD Delay Time, RAS Active to RAS Bank Active 2 - (1) tREF Refresh Time - 64 ms 0.5 30 ns tT Input Transition Time between VIL and VIH 1. The unit is the system Clock cycle time. 2. A new command can be issued tRC after the Self Refresh mode is exited. 29/55 DC and ac parameters AI09959b Chip Enable Signal during Read, Write and Precharge ac waveforms Write in Bank A Bank/Row Activate in Bank A DQ0-DQ15 Low LDQM/ UDQM Address A10 Hi-Z RAa RAa Low BA1 BA0 W CAS RAS E KE K High T0 T1 Low T2 T3 T4 T5 Read from Bank A T6 CAa T7 QAa1 T8 QAa2 T9 QAa3 T10 QAa4 DQN T11 T12 DAb1 T13 DAb2 T14 DAb3 T15 DAb4 T16 CAb T17 T18 Precharge Bank A T19 T20 T21 Figure 5. M65KA512AB 1. The Chip Enable signal, E, must be issued at a minimum rate with respect to the other signals. 2. Burst Length = 4 words, Latency = 3 clock cycles. 3. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAan= Data n read from Column a in Bank A, DAan= Data n written to Column a in Bank A. 30/55 M65KA512AB DC and ac parameters Figure 6. Read with Precharge ac waveforms T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 tCK K tCLW tCHW KE tCH tCKS tCKH E tCS RAS CAS W BA0 BA1 A10 Address tAS LDQM/ UDQM tAH Low tAC DQ0-DQ15 tOHZ Hi-Z DQN tRCD DQN+1 tOLZ DQN+2 DQN+3 tOH tRAS tRP tRC Bank/Row Activate in Bank A Read from Bank A Precharge in Bank A Bank/Row Activate in Bank A AI09934b 1. Burst Length = 4 words, Latency = 3 clock cycles. 31/55 DC and ac parameters M65KA512AB Figure 7. Read with Auto Precharge ac waveforms Auto Precharge Start from Bank C T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 tCK K tCLW tCHW KE tCH tCKS tCKH E tCS RAS CAS W BA0 BA1 A10 Address tAS LDQM/ UDQM Low DQ0-DQ15 tAH tOH tAC Hi-Z DQN tRCD DQN+1 DQN+2 DQN+3 tOHZ tOLZ tRAS, tRRD tRC Bank/Row Activate in Bank C Read with Auto Precharge from Bank C Bank/Row Activate in Bank D Bank/Row Activate in Bank C AI09935b 1. Burst Length = 4 words, Latency = 3 clock cycles. 32/55 Hi-Z Low RAa RAa Bank/Row Activate in Bank A DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E T1 T2 CAa T4 Read from Bank A T3 T5 T6 QAa1 T7 T9 Clock Suspended during 1 cycle QAa2 T8 QAa3 T11 T12 Clock Suspended during 2 cycles T10 T13 T15 T16 Clock Suspended during 3 cycles QAa4 T14 AI09949 End of Read Hi-Z T17 Figure 8. KE K T0 M65KA512AB DC and ac parameters Clock Suspend during Burst Read ac waveforms 1. Burst Length = 4 words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAan= Data n read from Column a in Bank A. 33/55 34/55 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E T5 QAa1 T6 T7 CAb QAa3 T8 CAc T9 QAc2 T13 QAc1 T12 QAb2 T11 QAb1 T10 QAc3 T14 QAc4 T15 T16 Read from Bank A Read from Bank A QAa2 Read from Bank A QAa4 DQN Precharge in Bank A T17 Bank/Row Activate in Bank A RAa CAa T4 RAa T3 RAa T2 RAa Bank/Row Activate in Bank A Hi-Z Low High T1 T18 CAa T20 Read from Bank A T19 AI09955 T21 Figure 9. KE K T0 DC and ac parameters M65KA512AB Random Column Read ac waveforms 1. Burst Length = 4 words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAmn= Data n read from Column m in Bank A. DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T5 T6 QBa1 T7 QBa2 T8 Read from Bank B T9 T10 Bank/Row Activate in Bank A QBa3 QBa4 RAa CBa T4 RBa T3 RAa T2 RBa T1 Bank/Row Activate in Bank B Hi-Z Low High T0 T12 T13 Read from Bank A QBa8 T14 Precharge in Bank B QBa5 QBa6 QBa7 CAa T11 QAa1 T15 T17 T18 T19 CBb T20 T21 Bank/Row Activate in Bank B Read from Bank A AI09957 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7 RBb RBb T16 M65KA512AB DC and ac parameters Figure 10. Random Row Read ac waveforms 1. Burst Length = 8 words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAmn= Data n read from row m in Bank A. 35/55 36/55 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K 1. Burst Length = 4 words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAmn= Data n read from Column m in Bank A. T5 Bank/Row Activate in Bank D Read from Bank A RDa CAa T4 RAa T3 RDa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 T6 QAa2 CDa T8 T9 Read from Bank D Read from Bank A Precharge in Bank D Precharge in Bank A T20 QAb4 T19 QAb3 T18 QAb2 T17 QAb1 T16 QDc2 T15 QDc1 T14 QDb2 CAb T13 QDb1 T12 QDa2 CDc T11 QAa4 QDa1 CDb T10 Read from Bank D QAa3 Read from Bank D QAa1 DQN T7 AI09520 T21 DC and ac parameters M65KA512AB Figure 11. Column Interleaved Read ac waveforms DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T5 Bank/Row Activate in Bank D Read from Bank A RDa CAa T4 RAa T3 RDa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 T6 CDa T8 Read + Auto Precharge from Bank D DQN T7 T9 T11 T12 CAb Auto Precharge from Bank D Read + Auto Precharge from Bank A T10 T14 RDb RDb T15 T16 Autoprecharge Start from Bank A Bank/Row Activate in Bank D T13 T17 CDb T19 Read + Auto Precharge from Bank D T18 T20 AI09961b T21 M65KA512AB DC and ac parameters Figure 12. Burst Column Read followed by Auto Precharge ac waveforms 1. Burst Length = 4 words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A. 37/55 38/55 1. Burst Length = 4 words. Hi-Z Low T1 T2 T3 T4 tDH T6 Bank/Row Activate in Bank B T5 Write + Auto Precharge to Bank C tRRD tDS tRCD tCH, tAH Bank/Row Activate in Bank C tCS, tAS tCKS DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T0 T10 tDAL tRAS T9 Write to Bank B T8 Auto Precharge Start from Bank C tRC tRCD DQN T7 tDPL T13 Precharge in Bank B T12 Bank/Row Activate in Bank C tRC T11 tCKH T14 tRP T16 Bank/Row Activate in Bank B T15 AI09947 T17 DC and ac parameters M65KA512AB Figure 13. Write ac waveforms Hi-Z Hi-Z High T1 T2 Bank/Row Activate Read in Bank D from Bank D DQ8-DQ15 DQ0-DQ7 UDQM LDQM Address A10 BA1 BA0 W CAS RAS E KE K T0 T3 T5 Lower Byte Read T4 T6 T8 Upper Byte Read T7 T10 Upper Byte Write T9 T12 T13 T14 Lower Byte Read from Write Bank D Upper Byte Write T11 T15 T17 Upper Byte Read T16 T18 T20 Upper Byte Read T19 AI09963b T21 M65KA512AB DC and ac parameters Figure 14. Byte Write ac waveforms 1. Burst Length = 4 words. 39/55 DC and ac parameters M65KA512AB Figure 15. Mode Register Set ac waveforms T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 K High KE tMRD, 2 Clock Cycles (min) E RAS CAS W BA0 BA1 A10 MR Address Data (2) LDQM/ UDQM DQ0-DQ15 Hi-Z tRP Precharge All Banks Mode Register Set Bank/Row Activate Valid AI09948 1. To program the Extended Mode Register, BA0 and BA1 must be set to ‘0’ and ‘1’ respectively, and A0 to A11 to the Extended Mode Register Data. 2. MR Data is the value to be written to the Mode Register. 40/55 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T1 Bank/Row Activate in Bank A Hi-Z Low RAa RAa T0 T2 T4 T5 T6 DAa2 Clock Suspended during 1 cycle Write to Bank A DAa1 CAa T3 T8 T9 DAa3 Clock Suspended during 2 cycles T7 T10 T12 T13 DAa4 Clock Suspended during 3 cycles T11 T14 T15 T16 AI09950b T17 M65KA512AB DC and ac parameters Figure 16. Clock Suspend during Burst Write ac waveforms 1. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, DAan= Data n Written to Column a in Bank A. 41/55 42/55 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K DDa2 T7 DDa4 DQN T6 DDa3 T5 CDb CDc T9 DDb2 T8 T14 Precharge in Bank D T13 DDc4 T12 DDc3 T11 DDc2 T10 T15 T16 Write to Bank D DDa1 Write to Bank D DDb1 Write to Bank D DDc1 T17 Bank/Row Activate in Bank D RDd CDa T4 RDa T3 RDd T2 RDa T1 Bank/Row Activate in Bank D Hi-Z Low High T0 T18 CDd Write to Bank D T21 AI09956 DDd2 T20 DDd1 T19 DC and ac parameters M65KA512AB Figure 17. Random Column Write ac waveforms 1. Burst Length = 4 words. 2. RDa = Address of Row a in Bank D, CDa = Address of Column a in Bank D, DDmn= Data n written to Column m in Bank D. DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K DAa2 T5 DAa3 T6 DAa4 DAa5 T7 T8 Write to Bank A DAa1 T9 T10 T12 Write to Bank D DDa4 T14 Precharge in Bank A DDa3 T13 DDa1 DDa2 CDa T11 DAa7 DAa8 Bank/Row Activate in Bank D DAa6 RDa CAa T4 RAa T3 RDa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 T18 CAb T20 Write to Bank A T21 AI09958 DAb1 DAb2 T19 DDa7 DDa8 T17 DDa6 RAb RAb T16 Bank/Row Activate in Bank A DDa5 T15 M65KA512AB DC and ac parameters Figure 18. Random Row Write ac waveforms 1. Burst Length = 8 words. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, DAmn= Data n written to row m in Bank A. 43/55 44/55 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K DAa2 Write to Bank B DBa2 T8 CBa DBa1 T7 DAa4 T6 DAa3 T5 Bank/Row Activate in Bank B Write to Bank A DQN DAa1 RBa CAa T4 RAa T3 RBa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 CBb Write to Bank B Write to Bank B DAb2 T14 Write to Bank A DAb1 CAb T13 DBc2 T12 DBc1 CBc T11 DBb2 T10 DBb1 T9 T17 DBb4 T18 Precharge in Bank A DBb2 DBb3 T16 Write to Bank B DBb1 CBd T15 T20 Precharge in Bank B T19 AI09521 T21 DC and ac parameters M65KA512AB Figure 19. Column Interleaved Write ac waveforms 1. Burst Length = 4 words. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, DAmn= Data n written to Column m in Bank A. DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T5 Bank/Row Activate in Bank D Write to Bank A DQN RDa CAa T4 RAa T3 RDa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 T6 CDa T8 Write + Auto Precharge from Bank D T7 T9 T10 CAb T12 T13 Write + Auto Precharge from Bank A Auto Precharge Start from Bank D T11 T14 T16 T17 T18 CDb T19 Bank/Row Write + Activate Auto Precharge in Bank D from Bank D Auto Precharge Start from Bank A RDb RDb T15 T20 AI09962 T21 M65KA512AB DC and ac parameters Figure 20. Burst Column Write followed by Auto Precharge ac waveforms 1. Burst Length = 4 words 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A. 45/55 46/55 DQ0-DQ15 LDWM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K 1. Burst Length = 8 words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAan= Data n read from Column a in Bank A, DAan= Data n written to Column a in Bank A. DAa2 T5 T6 T8 Write Masking T7 T9 T10 T11 tRAS Write to Bank A DAa1 tDPL DAa5 Precharge in Bank A + Write Terminated DAa3 DQDAa4 N Bank/Row Activate in Bank A tRP RAb CAa T4 RAa T3 RAb tRCD T2 RAa T1 Bank/Row Activate in Bank A Hi-Z High T0 T12 CAb tRAS T14 Read from Bank A T13 T15 QAb2 T17 T19 T21 AI09524 Bank/Row Activate in Bank A RAc RAc T20 QAb3 DQQAb4 N T18 Precharge in Bank A + Read Terminated QAb1 T16 DC and ac parameters M65KA512AB Figure 21. Precharge termination ac waveforms High DQ0-DQ15 Hi-Z LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T1 T2 Precharge All Banks High Level nedeed 1 Clock Cycle needed T0 T6 EMR Data (1) T5 T7 tMRD T8 Mode Extended Mode CBR Register Set Register Set Auto Refresh tRP T4 MR Data (1) tMRD T3 T9 tRC1 T10 T11 T13 CBR Auto Refresh T12 T14 T16 T17 T18 tRC1 T19 T20 T21 AI09960b Bank/Row Activate 2 Refresh Cycles needed T15 M65KA512AB DC and ac parameters Figure 22. Power-On sequence ac waveforms 1. MR Data and EMR data are the values to be written to the Mode Register and the Extended Mode Register, respectively. 47/55 48/55 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T1 T2 T4 CAa T6 Read from Bank A T5 Power-Down Exit tCKSP T3 ACTIVE STANDBY Bank/Row Activate in Bank A Power-Down Entry Hi-Z Low RAa RAa T0 T7 T8 QAa2 T10 Start of Clock Masking QAa1 T9 T12 End of Clock Masking QAa3 T11 T14 T15 Power-Down Entry Precharge in Bank A QAa4 T13 T17 T19 tCKSP T18 PRECHARGE STANDBY T16 T21 AI09951 Power-Down Exit T20 DC and ac parameters M65KA512AB Figure 23. Power-Down mode and Clock Masking ac waveforms 1. Burst Length = 4 words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAan= Data n read from Column a in Bank A. Hi-Z DQ0-DQ15 T1 Precharge (optional) Low High LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T0 T3 Auto Refresh tRP T2 T4 T5 tRC1 T6 Tn Tn+1 Tn+3 Auto Refresh Tn+2 Tn+4 Tn+5 tRC1 Tn+6 Tm Bank/Row Activate Read Tm+7 AI09952c Tm+1 Tm+2 Tm+3 Tm+4 Tm+5 Tm+6 M65KA512AB DC and ac parameters Figure 24. Auto refresh ac waveforms 49/55 50/55 Low Hi-Z LDQM/ UDQM DQ0-DQ15 Address A10 BA1 BA0 W CAS RAS E KE K T0 T2 Precharge (optional) T1 T4 Self Refresh Entry tRP T3 Tn+1 Self Refresh Exit Tn tRC2 Tn+2 Tm+1 Self Refresh Entry (or Bank/Row Activate) Next Clock Enable Tm Self Refresh Exit Tk+2 Bank/Row Activate Tk+1 Next Clock Enable tRC2 Tk Tk+3 AI09953b Tk+4 DC and ac parameters M65KA512AB Figure 25. Self refresh ac waveforms M65KA512AB DC and ac parameters Figure 26. Deep Power-Down Entry ac waveforms T0 T1 T3 T2 T4 T5 K KE E RAS CAS W A10 DQ0-DQ15 Hi-Z tRP Precharge All Banks (optional) Deep Power-Down Entry ai07720c 1. BA0, BA1 and address bits A0 to A12 are ‘Don’t Care’. 51/55 52/55 W CAS RAS E KE K High 1. MR Data and EMR data are the values to be written to the Mode Register and the Extended Mode Register, respectively. T2 1 Clock Cycle needed T1 Precharge All Banks 200µs High Level nedeed Deep Power-Down Exit DQ0-DQ15 Hi-Z LDQM/ UDQM Address A10 BA1 BA0 1 T0 T6 EMR Data (1) T5 T7 tMRD T8 Mode Extended Mode Auto Refresh Register Set Register Set tRP T4 MR Data (1) tMRD T3 T9 tRC1 T10 T11 T13 Auto Refresh T12 T14 T16 T17 T18 tRC1 T19 T20 T21 AI09954c Bank/Row Activate 2 Refresh Cycles needed T15 DC and ac parameters M65KA512AB Figure 27. Deep Power-Down Exit ac waveforms M65KA512AB 8 Part numbering Part numbering Table 14. Ordering information scheme Example: M65KA512A B 8 W 3 Device type M65 = Low- Power SDRAM Architecture K = Bare Die Operating voltage A = VDD = VDDQ = 1.8V, Standard LPSDRAM, x16 Array organization 512 = 4 Banks x 8 Mbit x 16 Option 1 A = One Chip Enable Option 2 B = B Die Speed 8 = 7.5ns Package W = Unsawn wafer Temperature range 8 = –30 to 85 °C For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you. 53/55 Revision history 9 Revision history Date Revision 18-Nov-2005 0.1 Initial release. 1.0 Table 8: Capacitance and Table 11: Self-Refresh current values in Normal Operating Mode filled-in. Table 10: DC characteristics 2 and Table 12: AC characteristics 1 updated. Wafer and Die specifications section removed. 31-Jan-2006 54/55 M65KA512AB Changes 12-Sep-2006 2 Changed Burst Stop to Burst Terminate in Features; changed the Operating Temperature Range from − 25 to − 30 in Features, Table 6, Table 7, Table 9, Table 10, Table 11, and Table 14; updated footnotes in Table 7, Table 9, Table 10, and Table 12; updated tT value in Table 7: Operating and ac measurement conditions; updated package information and removed option ‘T’ in Table 14: Ordering information scheme. 20-Mar-2007 3 tRCD minimum value updated in Table 13: AC characteristics 2. M65KA512AB Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 55/55