STA529 2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX Features ■ Up to 96 dB dynamic range ■ Sample rates from 8 kHz to 192 kHz ■ FFXTM class-D driver ■ 1.5 V to 1.95 V digital power supply ■ 1.5 V to 1.95 V analog power supply ■ 18-bit audio processing and class-D FFXTM modulator ■ Digital volume control: – +36 dB to 105 dB in 0.5 dB steps – Software volume update ■ Individual channel and master gain/attenuation ■ Automatic invalid input detect mute ■ 2-channel I2S input/output data interface ■ Digitally controlled POP-free operation ■ Input and output channel mapping ■ 250 mΩ output CMOS Rdson ■ > 90% efficiency ■ Stereo headphone plus mono speaker application: – 50 mW stereo into 32 Ω headphone – 100 mW stereo into 16 Ω headphone TFBGA48 VFQFPN52 Order codes January 2007 Part number Package STA529B TFBGA48 (tube) STA529Q VFQFPN52 (tube) Rev 1 1/58 www.st.com 1 Contents STA529 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Connection diagrams and pin descriptions . . . . . . . . . . . . . . . . . . . . . . 5 2.1 2.2 3 4 5 6 2.1.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VFQFPN52 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Maximum and recommended operating conditions . . . . . . . . . . . . . . . . . 11 3.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Lock time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 ADC performance values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Digital processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Signal processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 I2C interface disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Volume control and gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2 Configuration examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.1 2/58 TFBGA48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.1.1 Digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.1.2 High-pass filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.3 Programmable gain amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2 Application scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.3 Configuration examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STA529 7 Contents Driver configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1 8 9 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.2 Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.3 Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.4 Serial formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 11 12 8.4.1 DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8.4.2 I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8.4.3 PCM/IF (non-delayed mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.4.4 PCM/IF (delayed mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.1 Data transition and change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.5 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.6 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.7 10 I2S bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9.6.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.6.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.7.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.7.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.7.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.7.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 10.2 General registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.1 Package TFBGA48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.2 Package VFQFPN52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3/58 Introduction 1 STA529 Introduction The STA529 is a digital stereo class-D audio amplifier. It includes an audio DSP, a ST proprietary high-efficiency class-D driver and CMOS power output stage. It is intended for high-efficiency digital-to-power-audio conversion for portable applications. The STA529 also provides output capabilities for FFXTM. In conjunction with a power device, the STA529 provides high-quality digital amplification. The STA529 contains an on-chip volume/gain control. The PWM amplifier achieves greater than 90% efficiency for longer battery life for portable systems. The innovative class-D modulation, allows the STA529 to work without external LC filters and without a heatsink. The STA529 I2CDIS pin disables the audio DSP functions to provide a direct conversion of the input signal into output power (the I2C interface is disabled). This conversion is done without the microcontroller. The STA529 is designed for low-power operation with extremely low-current consumption in standby mode. It is available in two packages: the TFBGA48 and the VFQFPN52. These are very thin packages (1.2 mm thick) intended for small portable applications. VCC1 VCC2 GND1 GND2 VCC33 GND33 VDDIO GNDIO MUTE POWERFAULT/ EADP TM RST_N STBY SDATAI SDATAO/PWM2A LRCLKI LRCLKO/PWM1B BICLKI BICLKO/PWM1A GND Block diagram VDD Figure 1. Serial digital audio interface MUX CLKOUT/ PWM2B GNDPLL Divider FILT VDDPLL MCLK33 PLL XTI XTO AGND AVCC OSC 4/58 OUT2B Control interface I2CDIS ADC INR OUT1B PWM out I/F PGA SELCLK33 VLO OUT2A SCL VCM Power driver SDA ADC MUX MUX INL VHI OUT1A FFX modulator Digital volume VBIAS Power driver STA529 2 Connection diagrams and pin descriptions Connection diagrams and pin descriptions This section includes connection diagrams and pin descriptions for the following packages: ● TFBGA48 ● VFQFPN52 2.1 TFBGA48 package 2.1.1 Connection diagram Figure 2 shows the connection diagram for the TFBGA48 package. Figure 2. Package: TFBGA48 H G F E D C B A 1 2 3 4 5 6 7 8 5/58 Connection diagrams and pin descriptions 2.1.2 Pin description Table 1. 6/58 STA529 Package: TFBGA48 Pin # Name Type Description D7 RST_N Digital input Reset (active low) D1 XTI Digital input Crystal input or master clock input E1 MCLK33 Digital input Master clock input 3.3 V capable XTI: crystal input or master clock input 3.3 V capable G3 SELCLK33 Digital input Master clock input selector: SELCLK33 = 1 -> MCLK33 selected SELCLK33 = 0 -> XTI selected D2 XTO Digital output Crystal output C7 CLKOUT/ PWM2B Digital output Buffered clock output / PWM2B FFXTm F1 SCL Digital input I2C serial clock G1 SDA Digital input/output I2C serial data G2 I2CDIS Digital input I2C disable pin (active high) G8 STBY Digital input Standby (active high) B7 MUTE Digital input Mute (active high) H6 BICLKI Digital input/output Input serial audio interface bit-clock H5 LRCLKI Digital input/output Input serial audio interface L/R-clock E2 SDATAI Digital input Input serial audio interface data G6 BICLKO/ PWM1A Digital input/output Output serial audio interface bit-clock (volume DOWN when I2CDIS = 1) / PWM1A FFXTm G5 LRCLKO/ PWM1B Digital input/output Output serial audio interface L/R-clock (volume UP when I2CDIS = 1) / PWM1B FFXTm G4 SDATAO/ PWM2A Digital output Output serial audio interface data / PWM2A FFXTm H2 TM Digital input Test mode (active high) H7 INL Analog input ADC left channel line input or microphone input H8 INR Analog input/output ADC right channel line input G7 VBIAS Analog input/output ADC microphone bias voltage D8 VCM Analog input/output ADC common mode voltage F8 AVDD Supply ADC analog supply E8 AGND Ground ADC analog ground STA529 Connection diagrams and pin descriptions Table 1. Pin # Name F7 VHI Analog input ADC high reference voltage E7 VLO Analog input ADC low reference voltage H1 FILT Analog input/output PLL loop filter terminal H4 VDDPLL Supply PLL analog supply H3 GNDPLL Ground PLL analog ground A6 OUT1A Analog output Channel 1 half-bridge A output B6 OUT1A Analog output Channel 1 half-bridge A output A5 OUT1B Analog output Channel 1 half-bridge B output B5 OUT1B Analog output Channel 1 half-bridge B output A3 OUT2A Analog output Channel 2 half-bridge A output B3 OUT2A Analog output Channel 2 half-bridge A output A4 OUT2B Analog output Channel 2 half-bridge B output B4 OUT2B Analog output Channel 2 half-bridge B output F2 2.1.3 Package: TFBGA48 (continued) Type POWERFAULT/ Digital output EADP Description Power fault signal (active high) / external audio power-down signal A8 VCC1 Supply Channel 1 power supply A1 VCC2 Supply Channel 2 power supply A7 GND1 Ground Channel 1 power ground A2 GND2 Ground Channel 2 power ground C2 VCC33 Supply Pre-driver supply B2 GND33 Ground Pre-driver ground C8 VDD Supply Digital supply B8 GND Ground Digital ground C1 VDDIO Supply I/O ring supply B1 GNDIO Ground I/O ring ground Thermal data Table 2 gives the thermal resistance specifications for the TFBGA48 and the VFQFPN52. Table 2. Device Thermal data Parameter Min Typ Max Unit TFBGA48 Thermal resistance junction to ambient 72 oC/W VFQFPN52 Thermal resistance junction to ambient 22 oC/W 7/58 Connection diagrams and pin descriptions 2.2 VFQFPN52 package 2.2.1 Connection diagram STA529 Figure 3 shows the connection diagram for the VFQFPN52 package. Figure 3. Package: VFQFPN52 27 26 40 14 52 13 8/58 39 1 STA529 2.2.2 Connection diagrams and pin descriptions Pin description Table 3. Package: VFQFPN52 Pin # Name Type Description 10 RST_N Digital input Reset (active low) 38 XTI Digital input Crystal input or master clock input 37 MCLK33 Digital input Master clock input 3.3 V capable XTI: crystal input or master clock input 3.3 V capable 36 SELCLK33 Digital input Master clock input selector: SELCLK33 = 1 -> MCLK33 selected SELCLK33 = 0 -> XTI selected 39 XTO Digital output Crystal output 11 CLKOUT Digital output Buffered clock output 34 SCL Digital input I2C serial clock 35 SDA Digital input/output I2C serial data 33 I2CDIS Digital input I2C disable pin (active high) 1 STBY Digital input Standby (active high) 14 MUTE Digital input Mute (active high) 51 BICLKI Digital input/output Input serial audio interface bit-clock 47 LRCLKI Digital input/output Input serial audio interface L/R-clock 45 SDATAI Digital input Input serial audio interface data 52 BICLKO Digital input/output Output serial audio interface bit-clock (volume DOWN when I2CDIS=1) 48 LRCLKO Digital input/output Output serial audio interface L/R-clock (volume UP when I2CDIS=1) 46 SDATAO Digital output Output serial audio interface data 32 TM Digital input Test mode (active high) 2 INL Analog input ADC left channel line input or microphone input 3 INR Analog input/output ADC right channel line input 4 VBIAS Analog input/output ADC microphone bias voltage 9 VCM Analog input/output ADC Common mode voltage 5 AVDD Supply ADC analog supply 8 AGND Ground ADC analog ground 6 VHI Analog input ADC High reference voltage 9/58 Connection diagrams and pin descriptions Table 3. Package: VFQFPN52 (continued) Pin # Name 7 VLO Analog input ADC Low reference voltage 40 FILT Analog input/output PLL loop filter terminal 42 VDDPLL Supply PLL analog supply 41 GNDPLL Ground PLL analog ground 16 OUT1A Analog output Channel 1 half-bridge A output 19 OUT1B Analog output Channel 1 half-bridge B output 25 OUT2A Analog output Channel 2 half-bridge A output 22 OUT2B Analog output Channel 2 half-bridge B output 31 10/58 STA529 Type POWERFAULT/ Digital output EADP Description Power fault signal (active high)/external audio power down signal 15 VCC1A Supply Channel 1 half-bridge A power supply 20 VCC1B Supply Channel 1 half-bridge B power supply 26 VCC2A Supply Channel 2 half-bridge A power supply 21 VCC2B Supply Channel 2 half-bridge B power supply 17 GND1A Ground Channel 1 half-bridge A power ground 18 GND1B Ground Channel 1 half-bridge B power ground 24 GND2A Ground Channel 2 half-bridge A power ground 23 GND2B Ground Channel 2 half-bridge B power ground 30 VCC33 Supply Pre-driver supply 27 GND33 Ground Pre-driver ground 13 VDD1 Supply Digital supply 12 GND1 Ground Digital ground 44 VDD2 Supply Digital supply 43 GND2 Ground Digital ground 29 VDDIO1 Supply I/O ring supply 28 GNDIO1 Ground I/O ring ground 50 VDDIO2 Supply I/O ring supply 49 GNDIO2 Ground I/O ring ground STA529 3 Electrical specifications Electrical specifications This section includes the electrical specifications for the STA529. 3.1 Maximum and recommended operating conditions Table 4 provides the maximum ratings and Table 5 the recommended operating conditions. Table 4. Absolute maximum ratings Signal Note: Description Min Max Unit VDD/VDD1/VDD2 Digital supply voltage -0.5 +2.5 V AVDD ADC supply voltage -0.5 +4 V VDDPLL PLL analog supply voltage -0.5 +2.5 V VCC1A/1B/2A/2B Power stage supply voltage -0.5 +4 V VCC33 Pre-driver supply -0.5 +4 V VDDIO Digital I/O supply -0.5 +4 V VDI Voltage range digital in -0.5 VDDIO +0.3 V VAI Voltage range analog in -0.5 AVDD +0.3 V Vo Voltage on output pins -0.5 VDDIO +0.3 V TSTG Storage temperature -40 150 oC TAMB Ambient operating temperature -20 85 oC Min Typ Max Unit All grounds must be within 0.3 V of each other. Table 5. Recommended operating conditions Symbol Parameter VDD/VDD1/VDD2 Digital supply voltage 1.55 1.8 1.95 V AVDD ADC supply voltage 1.8 3.3 3.6 V VDDPLL PLL analog supply voltage 1.55 1.8 1.95 V VCC1A/1B/2A/2B Power stage supply voltage 1.8 3.3 3.6 V VCC33 Pre-driver supply 1.8 3.3 3.6 V GND1, GND2, GND33 Channel 1 and 2 power ground, pre-driver ground TAMB Ambient operating temperature 0 0 25 70 o C 11/58 Electrical specifications 3.2 STA529 Electrical characteristics Table 6 lists the device’s electrical characteristics (see also Table 5 for supply voltages). Table 6. Electrical characteristics Symbol Parameter Test conditions Min Typ Max Unit Eff Output power efficiency 90 % Rdson Output stage N/PMOS onresistance 250 mΩ IstbyL Logic power supply current at standby 1.3 µA IstbyP Bridges power supply current in standby 0.7 µA IddL Logic power supply current at operating 15 mA IddP Bridges power supply current at operating 0.5 mA Tds Low current dead time (static) 1 ns Tdd High current dead time (dynamic) 2.5 ns Tr Rise time 3 ns Tf Fall time 3 ns THDN Total harmonic distortion 0 dBFS input, 32 Ω load headphone 0.1 % THDN Total harmonic distortion -6 dBFS input, 32 Ω load headphone 0.05 % Note: 12/58 LRCLKI frequency (Fs) = 48 kHz, input frequency = 1 kHz, and Rload = 32 Ω unless otherwise specified. STA529 Electrical specifications The following tables give the distortion values for headphones and speakers. Table 7. 3.3 Load power at 1% distortion headphone mode Load (Ω) P (mW) at 1.8 V P (mW) at 3.3 V P (mW) at 3.6 V 16 20 70 80 32 10 32 40 Lock time Table 8 gives the typical lock time of the PLL using the suggested loop filter, 1.8 V supply voltage and 30 oC junction temperature. Table 8. PLL lock time Parameter Value Lock time 200 µs 13/58 Electrical specifications 3.4 STA529 ADC performance values Table 9. Programmable gain performance Parameter Min Typ Dynamic range 1 kHz 1.8 V supply Dynamic range 1 kHz 1.8 V supply A-weighted Unit dB 84 SNDR 1 kHz 1.8 V supply dB dB SNDR 1 kHz 1.8 V supply A-weighted 84 dB THD 1 kHz (-1 dB input) 1.8 V supply 75 dB Deviation from linear phase 14/58 Max degree Pass band kHz Pass band ripple dB Stop band kHz Stop band attenuation dB Group delay 8 kHz ms Group delay 48 kHz ms Cross talk 1.8 V dB Cross talk 3.3 V dB STA529 4 Digital processing Digital processing The STA529 processor block is a digital block providing two channels of audio processing and channel-mapping capability. 4.1 Signal processing flow I2S or stereo ADC data can be selected. The I2S frequency range is from 8 kHz to 192 kHz. ADC sampling frequency can be selected from 8 kHz to 48 kHz. 4.2 I2C interface disabled When pin I2CDIS = 1, the SDA, SCL, LRCLKO and BICLKO pins can be pulled high or low to change certain parameters of operation. ● SDA = 0: FFX input comes from ADC SDA = 1: FFX input comes from digital audio interface ● SCL = 0: binary output mode (binary soft start/stop enabled) SCL = 1: phase shift output mode ● LRCLKO = 0: no volume change LRCLKO = 1: volume up ● BICLKO = 0: no volume change BICLKO = 1: volume down At power up, the master volume is set to -60 dB. When holding pin LRCLKO = 1 and pin BICLKO = 1 simultaneously, the master volume is set to 0 dB. A high pulse on pin LRCLKO causes a master volume change of +0.5 dB and a high pulse on pin BICLKO causes a master volume change of -0.5 dB. 15/58 Digital processing 4.3 STA529 Volume control and gain The volume control structure of the STA529 consists of individual volume registers for each channel and a master volume register that provides an offset to each channel’s volume setting. The individual channel volumes are adjustable in 0.5 dB steps from +36 dB to -91.5 dB. As an example, if register LVOL = 0x00 or +36 dB and register MVOL = 0x18 or -12 dB, then the total gain for the left channel is +24 dB. When the mute bit is set to 1, all channels are muted. The volume control provides a soft mute with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (~48 kHz). Table 10. Table 11. 16/58 Master volume offset as a function of register MVOL MVOL[7:0] Volume offset from channel value 0x00 0 dB 0x01 -0.5 dB 0x02 -1dB … … 0x78 -60 dB … … 0xFE -105 dB 0xFF Hard master mute Channel volume as a function of registers LVOL and RVOL LVOL/RVOL[7:0] Volume 0x00 +36 dB 0x01 +35.5 dB 0x02 +35 dB … … 0x47 +0.5 dB 0x48 0 dB 0x49 -0.5 dB … … … … 0xFF -91.5 dB STA529 PLL 5 PLL Figure 4 shows the main components of the PLL. Figure 4. PLL block diagram INFIN CLKIN Input frequency divider FBCLK LOCKP Lock detect IDF FILT INFIN Buffer INFOUT REFOUT Phase frequency divider (PFD) LF Charge pump and loop filter VCONT FBCLK VCO FVCO Loop frequency divider STRB STRB_ BYPASS FRAC_CTRL DITHER_DISABLE FRAC_INPUT Fractional controller Output frequency divider PHI NDIV 17/58 PLL 5.1 STA529 Functional description Phase/frequency detector The phase/frequency detector (PFD) compares the phase difference between the corresponding rising edges of INFIN and FBCLK, (clock output from the loop frequency divider) by generating voltage pulses with widths proportional to the input phase error. Charge pump and loop filter This block converts the voltage pulses from the phase/frequency detector to current pulses which charge the loop filter and generate the control voltage for the voltage-controlled oscillator. The loop filter is placed external to the PLL on pin FILT. Voltage controlled oscillator The voltage controlled oscillator (VCO) is the oscillator inside the PLL. It produces a frequency output (FVCO) proportional to the input control voltage. Input frequency divider This frequency divider divides the PLL input clock CLKIN by a factor called the input division factor (IDF) to generate the PFD input frequency INFIN. Loop frequency divider This frequency divider is present within the PLL for dividing FVCO by a factor called the loop division factor (LDF). The output of this block is the FBCLK. Output frequency divider The PLL output PHI is generated by dividing the FVCO by the output division factor (ODF). The divider that divides the FVCO to generate the clock to the core is called the output frequency divider. In the STA529, the ODF is fixed to be divisible by 2 and cannot be configured. Lock-detect circuit The output of this block (the LOCKP signal) is asserted high when the PLL enters the state of COARSE LOCK in which the output frequency is within +/-10% (approximately) of the desired frequency. The LOCKP signal is refreshed every 32 cycles of the INFIN. The generated value is based on the result of comparing the number of FBCLK cycles in a window of 14 INFIN cycles. The different cases generated after comparison are as follows. 18/58 ● If LOCKP is already at 0, then in the next refresh cycle LOCKP goes to 1 if the number of FBCLK cycles in the 14-cycle INFIN window is 13, 14, or 15. Otherwise LOCKP stays at 0. ● If LOCKP is already at 1, then in the next refresh cycle LOCKP goes to 0 if the number of FBCLK cycles in the 25-cycle INFIN window is less than 11 or higher than 17, otherwise LOCKP stays at 1. ● If LOCKP is already at 1 and CLKIN is lost (no longer present on the input pin), LOCKP stays at 1. In this case, the PLL is unlocked. STA529 PLL PLL filter Figure 5 shows the PLL filter scheme. Recommended values are R1 = 12.5 kΩ, C1 = 250 pF, and C2 = 82 pF. Figure 5. PLL filter scheme Vc R1 C2 C1 Ground Table 8 on page 13 gives a typical lock time value for the PLL. 5.2 Configuration examples The STA529 PLL can be configured in two ways: ● default startup configuration ● direct PLL programming The default startup configuration reads the device’s defaults. With this configuration, it is not necessary to program the PLL dividers directly as some presets are used. In this mode, the oversampling ratio between pins XTI (or MCLK33) and LRCLKI is fixed to 256. The direct PLL programming bypasses the automatic presets allowing direct programming of the PLL dividers. The output PLL frequency can be determined as following: Output division factor: ODF = 2 Relation between input and output clock frequency: FINFIN = FXTI / IDF If register bit PLLCFG0.FRAC_CTRL = 1 FVCO = FINFIN * (LDF + FRACT/216 + 1/217) FPHI = FVCO / ODF When register bit PLLCFG0.DITHER_DISABLE[1] = 1, the 1/217 factor is not in the multiplication. This is recommended in order to keep register bit PLLCFG0.DITHER_DISABLE[1] = 0, otherwise there can be spurious signals in the output clock spectrum. 19/58 PLL STA529 If register bit PLLCFG0.FRAC_CTRL = 0, then: FVCO = FINFIN * LDF FPHI = FVCO / ODF In the above equations: FRACT = Decimal equivalent of register bit PLLCFG1.FRAC_INPUT[15:0] IDF = Input division factor (refer to previous formulas) LDF = Loop division factor (refer to previous formulas) ODF = Output division factor = 2 FINFIN = INFIN frequency FXTI = XTI frequency FVCO = VCO frequency FPHI = Frequency of the PLL output clock When selecting the value of IDF, LDF and FRACT make sure the following limits are maintained: 2.048 MHz < FXTI < 49.152 MHz 2.048 MHz < FINFIN < 16.384 MHz 65.536 MHz < FVCO < 98.304 MHz There are also some additional constraints on IDF and LDF. IDF should be greater than 0, LDF should be greater than 5 if FRAC_CTRL = 0 and greater than 8 if FRAC_CTRL = 1. When automatic settings are not used, the PLL must be configured to generate an internal frequency of N * Fs, where Fs is the LRCLKI pin frequency. Values of N are given in Table 12. Table 12. 20/58 Oversampling table Fs (kHz) N FPHI (MHz) 8 4096 32.768 11.025 4096 45.1584 12 4096 49.152 16 2048 32.768 22.05 2048 45.1584 24 2048 49.152 32 1024 32.768 44.1 1024 45.1584 48 1024 49.152 64 512 32.768 88.2 512 45.1584 96 512 49.152 128 256 32.768 176.4 256 45.1584 192 256 49.152 STA529 PLL Example 1: FXTI = 13 MHz Fs = 44.1 kHz IDF should be equal to 3 otherwise LDF become less than 8 (FRAC_CTRL must be 1): LDF = floor(45.1584/(13/IDF)) = 10 FRACT = round([(45.1584/(13/ IDF))-floor(45.1584/(13/ IDF))]*216) = 27602 (where: floor: rounded towards zero round: rounded real number to nearest integer) Using the above configuration, the system clock is 45.15841675 MHz, the approximate static error is 16 Hz (that is, 0.5 ppm). Example 2: FXTI = 19.2 MHz Fs = 48 kHz IDF should be equal to 4 otherwise LDF become less than 8 (FRAC_CTRL must be 1): LDF = floor(49.152/(19.2/IDF)) = 10 FRACT = round([(49.152/(19.2/IDF))-floor(49.152/(19.2/IDF))]*216) = 15728 Using the above configuration, the system clock is 49.151953125 MHz, the approximate static error is 47 Hz (that is, 1 ppm). 21/58 ADC 6 STA529 ADC This section describes the analog-to-digital converter (ADC). 6.1 Functional description The STA529 analog input is provided through a low power, low voltage, stereo audio analogto-digital converter front-end designed for audio applications. It includes a programmable gain amplifier, anti-aliasing filter, low-noise microphone biasing circuit, a third-order MASH2-1 delta-sigma modulator, digital decimating filter, and a first-order DC-removal filter. This device is fabricated using a 0.18 µm CMOS process, where high-speed precision analog circuits are combined with high-density logic circuits. The ADC works in a microphone input (mic-in) mode and in a line-input mode. If the line input mode is selected, the ADC is configured in stereo and all conversion channels are active. If the microphone input mode is selected, the ADC is configured in mono. The mono channel is routed through the left conversion path, and the right conversion path is kept in power-down mode to minimize power consumption. A programmable gain amplifier (PGA) is available in mic-in mode, giving the possibility to amplify the signal from 0 to +42 dB in steps of 6 dB. 6.1.1 Digital filter characteristics The digital filter characteristics are shown in Table 13. Table 13. Digital filter characteristics Parameter Passband Passband ripple: Fs mode Fs_by_2 mode Fs_by_4 mode Stop band attenuation: Fs mode Fs_by_2 mode Fs_by_4 mode Group delay: Fs mode Fs_by_2 mode Fs_by_4 mode 22/58 Typical Unit 0.4535 * Fs kHz 0.08 at 44.1 kHz 0.08 at 22.05 kHz 0.08 at 11.025 kHz dB dB dB 45 at 44.1 kHz 45 at 22.05 kHz 45 at 11.025 kHz dB dB dB 0.4 at 32 kHz 0.7 at 16 kHz 1.4 at 8 kHz ms ms ms STA529 6.1.2 ADC High-pass filter characteristics Table 14. High-pass filter characteristics Parameter Typical Unit 7 50 Hz Hz Phase deviation at 20 Hz 19.35 degree Passband ripple 0.08 dB Frequency response: -3 dB -0.08 dB 6.1.3 Programmable gain amplifier The programmable gain amplifier (PGA) is available in mic-in mode only. It is possible to amplify the input signal from 0 to 42 db in steps of 6 db. The setting is done through PGA bits of the ADCCFG register (see ADCCFG on page 49 for details). See Table 9 on page 14 for performance values. 6.2 Application scheme Figure 6 shows the filter circuit. Figure 6. Block diagram C9 AC coupled INL DC coupled C0 AC coupled INR DC coupled 1.8 V supply AVDD VSSA C5 R1 VHI VSSA VCM 3 V, 3 A must be a low-noise supply and separate from other supplies C3 VBIAS C8 VSSA plane must be different from other ground plane C2 VLO C7 C5, C6, C7 = 33 µF (Low ESR and ESL capacitors are recommended) C1 AGND C6 C1, C2, C3, C4 = 10 nF (These capacitors must be placed very close to their respective pins) R1 = 500 Ω C8 = 10 µF C9, C0 = 1 µF C4 23/58 ADC 6.3 STA529 Configuration examples The ADC sampling frequency can be selected from three values: ● normal (from 32 kHz to 48 kHz) ● low (from 16 kHz to 24 kHz) ● very-low (from 8 kHz to 12 kHz) The setting is done through register bits MISC.ADC_FS_RANGE (see MISC on page 50 for details). For all other settings, register ADCCFG is used (see ADCCFG on page 49 for details). 24/58 STA529 7 Driver configuration Driver configuration A driver configuration is available that allows PWM commands to be used on an external power device. For this purpose, the output serial audio interface is disabled and the respective pins have an alternative name and new functionality, as shown in Table 15. Table 15. Pin functionality in driver-configuration mode Pin Alternative pin name and functionality BICLKO PWM1A (external bridge PWM command for output 1A) LRCLKO PWM1B (external bridge PWM command for output 1B) SDATAO PWM2A (external bridge PWM command for output 2A) CLKOUT PWM2B (external bridge PWM command for output 2B) POWERFAULT EADP (external audio power-down signal) The driver configuration is selected with two programmable registers PWMINT1 = 0x93 and PWMINT2 = 0x81 (see PWMINT1 on page 51 and PWMINT2 on page 51). 7.1 I2S bypass A configuration is available which allows the bypassing of the I2S input signal straight to the I2S output signal. This configuration is set using two programmable registers PWMINT1 = 0x93 and PWMINT2 = 0x80 (see PWMINT1 on page 51 and PWMINT2 on page 51). 25/58 Serial audio interface 8 STA529 Serial audio interface This section includes information about the audio interface. 8.1 Specifications The serial-to-parallel interface and the parallel-to-serial interface can have different sampling rates. The following terms are used in this section: 26/58 ● BICLK active edge: Pins SDATAI, SDATAO, LRCLKI, LRCLKO always change synchronously with BITCLK active edges. The active edge can be configured to a rising or falling edge via register programming. ● BICLK strobe edge: Pins SDATAI, SDATAO, LRCLKI, LRCLKO should be stable near BICLK strobe edges, the slave device is able to use strobe edges to latch serial data internally. STA529 8.2 Serial audio interface Master mode In this mode, pins BICLKI/BICLKO and pins LRCLKI/LRCLKO are configured as outputs. Figure 7. Master mode BICLKI/ BICLKO tDL LRCLKI/ LRCLKO tDDA SDATAO SDATAI tDST Table 16. tDHT Master mode Parameter Symbol Min LRCLKI/LRCLKO propagation delay from BICLK active edge tDL SDATAI propagation delay from BICLKI/O active edge Typ Max Unit 0 10 ns tDDA 0 15 ns Sdatao setup time to BICLKI/O strobing edge tDST 10 ns Sdatao hold time from BICLKI/O strobing edge tDHT 10 ns 27/58 Serial audio interface 8.3 STA529 Slave mode In this mode, pins BICLKI/O and pins LRCLKI/O are configured as inputs. Figure 8. Slave mode tBCH tBCL BICLKI/ BICLKO tBCY LRCLKI/ LRCLKO tDS tLRH tLRSU SDATAO tDH SDATAI tDD Table 17. Slave mode Parameter 28/58 Symbol Min Typ Max BICLK cycle time tBCY 50 ns BICLK pulse width high tBCH 20 ns BICLK pulse width low tBCL 20 ns LRCLKI/LRCLKO setup time to BICLK strobing edge tLRSU 10 ns LRCLKI/LRCLKO hold time to BICLK strobing edge tLRH 10 ns SDATAO setup time to BICLK strobing edge tDS 10 ns SDATAO hold time to BICLK strobing edge tDH 10 ns SDATAI propagation delay from BICLK active edge tDD 0 10 Unit ns STA529 8.4 Serial audio interface Serial formats Different audio formats are supported in both master and slave modes. Clock and data configurations can be customized to match most of the serial audio protocols available on the market. Data length can be customized for 8-, 16-, 24-, and 32-bit. Figure 9. Right justified LRCLKI/ LRCLKO BICLKI/ BICLKO SDATAI/ SDATAO n-1 n 1 2 3 n-1 n 1 2 3 Figure 10. Left justified LRCLKI/ LRCLKO BICLKI/ BICLKO SDATAI/ SDATAO 1 2 3 n-1 n 1 2 3 n-1 n 29/58 Serial audio interface 8.4.1 STA529 DSP Figure 11. DSP LRCLKI/ LRCLKO BICLKI/ BICLKO Left SDATAI/ SDATAO 8.4.2 1 2 3 Right n-1 n 1 2 3 n-1 n I2S Figure 12. I2S LRCLKI/ LRCLKO BICLKI/ BICLKO SDATAI/ SDATAO 30/58 1 2 3 n-1 n 1 2 3 n-1 n STA529 8.4.3 Serial audio interface PCM/IF (non-delayed mode) ● MSB first ● 16-bit data Figure 13. PCM/IF (non delayed mode) Any width LRCLKI/ LRCLKO BICLKI/ BICLKO SDATAI/ SDATAO 8.4.4 1 2 3 n-1 n PCM/IF (delayed mode) ● MSB first ● 16-bit data Figure 14. PCM/IF (delayed mode) LRCLKI/ LRCLKO BICLKI/ BICLKO SDATAI/ SDATAO 1 2 3 n-1 n 31/58 I2C interface 9 STA529 I2C interface This section describes the communication protocol of the I2C interface. 9.1 Data transition and change Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is high is used to identify a start or stop condition. 9.2 Start condition A start condition is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A start condition must precede any command for data transfer. 9.3 Stop condition A stop condition is identified by low to high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A stop condition terminates communication between the STA529 and the master bus. 9.4 Data input During data input, the STA529 samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low. 9.5 Device addressing To start communication between the master and the STA529, the master must initiate with a start condition. Following this, the master sends onto the SDA line 8 bits (MSB first) corresponding to the device select address and read or write mode. The 7 most significant bits are the device address identifiers, corresponding to the I2C bus definition. In the STA529, the I2C interface has the device address 0x34. The 8th bit (LSB) identifies read or write operation (R/W), this bit is set to 1 in read mode and 0 in write mode. After a start condition, the STA529 identifies on the bus the device address and if a match is found, it acknowledges the identification on SDA bus during the 9th bit time. The byte following the device identification byte is the internal space address. 32/58 I2C interface STA529 9.6 Write operation Following the start condition the master sends a device select code with the R/W bit set to 0. The STA529 acknowledges this and the writes to the byte of the internal address. After receiving the internal byte address, the STA529 responds with an acknowledgement. 9.6.1 Byte write In the byte-write mode the master sends one data byte. This is acknowledged by the STA529. The master then terminates the transfer by generating a stop condition. 9.6.2 Multi-byte write The multi-byte write modes can start from any internal address. The master generates a stop condition which terminates the transfer. 9.7 Read operation 9.7.1 Current address byte read Following the start condition the master sends a device select code with the R/W bit set to 1. The STA529 acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a stop condition. 9.7.2 Current address multi-byte read The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA529. The master acknowledges each data byte read and then generates a stop condition terminating the transfer. 9.7.3 Random address byte read Following the start condition the master sends a device select code with the R/W bit set to 0. The STA529 acknowledges this and then the master writes the internal address byte. After receiving the internal byte address, the STA529 again responds with an acknowledgement. The master then initiates another start condition and sends the device select code with the R/W bit set to 1. The STA529 acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a stop condition. 33/58 I2C interface 9.7.4 STA529 Random address multi-byte read The multi-byte read modes could start from any internal address. Sequential data bytes are read from sequential addresses within the STA529. The master acknowledges each data byte read and then generates a stop condition terminating the transfer. Figure 15. I2C write operations ACK ACK Byte Write Start Dev address R/W Sub address Start Dev address R/W Data in Stop ACK ACK Multibyte Write ACK ACK Sub address ACK Data in Data in Stop Figure 16. I2C read operations ACK Current address read Start Dev address R/W No ACK Data ACK Random address read Start Dev address R/W ACK Sub address ACK Sequential current read Start Dev address R/W=High Dev address R/W ACK Start Dev address ACK No ACK Data ACK Dev address R/W Data ACK Data 34/58 Stop ACK ACK Start Stop No ACK Data ACK Sub address R/W Data Data ACK Sequential random read Start Stop No ACK Data Stop STA529 10 Registers Registers This section includes register information. 10.1 Summary Table 18. Register summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 0x00 FFXCFG0 MUTE POW_STBY SOFT_ VOL_ON BIN_SOFTS TART 0x01 FFXCFG1 L1_R2 MUTE_ON_ INVALID 0x02 MVOL SET_VOL_MASTER[7:0] 0x03 LVOL SET_VOL_LEFT[7:0] 0x04 RVOL SET_VOL_RIGHT[7:0] 0x05 TTF0 TIM_TS_FAULT[15:8] 0x06 TTF1 TIM_TS_FAULT[7:0] 0x07 TTP0 TIM_TS_POWUP[15:8] 0x08 TTP1 TIM_TS_POWUP[7:0] 0x0A S2PCFG0 BICLK_ STRB 0x0B S2PCFG1 PDATA_LENGTH[1:0] 0x0C P2SCFG0 BICLK_ STRB 0x0D P2SCFG1 PDATA_LENGTH[1:0] 0x14 PLLCFG0 0x15 PLLCFG1 FRAC_INPUT[15:8] 0x16 PLLCFG2 FRAC_INPUT[7:0] 0x17 PLLCFG3 STRB STRB_BYP ASS 0x18 PLLPFE PLL_BYP_ UNL BICLK2PLL PLL_PWDN 0x19 PLLST PLL_UNLO CK PLL_PWD_ STATE PLL_BYP_ STATE 0x1E ADCCFG 0x1F CKOCFG CLKOUT_ DIS 0x20 MISC OSC_DIS 0x21 PADST0 Reserved 0x22 PADST1 Reserved 0x23 FFXST 0x28 BISTRUN PLL_DIREC T_PROG LRCLK_ LEFT Bit 3 SDATAO_ ACT MSB_FIRST MASTER_ MODE DATA_FORMAT[2:0] MAP_L[1:0] MSB_FIRST MAP_R[1:0] MASTER_ MODE DATA_FORMAT[2:0] BICLK_OS[1:0] FRAC_ CTRL Bit 0 PWM_SHIFT[1:0] BICLK_OS[1:0] LRCLK_ LEFT Bit 1 TIM_SOFT_VOL[3:0] PWM_MODE[1:0] SHARE_ BILR Bit 2 MAP_L[1:0] DITHER_DISABLE[1:0] MAP_R[1:0] IDF[3:0] NDIV[5:0] PGA[2:0] PFE1A PFE1B PFE2A PFE2B INSEL STBY BYPASS_ CALIB CLKENBL RESET_FA ULT CLKOUT_SEL[1:0] P2P_FS_RANGE[2:0] ADC_FS_RANGE[1:0] INVALID_ INP_FBK P2P_IN_ ADC CORE_ CLKENBL MUTE_ INT_FBK BINSS_FBK Reserved 35/58 Registers STA529 Table 18. Register summary (continued) Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0x29 BISTST0 Reserved 0x2A BISTST1 Reserved 0x2B BISTST2 Reserved 0x2D PWMINT1 PWM_INT[15:8] 0x2E PWMINT2 0x32 10.2 Bit 1 POW_ TRISTATE POW_ FAULT1A POW_ FAULT1B POW_ FAULT2A POW_ FAULT2B General registers FFXCFG0 Bit 7 MUTE FFX configuration register 0 Bit 6 POW_STBY Address: 0x00 Type: R/W Buffer: No Reset: 0x75 Bit 5 Bit 4 SOFT_VOL_ON BIN_ SOFTSTART Bit 3 Bit 2 Bit 1 TIM_SOFT_VOL[3:0] Description: 7 MUTE: 0: default 1: FFX output is zero 6 POW_STBY: 0: FFX bridge is in power-up mode 1: FFX bridge is put in standby mode (default) 5 SOFT_VOL_ON: 0: smooth transition not active 1: smooth transition when changing volume control (default) 4 BIN_SOFTSTART: Reserved (1: default) 3:0 TIM_SOFT_VOL: volume control time step for any 0.5 dB volume change Time is (2TIM_SOFT_VOL) * 20.83 µs Default is 666.66 µs 36/58 Bit 0 PWM_INT[7:0] POWER DOWN POWST Bit 2 Bit 0 STA529 Registers FFXCFG1 Configuration register 1 Bit 7 Bit 6 L1_R2 MUTE_ON_ INVALID Address: 0x01 Type: R/W Buffer: No Reset: 0xf8 Bit 5 Bit 4 PWM_MODE[1:0] Bit 3 Bit 2 Bit 1 Bit 0 PWM_SHIFT[1:0] Description: 7 L1_R2: channel mapping: 0: right channel is mapped to output channel 1 and left channel is mapped to output channel 2 1: left channel is mapped to output channel 1 and right channel is mapped to output channel 2 (default) 6 MUTE_ON_ INVALID: mutes PWM outputs if invalid digital data is received: 0: outputs are not muted 1: outputs are muted (default) 5:4 PWM_MODE[1:0]: 00: binary (output B is opposite of output A) 01: binary headphones (output B is 50 % duty cycle) 10: ternary 11: phase shift (default) 3:2 PWM_SHIFT[1:0]: 10: default PWM period-shift between channels 1 and 2 Value is N * 90o Default is 180o 1:0 Reserved (00: default) MVOL Bit 7 Master volume control register Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SET_VOL_MASTER[7:0] Address: 0x02 Type: R/W Buffer: No Reset: 0x00 Description: 7:0 SET_VOL_MASTER[7:0]: master volume control: From 0 dB to -127.5 dB in 0.5 dB steps 37/58 Registers STA529 LVOL Bit 7 Left channel volume control register Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SET_VOL_LEFT[7:0] Address: 0x03 Type: R/W Buffer: No Reset: 0x48 Description: 7:0 SET_VOL_LEFT[7:0]: left channel volume control: 0100 1000: default Left channel volume control (from +36 dB to -91.5 dB in 0.5 dB steps) Default value corresponds to 0 dB RVOL Bit 7 Right channel volume control register Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 SET_VOL_RIGHT[7:0] Address: 0x04 Type: R/W Buffer: No Reset: 0x48 Description: 7:0 SET_VOL_RIGHT[7:0]: right channel volume control: 0100 1000: default Right channel volume control (from +36 dB to -91.5 dB in 0.5 dB steps) Default value corresponds to 0 dB 38/58 Bit 1 Bit 0 STA529 Registers TTF0 Bit 7 Tri-state time-after-fault register 0 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 1 Bit 0 TIM_TS_FAULT[15:8] Address: 0x05 Type: R/W Buffer: No Reset: 0x00 Description: 7:0 MSBs of TIM_TS_FAULT[15:8]: See TTF1 on page 39. TTF1 Bit 7 Tri-state time-after-fault register 1 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 TIM_TS_FAULT(7:0) Address: 0x06 Type: R/W Buffer: No Reset: 0x02 Description: 7:0 LSBs of TIM_TS_FAULT[7:0]: time in which power is held in tri-state mode after a fault signal: Time is TIM_TS_FAULT * 83.33 µs. Default value corresponds to 166.66 µs tri-state time after fault 39/58 Registers STA529 TTP0 Bit 7 Tri-state time-after-power-up register 0 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TIM_TS_POWUP[15:8] Address: 0x07 Type: R/W Buffer: No Reset: 0x00 Description: 7:0 MSBs of TIM_TS_POWUP[15:8]: See register TTP1. TTP1 Bit 7 Tri-state time-after-power-up register 1 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TIM_TS_POWUP[7:0] Address: 0x08 Type: R/W Buffer: No Reset: 0x02 Description: 7:0 LSBs of TIM_TS_POWUP[7:0]: time in which power is held in tri-state mode after a powerup signal: Time is TIM_TS_POWUP * 83.33 µs Default value corresponds to 166.66 µs tri-state time after power-up 40/58 STA529 Registers S2PCFG0 Bit 7 BICLK_STRB Serial-to-parallel audio interface configuration register 0 Bit 6 LRCLK_LEFT Address: 0x0A Type: R/W Buffer: No Reset: 0xD2 Bit 5 SHARE_BILR Bit 4 MSB_FIRST Bit 3 Bit 2 Bit 1 DATA_FORMAT[2:0] Bit 0 MASTER_ MODE Description: 7 BICLK_STRB: 0: bit clock strobe edge is falling edge, bit clock active edge is rising edge 1: bit clock strobe edge is rising edge, bit clock active edge is falling edge (default) 6 LRCLK_LEFT: 0: left/right clock is low for left channel, high for right channel 1: left/right clock is high for left channel, low for right channel (default) 5 SHARE_BILR: 0: default 1: left/right clock and bit clock are shared between serial-parallel interface and parallel-toserial interface, BICLKI and LRCLKI are used 4 MSB_FIRST: 0: LSB first 1: MSB first (default) 3:1 DATA_FORMAT[2:0]: serial interface protocol format: 000: left Justified 001: I2S (default) 010: right justified 100: PCM no delay 101: PCM delay 111: DSP 001: default 0 MASTER_MODE: 0: default 1: serial interface is in master mode 41/58 Registers STA529 S2PCFG1 Bit 7 Serial-to-parallel audio interface configuration register 1 Bit 6 PDATA_LENGTH[1:0] Address: 0x0B Type: R/W Buffer: No Reset: 0x91 Bit 5 Bit 4 BICLK_OS[1:0] Bit 3 Bit 2 MAP_L[1:0] Description: 7:6 PDATA_LENGTH[1:0]: serial-to-parallel interface data length: 10: default Length is (N+1) * 8 bit Default is 24 bit 5:4 BICLK_OS[1:0]: bit clock oversampling: 01: default Value is (N+1) * 32 fs (where fs = sampling frequency) Default is 64 fs 3:2 MAP_L[1:0]: left data-mapping slot: 00: default Value is nth slot Default is slot0 1:0 MAP_R[1:0]: right data-mapping slot: 01: default Value is nth slot Default is slot 42/58 Bit 1 Bit 0 MAP_R[1:0] STA529 Registers P2SCFG0 Bit 7 BICLK_ STRB Parallel-to-serial audio interface configuration register 0 Bit 6 LRCLK_LEFT Address: 0x0C Type: R/W Buffer: No Reset: 0xD3 Bit 5 SDATAO_ACT Bit 4 MSB_FIRST Bit 3 Bit 2 DATA_FORMAT[2:0] Bit 1 Bit 0 MASTER_ MODE Description: 7 BICLK_STRB: defines the bit clock edges: 0: strobe is falling edge, active edge is rising 1: strobe is rising edge, active edge is falling (default) 6 LRCLK_LEFT: defines the channel for the LR clock: 0: clock is low for left channel, high for right channel 1: clock is high for left channel, low for right channel (default) 5 SDATAO_ ACT: sets the behavior of pin SDATAO: 0: output is tri-stated when no data is sent (default) 1: output is never in tri-state (it is 0 when no data is sent) 4 MSB_FIRST: data alignment in the protocol for SDATAI and SDATAO: 0: LSB is the first bit 1: MSB is the first bit (default) 3:1 DATA_FORMAT[2:0]: serial interface protocol format: 000: left justified 001: I2S (default) 010: right justified 100: PCM no delay 101: PCM delay 111: DSP 0 MASTER_ MODE: selects serial interface master/slave mode: 0: slave 1: master (default) 43/58 Registers STA529 P2SCFG1 Bit 7 Parallel-to-serial audio interface configuration register 1 Bit 6 PDATA_LENGTH[1:0] Address: 0x0D Type: R/W Buffer: No Reset: 0x91 Bit 5 Bit 4 Bit 3 BICLK_OS[1:0] Bit 2 MAP_L[1:0] Description: 7:6 PDATA_LENGTH[1:0]: serial-to-parallel interface data length: 10: default Length is (PDATA_LENGTH+1) * 8 bit Default is 24 bits 5:4 BICLK_OS[1:0]: bit clock oversampling: 01: default Value is (BICLK_OS+1) * 32 fs Default is 64 fs 3:2 MAP_L[1:0]: left data-mapping slot: 00: default Value is nth slot Default is slot0 1:0 MAP_R[1:0]: right channel data-mapping slot: 01: default Value is nth slot Default is slot1 44/58 Bit 1 Bit 0 MAP_R[1:0] STA529 Registers PLLCFG0 PLL configuration register 0 Bit 7 Bit 6 PLL_DIRECT_ PROG FRAC_CTRL Address: 0x14 Type: R/W Buffer: No Reset: 0x00 Bit 5 Bit 4 Bit 3 Bit 2 DITHER_DISABLE[1:0] Bit 1 Bit 0 Bit 1 Bit 0 IDF[3:0] Description: 7 PLL_DIRECT_PROG: PLL programming: 0: default 1: PLL is programmed according to the PLLCFG register settings 6 FRAC_CTRL: 0: default 1: PLL fractional-frequency synthesis is enabled 5:4 DITHER_DISABLE[1:0]: 00: default MSB = 1: disables rectangular PDF dither input to SDM LSB = 1: disables triangular PDF dither input to SDM 3:0 IDF[3:0]: PLL input division factor: 0000: IDF = 1 (default) 0001: IDF = 1 0010: IDF = 2 … 1111: IDF = 15 PLLCFG1 Bit 7 PLL configuration register 1 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 FRAC_INPUT[15:8] Address: 0x15 Type: R/W Buffer: No Reset: 0x00 Description: 7:0 FRAC_INPUT[15:8]: 16 bits are used to set the fractional part of PLL multiplication factor: 0000 0000: default 45/58 Registers STA529 PLLCFG2 Bit 7 PLL configuration register 2 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 FRAC_INPUT[7:0] Address: 0x16 Type: R/W Buffer: No Reset: 0x00 Description: 7:0 FRAC_INPUT[7:0]: 16 bits are used to set the fractional part of PLL multiplication factor: 0000 0000: default PLLCFG3 PLL configuration register 3 Bit 7 Bit 6 STRB STRB_BYPASS Address: 0x17 Type: R/W Buffer: No Reset: 0x00 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 NDIV[5:0] Description: 7 STRB: asynchronous strobe input to the fractional controller: 0: default 6 STRB_BYPASS: standby bypass: 0: STRB signal is not bypassed (default) 1: STRB signal is bypassed 5:0 NDIV[5:0]: PLL multiplication factor (integral part) named as loop division factor: 0000 XX: LDF = NA 0001 00: LDF = NA 0001 01: LDF = 5 ... 1101 11: LDF = 55 111X XX: LDF = NA 0000 00: default 46/58 Bit 0 STA529 Registers PLLPFE PLL/POP-free configuration register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PLL_BYP_UNL BICLK2PLL PLL_PWDN PFE1A PFE1B PFE2A PFE2B RESET_FAULT Address: 0x18 Type: R/W Buffer: No Reset: 0x00 Description: 7 PLL_BYP_UNL: PLL bypass: 0: PLL is not bypassed (default) 1: PLL is bypassed when not locked 6 BICLK2PLL: 0: default 1: BICLKI is input to PLL 5 PLL_PWDN: 0: default 1: PLL is put in power-down mode 4 PFE1A: 0: default 1: POP-free resistances are connected to output 1A 3 PFE1B: 0: default 1: POP-free resistances are connected to output 1B 2 PFE2A: 0: default 1: POP-free resistances are connected to output 2A 1 PFE2B: 0: default 1: POP-free resistances are connected to output 2B 0 RESET_FAULT: 0: default 1: fault signal in the i2c register POWST is reset 47/58 Registers STA529 PLLST PLL status register (RO) Bit 7 Bit 6 Bit 5 PLL_UNLOCK PLL_PWD_ STATE PLL_BYP_ STATE Address: 0x19 Type: RO Buffer: No Reset: Undefined Bit 4 Bit 3 Description: 7 PLL_UNLOCK: PLL unlock state: 0: PLL is not in unlock state 1: PLL is in unlock state 6 PLL_PWD_ STATE: PLL power-down state: 0: PLL is not in power-down state 1: PLL is in power-down state 5 PLL_BYP_STATE: PLL bypass state: 0: PLL is not in bypass state 1: PLL is in bypass state 4:0 Reserved 48/58 Bit 2 Bit 1 Bit 0 STA529 Registers ADCCFG Bit 7 ADC configuration register Bit 6 Bit 5 PGA[2:0] Address: 0x1E Type: RO Buffer: No Reset: Undefined Bit 4 Bit 3 Bit 2 Bit 1 INSEL STBY BYPASS_CALIB CLKENBL Bit 0 Description: 7:5 PGA[2:0]: gain selection bits for the ADC programmable gain amplifier: 000: default Values are from 0 to 42 dB in 6 dB steps 4 INSEL: 0: line input selected (default) 1: microphone input selected (it must be applied to INL line) 3 STBY: ADC standby mode: 0: ADC in power-up mode (default) 1: ADC in standby mode 2 BYPASS_CALIB: 0: ADC DC-removal block not bypassed (default) 1: ADC DC-removal block bypassed 1 CLKENBL: Clock enable: 0: system clock not enabled 1: system clock available at ADC input (default) 0 Reserved CKOCFG Bit 7 CLKOUT_DIS Clock-out configuration register Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CLKOUT_SEL[1:]] Address: 0x1F Type: R/W Buffer: No Reset: Undefined Description: 7 CLKOUT_DIS: CLKOUT PAD disabled 0: default 1: enabled 6:5 CLKOUT_SEL[1:0]: 00: default The CLKOUT output frequency is the PLL output frequency divided by 2CLKOUT_SEL. 4:0 Reserved 49/58 Registers STA529 MISC Bit 7 Miscellaneous configuration register Bit 6 OSC_DIS Bit 5 P2P_FS_RANGE[2:0] Address: 0x20 Type: R/W Buffer: No Reset: 0x21 Bit 4 Bit 3 Bit 2 ADC_FS_RANGE[1:0] Description: 7 OSC_DIS: enable/disable crystal oscillator: 0: default 1: disabled 6:4 P2P_FS_RANGE[2:0]: FFX audio frequency range: 000: very low (fs = 8 to 12 kHz) (default) 001: low (fs = 16 to 24 kHz) (default) 010: normal (fs = 32 to 48 kHz) 011: high (fs = 64 to 96 kHz) 1X: very high (fs = 128 to 192 kHz) 3:2 ADC_FS_RANGE[2:0]: ADC audio frequency range: 00: normal (fs = 32 to 48 kHz) 00: low (fs = 16 to 24 kHz) 1X: very low (fs = 8 to 12 kHz) 00: default 1 P2P_IN_ADC: FFX input: 0: FFX input is from serial-to-parallel audio interface (default) 1: FFX input is from ADC 0 CORE_CLKENBL: availability of system clock: 0: FFX system clock disabled 1: FFX system clock enabled (default) 50/58 Bit 1 Bit 0 P2P_IN_ADC CORE_ CLKENBL STA529 Registers FFXST Bit 7 FFX status register Bit 6 Address: 0x23 Type: RO Buffer: No Reset: Undefined Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 INVALID_INP_ FBK MUTE_INT_FBK Bit 0 Description: 7:3 Reserved 2 INVALID_INP_FBK: invalid input status: 1: invalid input sent to FFX 1 MUTE_INT_FBK: FFX mute status 1: FFX is in mute state 0 Reserved PWMINT1 Bit 7 PWM driver configuration register 1 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PWM_INT1[7:0] Address: 0x2D Type: R/W Buffer: No Reset: 0x00 Description: 7:0 PWM_INT1[7:0]: see Section 7: Driver configuration on page 25: 0000 0000: default PWMINT2 Bit 7 PWM driver configuration register 2 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PWM_INT1[7:0] Address: 0x2E Type: R/W Buffer: No Reset: 0x00 Description: 7:0 PWM_INT1[7:0]: see Section 7: Driver configuration on page 25: 0000 0000: default 51/58 Registers STA529 POWST Power bridge status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 POW_ POWERDOWN POW_ TRISTATE POW_FAULT1A POW_FAULT1B POW_FAULT2A POW_FAULT2B Address: 0x32 Type: RO Buffer: No Reset: Undefined Description: 7 POW_POWERDOWN: power-down bridge: 0: not in power-down state 1: power-down state 6 POW_TRISTATE: 1: power bridge is in tri-state 5 POW_FAULT1A: 1: power bridge 1A is in fault state 4 POW_FAULT1B: 1: power bridge 1B is in fault state 3 POW_FAULT2A: 1: power bridge 2A is in fault state 2 POW_FAULT2B: 1: power bridge 2B is in fault state 1:0 Reserved 52/58 Bit 1 Bit 0 STA529 11 Package information Package information This section includes packaging information for the following packages: ● TFBGA48 ● VFQFPN52 In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These package have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 11.1 Package TFBGA48 Figure 17. Mechanical data (TFBGA48) 53/58 Package information STA529 Table 19 gives the package dimensions. Table 19. Package dimensions (TFBGA48) Databook mm Reference Min Typical A A1 1.20 0.15 A2 0.785 A3 0.20 A4 0.60 b 0.25 0.30 0.35 D 4.85 5.00 5.15 D1 E 54/58 Max 3.50 4.85 5.00 E1 3.50 e 0.50 F 0.75 5.15 ddd 0.08 eee 0.15 fff 0.05 STA529 11.2 Package information Package VFQFPN52 Figure 18. Mechanical data (VFQFPN52) 55/58 Package information STA529 Table 20 gives the package dimensions. Table 20. Package dimensions (VFQFPN52) Databook mm Reference Min Typical Max A 0.800 0.900 1.000 A1 0.020 0.050 A2 0.650 1.000 A3 0.250 b 0.180 0.230 0.300 D 7.875 8.000 8.125 D2 2.750 5.700 6.250 E 7.875 8.000 8.125 E2 2.750 5.700 6.250 e 0.450 0.500 0.550 L 0.350 0.550 0.750 ddd 56/58 0.080 STA529 12 Revision history Revision history Table 21. Date 10-Jan-2007 Document revision history Revision 1 Changes Initial release 57/58 STA529 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 58/58