TOREX XC66DC3850MR

Series
Positive Voltage Regulators with Built‐in Voltage Detect Functions
◆CMOS
■Applications
◆Maximum Output Current : 100mA(VOUT=5.0V) ●Battery use
●Battery life & charge detection
◆Highly Accurate Output Voltage : ±2%
◆Output Voltage Range
●Memory battery back-up circuits
: 2.0V~ 6.0V
◆Highly Accurate Voltage Detection : ±2%
◆No Load Supply Current : 3.2µA(5.0V)
3
●Microprocessor reset circuitry
●Power failure detection
●Voltage Sources Reference
◆SOT-25 Package
●Cameras, Video Cameras
●Various Portable Devices
■General Description
■Features
The XC66D series consists of a voltage detector and voltage regulator
built into the one chip and is, essentially, a voltage regulator with voltage
detect capabilities.
Low power consumption and high accuracy is achieved through CMOS
and laser trimming technologies.
The detector features an output driver, hysteresis circuit, comparator and
extremely accurate standard voltage.
The regulator features an error amplification circuit, output driver with
current limiter functions, minimal input-output voltage differential and
similary accurate standard voltage.
Maximum Output Current
SOT-25 (150mW) package is available.
: 100mA (Within max.
continuous total power
dissipation, VOUT=5.0V)
Output Voltage Range
: 2.0V ~ 6.0V (0.1V steps,
Standard 5.0V)
Highly Accurate Output Voltage : Fixed voltage accuracy ±2%
Output Voltage Temperature Characteristics
: Typ. ±100ppm/°C
Detect Voltage Range
: 1.8V ~ 6.0V (0.1V steps)
Highly Accurate Detect Voltage : Fixed voltage accuracy ±2%
Low Power Consumption
: Typ. 3.2µA (VOUT= 5.0V)
Detect Voltage Temperature Characteristics
: Typ. ±100ppm/°C
Detect Voltage Output Configuration
: N-ch open drain
CMOS (High level =VOUT)
Input Stability
: Typ. 0.1%/V
Ultra Small Packages
: SOT- 25 (150mW) mini-mold
■Typical Application Circuit
■Typical Performance
Characteristic
XC66DN1922
VIN
VDIN
VOUT
1µF
(Tantalum)
VDOUT
VSS
1µF
(Tantalum)
VIN=VDIN
5
Supply Current:Iss(µA)
100kΩ
4
Topr=80℃
3
−30℃
2
25℃
1
0
0
1
2
3
4
5
6
7
8
9
10
Input Voltage:VIN , VDIN(V)
373
XC66D
Series
■Pin Configuration
VOUT
5
1
3
■Pin Assignment
VIN
4
2
PIN NUMBER
PIN NAME
FUNCTION
1
VDOUT
Voltage Detect Output
3
2
VSS
Ground
3
VDIN
Voltage Detect Input
VDOUT VSS VDIN
4
VIN
Power Supply
SOT-25
(TOP VIEW)
5
VOUT
Voltage Regulator Output
■Product Classification
●Ordering Information
X C 6 6 D X X X X X X X
↑ ↑ ↑↑↑ ↑
a
b
DESIGNATOR
c d e f
DESCRIPTION
DESIGNATOR
a
Detector Output Configuration
C=CMOS(High level=VOUT)
N=N-ch open drain
b
Detect Voltage (VDF)
25=2.5V
38=3.8V
c
Regulator Output Voltage (VOUT)
33=3.3V
50=5.0V
■Packaging Information
●SOT-25
+0.1
0.15 -0.05
0.4
+0.1
-0.05
+0.2
-0.1
0.2min
1.6
2.8±0.2
0∼0.1
(0.95)
1.9±0.2
2.9±0.2
374
1.1±0.1
DESCRIPTION
d
Package Type
M=SOT-25
e
Device Orientation
R=Embossed Tape
(Standard Feed)
L=Embossed Tape
(Reverse Feed)
XC66D
Series
■Marking
q Represents the Product Series, Type, and the integer of the Detect
Voltage
qwer
PRODUCT SERIES TYPE
SOT-25
(TOP VIEW)
N-ch
XC66DN Series
CMOS
High level VOUT
XC66DC Series
CMOS
High level VIN
XC66DD Series
w Represents the decimal number of the Detect Voltage and
the Off-set of the Output Voltage
DETECT VOLTAGE
OFF-SET OF THE
OUTPUT VOLTAGE DESIGNATOR VOLTAGE(V)DESIGNATOR VOLTAGE(V)
0V
5V
0
X.0
5
X.5
1
X.1
6
X.6
2
3
X.2
X.3
7
8
X.7
X.8
4
X.4
9
X.9
A
X.0
F
X.5
B
C
X.1
H
K
X.6
D
X.2
X.3
E
X.4
L
X.7
X.8
M
X.9
DETECT VOLTAGE
DESIGNATOR VOLTAGE(V)DESIGNATOR VOLTAGE(V)
A
0.X
F
5.X
B
1.X
H
6.X
C
D
2.X
3.X
K
L
7.X
8.X
E
A
B
C
D
E
N
P
R
S
T
4.X
M
9.X
0.X
1.X
2.X
3.X
4.X
0.X
1.X
2.X
3.X
4.X
F
H
K
L
M
U
V
X
Y
Z
5.X
6.X
7.X
8.X
9.X
5.X
6.X
7.X
8.X
9.X
3
e Represents the Output Voltage
DETECT VOLTAGE
INTEGER OF THE
OUTPUT VOLTAGE DESIGNATOR VOLTAGE(V)DESIGNATOR VOLTAGE(V)
0V
+
Off-set
1V
+
Off-set
2V
+
Off-set
3V
+
Off-set
4V
+
Off-set
0
1
X.0
X.1
5
6
X.5
X.6
2
3
X.2
X.3
7
8
X.7
X.8
4
X.4
9
X.9
A
X.0
F
X.5
B
C
X.1
H
K
X.6
D
X.2
X.3
E
N
P
R
L
X.7
X.8
X.4
X.0
M
U
X.9
X.5
X.1
V
X
X.6
S
X.2
X.3
Y
X.7
X.8
T
X.4
Z
X.9
A
B
C
D
E
N
P
R
S
X.0
X.5
X.2
X.3
F
H
K
L
M
U
V
X
Y
T
X.4
Z
X.9
X.1
X.2
X.3
X.4
X.0
X.1
X.6
X.7
X.8
X.9
X.5
X.6
X.7
X.8
r Denotes the production lot number
0 to 9, A to Z repeated(G.I.J.O.Q.W excepted)
* Italic type : Character inversion
375
XC66D
Series
■Block Diagram
(1) XC66DC CMOS output (High level =VOUT)
VIN
(2) XC66DN N-ch open drain
VOUT
Vref
VIN
Voltage Limiter
VOUT
Vref
-
+
+
VDIN
VDIN
+
3
Voltage Limiter
-
VSS
-
VSS
■Absolute Maximum Ratings
PARAMETER
Detector
Output Voltage
Ta=25°C
SYMBOL
RATINGS
UNITS
Regulator Input Voltage
VIN
VSS -0.3 ~ 12
V
Regulator Output Current
IOUT
150
mA
Regulator Output Voltage
VOUT
VSS -0.3 ~ VIN +0.3
V
Detector Input Voltage
VDIN
VSS -0.3 ~ 12
V
Detector Output Current
IDOUT
50
mA
VSS -0.3 ~ 12
N-ch open drain output
V
VDOUT
VSS -0.3 ~ VIN +0.3
CMOS output (High level =VOUT)
Continuous Total Power Dissipation
Pd
150
mW
Operating Ambient Temperature
Topr
-30 ~ +80
°C
Storage Temperature
Tstg
-40 ~ +125
°C
Note: Please ensure that {(VIN -VOUT ) x IOUT} + {IDOUT x VDOUT} + {VIN x ISS} does not exceed the stated Pd values.
376
VDOUT
+
VDOUT
-
XC66D
Series
■Electrical Characteristics
VDF =1.8V ~ 6.0V, VOUT(T) (Note1) =5V
Ta=25°C
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
Detect Voltage
VDF
VIN = VDIN
(VDF)
x 0.98
VDF
(VDF)
x 1.02
V
1
Hysteresis Range
VHYS
VIN = VDIN
(VDF)
x 0.02
(VDF)
x 0.05
(VDF)
x 0.08
V
1
Operating Voltage
VIN
1.5
-
10.0
V
-
0.3
3.0
5.0
6.0
7.0
2.2
7.7
10.1
11.5
10.3
-
mA
-
-5
-2
N-ch
DETECTOR
Output Current
IDOUT
P-ch
REGULATOR
VDS=0.5V
VSS=1.5V
=2.0V
=3.0V
=4.0V
=5.0V
VDS=0.9V
VIN=VDIN=VOUT=8V
(CMOS)
UNITS CIRCUIT
2
6
VDIN Input Current
IDIN
VDIN=10V
-
0.4
1.0
µA
3
Detect Voltage
Temp. Characteristics
∆VOUT
∆Topr • VDF
-30°C ≤ Topr ≤ 80°C
-
±100
-
ppm/°C
1
Output Voltage
VOUT (E) (Note2)
IOUT=10mA
VIN = VOUT(T) + 1V
4.9
5
5.1
V
4
Maximum Output
Current
IOUTmax
VIN= VOUT(T) + 1V
VOUT(E) ≥ VOUT(T) x0.9
100
-
-
mA
4
Load Stability
∆VOUT
VIN= VOUT(T) + 1V
1mA ≤ IOUT ≤ 80mA
-
20
80
mV
4
Input - Output
Voltage Differential
Vdif (Note3)
IOUT =60mA
-
260
520
mV
4
Input Stability
∆VOUT
∆VIN • VOUT
IOUT=10mA
VOUT(T) + 1V ≤ VIN ≤ 10V
-
0.1
0.3
%/V
4
Output Voltage
Temp. Characteristics
∆VOUT
∆Topr • VOUT
IOUT =10mA
-30°C ≤ Topr ≤ 80°C
-
±100
-
ppm/°C
4
Input Voltage
VIN
-
-
10.0
V
-
Supply Current
ISS
-
3.2
8.6
mA
5
VIN = VOUT(T) +1V
3
Note: 1. VOUT(T) : User specified output voltage.
2. VOUT(E) : Effective output voltage.
(i.e. the output voltage when a stable (VOUT(T) + 1.0V) is provided, while maintaining a certain IOUT value.)
3. Vdif
: Vdif = {VIN1 - VOUT1}
VOUT1 : The voltage equal to 98% of the output voltage whenever a stable (VOUT(T) +1.0V) is provided at IOUT.
VIN1
: The input voltage when the output is equal to VOUT(E) x 98%.
377
XC66D
Series
■Typical Application Circuits
CMOS Output (High Level =VOUT)
VIN
VDIN
VOUT
1µF
VDOUT
(Tantalum)
VSS
1µF
3
(Tantalum)
N-ch Open Drain
100kΩ
VIN
VDIN
VOUT
1µF
(Tantalum)
VDOUT
VSS
1µF
(Tantalum)
■Directions for use
●Notes on Use
1. In cases where there is no capacitance (CL), or the capacitance is small, or where a capacitor with an extremely low ESR value is used (e.g.
ceramic), please use a capacitor (CL = 1.0µF [Tantalum]) in order to stop oscillation that may occur as the phase margin becomes smaller.
2. To reduce impedance between the power supply and the IC's input pin, which in turn will stop oscillation resulting from input voltage changes,
connect a capacitor (CIN = more than 1.0µF, ESR low) to the input side of the IC. Further, operation may become unstable and oscillation may
occur shoud impedance up to the IC's input be high (a state which could be brought about by several factors including which devices are
added to the input side, the surrounding wiring and/or the input power supply.)
Stability can be improved by regulating increases in input capacitance and by reducing impedance.
3. The regulator's input pin (VIN) and power supply pin are the same. Also, the voltage detector's power supply and the voltage regulator's power
supply are the same. Therefore, to have the voltage detector operating normally, it is necessary to apply a voltage larger than the minimum
operating voltage (1.5V) to the power supply input pin (VIN).
4. With CMOS output, the detector's output voltage equals the regulator's output voltage following release. Possible changes in the regulator's
output voltage (VROUT), following regulator load changes, will be output at the detector's output pin (VDOUT).
5. As the operations of the detector will momentarily respond when steep rise and fall time voltages are input at the power supply pin (VIN),
please ensure that the VIN(VDIN) pin's input frequency's rise and fall time is more than 5µ sec/V.
6. When using with the detector input pin (VDIN) connected to the regulator output pin (VOUT), the detector will momentarily respond as a result of
transient output voltage changes brought about by the regulator's load changes. With large load currents and/or large load transitions from
1mA to 80mA for example, output voltage will momentarily drop, so please add a capacitor where CL=more than 4.7mF.
378
XC66D
Series
■Operational Explanation
●Timing Chart (N-ch open drain pull up voltage =Input voltage VIN)
Regulator Input Voltage (VIN)
Regulator Set-up Voltage (VOUT (T))
Min. Operating Voltage (VMIN)
Ground Voltage (VSS)
6
Detector Input Voltage (VDIN)
Regulator Set-up Voltage (VOUT (T))
Release Voltage (VDR)
Detect Voltage (VDF)
Min. Operating Voltage (VMIN)
Ground Voltage (VSS)
6
3
Output Voltage (VDOUT)
CMOS (HighLevel=VOUT)
Min. Operating Voltage (VMIN)
Ground Voltage (VSS)
Output Voltage (VDOUT)
N-ch Open Drain
6
Min. Operating Voltage (VMIN)
Ground Voltage (VSS)
1
2
3
条件A
A
4
5
1
2
3
4
5
条件B
B
●Operational Notes [Detector : CMOS Output ('High' level = VOUT)]
Timing Chart A (VIN=VDIN)
1. When a voltage greater than the release voltage (VDR) is applied to the voltage input pin (VIN, VDIN), input voltage (VIN, VDIN) will gradually fall.
When a voltage greater than the detect voltage (VDF) is applied to the voltage input pin (VIN, VDIN), the output pin(VDOUT) voltage will be equal
to the regulator's output voltage (VOUT).
* With N-ch open drain configurations a state of high impedance means that should the pin be pulled up, voltage will be equal to pull up
voltage.
2. When input voltage (VIN, VDIN) fall below detect voltage (VDF), output voltage (VDOUT) will be equal to ground level (VSS).
3. Should input voltage (VIN, VDIN) fall below the minimum operational voltage (VMIN), output will become unstable.
Should VDIN fall below VMIN, voltage at the output pin (VDOUT) will be equal to ground level (VSS) .
*With N-ch open drain configurations output will equal pull up voltage as the output pin is generally pulled up.
4. Should input voltage (VIN, VDIN) rise above ground voltage (VSS), output voltage (VDOUT) will equal ground level until the release voltage level
(VDR) is reached.
5. The output pin voltage (VDOUT) will be equal to the regulator output voltage (VOUT) when input voltage (VIN, VDIN) rises above release voltage.
*With N-ch open drain configurations it will be equal to the voltage dependent on pull up.
Timing Chart B (VIN=voltages above set-up voltage + input/output voltage differential, VDIN = sweep voltage)
Because a voltage higher than the minimum operating voltage is applied to the voltage input pin (VIN), ground voltage will be output at the
output pin (VDOUT) during stage 3. (Stages 1, 2, 4, 5 are the same as in A above).
Note : The difference between release voltage (VDR) and detect voltage (VDF) is the Hysteresis Range (6).
379
XC66D
Series
■Test Circuits
Circuit 1
Circuit 2
100kΩ
VIN
VDIN
VIN
VIN
VDIN
VOUT
VIN
VOUT
(Tantalum)
VDOUT
VDOUT
A
VSS
VSS
(Tantalum)
V
3
Circuit 3
Circuit 4
A
VIN
VIN
VDIN
VOUT
VOUT
VIN
VDOUT
(Tantalum)
VDOUT
VSS
A
VSS
1µF
(Tantalum)
(Tantalum)
Circuit 5
Circuit 6
A
VIN
VIN
VDIN
VOUT
VDIN
VOUT
VIN
VDOUT
VDOUT
VIN
VSS
380
VDIN
VIN
(Tantalum)
VSS
A
V
XC66D
Series
■Typical Performance Characteristics
XC66DN1922
Ta=80℃
2
−30℃
25℃
1
0
0
1
2
3
4
5
6
7
8
9
25℃
0.4
0.3
Ta=80℃
0.2
0.1
0
10
(3) SUPPLY CURRENT vs. REGULATOR,
DETECTOR INPUT VOLTAGE
−30℃
0
1
2
3
4
5
6
7
8
9
2.1
VDR
2.0
1.9
VDF
1.8
1.7
−40
−20
0
20
40
60
80
Topr=80℃
3
−30℃
2
XC66DN1922
2.5
2.0
Ta=80℃
1.5
25℃
1.0
0.5
0
−30℃
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Detector Input Voltage:VDIN(V)
Ambient Temp.:Topr(℃)
1
2
3
4
5
6
7
8
9
10
Input Voltage:VIN , VDIN(V)
3
(6) DETECTOR N-ch DRIVER OUTPUT
CURRENT vs. VDS
XC66DN1922
VIN=VDIN
3.0
25℃
1
0
12
Detector N-ch Driver Output
Current:IDOUT N-ch (mA)
VIN=VDIN
Detector Output Voltage:VDOUT(V)
Detect, Release Voltage:VDF, VDR(V)
XC66DN1922
4
0
10
(4) DETECT VOLTAGE, RELEASE
(5) DETECTOR OUTPUT VOLTAGE vs.
VOLTAGE vs. AMBIENT TEMPERATURE
DETECTOR INPUT VOLTAGE
VIN=VDIN
5
Regulator Input Voltage:VDIN(V)
Regulator Input Voltage:VIN(V)
2.2
XC66DN1922
VIN=10V
0.5
Supply Current:Iss(µA)
4
3
XC66DN1922
VDIN=Vss
5
Supply Current:Iss(µA)
(2) SUPPLY CURRENT vs.
DETECTOR INPUT VOLTAGE
Supply Current:Iss(µA)
(1) SUPPLY CURRENT vs.
REGULATOR INPUT VOLTAGE
VIN=VDIN , VDS=0.5V
Ta=−30℃
10
25℃
8
6
80℃
4
2
0
0
0.5
1.0
1.5
2.0
2.5
Detector Input Voltage:VDIN(V)
(7) DETECTOR N-ch DRIVER OUTPUT CURRENT vs. DETECTOR INPUT VOLTAGE
XC66DN1922
900
800
VIN=0.8V
700
600
500
400
0.7V
300
200
100
0
0.2
0.4
0.6
0.8
Ta=25℃
VIN=VDIN
10
Detector N-ch Driver Output
Current:IDOUT N-ch(mA)
Detector N-Ch Driver Output
Current:IDOUT N-ch(mA)
1000
0
XC66DN1922
Ta=25℃
VIN=VDIN
1.0
8
6
VIN=1.5V
4
2
0
0
0.3
0.6
VDS(V)
0.9
1.2
1.5
VDS(V)
(8) REGULATOR OUTPUT VOLTAGE vs. REGULATOR OUTPUT CURRENT
VIN=3.2V
CIN=1µF(tantalum), CL=1µF(tantalum)
2.4
2.3
Topr=25℃
−30℃
2.2
80℃
2.1
2.0
0
10
20
30
40
50
60
Regulator Output Current:IOUT(mA)
XC66DN1922
Regulator Output Voltage:VOUT(V)
Regulator Output Voltage:VOUT(V)
XC66DN1922
Topr=25℃
CIN=1µF(tantalum), CL=1µF(tantalum)
2.5
3.6V
2.0
Topr=25℃
VIN=2.7V
1.5
4.2V
3.2V
1.0
0.5
0.0
0
100
200
300
400
Regulator Output Current:IOUT(mA)
381
XC66D
Series
(9) REGULATOR OUTPUT VOLTAGE vs. REGULATOR INPUT VOLTAGE
XC66DN1922
Topr=25℃
CIN=1µF(tantalum), CL=1µF(tantalum)
2.4
Regulator Output Voltage:VOUT(V)
3
Regulator Output Voltage:VOUT(V)
XC66DN1922
2.3
IOUT=1mA
2.2
10mA
2.1
40mA
2
1.9
1.7
2.2
Topr=25℃
CIN=1µF(tantalum), CL=1µF(tantalum)
2.35
2.30
2.25
IOUT=1mA
2.20
40mA
2.10
2.7
2
Regulator Input Voltage:VIN(V)
Regulator Output Voltage:VOUT(V)
Input/Output Voltage Diff.:Vdif(V)
0.8
80℃
Topr=25℃
0.4
−30℃
0.2
0.0
20
40
60
80
100
5
6
7
8
9
10
XC66DN1922
VIN=3.2V
CIN=1µF(tantalum), CL=1µF(tantalum)
0
4
(11) REGULATOR OUTPUT VOLTAGE vs.
AMBIENT TEMPERATURE
XC66DN1922
0.6
3
Regulator Input Voltage:VIN(V)
(10) INPUT/OUTPUT VOLTAGE DIFFERENTIAL vs.
REGULATOR OUTPUT CURRENT
1.0
10mA
2.15
120
VIN=3.2V
CIN=1µF(tantalum), CL=1µF(tantalum)
2.30
2.25
IOUT=10mA
2.20
40mA
2.15
2.10
−40
Regulator Output Current:IOUT(mA)
−20
0
20
40
60
80
Ambient Temp.:Topr(℃)
(12) INPUT TRANSIENT RESPONSE 1
2
5
Input Voltage
0
−2
3
Output Voltage
2
−4
1
−6
0
Time(0.4msec/div)
382
4
6
IOUT=10mA , CL=1µF(tantalum)
4
2
5
Input Voltage
0
−2
6
4
3
Output Voltage
2
−4
1
−6
0
Time(0.4msec/div)
Regulator Output Voltage:VOUT(V)
4
6
Regulator Input Voltage:VIN(V)
6
XC66DN1922
IOUT=1mA , CL=1µF(tantalum)
Regulator Output Voltage:VOUT(V)
Regulator Input Voltage:VIN(V)
XC66DN1922
XC66D
Series
(13) INPUT TRANSIENT RESPONSE 2
4
Input Voltage
3
4.0
3.5
3.0
2
Output Voltage
2.5
1
2.0
0
1.5
IOUT=10mA , CL=1µF(tantalum)
6
4
3
3.0
2
1
2.0
0
1.5
200
160
2
120
1
80
Output Current
0
40mA
40
1mA
−1
0
Ripple Rejection Rate:RR(dB)
XC66DN1922
Regulator Output Current:IOUT(mA)
Regulator Output Voltage:VOUT(V)
Output Voltage
60
VIN=3.2VDC+1Vp−pAC
IOUT=10mA , CL=1µF(tantalum)
50
40
30
20
10
0
0.01
Time(2msec/div)
3
(15) RIPPLE REJECTION RATE
XC66DN1922
3
2.5
Output Voltage
Time(1msec/div)
(14) LOAD TRANSIENT RESPONSE
4
3.5
Input Voltage
Time(1msec/div)
VIN=3.2V , CL=1µF(tantalum)
4.0
Regulator Output Voltage:VOUT(V)
6
XC66DN1922
Regulator Input Voltage:VIN(V)
IOUT=1mA , CL=1µF(tantalum)
Regulator Output Voltage:VOUT(V)
Regulator Input Voltage:VIN(V)
XC66DN1922
0.1
1
10
Ripple Frequency:f(kHz)
383