TI CD74HC652EN

CD74HC652,
CD74HCT652
Data sheet acquired from Harris Semiconductor
SCHS194
High-Speed CMOS Logic
Octal-Bus Transceiver/Registers, Three-State
February 1998
Features
• CD74HC652, CD74HCT652 . . . . . . . . . . . Non-Inverting
•[ /Title
Independent
Registers for
A and B Buses
(CD74HC652,
CD74HCT652)
(High-Speed
•/Subject
Three-State
Outputs
CMOS Logic Octal-Bus Transceiver/Registers,
Three-State)
• Drives 15 LSTTL Loads
/Author ()
• Typical Propagation Delay = 12ns at VCC = 5V, CL = 15pF
/Keywords ()
• Fanout (Over
/Creator
() Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
/DOCINFO pdfmark
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
o
oC
Wide Operating
Temperature Range . . . -55 C to 125
[• /PageMode
/UseOutlines
• Balanced Propagation
/DOCVIEW
pdfmark Delay and Transition Times
• Significant Power Reduction Compared to LSTTL
Logic ICs
• Alternate Source is Philips
• HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
VIL= 0.8V (Max), VIH = 2V (Min)
- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
Pinout
CD74HC652, CD74HCT652
(PDIP, SOIC)
TOP VIEW
CAB 1
24 VCC
SAB 2
23 CBA
OEAB 3
22 SBA
A0 4
21 OEBA
A1 5
20 B0
A2 6
19 B1
A3 7
18 B2
A4 8
17 B3
A5 9
16 B4
A6 10
15 B5
A7 11
14 B6
GND 12
13 B7
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
© Harris Corporation 1998
1
File Number
2229.2
CD74HC652, CD74HCT652
Description
The Harris CD74HC652 and CD74HCT652 three-state, octalbus transceiver/registers use silicon-gate CMOS technology
to achieve operating speeds similar to LSTTL with the low
power consumption of standard CMOS integrated circuits.
The CD74HC652 and CD74HCT652 have non-inverting
outputs. These devices consists of bus transceiver circuits, Dtype flip-flops, and control circuitry arranged for multiplexed
transmission of data directly from the data bus or from the
internal storage registers. Output Enables OEAB and OEBA
are provided to control the transceiver functions. SAB and
SBA control pins are provided to select whether real-time or
stored data is transferred. The circuitry used for select control
will eliminate the typical decoding glitch that occurs in a
multiplexer during the transition between stored and real-time
data. A LOW input level selects real-time data, and a HIGH
selects stored data. The following examples demonstrates the
four fundamentals bus-management functions that can be
performed with the octal-bus transceivers and registers.
Data on the A or B data bus, or both, can be stored in the
internal D flip-flops by low-to-high transitions at the appropriate
clock pins (CAB or CBA) regardless of the select of the control
pins. When SAB and SBA are in the real-time transfer mode, it
is also possible to store data without using the D-type flip-flops
by simultaneously enabling OEAB and OEBA. In this
configuration, each output reinforces its input. Thus, when all
other data sources to the two sets of bus lines are at high
impedance, each set of bus lines will remain at its last state.
Ordering Information
PART NUMBER
TEMP. RANGE
(oC)
PACKAGE
PKG.
NO.
CD74HC652EN
-55 to 125
24 Ld PDIP
E24.3
CD74HCT652M
-55 to 125
24 Ld SOIC
M24.3
NOTES:
1. When ordering, use the entire part number. Add the suffix 96 to
obtain the variant in the tape and reel.
2. Wafer and die is available which meets all electrical
specifications. Please contact your local sales office or Harris
customer service for ordering information.
2
Functional Diagram
A0
A1
A2
A
DATA
PORT
A3
A4
A5
A6
A7
4
20
5
19
6
18
7
17
8
16
9
15
10
14
11
13
OEAB
CAB CLOCK
FLIP-FLOP
CLOCKS
3
DATA
SOURCE
SELECTION
INPUTS
CBA CLOCK
SAB SOURCE
SBA SOURCE
B1
B2
B3
B4
B
DATA
PORT
B5
B6
B7
GND = PIN 12
VCC = PIN 24
3
1
23
2
22
FUNCTION TABLE
INPUTS
DATA I/O
OPERATION OR FUNCTION
OEAB
OEBA
CAB
CBA
SAB
SBA
A0 THRU A7
B0 THRU B7
651
652
L
H
H or L
H or L
X
X
Input
Input
Isolation (Note 3)
Isolation (Note 3)
L
H
↑
↑
X
X
Store A and B Data
Store A and B Data
X
H
↑
H or L
X
X
Input
Unspecified
(Note 4)
Store A, Hold B
Store A, Hold B
H
H
↑
↑
X
(Note 5)
X
Input
Output
Store A in Both
Registers
Store A in Both
Registers
L
X
H or L
↑
X
X
Unspecified
(Note 4)
Input
Hold A, Store B
Hold A, Store B
L
L
↑
↑
X
X
(Note 5)
Output
Input
Store B in Both
Registers
Store B in Both
Registers
L
L
X
X
X
L
Output
Input
L
L
X
H or L
X
H
Real-Time B Data to Real-Time B Data to
A Bus
A Bus
Stored B Data to A
Bus
Stored B Data to A
Bus
CD74HC652, CD74HCT652
21
OEBA
B0
CD74HC652, CD74HCT652
FUNCTION TABLE
INPUTS
DATA I/O
OPERATION OR FUNCTION
OEAB
OEBA
CAB
CBA
SAB
SBA
A0 THRU A7
B0 THRU B7
H
H
X
X
L
X
Input
Output
H
H
H or L
X
H
X
H
L
H or L
H or L
H
H
Output
Output
651
652
Real-Time A Data to Real-Time A Data to
B Bus
B Bus
Stored A Data to B
Bus
Stored A Data to B
Bus
Stored A Data to B
Bus and
Stored A Data to B
Bus
Stored B Data to A
Bus
Stored B Data to A
Bus
NOTES:
3. To prevent excess currents in the High-Z (isolation) modes, all I/O terminals should be terminated with 10kΩ to 1MΩ resistors.
4. The data output functions may be enabled or disabled by various signals at the OEAB or OEBA inputs. Data input functions are always
enabled; i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.
5. Select Control = L: Clocks can occur simultaneously.
Select Control = H: Clocks must be staggered in order to load both registers.
4
5
FIGURE 1. LOGIC BLOCK DIAGRAM
VCC
GND
24
12
4, (5, 6, 7, 8,
9, 10, 11)
A
23
CBA
1
CAB
22
SBA
2
SAB
3
OEAB
21
OEBA
VCC
F/F
P
N
GND
N
P
VCC
P
N
P
N
P
N
†
†
GND
N
P
VCC
ONE OF EIGHT IDENTICAL CHANNELS
† Inverter not included in HC/HCT651
Q
F/F
D
CK
20, (19, 18,
17, 16, 15,
14, 13)
B
TO CHANNELS
2 THRU 8
CD74HC652, CD74HCT652
CD74HC652, CD74HCT652
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC
(Voltages Referenced to Ground) . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, IO
For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±35mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Thermal Resistance (Typical, Note 6)
θJA (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
Maximum Junction Temperature (Hermetic Package or Die) . . . 175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
6. θJA is measured with the component mounted on an evaluation PC board in free air.
DC Electrical Specifications
TEST
CONDITIONS
PARAMETER
25oC
-40oC TO 85oC
-55oC TO 125oC
SYMBOL
VI (V)
VIS (V)
VCC (V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
High Level Input
Voltage
VIH
-
-
2
1.5
-
-
1.5
-
1.5
-
V
4.5
3.15
-
-
3.15
-
3.15
-
V
Low Level Input
Voltage
VIL
HC TYPES
High Level Output
Voltage
CMOS Loads
VOH
-
VIH or
VIL
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
Low Level Output
Voltage
TTL Loads
VOL
VIH or
VIL
6
4.2
-
-
4.2
-
4.2
-
V
2
-
-
0.3
-
0.3
-
0.3
V
4.5
-
-
0.9
-
0.9
-
0.9
V
6
-
-
1.2
-
1.2
-
1.2
V
-0.02
2
1.9
-
-
1.9
-
1.9
-
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-0.02
6
5.9
-
-
5.9
-
5.9
-
V
-
-
-
-
-
-
-
-
-
V
-
-6
4.5
3.98
-
-
3.84
-
3.7
-
V
-7.8
6
5.48
-
-
5.34
-
5.2
-
V
0.02
2
-
-
0.1
-
0.1
-
0.1
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
0.02
6
-
-
0.1
-
0.1
-
0.1
V
-
-
-
-
-
-
-
-
-
V
6
4.5
-
-
0.26
-
0.33
-
0.4
V
7.8
6
-
-
0.26
-
0.33
-
0.4
V
6
CD74HC652, CD74HCT652
DC Electrical Specifications
(Continued)
TEST
CONDITIONS
PARAMETER
25oC
-40oC TO 85oC
-55oC TO 125oC
SYMBOL
VI (V)
VIS (V)
VCC (V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
II
VCC or
GND
-
6
-
-
±0.1
-
±1
-
±1
µA
ICC
VCC or
GND
0
6
-
-
8
-
80
-
160
µA
VIL or VIH
VO =
VCC or
GND
-
6
-
-
±0.5
-
±5.0
-
±10
µA
High Level Input
Voltage
VIH
-
-
4.5 to
5.5
2
-
-
2
-
2
-
V
Low Level Input
Voltage
VIL
-
-
4.5 to
5.5
-
-
0.8
-
0.8
-
0.8
V
High Level Output
Voltage
CMOS Loads
VOH
VIH or
VIL
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-6
4.5
3.98
-
-
3.84
-
3.7
-
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
6
4.5
-
-
0.26
-
0.33
-
0.4
V
±0.1
-
±1
-
±1
µA
Input Leakage
Current
Quiescent Device
Current
Three- State Leakage
Current
HCT TYPES
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or
VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
II
VCC
and
GND
0
5.5
-
ICC
VCC or
GND
0
5.5
-
-
8
-
80
-
160
µA
Three- State Leakage
Current
VIL or VIH
VO =
VCC or
GND
-
5.5
-
-
±0.5
-
±5.0
-
±10
µA
Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
∆ICC
VCC
-2.1
-
4.5 to
5.5
-
100
360
-
450
-
490
µA
Quiescent Device
Current
NOTE: For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
INPUT
UNIT LOADS
OEBA
1.3
OEAB
0.75
Clock A to B, B to A
0.6
Select A, Select B
0.45
Inputs A0-A7, B0-B7
0.3
NOTE: Unit Load is ∆ICC limit specified in DC Electrical Specifications table, e.g., 360µA max at 25oC.
7
CD74HC652, CD74HCT652
Prerequisite for Switching Specifications
25oC
PARAMETER
-40oC TO 85oC
-55oC TO 125oC
SYMBOL
VCC (V)
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
fMAX
2
6
-
-
5
-
-
4
-
-
MHz
4.5
30
-
-
25
-
-
20
-
-
MHz
6
35
-
-
29
-
-
23
-
-
MHz
2
60
-
-
75
-
-
90
-
-
ns
4.5
12
-
-
15
-
-
18
-
-
ns
6
10
-
-
13
-
-
15
-
-
ns
2
35
-
-
45
-
-
55
-
-
ns
4.5
7
-
-
9
-
-
11
-
-
ns
6
6
-
-
8
-
-
9
-
-
ns
2
80
-
-
100
-
-
120
-
-
ns
4.5
16
-
-
20
-
-
24
-
-
ns
6
14
-
-
17
-
-
20
-
-
ns
fMAX
4.5
25
-
-
20
-
-
17
-
-
MHz
Setup Time
Data to Clock
tSU
4.5
12
-
-
15
-
-
18
-
-
ns
Hold Time
Data to Clock
tH
4.5
5
-
-
5
-
-
5
-
-
ns
Clock Pulse Width
tW
4.5
25
-
-
31
-
-
38
-
-
ns
HC TYPES
Maximum Clock
Frequency
Setup Time
Data to Clock
Hold Time
Data to Clock
Clock Pulse Width
tSU
tH
tW
HCT TYPES
Maximum Clock
Frequency
Switching Specifications Input tr, tf = 6ns
PARAMETER
SYMBOL
TEST
CONDITIONS
tPLH, tPHL
CL = 50pF
25oC
-40oC TO 85oC -55oC TO 125oC
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
HC TYPES
Propagation Delay,
Store A Data to B Bus
Store B Data to A Bus
Propagation Delay,
A Data to B Bus
B Data to A Bus
tPLH, tPHL
2
-
-
220
-
275
-
300
ns
4.5
-
-
44
-
55
-
66
ns
6
-
-
37
-
47
-
5.6
ns
CL = 15pF
5
-
18
-
-
-
-
-
ns
CL = 50pF
2
-
-
135
-
170
-
205
ns
4.5
-
-
27
-
34
-
41
ns
6
-
-
23
-
29
-
35
ns
5
-
12
-
-
-
-
-
ns
CL = 15pF
Propagation Delay,
Select to Data
tPLH, tPHL
CL = 50pF
CL = 15pF
2
-
-
170
-
215
-
255
ns
4.5
-
-
34
-
43
-
51
ns
6
-
-
29
-
37
-
43
ns
5
-
14
-
-
-
-
-
ns
8
CD74HC652, CD74HCT652
Switching Specifications Input tr, tf = 6ns
(Continued)
PARAMETER
SYMBOL
TEST
CONDITIONS
Three-State Disabling Time Bus
to Output or Register to Output
tPLZ, tPHZ
CL = 50pF
Three-State Enabling Time Bus
to Output or Register to Output
Output Transition Time
tPZL, tPZH
tTLH, tTHL
25oC
-40oC TO 85oC -55oC TO 125oC
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
-
-
175
-
220
-
265
ns
4.5
-
-
35
-
44
-
53
ns
6
-
-
30
-
37
-
45
ns
CL = 15pF
5
-
14
-
-
-
-
-
ns
CL = 50pF
2
-
-
175
-
220
-
265
ns
4.5
-
-
35
-
44
-
53
ns
6
-
-
30
-
37
-
45
ns
CL = 15pF
5
-
14
-
-
-
-
-
ns
CL = 50pF
2
-
-
60
-
75
-
90
ns
4.5
-
-
12
-
15
-
18
ns
6
-
-
10
-
13
-
15
ns
Three-State Output
Capacitance
CO
-
-
-
-
20
-
20
-
20
pF
Input Capacitance
CI
-
-
-
-
10
-
10
-
10
pF
Maximum Frequency
fMAX
CL = 15pF
5
-
60
-
-
-
-
-
MHz
Power Dissipation Capacitance
(Notes 7, 8)
CPD
-
5
-
52
-
-
-
-
-
pF
Propagation Delay,
Store A Data to B Bus
Store B Data to A Bus
tPLH, tPHL
CL = 50pF
4.5
-
-
44
-
55
-
66
ns
CL = 15pF
5
-
18
-
-
-
-
-
ns
Propagation Delay,
A Data to B Bus
B Data to A Bus
tPLH, tPHL
CL = 50pF
4.5
-
-
37
-
46
-
56
ns
CL = 15pF
5
-
15
-
-
-
-
-
ns
Propagation Delay,
Select to Data
tPLH, tPHL
CL = 50pF
4.5
-
-
46
-
58
-
69
ns
CL = 15pF
5
-
19
-
-
-
-
-
ns
Three-State Disabling Time Bus
to Output or Register to Output
tPLZ, tPHZ
CL = 50pF
4.5
-
-
35
-
44
-
53
ns
CL = 15pF
5
-
14
-
-
-
-
-
ns
Three-State Enabling Time Bus
to Output or Register to Output
tPZL, tPZH
CL = 50pF
4.5
-
-
45
-
56
-
68
ns
CL = 15pF
5
-
19
-
-
-
-
-
ns
Output Transition Time
tTLH, tTHL
CL = 50pF
4.5
-
-
12
-
15
-
18
ns
Three-State Output
Capacitance
CO
-
-
-
-
20
-
20
-
20
pF
Input Capacitance
CI
-
-
-
-
10
-
10
-
10
pF
Maximum Frequency
fMAX
CL = 15pF
5
-
45
-
-
-
-
-
MHz
Power Dissipation Capacitance
(Notes 7, 8)
CPD
-
5
-
52
-
-
-
-
-
pF
HCT TYPES
NOTES:
7. CPD is used to determine the dynamic power consumption, per package.
8. PD = VCC2 CPD fi + Σ VCC2 CL fo where fi = input frequency, fo = output frequency, CL = output load capacitance, CS = switch capacitance, VCC = supply voltage.
9
Test Circuits and Waveforms
tfCL
trCL
CLOCK
tWL + tWH =
90%
10%
I
fCL
CLOCK
50%
50%
tfCL = 6ns
2.7V
1.3V
0.3V
0.3V
GND
1.3V
1.3V
GND
tWH
tWL
tWH
tWL
I
fCL
3V
VCC
50%
10%
tWL + tWH =
trCL = 6ns
NOTE: Outputs should be switching from 10% VCC to 90% VCC in
accordance with device truth table. For fMAX, input duty cycle = 50%.
NOTE: Outputs should be switching from 10% VCC to 90% VCC in
accordance with device truth table. For fMAX, input duty cycle = 50%.
FIGURE 2. HC CLOCK PULSE RISE AND FALL TIMES AND
PULSE WIDTH
FIGURE 3. HCT CLOCK PULSE RISE AND FALL TIMES AND
PULSE WIDTH
tr = 6ns
tf = 6ns
VCC
90%
50%
10%
INPUT
GND
tTLH
GND
tTHL
90%
50%
10%
INVERTING
OUTPUT
3V
2.7V
1.3V
0.3V
INPUT
tTHL
tPHL
tf = 6ns
tr = 6ns
tTLH
90%
1.3V
10%
INVERTING
OUTPUT
tPHL
tPLH
FIGURE 4. HC TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
tPLH
FIGURE 5. HCT TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
10
Test Circuits and Waveforms
(Continued)
trCL
tfCL
trCL
VCC
90%
CLOCK
INPUT
GND
tH(H)
3V
2.7V
CLOCK
INPUT
50%
10%
tfCL
1.3V
0.3V
GND
tH(H)
tH(L)
VCC
DATA
INPUT
3V
DATA
INPUT
50%
tH(L)
1.3V
1.3V
1.3V
GND
tSU(H)
tSU(H)
tSU(L)
tTLH
tTHL
90%
50%
10%
90%
OUTPUT
tREM
VCC
SET, RESET
OR PRESET
tTLH
OUTPUT
tREM
3V
SET, RESET
OR PRESET
GND
6ns
OUTPUT LOW
TO OFF
OUTPUT HIGH
TO OFF
50%
OUTPUTS
DISABLED
FIGURE 8. HC THREE-STATE PROPAGATION DELAY
WAVEFORM
OTHER
INPUTS
TIED HIGH
OR LOW
OUTPUT
DISABLE
IC WITH
THREESTATE
OUTPUT
GND
1.3V
tPZH
90%
OUTPUTS
ENABLED
OUTPUTS
ENABLED
0.3
10%
tPHZ
tPZH
90%
3V
tPZL
tPLZ
10%
OUTPUTS
ENABLED
6ns
2.7
1.3
GND
50%
tPHZ
tf
OUTPUT
DISABLE
tPZL
tPLZ
OUTPUT HIGH
TO OFF
6ns
tr
VCC
10%
CL
50pF
FIGURE 7. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME,
AND PROPAGATION DELAY TIMES FOR EDGE
TRIGGERED SEQUENTIAL LOGIC CIRCUITS
6ns
OUTPUT LOW
TO OFF
GND
IC
90%
50%
tPHL
1.3V
CL
50pF
FIGURE 6. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME,
AND PROPAGATION DELAY TIMES FOR EDGE
TRIGGERED SEQUENTIAL LOGIC CIRCUITS
OUTPUT
DISABLE
1.3V
10%
tPLH
50%
IC
tTHL
90%
90%
1.3V
tPHL
tPLH
GND
tSU(L)
1.3V
OUTPUTS
DISABLED
OUTPUTS
ENABLED
FIGURE 9. HCT THREE-STATE PROPAGATION DELAY
WAVEFORM
OUTPUT
RL = 1kΩ
CL
50pF
VCC FOR tPLZ AND tPZL
GND FOR tPHZ AND tPZH
NOTE: Open drain waveforms tPLZ and tPZL are the same as those for three-state shown on the left. The test circuit is Output RL = 1kΩ to
VCC, CL = 50pF.
FIGURE 10. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT
11
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated