TI TLV2472CDGN

TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED DECEMBER 2003
D
D
D
D
D
D
D
D
D
TLV2470
DBV PACKAGE
(TOP VIEW)
CMOS Rail-To-Rail Input/Output
Input Bias Current . . . 2.5 pA
Low Supply Current . . . 600 µA/Channel
Ultra-Low Power Shutdown Mode
- IDD(SHDN) . . . 350 nA/ch at 3 V
- IDD(SHDN) . . . 1000 nA/ch at 5 V
Gain-Bandwidth Product . . . 2.8 MHz
High Output Drive Capability
- ±10 mA at 180 mV
- ±35 mA at 500 mV
Input Offset Voltage . . . 250 µV (typ)
Supply Voltage Range . . . 2.7 V to 6 V
Ultra Small Packaging
- 5 or 6 Pin SOT-23 (TLV2470/1)
- 8 or 10 Pin MSOP (TLV2472/3)
OUT
1
6
VDD
GND
2
5
SHDN
IN+
3
4
IN -
description
The TLV247x is a family of CMOS rail-to-rail input/output operational amplifiers that establishes a new
performance point for supply current versus ac performance. These devices consume just 600 µA/channel
while offering 2.8 MHz of gain-bandwidth product. Along with increased ac performance, the amplifier provides
high output drive capability, solving a major shortcoming of older micropower operational amplifiers. The
TLV247x can swing to within 180 mV of each supply rail while driving a 10-mA load. For non-RRO applications,
the TLV247x can supply ±35 mA at 500 mV off the rail. Both the inputs and outputs swing rail-to-rail for increased
dynamic range in low-voltage applications. This performance makes the TLV247x family ideal for sensor
interface, portable medical equipment, and other data acquisition circuits.
FAMILY PACKAGE TABLE
PACKAGE TYPES
DEVICE
NUMBER OF
CHANNELS
PDIP
SOIC
SOT-23
TSSOP
MSOP
TLV2470
1
8
8
6
—
—
Yes
TLV2471
1
8
8
5
—
—
—
TLV2472
2
8
8
—
—
8
—
TLV2473
2
14
14
—
—
10
Yes
TLV2474
4
14
14
—
14
—
—
TLV2475
4
16
16
—
16
—
Yes
UNIVERSAL EVM
BOARD
SHUTDOWN
Refer to the EVM
Selection Guide
(Lit# SLOU060)
A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS†
†
DEVICE
VDD
(V)
VIO
(µV)
BW
(MHz)
SLEW RATE
(V/µs)
IDD (per channel)
(µA)
OUTPUT
DRIVE
RAIL-TO-RAIL
TLV247X
2.7 - 6.0
250
TLV245X
2.7 - 6.0
20
2.8
1.5
600
±35 mA
I/O
0.22
0.11
23
±10 mA
I/O
TLV246X
2.7 - 6.0
150
6.4
TLV277X
2.5 - 6.0
360
5.1
1.6
550
±90 mA
I/O
10.5
1000
±10 mA
O
All specifications measured at 5 V.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1999 - 2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
TLV2470 and TLV2471 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
° to 125°C
°
- 40°C
†
SOT-23
SMALL OUTLINE
(D)†
(DBV)†
SYMBOL
PLASTIC DIP
(P)
TLV2470CD
TLV2471CD
TLV2470CDBV
TLV2471CDBV
VAUC
VAVC
TLV2470CP
TLV2471CP
TLV2470ID
TLV2471ID
TLV2470IDBV
TLV2471IDBV
VAUI
VAVI
TLV2470IP
TLV2471IP
—
—
—
—
TLV2470AID
TLV2471AID
TLV2470AIP
TLV2471AIP
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number
(e.g., TLV2470CDR).
TLV2472 AND TLV2473 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
° to 125°C
°
- 40°C
†
‡
SMALL
OUTLINE
(D)†
SYMBOL‡
PLASTIC
DIP
(N)
PLASTIC
DIP
(P)
(DGN)†
SYMBOL‡
(DGQ)†
TLV2472CD
TLV2473CD
TLV2472CDGN
—
xxTIABU
—
—
TLV2473CDGQ
—
xxTIABW
—
TLV2473CN
TLV2472CP
—
TLV2472ID
TLV2473ID
TLV2472IDGN
—
xxTIABV
—
—
TLV2473IDGQ
—
xxTIABX
—
TLV2473IN
TLV2472IP
—
TLV2472AID
TLV2473AID
—
—
—
—
—
—
—
—
—
TLV2473AIN
TLV2472AIP
—
MSOP
MSOP
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2472CDR).
xx represents the device date code.
TLV2474 and TLV2475 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
° to 125°C
°
- 40°C
†
2
SMALL OUTLINE
(D)†
PLASTIC DIP
(N)
TSSOP
(PWP)†
TLV2474CD
TLV2475CD
TLV2474CN
TLV2475CN
TLV2474CPWP
TLV2475CPWP
TLV2474ID
TLV2475ID
TLV2474IN
TLV2475IN
TLV2474IPWP
TLV2475IPWP
TLV2474AID
TLV2475AID
TLV2474AIN
TLV2475AIN
TLV2474AIPWP
TLV2475AIPWP
This package is available taped and reeled. To order this packaging option, add an R
suffix to the part number (e.g., TLV2474CDR).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
TLV247x PACKAGE PINOUTS(1)
TLV2470
DBV PACKAGE
(TOP VIEW)
OUT
1
VDD
6
GND
2
5
SHDN
IN+
3
4
IN -
1OUT
1IN 1IN+
GND
NC
1SHDN
NC
1
8
2
7
3
6
4
5
NC
IN IN +
GND
1
8
2
7
3
6
4
5
SHDN
VDD
OUT
NC
NC
VDD
OUT
NC
1OUT
1IN 1IN +
GND
1
8
2
7
3
6
4
5
TLV2474
D, N, OR PWP PACKAGE
(TOP VIEW)
(TOP VIEW)
14
2
13
3
12
4
11
5
10
6
9
7
8
1
GND
2
IN+
3
VDD
2OUT
2IN 2IN+
NC
2SHDN
NC
1OUT
1IN 1IN+
VDD
2IN+
2IN 2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
5
VDD
4
IN -
TLV2473
DGQ PACKAGE
(TOP VIEW)
VDD
2OUT
2IN 2IN+
TLV2473
D OR N PACKAGE
1
OUT
TLV2472
D, DGN, OR P PACKAGE
(TOP VIEW)
TLV2471
D OR P PACKAGE
(TOP VIEW)
NC
IN IN +
GND
TLV2471
DBV PACKAGE
(TOP VIEW)
TLV2470
D OR P PACKAGE
(TOP VIEW)
1OUT
1IN 1IN+
GND
1SHDN
1
2
3
4
5
10
9
8
7
6
VDD
2OUT
2IN 2IN+
2SHDN
TLV2475
D, N, OR PWP PACKAGE
(TOP VIEW)
4OUT
4IN 4IN+
GND
3IN+
3IN 3OUT
1OUT
1IN 1IN+
VDD
2IN+
2IN 2OUT
1/2SHDN
NC - No internal connection
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN 4IN+
GND
3IN +
3IN 3OUT
3/4SHDN
TYPICAL PIN 1 INDICATORS
Pin 1
Printed or
Molded Dot
Pin 1
Stripe
Pin 1
Bevel Edges
POST OFFICE BOX 655303
Pin 1
Molded ”U” Shape
• DALLAS, TEXAS 75265
3
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
description (continued)
Three members of the family (TLV2470/3/5) offer a shutdown terminal for conserving battery life in portable
applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes
only 350 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature
range ( - 40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the
quads are available in TSSOP. The TLV2470 offers an amplifier with shutdown functionality all in a 6-pin SOT23
package, making it perfect for high density power-sensitive circuits.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 40°C to 125°C
Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE: All voltage values, except differential voltages, are with respect to GND.
DISSIPATION RATING TABLE
PACKAGE
θJC
(°C/W)
θJA
(°C/W)
TA ≤ 25°C
POWER RATING
D (8)
38.3
176
710 mW
D (14)
26.9
122.3
1022 mW
D (16)
25.7
114.7
1090 mW
DBV (5)
55
324.1
385 mW
DBV (6)
55
294.3
425 mW
DGN (8)
4.7
52.7
2.37 W
DGQ (10)
4.7
52.3
2.39 W
N (14, 16)
32
78
1600 mW
P (8)
41
104
1200 mW
PWP (14)
2.07
30.7
4.07 W
PWP (16)
2.07
29.7
4.21 W
recommended operating conditions
Single supply
Supply voltage, VDD
Split supply
Common-mode input voltage range, VICR
C-suffix
Operating free-air temperature, TA
I-suffix
VIH
Shutdown on/off voltage level‡
‡
4
VIL
Relative to GND
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
MAX
2.7
6
UNIT
±1.35
±3
V
0
VDD
V
0
70
- 40
125
°
°C
2
0.8
V
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
MIN
25°C
TLV247x
VIO
Input offset voltage
αVIO
IIO
Temperature coefficient of input
offset voltage
Input offset current
VIC = VDD/2,
VO = VDD/2,
RS = 50 Ω
Input bias current
High-level output voltage
2400
Full range
TLV247xC
Full range
TLV247xI
Full range
1.5
300
2
100
Full range
300
VIC = VDD/2
25°C
2.85
Full range
2.8
25°C
2.6
Full range
2.5
IO
Output current
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
CIC
Common-mode input
capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 10 kHz,
VO(PP) = 1 V,
0.2
Full range
20
25°C
62
TLV247xC
Full range
60
TLV247xI
Full range
59
25°C
30
Full range
20
25°C
62
TLV247xC
Full range
60
TLV247xI
Full range
59
AV = 10
V
mA
±22
25°C
RL = 10 kΩ
Ω
0.35
0.5
Full range
VO = 0.5 V from rail
0.15
0.2
30
Sinking
V
2.74
0.07
25°C
Short-circuit output current
pA
2.94
Full range
25°C
Sourcing
Sinking,
Outside of rails‡
50
Full range
IOL = 10 mA
IOS
50
TLV247xI
IOL = 2.5 mA
Sourcing,
Outside of rails‡
µV/°C
°
TLV247xC
VIC = VDD/2
µV
100
25°C
Low-level output voltage
1600
UNIT
1800
25°C
IOH = - 10 mA
VOL
2200
0.4
IOH = - 2.5 mA
VOH
250
250
25°C
IIB
MAX
Full range
25°C
TLV247xA
TYP
25°C
90
Full range
88
mA
116
dB
25°C
1012
Ω
25°C
19.3
pF
25°C
2
Ω
†
Full range is 0°C to 70°C for C suffix and - 40°C to 125°C for I suffix. If not specified, full range is - 40°C to 125°C.
‡ Depending on package dissipation rating
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
(continued)
PARAMETER
CMRR
kSVR
Common-mode rejection ratio
Supply voltage rejection ratio
(∆VDD /∆VIO)
IDD
Supply current (per channel)
IDD(SHDN)
Supply current in shutdown mode
(TLV2470, TLV2473, TLV2475)
(per channel)
†
TEST CONDITIONS
VIC = 0 to 3 V,
RS = 50 Ω
VDD = 2.7 V to 6 V,
No load
VDD = 3 V to 5 V,
No load
TA†
MIN
TYP
25°C
61
78
TLV247xC
Full range
59
TLV247xI
Full range
58
25°C
74
Full range
66
25°C
77
Full range
68
VIC = VDD /2,
VIC = VDD /2,
25°C
MAX
dB
90
dB
92
550
750
VO = 1.5 V,
No load
SHDN = 0 V
TLV247xC
Full range
2000
TLV247xI
Full range
4000
Full range
800
25°C
UNIT
350
µ
µA
1500
nA
Full range is 0°C to 70°C for C suffix and - 40°C to 125°C for I suffix. If not specified, full range is - 40°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
In
TEST CONDITIONS
VO(PP) = 0.8 V,
RL = 10 kΩ
CL = 150 pF,
TA†
MIN
TYP
25°C
1.1
1.4
Full range
0.6
f = 100 Hz
25°C
28
25°C
15
Equivalent input noise current
f = 1 kHz
25°C
0.405
THD + N
Total harmonic distortion plus noise
VO(PP) = 2 V,
RL = 10 kΩ,
f = 1 kHz
t(on)
Amplifier turnon time
t(off)
Amplifier turnoff time
φm
†
‡
6
AV = 100
RL = OPEN‡
0.5%
25°C
5
µs
25°C
250
ns
25°C
2.8
MHz
V(STEP)PP = 2 V,
AV = - 1,
CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 2 V,
AV = - 1,
CL = 56 pF,
RL = 10 kΩ
0.1%
Phase margin
RL = 10 kΩ,
CL = 1000 pF
25°C
61°
Gain margin
RL = 10 kΩ,
CL = 1000 pF
25°C
15
1.5
0.01%
3.9
25°C
°
0.01%
• DALLAS, TEXAS 75265
µs
1.6
4
Full range is 0°C to 70°C for C suffix and - 40°C to 125°C for I suffix. If not specified, full range is - 40°C to 125°C.
Depending on package dissipation rating
POST OFFICE BOX 655303
pA /√Hz
0.1%
RL = 600 Ω
Settling time
√
nV/√Hz
0.02%
25°C
25
C
f = 10 kHz,
Gain-bandwidth product
ts
AV = 10
UNIT
V/µs
f = 1 kHz
AV = 1
MAX
dB
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
MIN
25°C
TLV247x
VIO
Input offset voltage
αVIO
IIO
Temperature coefficient of input
offset voltage
VIC = VDD/2,
VO = VDD/2,
RS = 50 Ω
Input offset current
Input bias current
High-level output voltage
2400
Full range
TLV247xC
Full range
TLV247xI
Full range
1.7
300
2.5
100
Full range
300
VIC = VDD/2
25°C
4.85
Full range
4.8
25°C
4.72
Full range
4.65
IO
Output current
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
CIC
Common-mode input
capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 10 kHz,
VO(PP) = 3 V,
0.178
Full range
60
25°C
63
TLV247xC
Full range
61
TLV247xI
Full range
58
25°C
90
Full range
60
25°C
63
TLV247xC
Full range
61
TLV247xI
Full range
58
AV = 10
V
mA
±35
25°C
RL = 10 kΩ
Ω
0.28
0.35
Full range
VO = 0.5 V from rail
0.15
0.2
110
Sinking
V
4.82
0.07
25°C
Short-circuit output current
pA
4.96
Full range
25°C
Sourcing
Sinking,
Outside of rails‡
50
Full range
IOL = 10 mA
IOS
50
TLV247xI
IOL = 2.5 mA
Sourcing,
Outside of rails‡
µV/°C
°
TLV247xC
VIC = VDD/2
µV
100
25°C
Low-level output voltage
1600
UNIT
2000
25°C
IOH = - 10 mA
VOL
2200
0.4
IOH = - 2.5 mA
VOH
250
250
25°C
IIB
MAX
Full range
25°C
TLV247xA
TYP
25°C
92
Full range
91
mA
120
dB
25°C
1012
Ω
25°C
18.9
pF
25°C
1.8
Ω
†
Full range is 0°C to 70°C for C suffix and - 40°C to 125°C for I suffix. If not specified, full range is - 40°C to 125°C.
‡ Depending on package dissipation rating
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
(continued)
PARAMETER
CMRR
kSVR
Common-mode rejection ratio
Supply voltage rejection ratio
(∆VDD /∆VIO)
IDD
Supply current (per channel)
IDD(SHDN)
Supply current in shutdown
mode (TLV2470, TLV2473,
TLV2475) (per channel)
†
TEST CONDITIONS
VIC = 0 to 5 V,
RS = 50 Ω
VDD = 2.7 V to 6 V,
No load
VDD = 3 V to 5 V,
No load
TA†
MIN
TYP
25°C
64
84
TLV247xC
Full range
63
TLV247xI
Full range
58
25°C
74
Full range
66
25°C
77
Full range
66
VIC = VDD /2,
VIC = VDD /2,
25°C
MAX
dB
90
dB
92
600
900
VO = 2.5 V,
No load
SHDN = 0 V
TLV247xC
Full range
3000
TLV247xI
Full range
6000
Full range
1000
25°C
UNIT
1000
µ
µA
2500
nA
nA
Full range is 0°C to 70°C for C suffix and - 40°C to 125°C for I suffix. If not specified, full range is - 40°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
In
TEST CONDITIONS
VO(PP) = 2 V,
RL = 10 kΩ
CL = 150 pF,
TA†
MIN
TYP
25°C
1.1
1.5
Full range
0.7
f = 100 Hz
25°C
28
25°C
15
Equivalent input noise current
f = 1 kHz
25°C
0.39
THD + N
Total harmonic distortion plus noise
VO(PP) = 4 V,
RL = 10 kΩ,
f = 1 kHz
t(on)
Amplifier turnon time
t(off)
Amplifier turnoff time
φm
†
‡
8
AV = 100
RL = OPEN‡
pA /√Hz
0.05%
0.3%
25°C
5
µs
25°C
250
ns
25°C
2.8
MHz
RL = 600 Ω
V(STEP)PP = 2 V,
AV = - 1,
CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 2 V,
AV = - 1,
CL = 56 pF,
RL = 10 kΩ
0.1%
Phase margin
RL = 10 kΩ,
CL = 1000 pF
25°C
68°
Gain margin
RL = 10 kΩ,
CL = 1000 pF
25°C
23
Settling time
√
nV/√Hz
0.01%
25°C
25
C
f = 10 kHz,
Gain-bandwidth product
ts
AV = 10
UNIT
V/µs
f = 1 kHz
AV = 1
MAX
1.8
0.01%
3.3
25°C
°
µs
1.7
0.01%
3
dB
Full range is 0°C to 70°C for C suffix and - 40°C to 125°C for I suffix. If not specified, full range is - 40°C to 125°C.
Disable and enable time are defined as the interval between application of logic signal to SHDN and the point at which the supply current has
reached half its final value.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
IIB
Input bias current
vs Common-mode input voltage
1, 2
IIO
Input offset current
vs Free-air temperature
3, 4
VOH
VOL
High-level output voltage
vs High-level output current
5, 7
Low-level output voltage
vs Low-level output current
6, 8
Zo
Output impedance
vs Frequency
9
IDD
Supply current
vs Supply voltage
10
PSRR
Power supply rejection ratio
vs Frequency
11
CMRR
Common-mode rejection ratio
vs Frequency
12
Vn
Equivalent input noise voltage
vs Frequency
13
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
14, 15
AVD
Differential voltage gain and phase
vs Frequency
16, 17
φm
Phase margin
vs Load capacitance
18, 19
Gain margin
vs Load capacitance
20, 21
Gain-bandwidth product
vs Supply voltage
22
vs Supply voltage
23
SR
Slew rate
vs Free-air temperature
24, 25
Crosstalk
vs Frequency
26
THD+N
Total harmonic distortion + noise
vs Frequency
27, 28
VO
Large and small signal follower
vs Time
29 - 32
Shutdown pulse response
vs Time
33, 34
35, 36
Shutdown forward and reverse isolation
vs Frequency
IDD(SHDN)
Shutdown supply current
vs Supply voltage
37
IDD(SHDN)
Shutdown supply current
vs Free-air temperature
38
IDD(SHDN)
Shutdown pulse current
vs Time
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39, 40
9
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
TYPICAL CHARACTERISTICS
600
TA=25° C
200
0
- 200
- 400
- 600
400
0
- 200
- 400
- 600
- 800
- 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VICR - Common-Mode Input Voltage - V
- 800
- 0.5
0.5
1.5
2.5
3.5
4.5
5.5
VICR - Common-Mode Input Voltage - V
Figure 1
Figure 2
20
IIB
10
0
IIO
- 10
- 55 - 35 - 15 5 25 45 65 85 105 125
TA - Free-Air Temperature - °C
VDD=3 V
3.0
2.5
2.0
TA=125°C
1.5
TA=85°C
1.0
TA=25°C
0.5
TA= - 40°C
3.5
3.0
1.5
0.5
TA= - 40°C
0.0
20 40 60 80 100 120 140 160
IOH - High-Level Output Current - mA
Figure 7
TA= - 40°C
1.0
0.5
10
20
30
40
50
IOL - Low-Level Output Current - mA
Figure 6
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
VDD=3 & 5 V
TA=25°C
TA=125°C
4.5
TA=85°C
4.0
3.5
TA=25°C
3.0
TA= - 40°C
2.5
2.0
1.5
1.0
100
AV=100
10
AV=10
1
AV=1
0.1
0.5
VDD=5 V
0.0
0
TA=25°C
1.5
0
Z o - Output Impedance - Ω
4.0
TA=25°C
TA=85°C
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VOL - Low-Level Output Voltage - V
V OH - High-Level Output Voltage - V
4.5
1.0
TA=125°C
2.0
10
20
30
40
50
60
IOH - High-Level Output Current - mA
5.0
TA=85°C
VDD=3 V
2.5
Figure 5
VDD=5 V
TA=125°C
IIO
0.0
0
5.5
2.0
0
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0.0
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
2.5
10
3.0
Figure 4
5.0
IIB
20
Figure 3
VOL - Low-Level Output Voltage - V
30
V OH - High-Level Output Voltage - V
I IO - Input Offset Current - pA
40
30
- 10
- 55 - 35 - 15 5 25 45 65 85 105 125
TA - Free-Air Temperature - °C
3.5
VDD=5 V
40
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
50
I IB - Input Bias Current - pA
TA=25 °C
200
INPUT BIAS AND INPUT OFFSET
CURRENTS
vs
FREE-AIR TEMPERATURE
VDD=3 V
I IB - Input Bias Current - pA
400
50
VDD=5 V
I IO - Input Offset Current - pA
VDD=3 V
VIO - Input Offset Voltage - µ V
VIO - Input Offset Voltage - µ V
600
10
INPUT BIAS AND INPUT OFFSET
CURRENTS
vs
FREE-AIR TEMPERATURE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
0
20
40
60
80 100 120 140
IOL - Low-Level Output Current - mA
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
0.01
100
1k
10k
100k
f - Frequency - Hz
Figure 9
1M
10M
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
TYPICAL CHARACTERISTICS
POWER SUPPLY REJECTION RATIO
vs
FREQUENCY
TA=125°C
0.7
0.6
TA=25°C
0.5
TA= - 40°C
0.4
0.3
0.2
A V= 1
SHDN= VDD
Per Channel
0.1
0.0
2.5
3.0
3.5 4.0 4.5 5.0 5.5
VDD - Supply Voltage - V
PSRR+
90
80
PSRR -
70
60
50
40
30
10
6.0
100
VDD=3 & 5 V
AV= 10
VIN= VDD/2
TA=25°C
50
40
30
20
10
0
10
100
1k
10k
f - Frequency - Hz
100k
V O(PP) - Maximum Peak-To-Peak Output Voltage - V
80
5.0
4.5
VO(PP)=5 V
THD+N ≤ 2.0%
RL=10 kΩ
TA=25°C
4.0
3.5
3.0
2.5
VO(PP)=3 V
2.0
1.5
1.0
0.5
0.0
10k
100k
f - Frequency - Hz
100
VDD=5 V
90
VIC=2.5 V
80
70
60
50
100
VDD=3 V
VIC=1.5 V
1k
20
- 135
0
- 180
- 20
- 225
10k
100k
1M
Frequency - Hz
10M
Phase - °
- 45
- 90
10k
100k
f - Frequency - Hz
- 270
100M
1M
10M
1M
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
5.5
THD+N ≤ 2.0%
RL=600 Ω
TA=25°C
5.0
4.5
4.0
VO(PP)=5 V
3.5
3.0
2.5
2.0
VO(PP)=3 V
1.5
1.0
0.5
0.0
10k
100k
f - Frequency - Hz
1M
Figure 15
DIFFERENTIAL VOLTAGE GAIN AND PHASE
vs
FREQUENCY
100
0
40
1k
110
Figure 12
45
VDD=±3
RL=600 Ω
CL=0
TA=25°C
60
120
Figure 14
100
80
10M
5.5
DIFFERENTIAL VOLTAGE GAIN AND PHASE
vs
FREQUENCY
- 40
100
1M
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
Figure 13
AVD - Differential Voltage Gain - dB
V n - Equivalent Input Noise Voltage - nV/
Hz
EQUIVALENT NOISE VOLTAGE
vs
FREQUENCY
60
1k
10k
100k
f - Frequency - Hz
130
Figure 11
Figure 10
70
VDD=3 & 5 V
RF=5 kΩ
RI=50 Ω
TA=25°C
V O(PP) - Maximum Peak-To-Peak Output Voltage - V
TA=85°C
0.8
100
AVD - Differential Voltage Gain - dB
I DD - Supply Current - mA
0.9
45
VDD=±5
RL=600 Ω
CL=0
TA=25°C
80
60
0
- 45
40
- 90
20
- 135
0
- 180
- 20
- 225
- 40
100
1k
1M
10k
100k
Frequency - Hz
10M
Phase - °
1.0
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR - Common-Mode Rejection Ratio - dB
PSRR - Power Supply Rejection Ratio - dB
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
- 270
100M
Figure 17
Figure 16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
TYPICAL CHARACTERISTICS
PHASE MARGIN
vs
LOAD CAPACITANCE
PHASE MARGIN
vs
LOAD CAPACITANCE
90
60
Rnull=50
80
Rnull=100
50
Rnull=20
40
30
20
10
0
VDD=5V
RL=10 kΩ
TA=25°C
See Figure 42
90
VDD=3V
RL=10 kΩ
TA=25°C
Rnull=50
5
Rnull=0
70
Gain Margin - dB
70
100
VDD=3 V
RL=10 kΩ
TA=25°C
See Figure 42
φ m - Phase Margin - °
φ m - Phase Margin - °
80
GAIN MARGIN
vs
LOAD CAPACITANCE
Rnull=100
60
50
40
30
10
15
Rnull=20
Rnull=20
20
25
Rnull=0
0
100
10
1k
10k
CL - Load Capacitance - pF
Rnull=50
Rnull=0
0
100
100k
1k
10k
CL - Load Capacitance - pF
Figure 18
30
100
100k
1k
10k
CL - Load Capacitance - pF
Figure 19
GAIN MARGIN
vs
LOAD CAPACITANCE
0
4.0
5
3.5
SLEW RATE
vs
SUPPLY VOLTAGE
2.0
Gain Margin - dB
15
Rnull=20
20
25
Rnull=50
Rnull=100
VDD=5V
RL=10 kΩ
TA=25°C
30
RL=10 kΩ
SR - Slew Rate - V/µs
Gain-Bandwidth Product - MHz
1.8
Rnull=0
3.0
RL=600 Ω
2.5
2.0
1.5
CL=11 pF
f=10 kHz
TA=25°C
1.0
1k
10k
CL - Load Capacitance - pF
3.0
3.5 4.0 4.5 5.0 5.5
VDD - Supply Voltage - V
1.75
SR+
SR - Slew Rate - V/µs
SR - Slew Rate - V/µs
1.75
SR -
1.00
0.75
0.25
VDD=3 V
RL=10 kΩ
CL=150 pF
A V= - 1
VO(PP)=1.5 V
A V= - 1
RL=10 kΩ
CL=150 pF
2.5
3.0
3.5 4.0 4.5 5.0 5.5
VDD - Supply Voltage - V
Figure 23
SR -
1.50
SR+
1.25
1.00
0.75
0.50
0.25
0.00
- 55 - 35 - 15 5 25 45 65 85 105 125
TA - Free-Air Temperature - °C
VDD=5 V
RL=10 kΩ
CL=150 pF
A V= - 1
0.00
- 55 - 35 - 15 5 25 45 65 85 105 125
TA - Free-Air Temperature - °C
Figure 24
12
0.6
SLEW RATE
vs
FREE-AIR TEMPERATURE
2.00
0.50
0.8
Figure 22
2.00
1.25
1.0
6.0
SLEW RATE
vs
FREE-AIR TEMPERATURE
1.50
1.2
0.0
2.5
Figure 21
SR+
1.4
0.2
0.5
100k
SR -
1.6
0.4
0.0
35
100
100k
Figure 20
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
10
Rnull=100
20
Figure 25
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6.0
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
TYPICAL CHARACTERISTICS
VDD = 3V & 5V
AV = 1
RL= 600Ω
VI(PP)=2V
All Channels
- 20
Crosstalk - dB
- 40
- 60
- 80
- 100
- 120
- 140
- 160
1k
100
10 k
f - Frequency - Hz
10
100 k
1
AV = 100
AV = 10
0.1
AV = 1
0.01
VDD = 3 V
RL = 10 kΩ
V0 = 2 VPP
TA = 25°C
0.001
10
TOTAL HARMONIC
DISTORTION PLUS NOISE
vs
FREQUENCY
THD+N - Total Harmonic Distortion + Noise
0
TOTAL HARMONIC
DISTORTION PLUS NOISE
vs
FREQUENCY
THD+N - Total Harmonic Distortion + Noise
CROSSTALK
vs
FREQUENCY
100
1k
AV = 100
AV = 10
0.1
AV = 1
0.01
VDD = 5 V
RL = 10 kΩ
V0 = 4 VPP
TA = 25°C
0.001
10
100k
10k
1
100
f - Frequency - Hz
Figure 26
Figure 27
LARGE SIGNAL FOLLOWER
PULSE RESPONSE
vs
TIME
LARGE SIGNAL FOLLOWER
PULSE RESPONSE
vs
TIME
VI (50 mV/DIV)
VDD = 3 V
RL = 10 kΩ
CL = 8 pF
f = 85 kHz
TA = 25°C
3
4 5 6
t - Time - µs
7
8
9
10
VO (1 V/DIV)
VDD = 5 V
RL = 10 kΩ
CL = 8 pF
f = 85 kHz
TA = 25°C
0
1
2
3
Figure 29
VDD = 3 V
RL = 10 kΩ
CL = 8 pF
f = 1 MHz
TA = 25°C
V O - Output Voltage
V O - Output Voltage
V O - Output Voltage
VO (1 V/DIV)
2
VO (50 mV/DIV)
4 5
6
t - Time - µs
7
8
9
0
10
100
200
300
t - Time - µs
Figure 30
SMALL SIGNAL FOLLOWER
PULSE RESPONSE
vs
TIME
SHUTDOWN (ON AND OFF)
PULSE RESPONSE
vs
TIME
SHUTDOWN (ON AND OFF)
PULSE RESPONSE
vs
TIME
Figure 32
400
500
RL = 600 Ω
RL = 10 kΩ
VO (500 mV/DIV)
VDD = 3 V
CL = 8 pF
TA = 25°C
0
2
V O - Output Voltage
V O - Output Voltage
V O - Output Voltage
VSHDN (2 V/DIV)
VO (50 mV/DIV)
200
300
t - Time - µs
500
VSHDN (2 V/DIV)
VDD = 5 V
RL = 10 kΩ
CL = 8 pF
f = 1 MHz
TA = 25°C
100
400
Figure 31
VI (50 mV/DIV)
0
100k
SMALL SIGNAL FOLLOWER
PULSE RESPONSE
vs
TIME
VI (2 V/DIV)
1
10k
Figure 28
VI (2 V/DIV)
0
1k
f - Frequency - Hz
RL = 600 Ω
RL = 10 kΩ
VO (1 V/DIV)
VDD = 5 V
CL = 8 pF
TA = 25°C
4 6
8
t - Time - µs
10 12
14 16
Figure 33
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
0
2
4
6 8 10
t - Time - µs
12 14
16 18
Figure 34
13
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
TYPICAL CHARACTERISTICS
SHUTDOWN FORWARD
ISOLATION
vs
FREQUENCY
I DD(SHDN) - Shutdown Supply Current - µA
120
120
VDD = 3 & 5 V
CL=0 pF
AV = 1
VI(PP)=0.1, 1.5, 3 V
100
Shutdown Forward Isolation - dB
Shutdown Forward Isolation - dB
SHUTDOWN SUPPLY CURRENT
vs
SUPPLY VOLTAGE
SHUTDOWN REVERSE ISOLATION
vs
FREQUENCY
80
RL=600 Ω
60
RL=10 kΩ
40
20
VDD = 3 & 5 V
RL=10 kΩ
CL=0 pF
AV = 1
VIN=0.1, 1.5, 3 Vp-p
100
80
RL=600 Ω
60
RL=10 kΩ
40
20
0
0
100
1k
10k
100k
f - Frequency - Hz
1M
10M
100
1k
Figure 35
10k
100k
f - Frequency - Hz
1M
2.0
1.8
1.6
1.4
TA=125
1.2
TA=85
1.0
TA=25
0.8
TA= - 40
0.6
0.4
Shutdown On
RL=OPEN
VI=VDD/2
0.2
0.0
2.5
10M
3.0
3.5 4.0 4.5 5.0 5.5
VDD - Supply Voltage - V
Figure 36
Figure 37
SHUTDOWN SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
I DD - Shutdown Supply Current - µ A
1.6
SD MODE Channel 1 & 2
AV = 1
RL= OPEN
VIN=VDD/2
1.4
1.2
1.0
VDD=5 V
0.8
0.6
0.4
VDD=3 V
0.2
0.0
- 55 - 35 - 15 5 25 45 65 85 105 125
TA - Free-Air Temperature - °C
Figure 38
SHUTDOWN PULSE CURRENT
vs
TIME
I DD - Supply Current - mA
4
2
3
1.75
2
1.5
1
1.25
0
IDD RL=10 kΩ
1
-1
0.75
-2
0.5
-3
IDD RL=600Ω
-4
0.25
-5
VDD = 3 V
CL=8 pF
TA=25°C
0
- 0.25
-6
- 0.5
0
4
8
12 16 20
t - Time - µs
24
I DD - Supply Current - mA
Shutdown Pulse
Shutdown Pulse - V
2
1.75
2
1.25
0
1
IDD RL=10 kΩ
-2
0.75
-4
IDD RL=600 Ω
0.5
-6
0.25
- 0.25
-8
- 0.5
4
8
12 16
t - Time - µs
Figure 40
• DALLAS, TEXAS 75265
- 10
- 12
0
28 30
-8
VDD = 5 V
CL=8 pF
TA=25°C
0
-7
POST OFFICE BOX 655303
4
Shutdown Pulse
1.5
Figure 39
14
6
Shutdown Pulse - V
SHUTDOWN PULSE CURRENT
vs
TIME
20
24 28 30
6.0
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
PARAMETER MEASUREMENT INFORMATION
Rnull
_
+
RL
CL
Figure 41
APPLICATION INFORMATION
driving a capacitive load
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as
shown in Figure 42. A minimum value of 20 Ω should work well for most applications.
RF
RG
RNULL
_
Input
Output
+
CLOAD
Figure 42. Driving a Capacitive Load
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
RF
IIB -
RG
+
-
VI
RS
IIB+
V
OO
+V
IO
ǒ ǒ ǓǓ
1)
R
R
F
G
VO
+
"I
IB)
R
S
ǒ ǒ ǓǓ
1)
R
R
F
G
"I
IB–
R
F
Figure 43. Output Offset Voltage Model
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
APPLICATION INFORMATION
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier
(see Figure 44).
RG
RF
VO
+
VI
R1
C1
f
V
O +
V
I
ǒ
1)
R
R
F
G
–3dB
Ǔǒ
+
1
2pR1C1
Ǔ
1
1 ) sR1C1
Figure 44. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f
C2
RG
RF
–3dB
RG =
+
(
1
2pRC
RF
1
2Q
)
Figure 45. 2-Pole Low-Pass Sallen-Key Filter
shutdown function
Three members of the TLV247x family (TLV2470/3/5) have a shutdown terminal for conserving battery life in
portable applications. When the shutdown terminal is tied low, the supply current is reduced to 350 nA/channel,
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the
shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care
should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place
the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to VDD/2.
Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to
be pulled to VDD - (not GND) to disable the operational amplifier.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
APPLICATION INFORMATION
shutdown function (continued)
The amplifier’s output with a shutdown pulse is shown in Figures 33 and 34. The amplifier is powered with a
single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff
times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The
times for the single, dual, and quad are listed in the data tables.
Figures 35 and 36 show the amplifier’s forward and reverse isolation in shutdown. The operational amplifier is
powered by ±1.35-V supplies and configured as a voltage follower (AV = 1). The isolation performance is plotted
across frequency using 0.1-VPP, 1.5-VPP, and 2.5-VPP input signals. During normal operation, the amplifier
would not be able to handle a 2.5-VPP input signal with a supply voltage of ±1.35 V since it exceeds the
common-mode input voltage range (VICR). However, this curve illustrates that the amplifier remains in shutdown
even under a worst case scenario.
circuit layout considerations
To achieve the levels of high performance of the TLV247x, follow proper printed-circuit board design techniques.
A general set of guidelines is given in the following.
D Ground planes - It is highly recommended that a ground plane be used on the board to provide all
components with a low inductive ground connection. However, in the areas of the amplifier inputs and
output, the ground plane can be removed to minimize the stray capacitance.
D Proper power supply decoupling - Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less
effective. The designer should strive for distances of less than 0.1 inches between the device power
terminals and the ceramic capacitors.
D Sockets - Sockets can be used but are not recommended. The additional lead inductance in the socket pins
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
is the best implementation.
D Short trace runs/compact part placements - Optimum high performance is achieved when stray series
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
the input of the amplifier.
D Surface-mount passive components - Using surface-mount passive components is recommended for high
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
kept as short as possible.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
APPLICATION INFORMATION
general PowerPAD design considerations
The TLV247x is available in a thermally-enhanced PowerPAD family of packages. These packages are
constructed using a downset leadframe upon which the die is mounted [see Figure 46(a) and Figure 46(b)]. This
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see
Figure 46(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance
can be achieved by providing a good thermal path away from the thermal pad.
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,
heat can be conducted away from the package into either a ground plane or other heat dissipating device.
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of
surface mount with the, heretofore, awkward mechanical methods of heatsinking.
DIE
Side View (a)
Thermal
Pad
DIE
End View (b)
Bottom View (c)
NOTE A: The thermal pad is electrically isolated from all terminals in the package.
Figure 46. Views of Thermally Enhanced DGN Package
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the
recommended approach.
Thermal Pad Area
Quad
Single or Dual
68 mils x 70 mils) with 5 vias
(Via diameter = 13 mils
Figure 47. PowerPAD PCB Etch and Via Pattern
PowerPAD is a trademark of Texas Instruments Incorporated.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
78 mils x 94 mils) with 9 vias
(Via diameter = 13 mils)
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
APPLICATION INFORMATION
general PowerPAD design considerations (continued)
1. Prepare the PCB with a top side etch pattern as shown in Figure 47. There should be etch for the leads as
well as etch for the thermal pad.
2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils
in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps
dissipate the heat generated by the TLV247x IC. These additional vias may be larger than the 13-mil
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad
area to be soldered so that wicking is not a problem.
4. Connect all holes to the internal ground plane.
5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection
methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat
transfer during soldering operations. This makes the soldering of vias that have plane connections easier.
In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore,
the holes under the TLV247x PowerPAD package should make their connection to the internal ground plane
with a complete connection around the entire circumference of the plated-through hole.
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five
holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes
of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the
reflow process.
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.
8. With these preparatory steps in place, the TLV247x IC is simply placed in position and run through the solder
reflow operation as any standard surface-mount component. This results in a part that is properly installed.
For a given θJA, the maximum power dissipation is shown in Figure 48 and is calculated by the following formula:
P
D
Where:
PD
TMAX
TA
θJA
+
ǒ
T
Ǔ
–T
MAX A
q
JA
= Maximum power dissipation of TLV247x IC (watts)
= Absolute maximum junction temperature (150°C)
= Free-ambient air temperature (°C)
= θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
APPLICATION INFORMATION
general PowerPAD design considerations (continued)
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
7
Maximum Power Dissipation - W
6
5
4
3
2
PWP Package
Low-K Test PCB
θJA = 29.7°C/W
DGN Package
Low-K Test PCB
θJA = 52.3°C/W
TJ = 150°C
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
PDIP Package
Low-K Test PCB
θJA = 104°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
1
0
- 55 - 40 - 25 - 10 5 20 35 50 65 80 95 110 125
TA - Free-Air Temperature - °C
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 48. Maximum Power Dissipation vs Free-Air Temperature
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent
power and output power. The designer should never forget about the quiescent heat generated within the
device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most
of the heat dissipation is at low output voltages with high output currents. Figure 49 to Figure 54 show this effect,
along with the quiescent heat, with an ambient air temperature of 70°C and 125°C. When using VDD = 3 V, there
is generally not a heat problem with an ambient air temperature of 70°C. But, when using VDD = 5 V, the
packages are severely limited in the amount of heat it can dissipate. The other key factor when looking at these
graphs is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat
dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation
properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted
on the PCB. As more trace and copper area is placed around the device, θJA decreases and the heat dissipation
capability increases. The currents and voltages shown in these graphs are for the total package. For the dual
or quad amplifier packages, the sum of the RMS output currents and voltages should be used to choose the
proper package.
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
APPLICATION INFORMATION
general PowerPAD design considerations (continued)
TLV2470, TLV2471†
MAXIMUM RMS OUTPUT CURRENT
vs
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS
180
Maximum Output
Current Limit Line
160
| IO | - Maximum RMS Output Current - mA
| IO | - Maximum RMS Output Current - mA
180
140
Packages With
θJA ≤ 110°C/W
at TA = 125°C
or
θJA ≤ 355°C/W
at TA = 70°C
C
120
100
B
A
80
60
Safe Operating Area
40
VDD = ± 3 V
TJ = 150°C
TA = 125°C
20
TLV2470, TLV2471†
MAXIMUM RMS OUTPUT CURRENT
vs
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS
Maximum Output
Current Limit Line
160
140
G
B
100
A
80
Packages With
θJA ≤ 210°C/W
at TA = 70°C
60
40
VDD = ± 5 V
TJ = 150°C
TA = 125°C
20
0
0
0
1.5
0.25
0.5
0.75
1
1.25
| VO | - RMS Output Voltage - V
0
C
120
Packages With
θJA ≤ 55°C/W
at TA = 125°C
or
θJA ≤ 178°C/W
at TA = 70°C
D
100
80
60
40
VDD = ± 3 V
TJ = 150°C
TA = 125°C
20
Safe Operating Area
TLV2472, TLV2473†
MAXIMUM RMS OUTPUT CURRENT
vs
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS
180
| IO | - Maximum RMS Output Current - mA
| IO | - Maximum RMS Output Current - mA
G
Maximum Output
Current Limit Line
160
140
F
120
G
100
H
D
80
C
60
40
VDD = ± 5 V
TJ = 150°C
TA = 125°C
20
0
0
0
0.25
0.5
0.75
1
1.25
| VO | - RMS Output Voltage - V
1.5
0
Packages With
θJA ≤ 105°C/W
at TA = 70°C
Safe Operating Area
0.5
1
1.5
2
| VO | - RMS Output Voltage - V
2.5
Figure 52
Figure 51
†
2.5
Figure 50
TLV2472, TLV2473†
MAXIMUM RMS OUTPUT CURRENT
vs
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS
180
Maximum Output
Current Limit Line
160
H
Safe Operating Area
0.5
1
1.5
2
| VO | - RMS Output Voltage - V
Figure 49
140
C
120
A - SOT23(5); B - SOT23 (6); C - SOIC (8); D - SOIC (14); E - SOIC (16); F - MSOP PP (8); G - PDIP (8); H - PDIP (14); I - PDIP (16);
J - TSSOP PP (14/16)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
APPLICATION INFORMATION
general PowerPAD design considerations (continued)
TLV2474, TLV2475†
MAXIMUM RMS OUTPUT CURRENT
vs
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS
180
Maximum Output
Current Limit Line
160
140
| IO | - Maximum RMS Output Current - mA
| IO | - Maximum RMS Output Current - mA
180
J
120
H and I
100
E
Packages With
θJA ≤ 88°C/W
D
at TA = 70°C
80
60
40
VDD = ±3 V
TJ = 150°C
TA = 125°C
20
0
0
TLV2474, TLV2475†
MAXIMUM RMS OUTPUT CURRENT
vs
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS
Safe Operating Area
Maximum Output
Current Limit Line
160
140
J
120
100
H and I
80
VDD = ± 5 V
TJ = 150°C
TA = 125°C
60
1.5
20
Safe Operating Area
0
Figure 53
†
D
40
0
0.25
0.5
0.75
1
1.25
| VO | - RMS Output Voltage - V
E
Packages With
θJA ≤ 52°C/W
at TA = 70°C
0.5
1
1.5
2
| VO | - RMS Output Voltage - V
2.5
Figure 54
A - SOT23(5); B - SOT23 (6); C - SOIC (8); D - SOIC (14); E - SOIC (16); F - MSOP PP (8); G - PDIP (8); H - PDIP (14); I - PDIP (16); J
- TSSOP PP (14/16)
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA
FAMILY OF 600−µA/Ch 2.8−MHz RAIL−TO−RAIL INPUT/OUTPUT
HIGH−DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS232C - JUNE 1999 - REVISED AUGUST 2003
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 2) and subcircuit in Figure 55 are generated using
the TLV247x typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
3
99
VDD
+
egnd
rd1
rd2
rss
ro2
css
fb
rp
c1
7
11
12
+
c2
vlim
1
+
r2
9
6
IN+
vc
D
D
8
+
vb
ga
2
G
G
IN ro1
gcm
ioff
53
S
S
OUT
dp
91
10
iss
GND
4
vlp
-
ve
+ 54
90
dln
+
hlim
-
+
dc
-
dlp
5
92
vln
+
de
* TLV247x operational amplifier ”macromodel” subcircuit
* created using Parts release 8.0 on 4/27/99 at 14:31
* Parts is a MicroSim product.
*
* connections: non - inverting input
*
| inverting input
*
| | positive power supply
*
| | | negative power supply
*
| | | | output
*
| | | | |
.subckt TLV247x 1 2 3 4 5
*
c1
11
12
1.1094E- 12
c2
6
7
5.5000E- 12
css
10
99
556.53E- 15
dc
5
53
dy
de
54
5
dy
dlp
90
91
dx
dln
92
90
dx
dp
4
3
dx
egnd
99
0
poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99
poly(5) vb vc ve vlp vln 0
+ 39.614E6 - 1E3 1E3 40E6 - 40E6
ga
6
0
11
12 79.828E - 6
gcm
0
6
10
99 32.483E - 9
iss
hlim
ioff
j1
j2
r2
rd1
rd2
ro1
ro2
rp
rss
vb
vc
ve
vlim
vlp
vln
.model
.model
.model
.model
.ends
*$
10
90
0
11
12
6
3
3
8
7
3
10
9
3
54
7
91
0
dx
dy
jx1
jx2
4
dc
10.714E- 6
0
vlim 1K
6
dc
75E- 9
2
10 jx1
1
10 jx2
9
100.00E3
11
12.527E3
12
12.527E3
5
10
99
10
4
3.8023E3
99
18.667E6
0
dc 0
53
dc .842
4
dc .842
8
dc 0
0
dc 110
92
dc 110
D(Is=800.00E- 18)
D(Is=800.00E- 18 Rs=1m Cjo=10p)
NJF(Is=1.0825E- 12 Beta=594.78E - 06 + Vto= - 1)
NJF(Is=1.0825E- 12 Beta=594.78E - 06 + Vto= - 1)
Figure 55. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
PACKAGE OPTION ADDENDUM
www.ti.com
4-Nov-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2470AID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470AIDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470AIDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470AIP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2470AIPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2470CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470CDBVR
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470CDBVRG4
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470CDBVT
ACTIVE
SOT-23
DBV
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470CDBVTG4
ACTIVE
SOT-23
DBV
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2470CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2470ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470IDBVR
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470IDBVRG4
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470IDBVT
ACTIVE
SOT-23
DBV
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470IDBVTG4
ACTIVE
SOT-23
DBV
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2470IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2470IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2471AID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
4-Nov-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2471AIDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471AIDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471AIP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2471AIPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2471CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471CDBVR
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471CDBVRG4
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471CDBVT
ACTIVE
SOT-23
DBV
5
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471CDBVTG4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2471CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2471ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471IDBVR
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471IDBVRG4
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471IDBVT
ACTIVE
SOT-23
DBV
5
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471IDBVTG4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2471IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2471IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2472AID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472AIDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472AIDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 2
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
4-Nov-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2472AIP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2472AIPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2472CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472CDGN
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472CDGNR
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472CDGNRG4
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2472CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2472ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472IDGN
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472IDGNG4
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472IDGNR
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472IDGNRG4
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2472IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2472IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2473AID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473AIDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473AIN
ACTIVE
PDIP
N
14
25
Addendum-Page 3
Pb-Free
(RoHS)
Lead/Ball Finish
CU NIPD
MSL Peak Temp (3)
Level-NC-NC-NC
PACKAGE OPTION ADDENDUM
www.ti.com
4-Nov-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2473AINE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
TLV2473CD
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473CDGQ
ACTIVE
MSOPPower
PAD
DGQ
10
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473CDGQR
ACTIVE
MSOPPower
PAD
DGQ
10
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473CDGQRG4
ACTIVE
MSOPPower
PAD
DGQ
10
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473CDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473CDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473ID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473IDG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473IDGQ
ACTIVE
MSOPPower
PAD
DGQ
10
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473IDGQG4
ACTIVE
MSOPPower
PAD
DGQ
10
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473IDGQR
ACTIVE
MSOPPower
PAD
DGQ
10
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473IDGQRG4
ACTIVE
MSOPPower
PAD
DGQ
10
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2473IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2473INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2474AID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474AIDG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474AIDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474AIDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474AIN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLV2474AINE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLV2474AIPWP
ACTIVE
HTSSOP
PWP
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2474AIPWPR
ACTIVE
HTSSOP
PWP
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
Addendum-Page 4
Lead/Ball Finish
MSL Peak Temp (3)
Level-NC-NC-NC
PACKAGE OPTION ADDENDUM
www.ti.com
4-Nov-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2474AIPWPRG4
ACTIVE
HTSSOP
PWP
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2474AIPWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474CD
ACTIVE
SOIC
D
14
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474CDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474CDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474CN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLV2474CNE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLV2474CPWP
ACTIVE
HTSSOP
PWP
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2474CPWPR
ACTIVE
HTSSOP
PWP
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2474CPWPRG4
ACTIVE
HTSSOP
PWP
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2474ID
ACTIVE
SOIC
D
14
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474IDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474IDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2474IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLV2474INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLV2474IPWP
ACTIVE
HTSSOP
PWP
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2474IPWPG4
ACTIVE
HTSSOP
PWP
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2474IPWPR
ACTIVE
HTSSOP
PWP
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2474IPWPRG4
ACTIVE
HTSSOP
PWP
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2475AIDR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2475AIN
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2475AINE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLV2475AIPWP
ACTIVE
HTSSOP
PWP
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2475AIPWPR
ACTIVE
HTSSOP
PWP
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2475AIPWPRG4
ACTIVE
HTSSOP
PWP
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLV2475CD
ACTIVE
SOIC
D
16
CU NIPDAU
Level-1-260C-UNLIM
50
50
40
Addendum-Page 5
Green (RoHS &
no Sb/Br)
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
4-Nov-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2475CDR
ACTIVE
SOIC
D
16
TLV2475CN
ACTIVE
PDIP
N
16
25
TLV2475CNE4
ACTIVE
PDIP
N
16
25
TLV2475CPWPR
ACTIVE
HTSSOP
PWP
16
TLV2475IDR
ACTIVE
SOIC
D
16
TLV2475IN
ACTIVE
PDIP
N
16
25
TLV2475INE4
ACTIVE
PDIP
N
16
25
TLV2475IPWPR
ACTIVE
HTSSOP
PWP
16
TLV2475IPWPRG4
ACTIVE
HTSSOP
PWP
16
2500 Green (RoHS &
no Sb/Br)
Lead/Ball Finish
MSL Peak Temp (3)
CU NIPDAU
Level-1-260C-UNLIM
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 6
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated