TI TLC072CD

 SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
D Wide Bandwidth . . . 10 MHz
D High Output Drive
D
D
D
D
D
D
D
Operational Amplifier
− IOH . . . 57 mA at VDD − 1.5 V
− IOL . . . 55 mA at 0.5 V
High Slew Rate
− SR+ . . . 16 V/µs
− SR− . . . 19 V/µs
Wide Supply Range . . . 4.5 V to 16 V
Supply Current . . . 1.9 mA/Channel
Ultralow Power Shutdown Mode
IDD . . . 125 µA/Channel
Low Input Noise Voltage . . . 7 nV√Hz
Input Offset Voltage . . . 60 µV
Ultra-Small Packages
− 8 or 10 Pin MSOP (TLC070/1/2/3)
−
+
description
The first members of TI’s new BiMOS general-purpose operational amplifier family are the TLC07x. The BiMOS
family concept is simple: provide an upgrade path for BiFET users who are moving away from dual-supply to
single-supply systems and demand higher ac and dc performance. With performance rated from 4.5 V to 16
V across commercial (0°C to 70°C) and an extended industrial temperature range (−40°C to 125°C), BiMOS
suits a wide range of audio, automotive, industrial and instrumentation applications. Familiar features like offset
nulling pins, and new features like MSOP PowerPAD packages and shutdown modes, enable higher levels
of performance in a variety of applications.
Developed in TI’s patented LBC3 BiCMOS process, the new BiMOS amplifiers combine a very high input
impedance low-noise CMOS front end with a high-drive bipolar output stage, thus providing the optimum
performance features of both. AC performance improvements over the TL07x BiFET predecessors include a
bandwidth of 10 MHz (an increase of 300%) and voltage noise of 7 nV/√Hz (an improvement of 60%). DC
improvements include a factor of 4 reduction in input offset voltage down to 1.5 mV (maximum) in the standard
grade, and a power supply rejection improvement of greater than 40 dB to 130 dB. Added to this list of impressive
features is the ability to drive ±50-mA loads comfortably from an ultrasmall-footprint MSOP PowerPAD package,
which positions the TLC07x as the ideal high-performance general-purpose operational amplifier family.
FAMILY PACKAGE TABLE
PACKAGE TYPES
NO. OF
CHANNELS
MSOP
PDIP
SOIC
TSSOP
TLC070
1
8
8
8
—
TLC071
1
8
8
8
—
TLC072
2
8
8
8
—
—
TLC073
2
10
14
14
—
Yes
TLC074
4
—
14
14
20
—
TLC075
4
—
16
16
20
Yes
DEVICE
SHUTDOWN
UNIVERSAL
EVM BOARD
Yes
Refer to the EVM
Selection Guide
(Lit# SLOU060)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PowerPAD is a trademark of Texas Instruments.
Copyright  2000−2004, Texas Instruments Incorporated
!"#$%&'(!$" !) *+%%,"( ') $# -+./!*'(!$" 0'(,1
%$0+*() *$"#$%& ($ )-,*!#!*'(!$") -,% (2, (,%&) $# ,') ")(%+&,"()
)('"0'%0 3'%%'"(41 %$0+*(!$" -%$*,))!"5 0$,) "$( ",*,))'%!/4 !"*/+0,
(,)(!"5 $# '// -'%'&,(,%)1
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
1
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
TLC070 and TLC071 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
−40°C to 125°C
SMALL OUTLINE
(D)†
SMALL OUTLINE
(DGN)†
SYMBOL
PLASTIC DIP
(P)
TLC070CD
TLC071CD
TLC070CDGN
TLC071CDGN
xxTIACS
xxTIACU
TLC070CP
TLC071CP
TLC070ID
TLC071ID
TLC070IDGN
TLC071IDGN
xxTIACT
xxTIACV
TLC070IP
TLC071IP
—
—
—
—
TLC070AID
TLC071AID
TLC070AIP
TLC071AIP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC070CDR).
TLC072 and TLC073 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
−40°C to 125°C
SMALL
OUTLINE
(D)†
SYMBOL‡
PLASTIC
DIP
(N)
PLASTIC
DIP
(P)
(DGN)†
SYMBOL‡
(DGQ)†
TLC072CD
TLC073CD
TLC072CDGN
—
xxTIADV
—
—
TLC073CDGQ
—
xxTIADX
—
TLC073CN
TLC072CP
—
TLC072ID
TLC073ID
TLC072IDGN
—
xxTIADW
—
—
TLC073IDGQ
—
xxTIADY
—
TLC073IN
TLC072IP
—
TLC072AID
TLC073AID
—
—
—
—
—
—
—
—
—
TLC073AIN
TLC072AIP
—
MSOP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC072CDR).
‡ xx represents the device date code.
TLC074 and TLC075 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
−40°C to 125°C
SMALL OUTLINE
(D)†
PLASTIC DIP
(N)
TSSOP
(PWP)†
TLC074CD
TLC075CD
TLC074CN
TLC075CN
TLC074CPWP
TLC075CPWP
TLC074ID
TLC075ID
TLC074IN
TLC075IN
TLC074IPWP
TLC075IPWP
TLC074AID
TLC075AID
TLC074AIN
TLC075AIN
TLC074AIPWP
TLC075AIPWP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g.,
TLC074CDR).
2
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
TLC07x PACKAGE PINOUTS
TLC070
D, DGN OR P PACKAGE
(TOP VIEW)
NULL
IN −
IN +
GND
1
8
2
7
3
6
4
5
TLC071
D, DGN OR P PACKAGE
(TOP VIEW)
SHDN
VDD
OUT
NULL
NULL
IN −
IN +
GND
TLC073
DGQ PACKAGE
(TOP VIEW)
1OUT
1IN −
1IN+
GND
1SHDN
1
2
3
4
5
10
9
8
7
6
VDD
2OUT
2IN −
2IN+
2SHDN
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
7
3
6
4
5
NC
VDD
OUT
NULL
1OUT
1IN −
1IN +
GND
1OUT
1IN −
1IN+
VDD
2IN+
2IN −
2OUT
1/2SHDN
8
2
7
3
6
4
5
(TOP VIEW)
(TOP VIEW)
1
14
2
13
3
12
4
11
5
10
6
9
7
8
1OUT
1IN −
1IN+
VDD
2IN+
2IN −
2OUT
VDD
2OUT
2IN −
2IN+
NC
2SHDN
NC
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VDD
2OUT
2IN −
2IN+
4OUT
4IN −
4IN+
GND
3IN+
3IN −
3OUT
TLC075
PWP PACKAGE
(TOP VIEW)
(TOP VIEW)
4OUT
4IN−
4IN+
GND
3IN+
3IN−
3OUT
NC
NC
NC
1
TLC074
D OR N PACKAGE
TLC075
D OR N PACKAGE
(TOP VIEW)
1OUT
1IN−
1IN+
VDD
2IN+
2IN−
2OUT
NC
NC
NC
8
2
TLC073
D OR N PACKAGE
1OUT
1IN −
1IN+
GND
NC
1SHDN
NC
TLC074
PWP PACKAGE
1
TLC072
D, DGN, OR P PACKAGE
(TOP VIEW)
4OUT
4IN −
4IN+
GND
3IN +
3IN−
3OUT
3/4SHDN
1OUT
1IN−
1IN+
VDD
2IN+
2IN−
2OUT
1/2SHDN
NC
NC
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
4OUT
4IN−
4IN+
GND
3IN+
3IN−
3OUT
3/4SHDN
NC
NC
NC − No internal connection
TYPICAL PIN 1 INDICATORS
Pin 1
Printed or
Molded Dot
Pin 1
Pin 1
Bevel Edges
Stripe
Pin 1
Molded ”U” Shape
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
3
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V
Differential input voltage range, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential voltages, are with respect to GND .
DISSIPATION RATING TABLE
PACKAGE
θJC
(°C/W)
θJA
(°C/W)
TA ≤ 25°C
POWER RATING
D (8)
38.3
176
710 mW
D (14)
26.9
122.3
1022 mW
D (16)
25.7
114.7
1090 mW
DGN (8)
4.7
52.7
2.37 W
DGQ (10)
4.7
52.3
2.39 W
N (14, 16)
32
78
1600 mW
P (8)
41
104
1200 mW
PWP (20)
1.40
26.1
4.79 W
recommended operating conditions
Single supply
Supply voltage, VDD
Split supply
Common-mode input voltage, VICR
VIH
VOL
Shutdown on/off voltage level‡
C-suffix
Operating free-air temperature, TA
I-suffix
‡ Relative to the voltage on the GND terminal of the device.
4
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
MIN
MAX
4.5
16
±2.25
±8
V
+0.5
VDD−0.8
V
2
0.8
0
70
−40
125
UNIT
V
°C
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input
offset voltage
TA†
25°C
TEST CONDITIONS
TLC070/1/2/3,
TLC074/5
VDD = 5 V,
VIC = 2.5 V,
VO = 2.5 V,
RS = 50 Ω
TLC070/1/2/3A,
TLC074/5A
MIN
IIB
Input offset current
Input bias current
Common-mode input voltage
TLC07XI
3000
25°C
390
Full range
0.7
VIC = 2.5 V
IOH = − 35 mA
1.5
Full range
0.5
to
4.2
Full range
0.5
to
4.2
25°C
4.1
Full range
3.9
25°C
3.7
Full range
3.5
25°C
3.4
Full range
3.2
25°C
3.2
IOL = 1 mA
Full range
IOL = 20 mA
Full range
25°C
IOL = 35 mA
IOS
Short-circuit output current
IO
Output current
V
4.3
4
V
3.8
3.6
0.18
0.25
0.35
0.35
0.39
0.45
0.43
0.55
0.48
0.63
Full range
25°C
IOL = 50 mA
pA
3
25°C
VIC = 2.5 V
50
700
25°C
−40°C to
85°C
pA
700
25°C
Low-level output voltage
50
100
RS = 50 Ω
µV
V
µV/°C
V/°C
100
Full range
25°C
IOH = − 50 mA
VOL
1400
UNIT
2000
TLC07XC
IOH = − 20 mA
High-level output voltage
1900
TLC07XC
VDD = 5 V,
VIC = 2.5 V,
VO = 2.5 V,
RS = 50 Ω
IOH = − 1 mA
VOH
390
1.2
TLC07XI
VICR
MAX
Full range
25°C
IIO
TYP
V
0.7
−40°C to
85°C
0.7
Sourcing
25°C
100
Sinking
25°C
100
VOH = 1.5 V from positive rail
VOL = 0.5 V from negative rail
25°C
57
25°C
55
mA
mA
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
5
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
(continued)
PARAMETER
TEST CONDITIONS
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
CIC
Common-mode input
capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 10 kHz,
VO(PP) = 3 V,
RL = 10 kΩ
AV = 10
CMRR
Common-mode rejection ratio
VIC = 1 to 3 V,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
(∆VDD /∆VIO)
VDD = 4.5 V to 16 V,
No load
VIC = VDD /2,
IDD
Supply current (per channel)
VO = 2.5 V,
No load
IDD(SHDN)
Supply current in shutdown
mode (per channel)
(TLC070, TLC073, TLC075)
SHDN ≤ 0.8 V
TA†
MIN
TYP
25°C
100
120
Full range
100
GΩ
25°C
22.9
pF
0.25
Ω
25°C
25°C
80
Full range
80
25°C
80
Full range
80
25°C
95
dB
100
dB
1.9
Full range
Full range
•
dB
1000
25°C
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
UNIT
25°C
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
6
MAX
2.5
3.5
125
mA
200
250
µA
A
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TA†
25°C
MIN
TYP
10
16
Full range
9.5
25°C
12.5
TEST CONDITIONS
SR+
Positive slew rate at unity gain
VO(PP) = 0.8 V,
RL = 10 kΩ
CL = 50 pF,
SR−
Negative slew rate at unity gain
VO(PP) = 0.8 V,
RL = 10 kΩ
CL = 50 pF,
Vn
Equivalent input noise voltage
In
Full range
19
V/ s
V/µs
10
25°C
12
f = 1 kHz
25°C
7
Equivalent input noise current
f = 1 kHz
25°C
0.6
THD + N
Total harmonic distortion plus noise
VO(PP) = 3 V,
RL = 10 kΩ and 250 Ω,
f = 1 kHz
t(on)
t(off)
Amplifier turnon time‡
Amplifier turnoff time‡
RL = 10 kΩ
Gain-bandwidth product
f = 10 kHz,
RL = 10 kΩ
V(STEP)PP = 1 V,
AV = −1,
CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 1 V,
AV = −1,
CL = 47 pF,
RL = 10 kΩ
0.1%
0.18
0.01%
0.39
RL = 10 kΩ,
CL = 50 pF
RL = 10 kΩ,
CL = 0 pF
RL = 10 kΩ,
CL = 50 pF
RL = 10 kΩ,
CL = 0 pF
ts
φm
Settling time
Phase margin
Gain margin
UNIT
V/ s
V/µs
f = 100 Hz
AV = 1
AV = 10
MAX
nV/√Hz
fA /√Hz
0.002%
25°C
25
C
AV = 100
0.012%
0.085%
25°C
0.15
µs
25°C
1.3
µs
25°C
10
MHz
0.18
0.01%
0.39
µss
25°C
32°
25°C
40°
2.2
25°C
3.3
dB
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
‡ Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current
has reached half its final value.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
7
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of input
offset voltage
TLC070/1/2/3,
TLC074/5
VDD = 12 V
VIC = 6 V,
VO = 6 V,
RS = 50 Ω
TLC070/1/2/3A,
TLC074/5A
TA†
25°C
MIN
IIB
Input offset current
Input bias current
Common-mode input voltage
TLC07xI
3000
25°C
390
Full range
0.7
VIC = 6 V
IOH = − 35 mA
1.5
Full range
0.5
to
11.2
Full range
0.5
to
11.2
25°C
11.1
10.8
Full range
10.7
25°C
10.6
Full range
10.3
25°C
10.4
−40°C to
85°C
10.3
IOL = 1 mA
Full range
IOL = 20 mA
Full range
25°C
IOL = 35 mA
IOS
Short-circuit output current
IO
Output current
11.2
10.9
10.5
0.17
0.35
0.45
0.4
0.52
0.5
V
0.6
0.45
0.6
0.65
Sourcing
25°C
150
25°C
150
VOH = 1.5 V from positive rail
VOL = 0.5 V from negative rail
25°C
57
25°C
55
•
0.25
0.35
Sinking
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
V
10.7
−40°C to
85°C
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
8
V
Full range
25°C
IOL = 50 mA
pA
11
25°C
25°C
VIC = 6 V
50
700
25°C
Full range
pA
700
25°C
Low-level output voltage
50
100
RS = 50 Ω
µV
V
µV/°C
V/°C
100
Full range
25°C
IOH = − 50 mA
VOL
1400
UNIT
2000
TLC07xC
IOH = − 20 mA
High-level output voltage
1900
TLC07xC
VDD = 12 V
VIC = 6 V,
VO = 6 V,
RS = 50 Ω
IOH = − 1 mA
VOH
390
1.2
TLC07xI
VICR
MAX
Full range
25°C
IIO
TYP
mA
mA
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted)
(continued)
PARAMETER
TEST CONDITIONS
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
CIC
Common-mode input
capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 10 kHz,
VO(PP) = 8 V,
RL = 10 kΩ
AV = 10
CMRR
Common-mode rejection ratio
VIC = 1 to 10 V,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
(∆VDD /∆VIO)
VDD = 4.5 V to 16 V,
No load
VIC = VDD /2,
IDD
Supply current (per channel)
VO = 7.5 V,
No load
IDD(SHDN)
Supply current in shutdown
mode (TLC070, TLC073,
TLC075) (per channel)
SHDN ≤ 0.8 V
TA†
MIN
TYP
25°C
120
140
Full range
120
MAX
UNIT
dB
25°C
1000
GΩ
25°C
21.6
pF
0.25
Ω
25°C
25°C
80
Full range
80
25°C
80
Full range
80
25°C
100
dB
100
dB
2.1
Full range
25°C
Full range
2.9
3.5
125
mA
200
250
µA
A
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
9
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
operating characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SR+
Positive slew rate at unity gain
VO(PP) = 2 V,
RL = 10 kΩ
CL = 50 pF,
SR−
Negative slew rate at unity gain
VO(PP) = 2 V,
RL = 10 kΩ
CL = 50 pF,
Vn
Equivalent input noise voltage
In
TA†
25°C
MIN
TYP
10
16
Full range
9.5
25°C
12.5
Full range
19
V/ s
V/µs
10
25°C
12
f = 1 kHz
25°C
7
Equivalent input noise current
f = 1 kHz
25°C
0.6
THD + N
Total harmonic distortion plus noise
VO(PP) = 8 V,
RL = 10 kΩ and 250 Ω,
f = 1 kHz
t(on)
t(off)
Amplifier turnon time‡
Amplifier turnoff time‡
RL = 10 kΩ
Gain-bandwidth product
f = 10 kHz,
RL = 10 kΩ
V(STEP)PP = 1 V,
AV = −1,
CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 1 V,
AV = −1,
CL = 47 pF,
RL = 10 kΩ
0.1%
0.17
0.01%
0.29
RL = 10 kΩ,
CL = 50 pF
RL = 10 kΩ,
CL = 0 pF
RL = 10 kΩ,
CL = 50 pF
RL = 10 kΩ,
CL = 0 pF
ts
φm
Settling time
Phase margin
Gain margin
UNIT
V/ s
V/µs
f = 100 Hz
AV = 1
AV = 10
MAX
nV/√Hz
fA /√Hz
0.002%
25°C
25
C
AV = 100
0.005%
0.022%
25°C
0.47
µs
25°C
2.5
µs
25°C
10
MHz
0.17
0.01%
0.22
µss
25°C
37°
25°C
42°
3.1
25°C
4
dB
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
‡ Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current
has reached half its final value.
10
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
IIO
Input offset voltage
vs Common-mode input voltage
1, 2
Input offset current
vs Free-air temperature
3, 4
IIB
VOH
Input bias current
vs Free-air temperature
3, 4
High-level output voltage
vs High-level output current
5, 7
VOL
Zo
Low-level output voltage
vs Low-level output current
6, 8
Output impedance
vs Frequency
9
IDD
PSRR
Supply current
vs Supply voltage
10
Power supply rejection ratio
vs Frequency
11
CMRR
Common-mode rejection ratio
vs Frequency
12
Vn
VO(PP)
Equivalent input noise voltage
vs Frequency
13
Peak-to-peak output voltage
vs Frequency
14, 15
Crosstalk
vs Frequency
16
Differential voltage gain
vs Frequency
17, 18
Phase
vs Frequency
17, 18
Phase margin
vs Load capacitance
19, 20
Gain margin
vs Load capacitance
21, 22
Gain-bandwidth product
vs Supply voltage
SR
Slew rate
vs Supply voltage
vs Free-air temperature
24
25, 26
vs Frequency
27, 28
THD + N
Total harmonic distortion plus noise
vs Peak-to-peak output voltage
29, 30
φm
23
Large-signal follower pulse response
31, 32
Small-signal follower pulse response
33
Large-signal inverting pulse response
34, 35
Small-signal inverting pulse response
36
Shutdown forward isolation
vs Frequency
37, 38
Shutdown reverse isolation
vs Frequency
39, 40
vs Supply voltage
Shutdown supply current
vs Free-air temperature
Shutdown pulse
41
42
43, 44
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
11
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
250
0
225
−25
VDD = 5 V
TA = 25° C
175
150
125
100
75
50
25
0
−50
−75
−100
−125
−150
−175
−200
−225
−250
−25
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−275
0
VICR − Common-Mode Input Voltage − V
1
2
3
4
8
9 10 11 12
IIO
−20
−40
−60
−80
−100
IIB
−120
VDD = 12 V
−140
−100
−120
−55 −40 −25 −10 5 20 35 50 65 80 95 110 125
4.5
TA = 70°C
TA = 25°C
4.0
TA = −40°C
3.5
TA = 125°C
3.0
2.5
11.0
TA = −40°C
TA = 25°C
10.0
9.5
VDD = 12 V
9.0
0.8
0.7
0.6
TA = 125°C
TA = 70°C
TA = 25°C
0.5
0.4
0.3
TA = −40°C
0.2
0.1
5
10 15 20 25 30 35 40 45 50
IOH - High-Level Output Current - mA
0
5 10 15 20 25 30 35 40 45 50
IOL - Low-Level Output Current - mA
Figure 5
Figure 6
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
0.9
0.8
TA = 125°C
0.7
TA = 70°C
0.6
TA = 25°C
0.5
0.4
0.3
TA = −40°C
0.2
0.1
100
VDD = 5 V and 12 V
TA = 25°C
10
AV = 100
1
AV = 1
0.10
AV = 10
VDD = 12 V
0.0
10 15 20 25 30 35 40 45 50
IOH - High-Level Output Current - mA
VDD = 5 V
0.9
0.0
0
VOL − Low-Level Output Voltage − V
TA = 125°C
TA = 70°C
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.0
1.0
Figure 7
IIB
VDD = 5V
TA − Free−Air Temperature − °C
2.0
12.0
5
−80
Figure 3
VDD = 5 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
−60
5.0
−160
−55 −40 −25 −10 5 20 35 50 65 80 95 110 125
10.5
−40
VOL − Low-Level Output Voltage − V
0
11.5
IIO
−20
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
V OH − High-Level Output Voltage − V
I IB / I IO − Input Bias and Input Offset Current − pA
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
Figure 4
V OH − High-Level Output Voltage − V
7
0
Figure 2
TA − Free-Air Temperature − °C
12
6
20
VICR − Common-Mode Input Voltage − V
Figure 1
20
5
Z o − Output Impedance − Ω
200
VDD = 12 V
TA = 25° C
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
I IB / I IO − Input Bias and Input Offset Current − pA
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
V IO − Input Offset Voltage − µ V
V IO − Input Offset Voltage − µ V
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
0
5 10 15 20 25 30 35 40 45 50
IOL - Low-Level Output Current - mA
Figure 8
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
0.01
100
1k
100k
10k
f - Frequency - Hz
Figure 9
1M
10M
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TA = −40°C
2.0
TA = 125°C
1.5
TA = 70°C
1.0
AV = 1
SHDN = VDD
Per Channel
0.5
0.0
4
5
6
140
120
VDD = 12 V
100
80
60
40
VDD = 5 V
20
0
0
7 8 9 10 11 12 13 14 15 16
VDD − Supply Voltage - V
10
V O(PP) − Peak-to-Peak Output Voltage − V
30
25
20
15
VDD = 5 V
5
1k
10k
10M
80
60
40
20
0
100
8
6
VDD = 5 V
4
THD+N < = 5%
RL = 600 Ω
TA = 25°C
2
0
10k
100k
1M
f - Frequency - Hz
f − Frequency − Hz
Figure 13
10k
100k
f - Frequency - Hz
1M
10M
PEAK-TO-PEAK OUTPUT
VOLTAGE
vs
FREQUENCY
VDD = 12 V
10
1k
Figure 12
12
100k
10M
Figure 14
12
10
VDD = 12 V
8
6
VDD = 5 V
4
2
0
10k
THD+N < = 5%
RL = 10 kΩ
TA = 25°C
100k
1M
f - Frequency - Hz
10M
Figure 15
CROSSTALK
vs
FREQUENCY
0
−20
−40
Crosstalk − dB
Hz
V n − Equivalent Input Noise Voltage − nV/
VDD = 12 V
100
1M
100
PEAK-TO-PEAK OUTPUT
VOLTAGE
vs
FREQUENCY
40
0
10
100k
VDD = 5 V and 12 V
TA = 25°C
120
Figure 11
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
10
10k
140
f − Frequency − Hz
Figure 10
35
1k
100
V O(PP) − Peak-to-Peak Output Voltage − V
I DD − Supply Current − mA
TA = 25°C
CMRR − Common-Mode Rejection Ratio − dB
PSRR − Power Supply Rejection Ratio − dB
3.0
2.5
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
POWER SUPPLY REJECTION RATIO
vs
FREQUENCY
VDD = 5 V and 12 V
AV = 1
RL = 10 kΩ
VI(PP) = 2 V
For All Channels
−60
−80
−100
−120
−140
−160
10
100
1k
10k
100k
f − Frequency − Hz
Figure 16
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
13
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
DIFFERENTIAL VOLTAGE GAIN AND
PHASE
vs
FREQUENCY
DIFFERENTIAL VOLTAGE GAIN AND
PHASE
vs
FREQUENCY
80
80
60
Gain
A VD − Different Voltage Gain − dB
70
−45
50
Phase
40
−90
30
20
−135
10
0
−10
−20
1k
VDD = ±2.5 V
RL = 10 kΩ
CL = 0 pF
TA = 25°C
10k
100k
−180
1M
70
Gain
60
Phase
40
20
−135
10
0
−10
VDD = ±6 V
RL = 10 kΩ
CL = 0 pF
TA = 25°C
10k
PHASE MARGIN
vs
LOAD CAPACITANCE
40°
25°
Rnull = 50 Ω
Rnull = 20 Ω
VDD = 5 V
RL = 10 kΩ
TA = 25°C
30°
Rnull = 100 Ω
25°
Rnull = 20 Ω
15°
VDD = 12 V
RL = 10 kΩ
TA = 25°C
10°
5°
0°
10
Rnull = 50 Ω
1.5
1
VDD = 5 V
RL = 10 kΩ
TA = 25°C
Rnull = 20 Ω
0
10
100
100
CL − Load Capacitance − pF
Figure 19
Figure 20
Figure 21
GAIN BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
3.5
3
Rnull = 50 Ω
Rnull = 20 Ω
1.5
VDD = 12 V
RL = 10 kΩ
TA = 25°C
0
10
100
CL − Load Capacitance − pF
Figure 22
22
CL = 11 pF
9.9
9.8
9.7
RL = 10 kΩ
9.6
9.5
9.4
RL = 600 Ω
9.3
20
RL = 600 Ω and 10 kΩ
CL = 50 pF
AV = 1
19
Slew Rate −
21
TA = 25°C
SR − Slew Rate − V/ µ s
GBWP - Gain Bandwidth Product - MHz
Rnull = 100 Ω
2
SLEW RATE
vs
SUPPLY VOLTAGE
10.0
Rnull = 0 Ω
4
φ m − Phase Margin − dB
2
CL − Load Capacitance − pF
5
0.5
2.5
CL − Load Capacitance − pF
4.5
1
Rnull = 100 Ω
3
0.5
0°
10
100
GAIN MARGIN
vs
LOAD CAPACITANCE
2.5
Rnull = 50 Ω
20°
Rnull = 0 Ω
3.5
G − Gain Margin − dB
φ m − Phase Margin
φ m − Phase Margin
4
Rnull = 0 Ω
35°
5°
14
GAIN MARGIN
vs
LOAD CAPACITANCE
45°
30°
10°
−225
100M
10M
Figure 18
Rnull = 0 Ω
Rnull = 100 Ω
15°
1M
f − Frequency − Hz
PHASE MARGIN
vs
LOAD CAPACITANCE
20°
−180
100k
Figure 17
35°
−90
30
f − Frequency − Hz
40°
−45
50
−20
1k
−225
100M
10M
0
Phase − °
0
Phase − °
A VD − Different Voltage Gain − dB
TYPICAL CHARACTERISTICS
18
17
16
9.2
14
9.1
13
9.0
Slew Rate +
15
12
4
5
6
7 8 9 10 11 12 13 14 15 16
VDD - Supply Voltage - V
Figure 23
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
4
5
6
7 8 9 10 11 12 13 14 15 16
VDD - Supply Voltage - V
Figure 24
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
SLEW RATE
vs
FREE-AIR TEMPERATURE
Slew Rate −
20
SR − Slew Rate − V/ µ s
15
Slew Rate +
10
15
Slew Rate +
10
VDD = 12 V
RL = 600 Ω and 10 kΩ
CL = 50 pF
AV = 1
5
5
0
−55 −35 −15 5 25 45 65 85 105 125
TA - Free-Air Temperature - °C
0
−55 −35 −15 5 25 45 65 85 105 125
TA - Free-Air Temperature - °C
Figure 25
0.1
Total Harmonic Distortion + Noise − %
VDD = 12 V
RL = 10 kΩ
VO(PP) = 12 V
AV = 100
0.01
AV = 10
AV = 1
0.001
100
10k
1k
0.001
100
100k
10k
1k
100k
f − Frequency − Hz
Figure 27
TOTAL HARMONIC DISTORTION
PLUS NOISE
vs
PEAK-TO-PEAK OUTPUT VOLTAGE
10
10
VDD = 5 V
AV = 1
f = 1 kHz
1
RL = 250 Ω
0.1
RL = 600 Ω
0.01
RL = 10 kΩ
0.001
0.0001
0.25
0.75
1.25 1.75 2.25
2.75
3.25 3.75
VDD = 12 V
AV = 1
f = 1 kHz
1
RL = 250 Ω
0.1
RL = 600 Ω
0.01
0.001
RL = 10 kΩ
0.0001
0.5
2.5
4.5
6.5
8.5
10.5
VO(PP) − Peak-to-Peak Output Voltage − V
VO(PP) − Peak-to-Peak Output Voltage − V
Figure 28
Figure 29
Figure 30
LARGE SIGNAL FOLLOWER
PULSE RESPONSE
LARGE SIGNAL FOLLOWER
PULSE RESPONSE
SMALL SIGNAL FOLLOWER PULSE
RESPONSE
VI (1 V/Div)
VI (5 V/Div)
VO (500 mV/Div)
VDD = 5 V
RL = 600 Ω
and 10 kΩ
CL = 8 pF
TA = 25°C
0.2 0.4 0.6 0.8
1
1.2 1.4 1.6 1.8
2
VO (2 V/Div)
VDD = 12 V
RL = 600 Ω
and 10 kΩ
CL = 8 pF
TA = 25°C
0
0.2 0.4 0.6 0.8
1
1.2 1.4 1.6 1.8
t − Time − µs
t − Time − µs
Figure 31
Figure 32
2
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
VI(100mV/Div)
V O − Output Voltage − V
V O − Output Voltage − V
V O − Output Voltage − V
AV = 1
TOTAL HARMONIC DISTORTION
PLUS NOISE
vs
PEAK-TO-PEAK OUTPUT VOLTAGE
f − Frequency − Hz
0
AV = 10
0.01
Figure 26
TOTAL HARMONIC DISTORTION
PLUS NOISE
vs
FREQUENCY
VDD = 5 V
RL = 10 kΩ
VO(PP) = 2 V
AV = 100
0.1
Total Harmonic Distortion + Noise − %
Slew Rate −
20
SR − Slew Rate − V/ µ s
1
25
VDD = 5 V
RL = 600 Ω and 10 kΩ
CL = 50 pF
AV = 1
Total Harmonic Distortion + Noise − %
25
Total Harmonic Distortion + Noise − %
TOTAL HARMONIC DISTORTION
PLUS NOISE
vs
FREQUENCY
SLEW RATE
vs
FREE-AIR TEMPERATURE
VO(50mV/Div)
VDD = 5 V and 12 V
RL = 600 Ω and 10 kΩ
CL = 8 pF
TA = 25°C
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10
t − Time − µs
Figure 33
15
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
LARGE SIGNAL INVERTING
PULSE RESPONSE
LARGE SIGNAL INVERTING
PULSE RESPONSE
VI (5 V/div)
VDD = 5 V
RL = 600 Ω
and 10 kΩ
CL = 8 pF
TA = 25°C
VI (100 mV/div)
V O − Output Voltage − V
V O − Output Voltage − V
VI (2 V/div)
V O − Output Voltage − V
SMALL SIGNAL INVERTING
PULSE RESPONSE
VDD = 12 V
RL = 600 Ω
and 10 kΩ
CL = 8 pF
TA = 25°C
VDD = 5 & 12 V
RL = 600 Ω and 10 kΩ
CL = 8 pF
TA = 25°C
VO (50 mV/Div)
VO (2 V/Div)
VO (500 mV/Div)
0.2 0.4 0.6 0.8
1
1.2 1.4 1.6 1.8
0
2
0.2 0.4 0.6 0.8
Figure 35
Figure 36
SHUTDOWN FORWARD
ISOLATION
vs
FREQUENCY
100
RL = 600 Ω
80
60
RL = 10 kΩ
40
140
VDD = 12 V
CL= 0 pF
TA = 25°C
VI(PP) = 0.1, 8, and 12 V
120
100
80
RL = 600 Ω
60
RL = 10 kΩ
40
20
10k 100k 1M
f - Frequency - Hz
10M
I DD(SHDN) − Shutdown Supply Current - µ A
VDD = 12 V
CL= 0 pF
TA = 25°C
VI(PP) = 0.1, 8, and 12 V
100
RL = 600 Ω
60
RL = 10 kΩ
40
20
1k
10k 100k 1M
f - Frequency - Hz
Figure 40
80
RL = 600 Ω
60
RL = 10 kΩ
40
1k
10k 100k 1M
f - Frequency - Hz
10M
100
100M
10M
100M
136
Shutdown On
RL = open
VIN = VDD/2
134
132
130
128
126
124
122
120
118
4
5
6
7
8 9 10 11 12 13 14 15 16
VDD - Supply Voltage - V
Figure 41
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
1k
10k 100k 1M
f - Frequency - Hz
10M
100M
Figure 39
SHUTDOWN SUPPLY CURRENT
vs
SUPPLY VOLTAGE
140
80
100
Figure 38
SHUTDOWN REVERSE
ISOLATION
vs
FREQUENCY
120
VDD = 5 V
CL= 0 pF
TA = 25°C
VI(PP) = 0.1, 2.5, and 5 V
120
20
100
100M
Figure 37
Sutdown Reverse Isolation - dB
Sutdown Reverse Isolation - dB
Sutdown Forward Isolation - dB
Sutdown Forward Isolation - dB
120
1
SHUTDOWN REVERSE
ISOLATION
vs
FREQUENCY
140
VDD = 5 V
CL= 0 pF
TA = 25°C
VI(PP) = 0.1, 2.5, and 5 V
1k
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Figure 34
20
16
0
2
t − Time − µs
140
100
1.2 1.4 1.6 1.8
t − Time − µs
SHUTDOWN FORWARD
ISOLATION
vs
FREQUENCY
100
1
t − Time − µs
SHUTDOWN SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
I DD(SHDN) − Shutdown Supply Current - µ A
0
180
AV = 1
VIN = VDD/2
160
140
VDD = 12 V
120
VDD = 5 V
100
80
60
−55
−25
5
35
65
95
TA - Free-Air Temperature - °C
Figure 42
125
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
SHUTDOWN PULSE
SHUTDOWN PULSE
5.5
4
Shutdown Pulse
I DD − Supply Current − mA
5.0
4.5
4.0
2
VDD = 5 V
CL= 8 pF
TA = 25°C
3.5
3.0
2.5
0
IDD RL = 10 kΩ
2.0
1.5
−2
IDD RL = 600 Ω
1.0
6
5.5
SD Off
Shutdown Pulse - V
I DD − Supply Current − mA
6.0
6
−4
SD Off
5.0
4
Shutdown Pulse
4.5
4.0
2
VDD = 12 V
CL= 8 pF
TA = 25°C
3.5
3.0
2.5
0
IDD RL = 10 kΩ
2.0
1.5
−2
IDD RL = 600 Ω
1.0
Shutdown Pulse - V
6.0
−4
0.5
0.5
0.0
0.0
−6
0
10
20
30 40 50
t - Time - µs
60
70
−6
0
80
10
20
30 40 50
t - Time - µs
60
70
80
Figure 44
Figure 43
PARAMETER MEASUREMENT INFORMATION
Rnull
_
+
RL
CL
Figure 45
APPLICATION INFORMATION
input offset voltage null circuit
The TLC070 and TLC071 has an input offset nulling function. Refer to Figure 46 for the diagram.
−
IN −
OUT
+
IN +
N2
N1
100 kΩ
R1
VDD −
NOTE A: R1 = 5.6 kΩ for offset voltage adjustment of ±10 mV.
R1 = 20 kΩ for offset voltage adjustment of ±3 mV.
Figure 46. Input Offset Voltage Null Circuit
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
17
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
driving a capacitive load
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as
shown in Figure 47. A minimum value of 20 Ω should work well for most applications.
RF
RG
RNULL
_
Input
Output
+
CLOAD
Figure 47. Driving a Capacitive Load
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
RF
IIB−
RG
+
−
VI
IIB+
V
OO
+V
IO
ǒ ǒ ǓǓ
1)
R
R
F
VO
+
RS
"I
G
IB)
R
S
ǒ ǒ ǓǓ
1)
R
R
F
G
"I
IB–
Figure 48. Output Offset Voltage Model
18
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
R
F
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
high speed CMOS input amplifiers
The TLC07x is a family of high-speed low-noise CMOS input operational amplifiers that has an input
capacitance of the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function
equivalent to the input capacitance multiplied by the combination of source resistance and feedback resistance.
For example, a gain of −10, a source resistance of 1 kΩ, and a feedback resistance of 10 kΩ add an additional
pole at approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their
greater input capacitance.
This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their
unity-gain bandwidth. However, the TLC07x with its 10-MHz bandwidth means that this pole normally occurs
at frequencies where there is on the order of 5 dB gain left and the phase shift adds considerably.
The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the
feedback resistance is increased, the gain peaking increases at a lower frequency and the 180_ phase shift
crossover point also moves down in frequency, decreasing the phase margin.
For the TLC07x, the maximum feedback resistor recommended is 5 kΩ; larger resistances can be used but a
capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance
pole.
The TLC073 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when
configured as a unity gain buffer and with a 10-kΩ feedback resistor. By adding a 10-pF capacitor in parallel with
the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much
faster settling time (see Figure 49). The 10-pF capacitor was chosen for convenience only.
2
VIN
V O − Output Voltage − V
1
0
With
CF = 10 pF
1.5
−1
V I − Input Voltage − V
Load capacitance had little effect on these measurements due to the excellent output drive capability of the
TLC07x.
10 pF
10 kΩ
_
1
+
IN
0.5
VOUT
0
VDD = ±5 V
AV = +1
RF = 10 kΩ
RL = 600 Ω
CL = 22 pF
50 Ω
600 Ω
22 pF
−0.5
0 0.2 0.4 0.6 0.8
t - Time - µs
1
1.2 1.4 1.6
Figure 49. 1-V Step Response
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
19
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier
(see Figure 50).
RG
RF
−
VO
+
VI
R1
C1
f
V
O +
V
I
ǒ
1)
R
R
F
G
–3dB
Ǔǒ
+
1
2pR1C1
Ǔ
1
1 ) sR1C1
Figure 50. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f
C2
RG
RF
RG =
Figure 51. 2-Pole Low-Pass Sallen-Key Filter
20
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
–3dB
+
(
1
2pRC
RF
1
2−
Q
)
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
shutdown function
Three members of the TLC07x family (TLC070/3/5) have a shutdown terminal (SHDN) for conserving battery
life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 125
µA/channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. To enable the
amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left
floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not
inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always
referenced to the voltage on the GND terminal of the device. Therefore, when operating the device with split
supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to VDD− (not system ground) to disable
the operational amplifier.
The amplifier’s output with a shutdown pulse is shown in Figures 43 and 44. The amplifier is powered with a
single 5-V supply and is configured as noninverting with a gain of 5. The amplifier turnon and turnoff times are
measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the
single, dual, and quad are listed in the data tables.
Figures 37, 38, 39, and 40 show the amplifier’s forward and reverse isolation in shutdown. The operational
amplifier is configured as a voltage follower (AV = 1). The isolation performance is plotted across frequency
using 0.1 VPP, 2.5 VPP, and 5 VPP input signals at ±2.5 V supplies and 0.1 VPP, 8 VPP, and 12 VPP input signals
at ±6 V supplies.
circuit layout considerations
To achieve the levels of high performance of the TLC07x, follow proper printed-circuit board design techniques.
A general set of guidelines is given in the following.
D Ground planes − It is highly recommended that a ground plane be used on the board to provide all
components with a low inductive ground connection. However, in the areas of the amplifier inputs and
output, the ground plane can be removed to minimize the stray capacitance.
D Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less
effective. The designer should strive for distances of less than 0.1 inches between the device power
terminals and the ceramic capacitors.
D Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
is the best implementation.
D Short trace runs/compact part placements − Optimum high performance is achieved when stray series
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
the input of the amplifier.
D Surface-mount passive components − Using surface-mount passive components is recommended for high
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
kept as short as possible.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
21
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
general PowerPAD design considerations
The TLC07x is available in a thermally-enhanced PowerPAD family of packages. These packages are
constructed using a downset leadframe upon which the die is mounted [see Figure 52(a) and Figure 52(b)]. This
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see
Figure 52(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance
can be achieved by providing a good thermal path away from the thermal pad.
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,
heat can be conducted away from the package into either a ground plane or other heat dissipating device.
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of
surface mount with the, heretofore, awkward mechanical methods of heatsinking.
DIE
Side View (a)
Thermal
Pad
DIE
End View (b)
Bottom View (c)
NOTE A: The thermal pad is electrically isolated from all terminals in the package.
Figure 52. Views of Thermally Enhanced DGN Package
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the
recommended approach.
Thermal Pad Area
Quad
Single or Dual
68 mils x 70 mils with 5 vias
(Via diameter = 13 mils)
Figure 53. PowerPAD PCB Etch and Via Pattern
22
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
78 mils x 94 mils with 9 vias
(Via diameter = 13 mils)
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
general PowerPAD design considerations (continued)
1. Prepare the PCB with a top side etch pattern as shown in Figure 53. There should be etch for the leads as
well as etch for the thermal pad.
2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils
in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps
dissipate the heat generated by the TLC07x IC. These additional vias may be larger than the 13-mil
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad
area to be soldered so that wicking is not a problem.
4. Connect all holes to the internal ground plane.
5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection
methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat
transfer during soldering operations. This makes the soldering of vias that have plane connections easier.
In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore,
the holes under the TLC07x PowerPAD package should make their connection to the internal ground plane
with a complete connection around the entire circumference of the plated-through hole.
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five
holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes
of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the
reflow process.
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.
8. With these preparatory steps in place, the TLC07x IC is simply placed in position and run through the solder
reflow operation as any standard surface-mount component. This results in a part that is properly installed.
For a given θJA, the maximum power dissipation is shown in Figure 54 and is calculated by the following formula:
P
Where:
D
+
ǒ
T
Ǔ
–T
MAX A
q
JA
PD = Maximum power dissipation of TLC07x IC (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA
= Free-ambient air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
23
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
general PowerPAD design considerations (continued)
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
Maximum Power Dissipation − W
7
6
5
4
3
2
PWP Package
Low-K Test PCB
θJA = 29.7°C/W
TJ = 150°C
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
DGN Package
Low-K Test PCB
θJA = 52.3°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
PDIP Package
Low-K Test PCB
θJA = 104°C/W
1
0
−55 −40 −25 −10
5
20 35 50 65 80 95 110 125
TA − Free-Air Temperature − °C
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 54. Maximum Power Dissipation vs Free-Air Temperature
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent
power and output power. The designer should never forget about the quiescent heat generated within the
device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most
of the heat dissipation is at low output voltages with high output currents.
The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The
PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a
copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other
hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around
the device, θJA decreases and the heat dissipation capability increases. The currents and voltages shown in
these graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output
currents and voltages should be used to choose the proper package.
24
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 55 are generated using
the TLC07x typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
PSpice and Parts are trademarks of MicroSim Corporation.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
25
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
99
3
VDD +
9
RSS
92
FB
+
10
J1
DP
VC
J2
IN +
11
C1
RD1
VAD
R2
−
53
DC
12
HLIM
−
C2
6
−
+
+
GA
GCM
VLIM
8
−
−
RO1
DE
5
+
VE
OUT
ga
gcm
iss
ioff
hlim
j1
j2
r2
rd1
rd2
ro1
ro2
rp
rss
vb
vc
ve
vlim
vlp
vln
.model
.model
.model
.model
.ends
*DEVICE=TLC07X_5V, OPAMP, PJF, INT
* TLC07X − 5V operational amplifier ”macromodel” subcircuit
* created using Parts release 8.0 on 12/16/99 at 08:38
* Parts is a MicroSim product.
*
* connections:
non-inverting input
*
inverting input
*
positive power supply
*
negative power supply
*
output
*
.subckt TLC07X_5V 1 2 3 4 5
*
c1
11 12 4.8697E−12
c2
6 7 8.0000E−12
css
10 99 4.0063E−12
dc
5 53 dy
de
54 5 dy
dlp
90 91 dx
dln
92 90 dx
dp
4 3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7 99 poly(5) vb vc ve vlp vln 0 6.9132E6 −1E3 1E3
6E6 −6E6
6
0
3
0
90
11
12
6
4
4
8
7
3
10
9
3
54
7
91
0
dx
dy
jx1
jx2
0 11 12 457.42E−6
6 10 99 1.1293E−6
10 dc 183.67E−6
6 dc .806E−6
0 vlim 1K
2 10 jx1
1 10 jx2
9
100.00E3
11
2.1862E3
12
2.1862E3
5 10
99 10
4
2.4728E3
99
1.0889E6
0 dc 0
53 dc 1.5410
4 dc .84403
8 dc 0
0 dc 119
92 dc 119
D(Is=800.00E−18)
D(Is=800.00E−18 Rs=1m Cjo=10p)
PJF(Is=117.50E−15 Beta=1.1391E−3 Vto=−1)
PJF(Is=117.50E−15 Beta=1.1391E−3 Vto=−1)
Figure 55. Boyle Macromodel and Subcircuit
26
−
RD2
54
4
−
7
60
+
−
+ DLP
91
+
VLP
90
RO2
VB
IN −
VDD −
−
+
ISS
RP
2
1
DLN
EGND +
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
VLN
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
THERMAL PAD MECHANICAL DATA
PowerPADt PLASTIC SMALL-OUTLINE
DGQ (S−PDSO−G10)
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
27
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
THERMAL PAD MECHANICAL DATA
PowerPADt PLASTIC SMALL-OUTLINE
DGN (S−PDSO−G8)
Top View
8
5
Exposed Pad
1,73 MAX
1
4
1,78 MAX
Not to Scale
PPTD041
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to
Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application
Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.
PowerPAD is a trademark of Texas Instruments
28
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
SLOS219D − JUNE 1999 − REVISED FEBRUARY 2004
THERMAL PAD MECHANICAL DATA
PowerPADt PLASTIC SMALL−OUTLINE
PWP (R−PDSO−G20)
PPTD027
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
29
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSOI002B – JANUARY 1995 – REVISED SEPTEMBER 2001
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
8 PINS SHOWN
0.020 (0,51)
0.014 (0,35)
0.050 (1,27)
8
0.010 (0,25)
5
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
1
4
0.010 (0,25)
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
0.004 (0,10)
0.069 (1,75) MAX
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047/E 09/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
13-Sep-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLC070AID
ACTIVE
SOIC
D
8
TLC070AIDR
ACTIVE
SOIC
D
TLC070AIDRG4
ACTIVE
SOIC
TLC070AIP
ACTIVE
TLC070AIPE4
75
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC070CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070CDGN
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070CDGNR
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070CDGNRG4
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC070CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC070ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070IDGN
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070IDGNG4
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070IDGNR
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070IDGNRG4
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC070IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC070IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
13-Sep-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLC071AID
ACTIVE
SOIC
D
8
TLC071AIDR
ACTIVE
SOIC
D
TLC071AIDRG4
ACTIVE
SOIC
TLC071AIP
ACTIVE
TLC071AIPE4
75
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC071CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071CDGN
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071CDGNR
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071CDGNRG4
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC071CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC071ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071IDGN
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071IDGNR
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071IDGNRG4
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC071IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC071IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC072AID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
13-Sep-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLC072AIDG4
ACTIVE
SOIC
D
8
TLC072AIDR
ACTIVE
SOIC
D
TLC072AIDRG4
ACTIVE
SOIC
TLC072AIP
ACTIVE
TLC072AIPE4
75
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC072CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072CDGN
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072CDGNR
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC072CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC072ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072IDGN
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072IDGNG4
ACTIVE
MSOPPower
PAD
DGN
8
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072IDGNR
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072IDGNRG4
ACTIVE
MSOPPower
PAD
DGN
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC072IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC072IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC073AID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
13-Sep-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLC073AIDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073AIDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073AIN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC073AINE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC073CD
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073CDGQ
ACTIVE
MSOPPower
PAD
DGQ
10
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073CDGQR
ACTIVE
MSOPPower
PAD
DGQ
10
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073CDGQRG4
ACTIVE
MSOPPower
PAD
DGQ
10
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073CDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073CDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073CN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC073CNE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC073ID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073IDGQ
ACTIVE
MSOPPower
PAD
DGQ
10
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073IDGQR
ACTIVE
MSOPPower
PAD
DGQ
10
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073IDGQRG4
ACTIVE
MSOPPower
PAD
DGQ
10
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073IDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC073IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC073INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC074AID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074AIDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074AIDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074AIN
ACTIVE
PDIP
N
14
25
Addendum-Page 4
Pb-Free
(RoHS)
Lead/Ball Finish
CU NIPD
MSL Peak Temp (3)
Level-NC-NC-NC
PACKAGE OPTION ADDENDUM
www.ti.com
13-Sep-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLC074AINE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
TLC074AIPWP
ACTIVE
HTSSOP
PWP
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC074AIPWPG4
ACTIVE
HTSSOP
PWP
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC074AIPWPR
ACTIVE
HTSSOP
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC074AIPWPRG4
ACTIVE
HTSSOP
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC074CD
ACTIVE
SOIC
D
14
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074CDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074CDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074CN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLC074CNE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLC074CPWP
ACTIVE
HTSSOP
PWP
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC074CPWPR
ACTIVE
HTSSOP
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC074CPWPRG4
ACTIVE
HTSSOP
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC074ID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074IDG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074IDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074IDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC074IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLC074INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPD
Level-NC-NC-NC
TLC074IPWP
ACTIVE
HTSSOP
PWP
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
TLC074IPWPR
PREVIEW
HTSSOP
PWP
20
2000
TBD
Call TI
TLC075AID
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC075AIDR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC075AIDRG4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC075AIN
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC075AINE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
50
Addendum-Page 5
Lead/Ball Finish
MSL Peak Temp (3)
Level-NC-NC-NC
Level-2-260C-1 YEAR
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
13-Sep-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLC075AIPWP
ACTIVE
HTSSOP
PWP
20
TLC075AIPWPR
ACTIVE
HTSSOP
PWP
TLC075AIPWPRG4
ACTIVE
HTSSOP
TLC075CD
ACTIVE
TLC075CDR
70
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
SOIC
D
16
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC075CN
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC075CNE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC075CPWP
ACTIVE
HTSSOP
PWP
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC075CPWPR
ACTIVE
HTSSOP
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC075CPWPRG4
ACTIVE
HTSSOP
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC075ID
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC075IDG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC075IDR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC075IN
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC075INE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TLC075IPWP
ACTIVE
HTSSOP
PWP
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC075IPWPR
ACTIVE
HTSSOP
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TLC075IPWPRG4
ACTIVE
HTSSOP
PWP
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
40
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
Addendum-Page 6
PACKAGE OPTION ADDENDUM
www.ti.com
13-Sep-2005
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 7
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated