TI TLV2764IPWG4

 !
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
D Low Supply Voltage . . . 1.8 V to 3.6 V
D Very Low Supply Current . . . 20 µA (per
D
D
D
D
D
D
D
D
−
channel)
Ultralow Power Shut-Down Mode
− IDD(SHDN) = 10 nA/Channel
CMOS Rail-to-Rail Input/Output
Input Common-Mode Voltage
Range . . . −0.2 V to VDD + 0.2 V
Input Offset Voltage . . . 550 µV
Wide Bandwidth . . . 500 kHz
Slew Rate . . . 0.20 V/µs
Specified Temperature Range:
0°C to 70°C . . . Commercial Grade
−40°C to 85°C . . . Industrial Grade
Ultrasmall Packaging
5 or 6 Pin SOT-23 (TLV2760/1)
8 or 10 Pin MSOP (TLV2762/3)
Universal Op-Amp EVM
+
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
20
AV= 1
VIC = VDD/2
TA = 25° C
18
I DD − Supply Current − µ A
D
Operational Amplifier
16
14
12
10
8
6
4
2
0
0
0.6
1.2
1.8
2.4
3
3.6
VDD − Supply Voltage − V
description
The TLV276x single supply operational amplifiers provide 500 kHz bandwidth from only 20 µA while operating
down to 1.8 V over the industrial temperature range. The maximum recommended supply voltage is 3.6 V, which
allows the devices to be operated from ("1.8 V supplies down to "0.9 V) two AA or AAA cells. The devices
have been characterized at 1.8 V (end of life of 2 AA(A) cells) and at 2.4 V (nominal voltage of 2 NiCd/NiMH
cells). The TLV276x have rail-to-rail input and output capability which is a necessity at 1.8 V.
The low supply current is coupled with extremely low input bias currents enabling them to be used with
mega-ohm resistors. Low shutdown current of only 10 nA make these devices ideal for low frequency
measurement applications desiring long active battery life.
All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP,
and quads in the TSSOP package.
SELECTION OF SINGLE SUPPLY AMPLIFIER PRODUCTS
DEVICE
VDD
(V)
VIO
(µV)
IDD/Ch
(µA)
IIB
(pA)
GBW
(MHz)
SR
(V/µs)
Vn,1kHz
(nV/√Hz)
IO
(mA)
SHUTDOWN
RAIL-TORAIL
TLV224x
2.5 − 12
TLV2211
2.7 − 10
600
1
100
0.0055
0.002
NA
0.2
—
I/O
450
13
1
0.065
0.025
21
0.4
—
TLV276x
1.8 − 3.6
O
550
20
3
0.5
0.23
95
5
Y
I/O
TLV245x(A)
2.7 − 6
20
TLV246x(A)
2.7 − 6
150
23
500
0.22
0.11
49
2.5
Y
I/O
550
1300
6.4
1.6
11
25
Y
I/O
TLV278x(A)
1.8 − 3.6
250
650
2.5
8
5
18
10
Y
I/O
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2000−2005, Texas Instruments Incorporated
! ! "#$%&'()"%# "* +,&&-#) (* %$ .,/0"+()"%# 1()-
&%1,+)* +%#$%&' )% *.-+"$"+()"%#* .-& )2- )-&'* %$ -3(* #*)&,'-#)*
*)(#1(&1 4(&&(#)5 &%1,+)"%# .&%+-**"#6 1%-* #%) #-+-**(&"05 "#+0,1)-*)"#6 %$ (00 .(&('-)-&*
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
TLV2760 and TLV2761 AVAILABLE OPTIONS(1)
PACKAGED DEVICES
VIOmax
AT 25°C
TA
SOT-23
SMALL OUTLINE
(D)†
(DBV)‡
SYMBOL
PLASTIC DIP
(P)
—
—
—
—
—
—
0°C to 70°C
3500 µV
TLV2760CD
TLV2761CD
−40°C to 85°C
3500 µV
TLV2760ID
TLV2761ID
TLV2760IDBV
TLV2761IDBV
VANI
VAXI
TLV2760IP
TLV2761IP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2760CDR).
‡ This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an R suffix (i.e., TLV2760CDBVR). For
smaller quantities (250 pieces per mini-reel), add a T suffix to the part number (e.g. TLV2760CDBVT).
TLV2762 and TLV2763 AVAILABLE OPTIONS(1)
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE
(D)†
DGK†
SYMBOL
DGS†
SYMBOL
PLASTIC
DIP
(N)
MSOP
PLASTIC
DIP
(P)
0°C to 70°C
3500 µV
TLV2762CD
TLV2763CD
—
—
—
—
—
—
—
—
—
—
—
—
−40°C to 85°C
3500 µV
TLV2762ID
TLV2763ID
TLV2762IDGK
—
xxTIAJP
—
—
TLV2763IDGS
—
xxTIAJR
—
TLV2763IN
TLV2762IP
—
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2762CDR).
TLV2764 and TLV2765 AVAILABLE OPTIONS(1)
PACKAGED DEVICES
TA
VIOmax
AT 25°C
0°C to 70°C
−40°C to 85°C
SMALL OUTLINE
(D)†
PLASTIC DIP
(N)
3500 µV
TLV2764CD
TLV2765CD
—
—
3500 µV
TLV2764ID
TLV2765ID
TLV2764IN
TLV2765IN
TSSOP
(PW)†
—
—
TLV2764IPW
TLV2765IPW
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part
number (e.g., TLV2764CDR).
1. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website
at www.ti.com.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
TLV276x PACKAGE PINOUTS
TLV2760
D OR P PACKAGE
(TOP VIEW)
TLV2760
DBV PACKAGE
(TOP VIEW)
OUT
1
6
VDD
GND
2
5
SHDN
IN+
3
4
IN −
TLV2761
D OR P PACKAGE
(TOP VIEW)
NC
IN −
IN +
GND
1OUT
1IN −
1IN+
GND
NC
1SHDN
NC
1
8
2
7
3
6
4
5
NC
IN −
IN +
GND
1
8
2
7
3
6
4
5
TLV2761
DBV PACKAGE
(TOP VIEW)
SHDN
VDD
OUT
NC
OUT
1
GND
2
IN+
3
1OUT
1IN −
1IN +
GND
1
8
2
7
3
6
4
5
VDD
2OUT
2IN −
2IN+
VDD
4
IN −
TLV2763
DGS PACKAGE
(TOP VIEW)
TLV2762
D, DGK, OR P PACKAGE
(TOP VIEW)
NC
VDD
OUT
NC
5
1OUT
1IN −
1IN+
GND
1SHDN
1
2
3
4
5
10
9
8
7
6
VDD
2OUT
2IN −
2IN+
2SHDN
TLV2763
D OR N PACKAGE
TLV2764
D, N, OR PW PACKAGE
TLV2765
D, N, OR PW PACKAGE
(TOP VIEW)
(TOP VIEW)
(TOP VIEW)
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VDD
2OUT
2IN −
2IN+
NC
2SHDN
NC
1OUT
1IN −
1IN+
VDD
2IN+
2IN −
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN −
4IN+
GND
3IN+
3IN −
3OUT
1OUT
1IN −
1IN+
VDD
2IN+
2IN −
2OUT
1/2SHDN
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN −
4IN+
GND
3IN +
3IN−
3OUT
3/4SHDN
NC − No internal connection
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V
Differential input voltage range, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VDD
Input current range, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA
Output current range, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C
Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential voltages, are with respect to GND
DISSIPATION RATING TABLE
PACKAGE
ΘJC
(°C/W)
ΘJA
(°C/W)
TA ≤ 25°C
25 C
POWER RATING
TA = 85
85°C
C
POWER RATING
D (8)
38.3
176
710 mW
369 mW
D (14)
26.9
122
1022 mW
531 mW
D (16)
25.7
114
1090 mW
567 mW
DBV (5)
55
324
385 mW
201 mW
DBV (6)
55
294
425 mW
221 mW
DGK(8)
54.2
260
481 mW
250 mW
DGS(10)
54.1
258
485 mW
252 mW
N (14,16)
32
78
1600 mW
833 mW
P
41
104
1200 mW
625 mW
PW (14)
29.3
174
720 mW
374 mW
PW (16)
28.7
161
774 mW
403 mW
recommended operating conditions
Single supply
Supply voltage, VDD
Split supply
Common-mode input voltage range, VICR
Operating free-air temperature, TA
Shutdown on/off voltage level (see Note 2)
C-suffix
I-suffix
VIH
VDD < 2.7 V
VDD = 2.7 to 3.6 V
VIL
POST OFFICE BOX 655303
MAX
1.8
3.6
±0.8
±1.8
V
−0.2
V
0
VDD+0.2
70
−40
85
• DALLAS, TEXAS 75265
UNIT
°C
0.75 VDD
2
V
0.6
NOTE 2: Relative to GND
4
MIN
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
electrical characteristics at recommended operating conditions, VDD = 1.8 V, 2.4 V (unless
otherwise noted)
dc performance
PARAMETER
VIO
Input offset voltage
αVIO
Offset voltage drift
TEST CONDITIONS
VIC = VDD/2,
VO = VDD/2,
RL = 300 kΩ,
kΩ
RS = 50 Ω
TLV276x
VICR = 0 V to VDD,
RS = 50 Ω
VICR = 1.2 V to VDD,
RS = 50 Ω
VDD = 2.4 V
VDD = 2.4 V, 3.6 V
VDD = 1.8 V
Large-signal differential voltage
amplification
TYP
MAX
550
3500
Full range
6800
RL = 10 kΩ,
VO(PP) = VDD/2
VDD = 2.4 V
VDD = 3.6 V
25°C
50
Full range
48
25°C
53
Full range
50
25°C
55
Full range
55
25°C
63
Full range
60
25°C
20
Full range
18
25°C
28
Full range
23
25°C
45
Full range
37
UNIT
µV
V
µV/°C
9
VDD = 3.6 V
AVD
MIN
25°C
VDD = 1.8 V
CMRR Common-mode rejection ratio
TA†
70
dB
72
dB
dB
76
dB
82
dB
60
V/mV
78
120
V/mV
† Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is − 40°C to 85°C.
input characteristics
PARAMETER
IIO
IIB
ri(d)
Input offset current
Input bias current
TEST CONDITIONS
VIC = VDD/2,
VO = VDD/2,
RL = 300 kkΩ,
RS = 50 Ω
TA†
25°C
MIN
TYP
3
MAX
15
TLV276xC
Full range
100
TLV276xI
Full range
200
TLV276xC
Full range
100
TLV276xI
Full range
200
25°C
Differential input resistance
25°C
3
UNIT
pA
15
pA
1000
GΩ
ci(c)
Common-mode input capacitance
f = 16 kHz
25°C
10
† Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is − 40°C to 85°C.
pF
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
electrical characteristics at recommended operating conditions, VDD = 1.8 V, 2.4 V (unless
otherwise noted) (continued)
output characteristics
PARAMETER
TA†
MIN
TYP
25°C
1.77
1.79
VDD = 1.8V
Full range
1.76
25°C
2.38
VDD = 2.4V
Full range
2.37
25°C
3.58
TEST CONDITIONS
VIC = VDD/2,
IOH = − 100 µA
VDD = 3.6V
VOH
High-level output voltage
VDD = 1.8V
Full range
3.57
25°C
1.725
Full range
25°C
VIC = VDD/2,
IOH = − 500 µA
VDD = 2.4V
Full range
VDD = 3.6V
Full range
25°C
IOL = 100 µA
A
VIC = VDD/2,
VOL
IO
Low-level output voltage
Output current
VIC = VDD/2,
A
IOL = 500 µA
VDD = 1.8 V,
VO = 0.5 V from
Positive rail
VDD = 2.4 V,
VO = 0.5 V from
Positive rail
Negative rail
Negative rail
IOS
Sinking
Short-circuit output current
3.59
V
1.75
1.7
2.325
2.35
2.3
3.525
3.55
3.5
25°C
10
Full range
20
30
25°C
50
Full range
75
mV
100
4.8
25°C
7.2
mA
7.3
25°C
10.2
7
25°C
10
Sourcing
VDD = 2.4 V
UNIT
2.39
Sourcing
VDD = 1.8 V
MAX
mA
15
25°C
Sinking
19
† Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is − 40°C to 85°C.
power supply, VDD = 1.8 V, 2.4 V, 3.6 V (unless otherwise noted)
PARAMETER
IDD
Supply current (per channel)
TEST CONDITIONS
VO = VDD/2,
SHDN = VDD
VDD = 1.8 V to 2.4 V,
VIC = VDD /2
kSVR
Supply voltage rejection ratio
((∆V
VDD //∆V
VIO)
VDD = 2.4 V to 3.6 V,
VIC = VDD /2
No load
VDD = 1.8 V to 3.6 V,
VIC = VDD /2
TA†
25°C
MIN
TYP
MAX
20
28
Full range
30
25°C
65
Full range
63
25°C
65
Full range
63
25°C
65
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
µA
A
85
85
dB
85
Full range
63
† Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is − 40°C to 85°C.
6
UNIT
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
electrical characteristics at recommended operating conditions, VDD = 1.8 V, 2.4 V (unless
otherwise noted) (continued)
dynamic performance
PARAMETER
UGBW
TA†
TEST CONDITIONS
Unity gain bandwidth
RL = 300 kΩ ,
CL = 10 pF
VDD = 1.8 V
SR+
SR−
Positive slew rate at
unity gain
Negative slew rate at
unity gain
VO(PP) = 1 V, RL = 300 kΩ,
CL = 50 pF,
VDD = 2.4 V
VO(PP) = 1 V, RL = 300 kΩ,
CL = 50 pF,
ts
Settling time
25°C
0.11
Full range
0.09
25°C
0.11
Full range
0.09
0.11
Full range
0.09
25°C
0.08
VDD = 1.8 V
Full range
0.07
25°C
0.10
Full range
0.09
25°C
0.10
Full range
0.09
VDD = 2.4 V
TYP
MAX
500
VDD = 3.6 V
Phase margin
Gain margin
25°C
25°C
VDD = 3.6 V
φm
MIN
UNIT
kHz
0.20
V/ s
V/µs
0.22
0.23
V/ s
V/µs
0.15
V/ s
V/µs
0.18
0.22
V/ s
V/µs
25°C
63
°
25°C
20
dB
RL = 300 kΩ,
CL = 100 pF
VDD = 1.8 V, V(STEP)PP = 1 V,
AV = −1, CL = 10 pF, RL = 300 kΩ
0.1%
6.4
0.01%
13.7
VDD = 2.4 V, V(STEP)PP = 1 V,
AV = −1, CL = 10 pF, RL = 300 kΩ
0.1%
25°C
µss
6
0.01%
13.9
† Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is − 40°C to 85°C.
noise/distortion
PARAMETER
THD + N
Total harmonic distortion plus noise
Vn
Equivalent input noise voltage
In
Equivalent input noise current
TEST CONDITIONS
VDD = 1.8 V,
VO(PP) = VDD/2 V,
RL = 300 kΩ,
f = 1 kHz
AV = 1
VDD = 2.4 V,
VO(PP) = VDD/2 V,
RL = 300 kΩ,
f = 1 kHz
AV = 1
AV = 10
TA
MIN
MAX
UNIT
0.08%
0.10%
25°C
25
C
AV = 100
AV = 10
TYP
0.27%
0.06%
0.08%
25°C
25
C
AV = 100
0.24%
f = 1 kHz
25°C
95
f = 10 kHz
25°C
75
f = 1 kHz
25°C
0.8
nV/√Hz
fA /√Hz
shutdown characteristics
PARAMETER
IDD(SHDN)
TEST CONDITIONS
Supply current, all channels in shutdown mode
(TLV2760, TLV2763, TLV2765) (per channel)
SHDN = 0 V
TA†
25°C
Full range
MIN
TYP
10
MAX
UNIT
50
400
nA
t(on)
Amplifier turnon time (see Note 3)
RL = 300 kΩ
25°C
5
µs
t(off)
Amplifier turnoff time (see Note 3)
RL = 300 kΩ
25°C
0.8
µs
† Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is − 40°C to 85°C.
NOTE 3: Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply
current has reached half its final value.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
CMRR
Input offset voltage
vs Common-mode input voltage
Common-mode rejection ratio
vs Frequency
VOH
VOL
High-level output voltage
vs High-level output current
4, 6
Low-level output voltage
vs Low-level output current
5, 7
VO(PP)
IDD
Maximum peak-to-peak output voltage
vs Frequency
Supply current
vs Supply voltage
9
IDD
PSRR
Supply current
vs Free-air temperature
10
Power supply rejection ratio
vs Frequency
11
AVD
Differential voltage amplification & phase
vs Frequency
12
vs Temperature
13
vs Supply voltage
14
Gain-bandwidth product
vs Supply voltage
1, 2
3
8
15
SR
Slew rate
φm
Vn
Phase margin
vs Load capacitance
18
Equivalent input noise voltage
vs Frequency
19
Supply current and output voltage
vs Time
20
Voltage-follower large-signal pulse response
vs Time
21
Voltage-follower small-signal pulse response
vs Time
22
Inverting large-signal response
vs Time
23
Inverting small-signal response
vs Time
24
Crosstalk
vs Frequency
25
vs Free-air temperature
16, 17
Shutdown forward & reverse isolation
vs Frequency
26
IDD(SHDN)
IDD(SHDN)
Shutdown supply current
vs Supply voltage
27
Shutdown supply current
vs Free-air temperature
28
IDD(SHDN)
IDD(SHDN)
Shutdown pin leakage current
vs Shutdown pin voltage
29
Shutdown supply current/output voltage
vs Time
30
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
300
350
VDD=1.8 V
VDD=2.4 V
TA=25° C
VIO − Input Offset Voltage − µ V
200
150
100
50
0
−50
−100
−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
VICR − Common-Mode Input Voltage − V
300
TA=25 °C
250
200
150
100
50
0
−50
−0.2
0.2
0.6
1
1.4 1.8
2.2 2.6
VICR − Common-Mode Input Voltage − V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0.8
TA=25°C
TA=0°C
TA=−40°C
0.6
0.4
0.2
1
2
3
4
5
6
7
8
IOH − High-Level Output Current − mA
1.6
1.4
TA=85°C
1.2
TA=70°C
1.0
TA=25°C
TA=0°C
TA=−40°C
0.8
0.6
0.4
0.2
0
1
2 3
4
5
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VOL − Low-Level Output Voltage − V
2.4
VDD= 2.4 V
2.1
TA=85°C
TA= 70°C
TA=25°C
TA=0°C
TA=−40°C
1.2
0.9
0.6
0.3
0.0
0
6
7
8
VDD = 2.4 V
1.8
1.5
TA=85°C
1.2
TA=70°C
0.9
TA=25°C
TA=0°C
TA=−40°C
0.6
0.3
0
0
9 10 11 12
2
4
2.5
5
7.5 10 12.5 15 17.5 20 22.5 25
IOL − Low-Level Output Current − mA
6
8
10
12 14
16 18 20
IOH − High-Level Output Current − mA
Figure 5
1.5
1M
2.1
IOL − Low-Level Output Current − mA
Figure 4
1.8
100k
2.4
0.0
0.0
0
100
10k
1k
f − Frequency − Hz
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
V OH − High-Level Output Voltage − V
VOL − Low-Level Output Voltage − V
1.4
TA=70°C
10
Figure 3
VDD=1.8 V
VDD=1.8 V
1.6
1.0
VDD = 1.8 V
1
1.8
TA=85°C
VDD = 2.4 V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.8
1.2
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
Figure 2
Figure 1
Figure 6
V O(PP) − Maximum Peak-To-Peak Output Voltage − V
VIO − Input Offset Voltage − µ V
250
V OH − High-Level Output Voltage − V
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR − Common-Mode Rejection Ratio − dB
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
2.8
2.6
2.4
2.2
VO(PP)= 2.4 V
2.0
1.8
1.6
VO(PP)= 1.8 V
1.4
1.2
1.0
0.8
0.6
0.4
AV = −10
RL=300 kΩ
CL = 10 pF
TA = 25° C
0.2
10
100
1k
10k
100k
1M
f − Frequency − Hz
Figure 8
Figure 7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
AV= 1
VIC = VDD/2
16
TA = 85°C
14
TA = 25°C
12
TA = 0°C
10
TA = −40°C
8
6
TA = 70°C
4
22
I DD − Supply Current − mA
18
PSRR − Power Supply Rejection Ratio − dB
24
20
I DD − Supply Current − µ A
POWER SUPPLY REJECTION RATIO
vs
FREQUENCY
VDD = 3.6 V
20
18
VDD = 2.4 V
VDD = 1.8 V
16
14
12
2
0
0
0.6
1.2
1.8
2.4
3
10
−40
3.6
−15
10
35
60
TA − Free-Air Temperature − °C
VDD − Supply Voltage − V
Figure 9
85
90
Phase
60
30
40
0
20
−30
−60
Gain
VDD = 1.8 V & 2.4 V
RL= 300 kΩ
CL = 10 pF
TA = 25° C
100
1k
10k
−90
−120
−150
RL = 300 kΩ
CL = 10 pF
f = 10 kHz
200
100
5
20
35
50
65
80 85
TA − Temperature − °C
Figure 13
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
SLEW RATE
vs
SUPPLY VOLTAGE
0.36
RL = 300 kΩ
CL = 10 pF
f = 10 kHz
Ta = 25°C
0.32
SR − Slew Rate − V/µs
GBWP − Gain Bandwidth Product − kHz
10k
VDD = 1.8 V
300
480
460
440
0.28
SR+
0.24
0.20
SR−
0.16
AV = 1
RL = 300 kΩ
CL =50 pF
TA = 25° C
0.12
0.08
420
0.04
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0.00
1.8
VDD − Supply Voltage − V
Figure 14
10
1k
400
0
−40 −25 −10
−180
1M
100k
500
400
100
500
Figure 12
520
−20
10
VDD = 2.4 V
600
f − Frequency − Hz
540
0
GAIN BANDWIDTH PRODUCT
vs
TEMPERATURE
GBWP − Gain Bandwidth Product − kHz
120
Phase Margin − °
A VD − Differential Voltage Gain − dB
80
560
20
700
150
−40
10
40
Figure 11
180
−20
60
Figure 10
100
0
VDD=2.4 V
TA=25°C
80
f − Frequency − Hz
DIFFERENTIAL VOLTAGE GAIN AND PHASE
vs
FREQUENCY
60
100
2
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
VDD − Supply Voltage − V
Figure 15
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100k
1M
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SLEW RATE
vs
FREE-AIR TEMPERATURE
0.32
0.28
0.28
90
SR − Slew Rate − V/µs
0.24
0.20
SR−
0.16
VDD = 1.8 V
AV = 1
RL=300 kΩ
CL=50 pF
VIC = VDD/2
0.08
0.04
0.00
−40 −25 −10
5
20
35
50
65
SR−
0.20
0.16
0.12
VDD = 2.4 V
AV = 1
RL= 300 kΩ
CL = 50 pF
VIC = VDD/2
0.08
0.04
0.00
−40
80 85
TA − Free-Air Temperature − °C
10
35
60
40
30
VDD = 2.4 V
RL = 300 kΩ
AV = Open Loop
TA = 25°C
20
10
85
10
100
Figure 18
SUPPLY CURRENT AND OUTPUT VOLTAGE
vs
TIME
20
500
15
TA = 25°C
450
VDD = 2.4 V
350
300
250
200
150
10
IDD
5
0
2
0
VO
VDD = 1.8 V
10
100
1k
10k
0
100k
1
Figure 19
2
VI
0
2.5
2
VO
1.5
1
0.5
0
0.2 0.4 0.6 0.8
0
1 1.2 1.4 1.6 1.8
V O − Output Voltage − V
1
0
−0.5
4
5
VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE
vs
TIME
V I − Input Voltage − V
2.5
0.5
3
0.5
Figure 20
VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE
vs
TIME
VDD = 2.4 V
AV =1
RL = 300 kΩ
CL = 10 pF
TA = 25°C
2
1
t − Time − µs
f − Frequency − Hz
1.5
1.5
VDD = 3.6 V
AV = 1
VIN = VDD/2
RL = 300 kΩ
CL = 10 pF
TA = 25°C
100
50
1k
CL − Load Capacitance − pF
Figure 17
IDD − Supply Current − µ A
Hz
Rnull=100 Ω
50
TA − Free-Air Temperature − °C
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
V n − Equivalent Input Noise Voltage − nV/
60
0
−15
Figure 16
400
70
1.26
1.24
1.22
VI
1.20
1.18
1.16
1.14
1.26
1.24
VDD = 2.4 V
AV = 1
RL = 300 kΩ
CL = 10 pF
TA = 25°C
0
1
2
3
4
VO
1.22
1.20
1.18
1.16
5
6
7
1.14
8
V O − Output Voltage − V
0.12
Rnull=0 Ω
80
SR+
V O − Output Voltage − V
SR+
0.24
PHASE MARGIN
vs
LOAD CAPACITANCE
φ m − Phase Margin − °
0.32
V I − Input Voltage − V
SR − Slew Rate − V/µs
SLEW RATE
vs
FREE-AIR TEMPERATURE
t − Time − µs
t − Time − µs
Figure 21
Figure 22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
INVERTING SMALL-SIGNAL PULSE RESPONSE
vs
TIME
2
1.5
VI
1
0.5
0
2.5
VDD = 2.4 V
AV = 1
RL = 300 kΩ
CL = 10 pF
TA = 25°C
2
1.5
VO
1
0.5
0 10
20 30
40 50 60 70
80 90
0
1.28
1.24
1.20
VI
1.16
VDD = 2.4 V
RL = 300 kΩ
CL = 10 pF
AV = 1
TA = 25°C
1.12
0
5
1.16
Figure 24
Shutdown Forward and Reverse Isolation − dB
0
VDD = 1.8 V & 2.4 V
VI = VDD/2
AV = 1
RL= 300 kΩ
TA = 25°C
All Channels
Crosstalk − dB
−60
Crosstalk in Shutdown
−80
−100
−120
Crosstalk/No Shutdown
10
100
1k
10k
f − Frequency − Hz
100k
SHUTDOWN FORWARD AND
REVERSE ISOLATION
vs
FREQUENCY
100
90
Forward and Reverse Isolation
80
70
60
50
40
VDD = 1.8 & 2.4 V
VI = VDD /2
RL = 300 kΩ
CL= 10 pF
AV = +1
TA = 25°C
30
20
10
0
10
100
1k
.12
I DD − Shutdown Supply Current − µ A
I DD − Shutdown Supply Current −µ A
TA = 25°C
.008
.006
TA = 0°C
.004
TA = −40°C
.002
0
0
0.4 0.8 1.2 1.6
2
2.4 2.8
VDD − Supply Voltage − V
Figure 27
12
3.2 3.6
1M
.10
VDD = 1.8, 2.4, 3.6 V
SHDN = 0V
VIN = VDD/2
AV = 1
.08
.06
.04
.02
0
−40 −25 −10
5
20
35
50
65
80 85
TA − Free-Air Temperature − °C
Figure 28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SHUTDOWN PIN LEAKAGE CURRENT
vs
SHUTDOWN PIN VOLTAGE
I DD − Shutdown Pin Leakage Current − pA
SHUTDOWN SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
.014
.010
100k
Figure 26
SHUTDOWN SUPPLY CURRENT
vs
SUPPLY VOLTAGE
.012
10k
f − Frequency − Hz
Figure 25
SHDN = 0 V
VIN = VDD/2
AV = 1
1.12
40 45
t − Time − µs
CROSSTALK
vs
FREQUENCY
−140
1.20
10 15 20 25 30 35
Figure 23
−40
1.24
VO
t − Time − µs
−20
1.28
V O − Output Voltage − V
V I − Input Voltage − V
2.5
V O − Output Voltage − V
V I − Input Voltage − V
INVERTING LARGE-SIGNAL RESPONSE
vs
TIME
20
VDD = 3.6 V
TA = 85°C
15
10
5
0
−5
−10
−15
0
0.4 0.8 1.2 1.6
2
2.4 2.8 3.2 3.6
Shutdown Pin Voltage − V
Figure 29
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
V O − Output Voltage − V
SHDN − Shutdown Pulse − V
SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE
vs
TIME
3.0
2.5
2.0
1.5
1.0
0.5
0.0
−0.5
SHDN
1.5
1.3
1.0
0.8
VO
0.5
0.3
0.0
VDD = 2.4 V
AV = 1
RL = 300 kΩ
CL = 10 pF
VIC = VDD/2
TA = 25° C
I DD − Supply Current − µA
−0.3
18
16
14
12
10
8
6
4
2
0
−2
20
IDD(SHDN = 0)
40
60
80
100
120
140
160
t − Time − µs
Figure 30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
APPLICATION INFORMATION
driving a capacitive load
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as
shown in Figure 31. A minimum value of 20 Ω should work well for most applications.
RF
RG
RNULL
−
Input
Output
+
CLOAD
VDD/2
Figure 31. Driving a Capacitive Load
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
RF
IIB−
RG
+
−
VI
IIB+
V
OO
+V
IO
ǒ ǒ ǓǓ
1)
R
R
F
G
VO
+
RS
"I
IB)
R
S
ǒ ǒ ǓǓ
1)
R
R
F
G
"I
IB–
R
F
Figure 32. Output Offset Voltage Model
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier
(see Figure 33).
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
APPLICATION INFORMATION
general configurations (continued)
RG
RF
VDD/2
−
VO
+
VI
R1
C1
f
V
O +
V
I
ǒ
1)
R
R
F
G
+
–3dB
Ǔǒ
1
2pR1C1
Ǔ
1
1 ) 2pfR1C1
Figure 33. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f
C2
RF
RG
–3dB
RG =
+
(
1
2pRC
RF
1
2−
Q
)
VDD/2
Figure 34. 2-Pole Low-Pass Sallen-Key Filter
circuit layout considerations
To achieve the levels of high performance of the TLV276x, follow proper printed-circuit board design techniques.
A general set of guidelines is given in the following.
D Ground planes—It is highly recommended that a ground plane be used on the board to provide all
components with a low inductive ground connection. However, in the areas of the amplifier inputs and
output, the ground plane can be removed to minimize the stray capacitance.
D Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less
effective. The designer should strive for distances of less than 0.1 inches between the device power
terminals and the ceramic capacitors.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
APPLICATION INFORMATION
circuit layout considerations (continued)
D Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
is the best implementation.
D Short trace runs/compact part placements—Optimum high performance is achieved when stray series
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
the input of the amplifier.
D Surface-mount passive components—Using surface-mount passive components is recommended for high
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
kept as short as possible.
shutdown function
Three members of the TLV276x family (TLV2760/3/5) have a shutdown terminal for conserving battery life in
portable applications. When the shutdown terminal is pulled low, the supply current is reduced to 10 nA/channel,
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the
shutdown terminal must be pulled high. The shutdown terminal should never be left floating. If the shutdown
feature is not desired, directly tie the shutdown terminal to the positive rail. The shutdown terminal threshold
is always referenced to the GND terminal of the device. Therefore, when operating the device with split supply
voltages (e.g. ± 1.8 V), the shutdown terminal needs to be pulled to the negative rail, not the system ground,
to disable the operational amplifier.
The amplifier is powered with a single 2.4-V supply and configured as a noninverting configuration with a unity
gain. Turnon and turnoff times are defined as the interval between application of the logic signal to the shutdown
pin and the point at which the supply current has reached half its final value. The times for the single, dual, and
quad are listed in the data tables.
general power dissipation considerations
For a given θJA, the maximum power dissipation is shown in Figure 35 and is calculated by the following formula:
P
Where:
D
+
ǒ
T
Ǔ
*T
MAX
A
q
JA
PD = Maximum power dissipation of TLV276x IC (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA
= Free-ambient air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
APPLICATION INFORMATION
general power dissipation considerations (continued)
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
2
Maximum Power Dissipation − W
1.75
PDIP Package
Low-K Test PCB
θJA = 104°C/W
1.5
1.25
TJ = 150°C
MSOP Package
Low-K Test PCB
θJA = 260°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
1
0.75
0.5
0.25
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
0
−55 −40 −25 −10 5
20 35 50 65 80 95 110 125
TA − Free-Air Temperature − °C
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 35. Maximum Power Dissipation vs Free-Air Temperature
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
!
SLOS326E − JUNE 2000 − REVISED JANUARY 2005
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts Release 9.1, the model generation
software used with Microsim PSpice . The Boyle macromodel (see Note 4) and subcircuit in Figure 36 are
generated using TLV276x typical electrical and operating characteristics at TA = 25°C. Using this information,
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D Maximum positive output voltage swing
D Unity-gain frequency
D Maximum negative output voltage swing
D Common-mode rejection ratio
D Slew rate
D Phase margin
D Quiescent power dissipation
D DC output resistance
D Input bias current
D AC output resistance
D Open-loop voltage amplification
D Short-circuit output current limit
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
3
99
VDD
+
egnd
rd1
rd2
rss
ro2
css
fb
rp
−
c1
7
11
12
+
c2
vlim
1
r2
+
9
6
IN+
−
vc
D
D
8
+
−
vb
ga
2
G
G
−
IN−
ro1
gcm
ioff
53
S
S
OUT
dp
91
10
iss
GND
4
dlp
+
dc
−
ve
+ 54
vlp
−
+
hlim
−
5
92
−
vln
+
de
*DEVICE=amp_tlv276x_highVdd,OPAMP,NJF,INT
* amp_tlv_276x_highVdd operational amplifier ”macromodel”
* subcircuit updated using Model Editor release 9.1 on 05/15/00
* at 14:40 Model Editor is an OrCAD product.
*
* connections:
non-inverting input
*
| inverting input
*
| | positive power supply
*
| | | negative power supply
*
| | | | output
*
| | | | |
.subckt amp_tlv276x_highVdd 1 2 3 4 5
*
c1
11
12 457.48E−15
c2
6
7
5.0000E−12
css
10
99 1.1431E−12
dc
5
53 dy
de
54
5
dy
dlp
90
91 dx
dln
92
90 dx
dp
4
3
dx
egnd
99
0
poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99 poly(5) vb vc ve vlp vln 0
176.02E6 −1E3 1E3 180E6
−180E6
ga
gcm
iss
hlim
j1
J2
r2
rd1
rd2
ro1
ro2
rp
rss
vb
vc
ve
vlim
vlp
vln
.model
.model
.model
.model
.ends
6
0
10
90
11
12
6
3
3
8
7
3
10
9
3
54
7
91
0
dx
dy
jx1
jx2
0
11 12 16.272E−6
6
10 99 6.8698E−9
4
dc 1.3371E−6
0
vlim 1K
2
10 jx1
1
10 jx2
9
100.00E3
11
61.456E3
12
61.456E3
5
10
99
10
4
150.51E3
99
149.58E6
0
dc 0
53
dc .78905
4
dc .78905
8
dc 0
0
dc 14.200
92
dc 14.200
D(Is=800.00E−18)
D(Is=800.00E−18 Rs=1m Cjo=10p)
NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1)
NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1)
Figure 36. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
18
90
dln
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
19-Nov-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package Qty
Drawing
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Samples
(3)
(Requires Login)
TLV2760ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2760IDBVR
ACTIVE
SOT-23
DBV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2760IDBVRG4
ACTIVE
SOT-23
DBV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2760IDBVT
ACTIVE
SOT-23
DBV
6
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2760IDBVTG4
ACTIVE
SOT-23
DBV
6
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2760IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2760IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2760IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2761CD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2761CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2761ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2761IDBVR
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2761IDBVRG4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2761IDBVT
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2761IDBVTG4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2761IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2761IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
19-Nov-2012
Orderable Device
Status
(1)
Package Type Package Pins Package Qty
Drawing
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Samples
(3)
(Requires Login)
TLV2761IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2762CD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762CDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762CDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762IDGK
ACTIVE
VSSOP
DGK
8
80
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762IDGKG4
ACTIVE
VSSOP
DGK
8
80
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762IDGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762IDGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762IDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2762IDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2763CDR
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2763CDRG4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2763IDGS
ACTIVE
VSSOP
DGS
10
80
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2763IDGSG4
ACTIVE
VSSOP
DGS
10
80
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2763IDGSR
ACTIVE
VSSOP
DGS
10
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
19-Nov-2012
Orderable Device
Status
(1)
Package Type Package Pins Package Qty
Drawing
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Samples
(3)
(Requires Login)
TLV2763IDGSRG4
ACTIVE
VSSOP
DGS
10
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2763IDR
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2763IDRG4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764CD
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764CDG4
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764CDR
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764CDRG4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764ID
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764IDG4
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764IDR
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764IDRG4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2764INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2764IPW
ACTIVE
TSSOP
PW
14
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764IPWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764IPWR
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2764IPWRG4
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765CD
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
19-Nov-2012
Orderable Device
Status
(1)
Package Type Package Pins Package Qty
Drawing
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Samples
(3)
(Requires Login)
TLV2765CDG4
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765CDR
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765CDRG4
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765ID
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765IDG4
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765IDR
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765IDRG4
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765IPW
ACTIVE
TSSOP
PW
16
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765IPWG4
ACTIVE
TSSOP
PW
16
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765IPWR
ACTIVE
TSSOP
PW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2765IPWRG4
ACTIVE
TSSOP
PW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Addendum-Page 4
PACKAGE OPTION ADDENDUM
www.ti.com
19-Nov-2012
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 5
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Nov-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
TLV2760IDBVR
SOT-23
DBV
6
3000
180.0
9.0
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
3.15
3.2
1.4
4.0
8.0
Q3
TLV2760IDBVT
SOT-23
DBV
6
250
180.0
9.0
3.15
3.2
1.4
4.0
8.0
Q3
TLV2761IDBVR
SOT-23
DBV
5
3000
180.0
9.0
3.15
3.2
1.4
4.0
8.0
Q3
TLV2761IDBVT
SOT-23
DBV
5
250
180.0
9.0
3.15
3.2
1.4
4.0
8.0
Q3
TLV2762CDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLV2762IDGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
TLV2762IDGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
TLV2762IDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLV2763CDR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
TLV2763IDGSR
VSSOP
DGS
10
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
TLV2763IDGSR
VSSOP
DGS
10
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
TLV2763IDR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
TLV2764CDR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
TLV2764IDR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
TLV2764IPWR
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
TLV2765CDR
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
TLV2765IDR
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
TLV2765IPWR
TSSOP
PW
16
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Nov-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TLV2760IDBVR
SOT-23
DBV
6
3000
182.0
182.0
20.0
TLV2760IDBVT
SOT-23
DBV
6
250
182.0
182.0
20.0
TLV2761IDBVR
SOT-23
DBV
5
3000
182.0
182.0
20.0
TLV2761IDBVT
SOT-23
DBV
5
250
182.0
182.0
20.0
TLV2762CDR
SOIC
D
8
2500
340.5
338.1
20.6
TLV2762IDGKR
VSSOP
DGK
8
2500
364.0
364.0
27.0
TLV2762IDGKR
VSSOP
DGK
8
2500
358.0
335.0
35.0
TLV2762IDR
SOIC
D
8
2500
340.5
338.1
20.6
TLV2763CDR
SOIC
D
14
2500
367.0
367.0
38.0
TLV2763IDGSR
VSSOP
DGS
10
2500
358.0
335.0
35.0
TLV2763IDGSR
VSSOP
DGS
10
2500
366.0
364.0
50.0
TLV2763IDR
SOIC
D
14
2500
367.0
367.0
38.0
TLV2764CDR
SOIC
D
14
2500
333.2
345.9
28.6
TLV2764IDR
SOIC
D
14
2500
333.2
345.9
28.6
TLV2764IPWR
TSSOP
PW
14
2000
367.0
367.0
35.0
TLV2765CDR
SOIC
D
16
2500
333.2
345.9
28.6
TLV2765IDR
SOIC
D
16
2500
333.2
345.9
28.6
TLV2765IPWR
TSSOP
PW
16
2000
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated