Freescale Semiconductor Data Sheet: Advance Information Document Number: MCF51QU128 Rev. 0, 05/2011 MCF51QU128 MCF51QU128 Advance Information Supports the MCF51QU128VLH, MCF51QU128VHX, MCF51QU128VHS, MCF51QU64VLF, MCF51QU64VHS, MCF51QU32VHS, MCF51QU32VFM Features • Operating characteristics – Voltage range: 1.71 V to 3.6 V – Flash write voltage range: 1.71 V to 3.6 V – Temperature range (ambient): -40°C to 105°C • Core – Up to 50 MHz V1 ColdFire CPU – Dhrystone 2.1 performance: 1.10 DMIPS per MHz when executing from internal RAM, 0.99 DMIPS per MHz when executing from flash memory • System – DMA controller with four programmable channels – Integrated ColdFire DEBUG_Rev_B+ interface with single-wire BDM connection • Power management – 10 low power modes to provide power optimization based on application requirements – Low-leakage wakeup unit (LLWU) – Voltage regulator (VREG) • Clocks – Crystal oscillators (two, each with range options): 1 kHz to 32 kHz (low), 1 MHz to 8 MHz (medium), 8 MHz to 32 MHz (high) – Multipurpose clock generator (MCG) • Memories and memory interfaces – Flash memory, FlexNVM, FlexRAM, and RAM – Serial programming interface (EzPort) – Mini-FlexBus external bus interface • Security and integrity – Hardware CRC module to support fast cyclic redundancy checks – 128-bit unique identification (ID) number per chip • Analog – 12-bit SAR ADC – 12-bit DAC – Analog comparator (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference (VREF) • Timers – Programmable delay block (PDB) – Motor control/general purpose/PWM timers (FTM) – 16-bit low-power timers (LPTMRs) – 16-bit modulo timer (MTIM) – Carrier modulator transmitter (CMT) • Communication interfaces – UARTs with Smart Card support and FIFO – SPI modules, one with FIFO – Inter-Integrated Circuit (I2C) modules • Human-machine interface – Up to 48 EGPIO pins – Up to 16 rapid general purpose I/O (RGPIO) pins – Low-power hardware touch sensor interface (TSI) – Interrupt request pin (IRQ) This document contains information on a new product. Specifications and information herein are subject to change without notice. © 2011 Freescale Semiconductor, Inc. Preliminary Table of Contents 1 Ordering parts...........................................................................3 1.1 Determining valid orderable parts......................................3 5.3.1 General Switching Specifications..........................17 5.4 Thermal specifications.......................................................19 2 Part identification......................................................................3 5.4.1 Thermal operating requirements...........................19 2.1 Description.........................................................................3 5.4.2 Thermal attributes.................................................19 2.2 Format...............................................................................3 6 Peripheral operating requirements and behaviors....................20 2.3 Fields.................................................................................3 6.1 Core modules....................................................................20 2.4 Example............................................................................4 3 Terminology and guidelines......................................................4 6.1.1 6.2 System modules................................................................21 3.1 Definition: Operating requirement......................................4 3.2 Definition: Operating behavior...........................................5 Debug specifications.............................................20 6.2.1 VREG electrical specifications..............................21 6.3 Clock modules...................................................................21 3.3 Definition: Attribute............................................................5 6.3.1 MCG specifications...............................................21 3.4 Definition: Rating...............................................................5 6.3.2 Oscillator electrical specifications.........................24 3.5 Result of exceeding a rating..............................................6 6.4 Memories and memory interfaces.....................................26 3.6 Relationship between ratings and operating 6.4.1 Flash (FTFL) electrical specifications....................26 requirements......................................................................6 6.4.2 EzPort Switching Specifications............................31 3.7 Guidelines for ratings and operating requirements............6 6.4.3 Mini-Flexbus Switching Specifications..................32 3.8 Definition: Typical value.....................................................7 6.5 Security and integrity modules..........................................34 4 Ratings......................................................................................8 6.6 Analog...............................................................................35 4.1 Thermal handling ratings...................................................8 6.6.1 ADC electrical specifications.................................35 4.2 Moisture handling ratings..................................................8 6.6.2 CMP and 6-bit DAC electrical specifications.........38 4.3 ESD handling ratings.........................................................9 6.6.3 12-bit DAC electrical characteristics.....................40 4.4 Voltage and current operating ratings...............................9 6.6.4 Voltage reference electrical specifications............43 5 General.....................................................................................9 6.7 Timers................................................................................44 5.1 Typical Value Conditions...................................................9 6.8 Communication interfaces.................................................45 5.2 Nonswitching electrical specifications...............................10 6.8.1 SPI switching specifications..................................45 5.2.1 Voltage and Current Operating Requirements......10 6.9 Human-machine interfaces (HMI)......................................48 5.2.2 LVD and POR operating requirements.................11 5.2.3 Voltage and current operating behaviors..............12 7 Dimensions...............................................................................49 5.2.4 Power mode transition operating behaviors..........12 7.1 Obtaining package dimensions.........................................49 5.2.5 Power consumption operating behaviors..............13 8 Pinout........................................................................................50 5.2.6 EMC radiated emissions operating behaviors.......16 8.1 Signal Multiplexing and Pin Assignments..........................50 5.2.7 Designing with radiated emissions in mind...........16 8.2 Pinout diagrams.................................................................52 5.2.8 Capacitance attributes..........................................16 8.3 Module-by-module signals.................................................56 5.3 Switching electrical specifications.....................................17 9 Revision History........................................................................66 6.9.1 TSI electrical specifications...................................48 MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 2 Preliminary Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device: 1. Go to http://www.freescale.com. 2. Perform a part number search for the following partial device numbers: PCF51QU and MCF51QU. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q CCCC DD MMM T PP 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification CCCC Core code CF51 = ColdFire V1 DD Device number JF, JU, QF, QH, QM, QU Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 3 Terminology and guidelines Field Description Values MMM Memory size (program flash T Temperature range, ambient (°C) PP Package identifier memory)1 • 32 = 32 KB • 64 = 64 KB • 128 = 128 KB V = –40 to 105 • FM = 32 QFN (5 mm x 5 mm) • HS = 44 Laminate QFN (5 mm x 5 mm) • LF = 48 LQFP (7 mm x 7 mm) • HX = 64 Laminate QFN (9 mm x 9 mm) • LH = 64 LQFP (10 mm x 10 mm) 1. All parts also have FlexNVM, FlexRAM, and RAM. 2.4 Example This is an example part number: MCF51QU128VLH 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 Example This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. Unit 1.1 V MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 4 Preliminary Freescale Semiconductor, Inc. Terminology and guidelines 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 5 Terminology and guidelines 3.4.1 Example This is an example of an operating rating: Symbol VDD Description Min. 1.0 V core supply voltage Max. –0.3 Unit 1.2 V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic 3.6 Relationship between ratings and operating requirements tin ra pe r go n ha ng dli g tin ) in. (m ra O e gr tin ra pe em ir qu n. mi t( en ) O O e gr tin ra pe em ir qu x ma t( en .) r go tin ra pe ng dli n ha g tin .) ax (m ra O Fatal range Limited operating range Normal operating range Limited operating range Fatal range - Probable permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation - Probable permanent failure Handling range - No permanent failure ∞ –∞ 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 6 Preliminary Freescale Semiconductor, Inc. Terminology and guidelines • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol IWP Description Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 7 Ratings 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.95 0.90 1.05 1.00 1.10 VDD (V) 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 Solder temperature, leaded — 245 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 8 Preliminary Freescale Semiconductor, Inc. General 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 120 mA VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 VDD + 0.3 V VAIO Analog, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V Instantaneous maximum current single pin limit (applies to all port pins) –25 25 mA ID VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V IDDA Analog supply current — TBD mA –0.3 6.0 V VREGIN Regulator input 5 General 5.1 Typical Value Conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 9 Nonswitching electrical specifications 5.2 Nonswitching electrical specifications 5.2.1 Voltage and Current Operating Requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V VIH VIL IIC Input high voltage 1 • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V Input low voltage 2 • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V DC injection current — single pin 3 • VIN > VDD 0 2 mA • VIN < VSS 0 –0.2 mA DC injection current — total MCU limit, includes sum of all stressed pins • VIN > VDD • VIN < VSS VRAM Notes VDD voltage required to retain RAM 3 0 25 mA 0 –5 mA 1.2 — V 1. The device always interprets an input as a 1 when the input is greater than or equal to VIH (min.) and less than or equal to VIH (max.), regardless of whether input hysteresis is turned on. 2. The device always interprets an input as a 0 when the input is less than or equal to VIL (max.) and greater than or equal to VIL (min.), regardless of whether input hysteresis is turned on. 3. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 10 Preliminary Freescale Semiconductor, Inc. Nonswitching electrical specifications 5.2.2 LVD and POR operating requirements Table 2. LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage TBD 1.1 TBD V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) TBD 2.56 TBD V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) TBD 2.70 TBD V VLVW2H • Level 2 falling (LVWV=01) TBD 2.80 TBD V VLVW3H • Level 3 falling (LVWV=10) TBD 2.90 TBD V VLVW4H • Level 4 falling (LVWV=11) TBD 3.00 TBD V 60 TBD mV 1.60 TBD V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) TBD Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) TBD 1.80 TBD V VLVW2L • Level 2 falling (LVWV=01) TBD 1.90 TBD V VLVW3L • Level 3 falling (LVWV=10) TBD 2.00 TBD V VLVW4L • Level 4 falling (LVWV=11) TBD 2.10 TBD V 40 TBD mV VHYSL Notes Low-voltage inhibit reset/recover hysteresis — low range VBG Bandgap voltage reference TBD 1.00 TBD V tLPO Internal low power oscillator period TBD 1000 TBD μs factory trimmed 1. Rising thresholds are falling threshold + hysteresis voltage MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 11 Nonswitching electrical specifications 5.2.3 Voltage and current operating behaviors Table 3. Voltage and current operating behaviors Symbol VOH Description Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA VDD – 0.5 — V — 100 mA • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA — 0.5 V — 100 mA • @ full temperature range — TBD μA • @ 25 °C — TBD μA Notes Output high voltage — high drive strength Output high voltage — low drive strength IOHT Output high current total for all ports VOL Output low voltage — high drive strength Output low voltage — low drive strength IOLT IIN Output low current total for all ports Input leakage current (per pin) IOZ Hi-Z (off-state) leakage current (per pin) — TBD μA RPU Internal pullup resistors 20 50 kΩ 1 RPD Internal pulldown resistors 20 50 kΩ 2 1. Measured at Vinput = VSS 2. Measured at Vinput = VDD 5.2.4 Power mode transition operating behaviors All specifications except tPOR and VLLSx-RUN recovery times in the following table assume this clock configuration: • CPU and system clocks = 50 MHz • Bus clock (and flash and Mini-FlexBus clocks) = 25 MHz MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 12 Preliminary Freescale Semiconductor, Inc. Nonswitching electrical specifications Table 4. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip. Min. Max. Unit Notes — 300 μs 1 RUN → VLLS1 → RUN 1 • RUN → VLLS1 — 4.4 μs • VLLS1 → RUN — TBD μs RUN → VLLS2 → RUN 1 • RUN → VLLS2 — 4.6 μs • VLLS2 → RUN — TBD μs RUN → VLLS3 → RUN 1 • RUN → VLLS3 — 4.4 μs • VLLS3 → RUN — TBD μs • RUN → LLS — 4.4 μs • LLS → RUN — 6.5 μs • RUN → VLPS — 4.4 μs • VLPS → RUN — 4.6 μs • RUN → STOP — 4.4 μs • STOP → RUN — 4.6 μs RUN → LLS → RUN RUN → VLPS → RUN RUN → STOP → RUN 1. Normal boot (FTFL_FOPT[LPBOOT] is 1) 5.2.5 Power consumption operating behaviors Table 5. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Analog supply current Min. Typ. Max. Unit Notes — — TBD mA 1 Run mode current — all peripheral clocks disabled, code executing from RAM • @ 1.8 V • @ 3.0 V 2 — 13.5 TBD mA — 14 TBD mA Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 13 Nonswitching electrical specifications Table 5. Power consumption operating behaviors (continued) Symbol Description Min. IDD_RUN Run mode current — all peripheral clocks disabled, code executing from flash memory with page buffering disabled • @ 1.8 V • @ 3.0 V IDD_RUN Max. Unit • @ 3.0 V Run mode current — all peripheral clocks enabled and peripherals active, code executing from flash memory • @ 1.8 V • @ 3.0 V Notes 2 — 16.6 TBD mA — 17 TBD mA Run mode current — all peripheral clocks enabled, code executing from RAM, exercising flash memory • @ 1.8 V IDD_RUN_MAX Typ. 3 — 20 TBD mA — 20 TBD mA 4 — TBD TBD mA — TBD TBD mA IDD_WAIT Wait mode current at 3.0 V — all peripheral clocks disabled — 6.6 TBD mA 5 IDD_WAIT Wait mode current at 3.0 V — all peripheral clocks disabled — TBD TBD mA 6 IDD_STOP Stop mode current at 3.0 V — 0.34 TBD mA IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 0.63 TBD mA 7 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 0.78 TBD mA 8 IDD_VLPW Very-low-power wait mode current at 3.0 V — 0.15 TBD mA 9 IDD_VLPS Very-low-power stop mode current at 3.0 V — 12 TBD μA 10 IDD_LLS Low leakage stop mode current at 3.0 V IDD_VLLS3 IDD_VLLS2 10,11,12 • @ –40 to 25 °C — 3.0 TBD μA • @ 70 °C — TBD TBD μA • @ 105 °C — TBD TBD μA Very low-leakage stop mode 3 current at 3.0 V 10,11,12 • @ –40 to 25 °C — 2.0 TBD μA • @ 70 °C — TBD TBD μA • @ 105 °C — TBD TBD μA Very low-leakage stop mode 2 current at 3.0 V 10,11 • @ –40 to 25 °C — 1.5 TBD μA • @ 70 °C — TBD TBD μA • @ 105 °C — TBD TBD μA Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 14 Preliminary Freescale Semiconductor, Inc. Nonswitching electrical specifications Table 5. Power consumption operating behaviors (continued) Symbol IDD_VLLS1 IDD_OSC Description Min. Typ. Max. Unit Very low-leakage stop mode 1 current at 3.0 V 10,11 • @ –40 to 25 °C — 1.3 TBD μA • @ 70 °C — TBD TBD μA • @ 105 °C — TBD TBD μA — 0.7 — μA — TBD — μA — TBD — μA Average current for OSC enabled with 32 kHz crystal at 3.0 V • @ –40 to 25 °C • @ 70 °C Notes • @ 105 °C 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks disabled. 3. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks enabled, but peripherals are not in active operation. 4. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation. 5. 25 MHz core and system clocks, and 12.5 MHz bus clock. MCG configured for FEI mode. 6. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. 7. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash memory. 8. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for fast IRCLK mode. All peripheral clocks enabled, but peripherals are not in active operation. Code executing from flash memory. 9. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. 10. OSC clocks disabled. 11. All pads disabled. 12. Data reflects devices with 32 KB of RAM. For devices with 16 KB of RAM, power consumption is reduced by 500 nA. For devices with 8 KB of RAM, power consumption is reduced by 750 nA. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • • MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) All peripheral clocks disabled except FTFL LVD disabled, voltage regulator disabled No GPIOs toggled Code execution from flash memory DIAGRAM TBD Figure 1. Run mode supply current vs. core frequency — all peripheral clocks disabled The following data was measured under these conditions: • MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) • All peripheral clocks enabled, but peripherals are not in active operation MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 15 Nonswitching electrical specifications • LVD disabled, voltage regulator disabled • No GPIOs toggled • Code execution from flash memory DIAGRAM TBD Figure 2. Run mode supply current vs. core frequency — all peripheral clocks enabled 5.2.6 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors Symbol Description Frequency band (MHz) Typ. Unit Notes dBμV 1, 2 — 2, 3 VRE1 Radiated emissions voltage, band 1 0.15–50 TBD VRE2 Radiated emissions voltage, band 2 50–150 TBD VRE3 Radiated emissions voltage, band 3 150–500 TBD VRE4 Radiated emissions voltage, band 4 500–1000 TBD 0.15–1000 TBD VRE_IEC_SAE IEC and SAE level 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/ Wideband TEM (GTEM) Cell Method. 2. VDD = 3 V, TA = 25 °C, fOSC = 16 MHz (crystal), fBUS = 25 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method. 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to http://www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 7. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 16 Preliminary Freescale Semiconductor, Inc. Nonswitching electrical specifications 5.3 Switching electrical specifications Table 8. Device clock specifications Symbol Description Min. Max. Unit Notes Normal run mode fSYS System and core clock — 50 MHz fBUS Bus clock — 25 MHz Mini-FlexBus clock — 25 MHz LPTMR clock — 25 MHz FB_CLK fLPTMR VLPR mode fSYS System and core clock — 2 MHz fBUS Bus clock — 1 MHz Mini-FlexBus clock — 1 MHz LPTMR clock — 25 MHz FB_CLK fLPTMR 5.3.1 General Switching Specifications These general purpose specifications apply to all signals configured for EGPIO, MTIM, CMT, PDB, IRQ, and I2C signals. The conditions are 50 pf load, VDD = 1.71 V to 3.6 V, and full temperature range. The GPIO are set for high drive, no slew rate control, and no input filter, digital or analog, unless otherwise specified. Table 9. EGPIO General Control Timing Symbol Description Min. Max. Unit G1 Bus clock from CLK_OUT pin high to GPIO output valid — 32 ns G2 Bus clock from CLK_OUT pin high to GPIO output invalid (output hold) 1 — ns G3 GPIO input valid to bus clock high 28 — ns G4 Bus clock from CLK_OUT pin high to GPIO input invalid — 4 ns GPIO pin interrupt pulse width (digital glitch filter disabled) 1.5 — Bus clock cycles 100 — ns Synchronous path1 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) Asynchronous path2 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 17 Nonswitching electrical specifications Table 9. EGPIO General Control Timing (continued) Symbol Description Min. GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) Max. Unit 50 — ns External reset pulse width (digital glitch filter disabled) 100 — ns Mode select (MS) hold time after reset deassertion 2 — Bus clock cycles Asynchronous path2 1. The greater synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. Bus clock G1 G2 Data outputs G3 G4 Data inputs Figure 3. EGPIO timing diagram The following general purpose specifications apply to all signals configured for RGPIO, FTM, and UART. The conditions are 25 pf load, VDD = 3.6 V to 1.71 V, and full temperature range. The GPIO are set for high drive, no slew rate control, and no input filter, digital or analog, unless otherwise specified. Table 10. RGPIO General Control Timing Symbol Description Min. Max. Unit R1 CPUCLK from CLK_OUT pin high to GPIO output valid — 16 ns R2 CPUCLK from CLK_OUT pin high to GPIO output invalid (output hold) 1 — ns R3 GPIO input valid to bus clock high 17 — ns R4 CPUCLK from CLK_OUT pin high to GPIO input invalid — 2 ns MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 18 Preliminary Freescale Semiconductor, Inc. Thermal specifications Bus clock R1 R2 Data outputs R3 R4 Data inputs Figure 4. RGPIO timing diagram 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C 5.4.2 Thermal attributes Board type Symbol Description 64 LQFP 64 Laminate QFN 48 LQFP 44 Laminate QFN 32 QFN Unit Notes Single-layer RθJA (1s) Thermal resistance, junction to ambient (natural convection) 73 108 79 108 98 °C/W 1 Four-layer (2s2p) Thermal resistance, junction to ambient (natural convection) 54 69 55 69 33 °C/W 1 Single-layer RθJMA (1s) Thermal resistance, junction to ambient (200 ft./min. air speed) 61 91 66 91 81 °C/W 1 Four-layer (2s2p) Thermal resistance, junction to ambient (200 ft./min. air speed) 48 63 48 63 28 °C/W 1 RθJA RθJMA Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 19 Peripheral operating requirements and behaviors Board type Symbol Description 64 LQFP 64 Laminate QFN 48 LQFP 44 Laminate QFN 32 QFN Unit Notes — RθJB Thermal resistance, junction to board 37 44 34 44 13 °C/W 2 — RθJC Thermal resistance, junction to case 20 31 20 31 2.2 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 5.0 6.0 4.0 6.0 6.0 °C/W 4 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 Debug specifications Table 12. Background debug mode (BDM) timing Number Symbol Description Min. Max. Unit 1 tMSSU BKGD/MS setup time after issuing background debug force reset to enter user mode or BDM 500 — ns 2 tMSH BKGD/MS hold time after issuing background debug force reset to enter user mode or BDM1 100 — µs 1. To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD rises above VLVD. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 20 Preliminary Freescale Semiconductor, Inc. System modules 6.2 System modules 6.2.1 VREG electrical specifications Table 13. VREG electrical specifications Symbol Description Min. Typ. Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 120 TBD μA IDDstby Quiescent current — Standby mode, load current equal zero — 1.1 TBD μA IDDoff Quiescent current — Shutdown mode — 500 — nA — — TBD μA • VREGIN = 5.0 V and temperature=25C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V 3 3.3 3.6 V TBD 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode TBD — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current TBD 290 TBD mA • Run mode • Standby mode VReg33out Notes 1 1. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 6.3 Clock modules 6.3.1 MCG specifications Table 14. MCG specifications Symbol fints_ft Description Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25°C Min. Typ. Max. Unit — 32.768 — kHz Notes Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 21 Clock modules Table 14. MCG specifications (continued) Symbol Min. Typ. Max. Unit 31.25 — 39.0625 kHz Internal reference (slow clock) current — TBD — µA Internal reference (slow clock) startup time — TBD 4 µs Δfdco_res_t Resolution of trimmed DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.1 ± 0.3 %fdco 1 Δfdco_res_t Resolution of trimmed DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — + 0.5 ± 3.5 %fdco 1 Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.5 ± TBD %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C 3.4 — 4 MHz fintf_t Internal reference frequency (fast clock) — user trimmed 3 — 5 MHz Internal reference (fast clock) current — TBD — µA Internal reference startup time (fast clock) — TBD TBD µs fints_t Iints tirefsts Δfdco_t Iintf tirefstf Description Internal reference frequency (slow clock) — user trimmed Notes - 1.0 floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 22 Preliminary Freescale Semiconductor, Inc. Clock modules Table 14. MCG specifications (continued) Symbol Description fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) Min. Typ. Max. Unit Notes — 23.99 — MHz 4, 5 — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter — TBD TBD ps 6 Jacc_fll FLL accumulated jitter of DCO output over a 1µs time window — TBD TBD ps 6 FLL target frequency acquisition time — — 1 ms 7 48.0 — 100 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 MHz tfll_acquire PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter Jacc_pll 8 8 9, 10 • fvco = 48 MHz — 120 — ps • fvco = 100 MHz — 50 — ps PLL accumulated jitter over 1µs window 9, 10 • fvco = 48 MHz — 1350 — ps • fvco = 100 MHz — 600 — ps Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % tpll_lock Lock detector detection time — — 0.15 + 1075(1/ fpll_ref) ms 11 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 23 Clock modules 6. This specification was obtained at TBD frequency. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Excludes any oscillator currents that are also consuming power while PLL is in operation. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. PLL period jitter is measured in RMS. 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6.3.2 Oscillator electrical specifications This section provides the electrical characteristics of the module. 6.3.2.1 Symbol VDD IDDOSC IDDOSC Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 1 MHz — 100 — μA • 4 MHz — 200 — μA • 8 MHz (only RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 1 MHz — 200 — μA • 4 MHz — 400 — μA • 8 MHz (only RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 24 Preliminary Freescale Semiconductor, Inc. Clock modules Table 15. Oscillator DC electrical specifications (continued) Symbol RF RS Description Min. Typ. Max. Unit Notes Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ 2, 4 Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 6.6 — kΩ — 3.3 — kΩ — 0 — kΩ — 0 — kΩ — 0 — kΩ — 0 — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V Series resistor — high-frequency, high-gain mode (HGO=1) • 1 MHz resonator • 2 MHz resonator • 4 MHz resonator • 8 MHz resonator • 16 MHz resonator • 20 MHz resonator • 32 MHz resonator Vpp5 1. 2. 3. 4. 5. VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 25 Memories and memory interfaces 6.3.2.2 Symbol Oscillator frequency specifications Table 16. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01) 1 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 50 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1 2, 3 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL 2. Proper PC board layout procedures must be followed to achieve specifications. 3. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 6.4 Memories and memory interfaces 6.4.1 Flash (FTFL) electrical specifications This section describes the electrical characteristics of the FTFL module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 17. NVM program/erase timing specifications Symbol Description thvpgm4 Longword Program high-voltage time Min. Typ. Max. Unit — 20 TBD μs Notes Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 26 Preliminary Freescale Semiconductor, Inc. Memories and memory interfaces Table 17. NVM program/erase timing specifications (continued) Symbol Description thversscr thversblk32k Min. Typ. Max. Unit Notes Sector Erase high-voltage time — 20 100 ms 1 Erase Block high-voltage time for 32 KB — 20 100 ms 1 — 80 400 ms 1 Notes thversblk128k Erase Block high-voltage time for 128 KB 1. Maximum time based on expectations at cycling end-of-life. 6.4.1.2 Symbol Flash timing specifications — commands Table 18. Flash command timing specifications Description Min. Typ. Max. Unit Read 1s Block execution time trd1blk32k • 32 KB data flash — — 0.4 ms trd1blk128k • 128 KB data flash — — 1.4 ms trd1sec1k Read 1s Section execution time (flash sector) — — 40 μs 1 tpgmchk Program Check execution time — — 35 μs 1 trdrsrc Read Resource execution time — — 35 μs 1 tpgm4 Program Longword execution time — 50 TBD μs Erase Flash Block execution time 2 tersblk32k • 32 KB data flash — 20 100 ms tersblk128k • 128 KB data flash — 80 400 ms — 20 100 ms tersscr Erase Flash Sector execution time 2 Program Section execution time tpgmsec512 • 512 B flash — TBD TBD ms tpgmsec1k • 1 KB flash — TBD TBD ms trd1all Read 1s All Blocks execution time — — 1.8 ms trdonce Read Once execution time — — 35 μs Program Once execution time — 50 TBD μs tersall Erase All Blocks execution time — 100 500 ms 2 tvfykey Verify Backdoor Access Key execution time — — 35 μs 1 — 25 TBD ms tpgmonce 1 Program Partition for EEPROM execution time tpgmpart32k • 32 KB FlexNVM Set FlexRAM Function execution time: tsetram8k • 8 KB EEPROM backup — TBD TBD ms tsetram32k • 32 KB EEPROM backup — TBD TBD ms Byte-write to FlexRAM for EEPROM operation Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 27 Memories and memory interfaces Table 18. Flash command timing specifications (continued) Symbol Description teewr8bers Byte-write to erased FlexRAM location execution time Min. Typ. Max. Unit Notes — 100 TBD μs 3 Byte-write to FlexRAM execution time: teewr8b8k • 8 KB EEPROM backup — TBD TBD ms teewr8b16k • 16 KB EEPROM backup — TBD TBD ms teewr8b32k • 32 KB EEPROM backup — TBD 1.5 ms Word-write to FlexRAM for EEPROM operation teewr16bers Word-write to erased FlexRAM location execution time — 100 TBD μs Word-write to FlexRAM execution time: teewr16b8k • 8 KB EEPROM backup — TBD TBD ms teewr16b16k • 16 KB EEPROM backup — TBD TBD ms teewr16b32k • 32 KB EEPROM backup — TBD 1.5 ms Longword-write to FlexRAM for EEPROM operation teewr32bers Longword-write to erased FlexRAM location execution time — 200 TBD μs Longword-write to FlexRAM execution time: teewr32b8k • 8 KB EEPROM backup — TBD TBD ms teewr32b16k • 16 KB EEPROM backup — TBD TBD ms teewr32b32k • 32 KB EEPROM backup — TBD 2.7 ms 1. Assumes 25MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. 6.4.1.3 Flash (FTFL) current and power specfications Table 19. Flash (FTFL) current and power specfications Symbol Description IDD_PGM Worst case programming current in program flash 6.4.1.4 Symbol Typ. Unit 10 mA Reliability specifications Table 20. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 TBD — years 2 tnvmretp1k Data retention after up to 1 K cycles 10 TBD — years 2 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 28 Preliminary Freescale Semiconductor, Inc. Memories and memory interfaces Table 20. NVM reliability specifications (continued) Symbol tnvmretp100 nnvmcycp Description Data retention after up to 100 cycles Cycling endurance Min. Typ.1 Max. Unit Notes 15 TBD — years 2 10 K TBD — cycles 3 Data Flash tnvmretd10k Data retention after up to 10 K cycles 5 TBD — years 2 tnvmretd1k Data retention after up to 1 K cycles 10 TBD — years 2 tnvmretd100 Data retention after up to 100 cycles 15 TBD — years 2 10 K TBD — cycles 3 nnvmcycd Cycling endurance FlexRAM as EEPROM tnvmretee100 Data retention up to 100% of write endurance 5 TBD — years 2 tnvmretee10 Data retention up to 10% of write endurance 10 TBD — years 2 tnvmretee1 Data retention up to 1% of write endurance 15 TBD — years 2 Write endurance 4 nnvmwree16 • EEPROM backup to FlexRAM ratio = 16 35 K TBD — writes nnvmwree128 • EEPROM backup to FlexRAM ratio = 128 315 K TBD — writes nnvmwree512 • EEPROM backup to FlexRAM ratio = 512 1.27 M TBD — writes nnvmwree4k • EEPROM backup to FlexRAM ratio = 4096 10 M TBD — writes • EEPROM backup to FlexRAM ratio = 8192 20 M TBD — writes nnvmwree8k 1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to 25°C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618. 2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application). 3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum value assumes all byte-writes to FlexRAM. 6.4.1.5 Write endurance to FlexRAM for EEPROM When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values. The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 29 Memories and memory interfaces While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used. Writes_FlexRAM = EEPROM – 2 × EEESIZE EEESIZE × Write_efficiency × nnvmcycd where • Writes_FlexRAM — minimum number of writes to each FlexRAM location • EEPROM — allocated FlexNVM based on DEPART; entered with Program Partition command • EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition command • Write_efficiency — • 0.25 for 8-bit writes to FlexRAM • 0.50 for 16-bit or 32-bit writes to FlexRAM • nnvmcycd — data flash cycling endurance MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 30 Preliminary Freescale Semiconductor, Inc. Memories and memory interfaces Figure 5. EEPROM backup writes to FlexRAM 6.4.2 EzPort Switching Specifications Table 21. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 2.7 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 15 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 0.0 — ns EP5 EZP_D input valid to EZP_CK high (setup) 15 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 0.0 — ns EP7 EZP_CK low to EZP_Q output valid (setup) — 25 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0.0 — ns Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 31 Memories and memory interfaces Table 21. EzPort switching specifications (continued) Num Description EP9 EZP_CS negation to EZP_Q tri-state Min. Max. Unit — 12 ns EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 6. EzPort Timing Diagram 6.4.3 Mini-Flexbus Switching Specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 22. Flexbus switching specifications Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — 25 MHz FB1 Clock period 20 — ns FB2 Address, data, and control output valid TBD 20 ns 1 FB3 Address, data, and control output hold 1 — ns 1 FB4 Data and FB_TA input setup 20 — ns 2 FB5 Data and FB_TA input hold 10 — ns 2 MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 32 Preliminary Freescale Semiconductor, Inc. Memories and memory interfaces 1. Specification is valid for all FB_AD[31:0], FB_CSn, FB_OE, FB_R/W, and FB_TS. 2. Specification is valid for all FB_AD[31:0]. Note The following diagrams refer to signal names that may not be included on your particular device. Ignore these extraneous signals. Also, ignore the AA=0 portions of the diagrams because this setting is not supported in the Mini-FlexBus. FB1 FB_CLK FB3 FB5 FB_A[Y] FB2 FB_D[X] Address FB4 Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA AA=0 FB_TSIZ[1:0] TSIZ Figure 7. Mini-FlexBus read timing diagram MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 33 Memories and memory interfaces FB1 FB_CLK FB2 FB_A[Y] FB_D[X] FB3 Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 8. Mini-FlexBus write timing diagram 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 34 Preliminary Freescale Semiconductor, Inc. Analog 6.6 Analog 6.6.1 ADC electrical specifications All ADC channels meet the 12-bit single-ended accuracy specifications. 6.6.1.1 12-bit ADC operating conditions Table 23. 12-bit ADC operating conditions Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDDVDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSSVSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL Reference voltage low VSSA VSSA VSSA V VADIN Input voltage VREFL — VREFH V CADIN Input capacitance — 4 5 pF 2 5 kΩ Symbol RADIN RAS fADCK Crate • 8/10/12 bit modes Input resistance — — Analog source resistance 12 bit modes ADC conversion clock frequency ≤ 12 bit modes ADC conversion rate ≤ 12 bit modes fADCK < 4MHz 3 — — 5 kΩ 4 1.0 No ADC hardware averaging Notes — 18.0 MHz 5 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS/ CAS time constant should be kept to <1ns. 4. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 35 Analog 5. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http:// cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1 SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection Z AS R AS ADC SAR ENGINE R ADIN V ADIN C AS V AS R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 9. ADC input impedance equivalency diagram 6.6.1.2 12-bit ADC electrical characteristics Table 24. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description IDDA_ADC Supply current fADACK ADC asynchronous clock source Sample Time Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC=1, ADHSC=0 1.2 2.4 3.9 MHz • ADLPC=1, ADHSC=1 3.0 4.0 7.3 MHz tADACK = 1/ fADACK • ADLPC=0, ADHSC=0 2.4 5.2 6.1 MHz • ADLPC=0, ADHSC=1 4.4 6.2 9.5 MHz See Reference Manual chapter for sample times Conversion Time The ADC calculator tool can be used to determine ADC conversion times for different ADC configurations: http://cache.freescale.com/files/soft_dev_tools/software/app_software/ converters/ADC_CALCULATOR_CNV.zip?fpsp=1 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 36 Preliminary Freescale Semiconductor, Inc. Analog Table 24. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol TUE DNL INL EFS Description Conditions1 Min. Typ.2 Max. Unit Notes LSB4 ADC conversion clock <12MHz, Max hardware averaging (AVGE = %1, AVGS = %11) LSB4 ADC conversion clock <12MHz, Max hardware averaging (AVGE = %1, AVGS = %11) LSB4 Max averaging LSB4 VADIN = VDDA Total unadjusted error • 12 bit modes ±0.8 ±TBD • <12 bit modes ±0.5 ±1 Differential nonlinearity • 12 bit modes ±0.7 ±TBD • <12 bit modes ±0.2 ±0.5 Integral nonlinearity • 12 bit modes ±0.5 ±TBD Full-scale error • 12 bit modes • <12 bit modes ±0.4 • <12 bit modes EQ Quantization error EIL Input leakage error • 12 bit modes — — ±0.5 IIn × RAS LSB4 mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) Temp sensor slope VTEMP25 Temp sensor voltage • –40°C to 25°C — TBD — mV/°C • 25°C to 105°C — TBD — mV/°C — TBD — mV 25°C 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 37 Analog Figure TBD Figure 10. Typical TUE vs. ADC conversion rate 12-bit single-ended mode 6.6.2 CMP and 6-bit DAC electrical specifications Table 25. Comparator and 6-bit DAC electrical specifications Symbol VDD Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 120 250 600 ns Analog comparator initialization delay2 — — 40 μs 6-bit DAC current adder (enabled) — 7 — μA IDAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 38 Preliminary Freescale Semiconductor, Inc. Analog 0.08 0.07 0.06 HYSTCTR Setting CM P Hystereris (V) 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 11. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0) MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 39 12-bit DAC electrical characteristics 0.18 0.16 0.14 CMP P Hystereris (V) 0.12 HYSTCTR Setting 0.1 00 01 0 08 0.08 10 11 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 Vin level (V) 1.9 2.2 2.5 2.8 3.1 Figure 12. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 26. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V TA Temperature −40 105 °C CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1 2 1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT) 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 40 Preliminary Freescale Semiconductor, Inc. 12-bit DAC electrical characteristics 6.6.3.2 Symbol 12-bit DAC operating behaviors Table 27. 12-bit DAC operating behaviors Description Min. Typ. Max. Unit IDDA_DACLP Supply current — low-power mode — — 150 μA IDDA_DACH Supply current — high-speed mode — — 700 μA Notes P tDACLP Full-scale settling time (0x080 to 0xF7F) — lowpower mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — highpower mode — 15 30 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode — 0.7 1 μs 1 Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — high-speed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREFO (1.15 V) — — ±1 LSB 4 VOFFSET Offset error ±0.4 — ±0.8 %FSR 5 EG Gain error ±0.1 — ±0.6 %FSR 5 90 dB PSRR 1. 2. 3. 4. 5. Power supply rejection ratio, VDDA > = 2.4 V 60 TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — TBD — ppm of FSR/C AC Offset aging coefficient — — TBD μV/yr Rop Output resistance load = 3 kΩ — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth 6 dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0+100mV to VDACR−100 mV The DNL is measured for 0+100 mV to VDACR−100 mV The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V Calculated by a best fit curve from VSS+100 mV to VREF−100 mV MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 41 12-bit DAC electrical characteristics 6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set to 0x800, Temp range from -40C to 105C Figure 13. Typical INL error vs. digital code MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 42 Preliminary Freescale Semiconductor, Inc. 12-bit DAC electrical characteristics Figure 14. Offset at half scale vs. temperature 6.6.4 Voltage reference electrical specifications Table 28. VREF full-range operating requirements Symbol Description Min. Max. Unit Supply voltage 1.71 3.6 V TA Temperature −40 105 °C CL Output load capacitance — 100 nF VDDA Notes Table 29. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Vout Voltage reference output with factory trim at nominal VDDA and temperature=25C TBD 1.2 TBD V Vout Voltage reference output with— factory trim TBD — TBD V Notes Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 43 12-bit DAC electrical characteristics Table 29. VREF full-range operating behaviors (continued) Symbol Description Min. Typ. Max. Unit 1.198 — 1.202 V Vout Voltage reference output — user trim Vstep Voltage reference trim step — 0.5 — mV Vdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 40 mV Ac Aging coefficient — — TBD ppm/year Ibg Bandgap only (MODE_LV = 00) current — — TBD µA Itr Tight-regulation buffer (MODE_LV =10) current — — 1.1 mA ΔVLOAD Load regulation (MODE_LV = 10) Notes See Figure 15 mV • current = + 1.0 mA — — TBD • current = - 1.0 mA — — TBD Tstup Buffer startup time — — 100 µs DC Line regulation (power supply rejection) — — TBD mV –60 — TBD dB 1 1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 30. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 31. VREF limited-range operating behaviors Symbol Vout Description Min. Max. Unit Voltage reference output with factory trim TBD TBD V Notes TBD Figure 15. Typical output vs.temperature TBD Figure 16. Typical output vs. VDD 6.7 Timers See General Switching Specifications. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 44 Preliminary Freescale Semiconductor, Inc. Communication interfaces 6.8 Communication interfaces 6.8.1 SPI switching specifications The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% VDD and 70% VDD, unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins. Table 32. SPI master mode timing Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Min. Max. Unit Comment fBUS/2048 fBUS/2 Hz fBUS is the bus clock as defined in Table 8. 2 x tBUS 2048 x tBUS ns tBUS = 1/ fBUS Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tBUS - 30 1024 x tBUS ns — Data setup time (inputs) 21 — ns — tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 25 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tBUS - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 11 Description Frequency of operation SPSCK period Clock (SPSCK) high or low time MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 45 Communication interfaces SS1 (OUTPUT) 3 2 SPSCK (CPOL = 0) (OUTPUT) 10 11 10 11 4 5 5 SPSCK (CPOL = 1) (OUTPUT) 6 7 MISO (INPUT) MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) MSB OUT2 9 BIT 6 . . . 1 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 17. SPI master mode timing (CPHA=0) SS1 (OUTPUT) 2 3 SPSCK (CPOL = 0) (OUTPUT) 5 SPSCK (CPOL = 1) (OUTPUT) 5 6 MISO (INPUT) 10 11 10 11 4 7 MSB IN2 BIT 6 . . . 1 8 MOSI 2 (OUTPUT)PORT DATA MASTER MSB OUT LSB IN 9 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 18. SPI master mode timing (CPHA=1) Table 33. SPI slave mode timing Num. Symbol 1 fop Description Min. Max. Unit Comment 0 fBUS/4 Hz fBUS is the bus clock as defined in Table 8. Frequency of operation Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 46 Preliminary Freescale Semiconductor, Inc. Communication interfaces Table 33. SPI slave mode timing (continued) Num. Symbol Description Min. Max. Unit Comment 2 tSPSCK SPSCK period 4 x tBUS — ns tBUS = 1/ fBUS 3 tLead Enable lead time 1 — tBUS — 4 tLag Enable lag time 1 — tBUS — 5 tWSPSCK tBUS - 30 — ns — 6 tSU Data setup time (inputs) 19.5 — ns — 7 tHI Data hold time (inputs) 0 — ns — 8 ta Slave access time — tBUS ns Time to data active from highimpedanc e state 9 tdis Slave MISO disable time — tBUS ns Hold time to highimpedanc e state 10 tv Data valid (after SPSCK edge) — 27 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tBUS - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 13 Clock (SPSCK) high or low time SS (INPUT) 2 SPSCK (CPOL = 0) (INPUT) 5 3 SPSCK (CPOL = 1) (INPUT) 13 4 12 13 9 8 MISO (OUTPUT) 5 12 10 see note 6 MOSI (INPUT) SLAVE MSB 11 11 BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined! Figure 19. SPI slave mode timing (CPHA=0) MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 47 Human-machine interfaces (HMI) SS (INPUT) 4 2 3 SPSCK (CPOL = 0) (INPUT) 5 SPSCK (CPOL = 1) (INPUT) 5 see note SLAVE 8 MSB OUT 6 MOSI (INPUT) 13 12 13 9 11 10 MISO (OUTPUT) 12 BIT 6 . . . 1 SLAVE LSB OUT 7 MSB IN LSB IN BIT 6 . . . 1 NOTE: Not defined! Figure 20. SPI slave mode timing (CPHA=1) 6.9 Human-machine interfaces (HMI) 6.9.1 TSI electrical specifications Table 34. TSI electrical specifications Symbol Description Min. Typ. Max. Unit VDDTSI Operating voltage 1.71 — 3.6 V Target electrode capacitance range 1 20 500 pF 1 fREFmax Reference oscillator frequency — 5.5 TBD MHz 2 fELEmax Electrode oscillator frequency — 0.5 TBD MHz 3 Internal reference capacitor TBD 1 TBD pF Oscillator delta voltage TBD 600 TBD mV 4 CELE CREF VDELTA Notes IREF Reference oscillator current source base current — 1.133 TBD μA 3, 5 IELE Electrode oscillator current source base current — 1.133 TBD μA 3, 5 Pres5 Electrode capacitance measurement precision — TBD TBD % 6 Pres20 Electrode capacitance measurement precision — TBD TBD % 7 Pres100 Electrode capacitance measurement precision — TBD TBD % 8 MaxSens2 Maximum sensitivity @ 20 pF electrode 0 0.003 0.25 — fF/count 9 MaxSens 0.003 — — fF/count 10 — — 16 bits Res Maximum sensitivity Resolution Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 48 Preliminary Freescale Semiconductor, Inc. Dimensions Table 34. TSI electrical specifications (continued) Symbol Description TCon20 ITSI_RUN ITSI_LP Min. Typ. Max. Unit Notes Response time @ 20 pF 8 15 25 μs 11 Current added in run mode — 55 — μA Low power mode current adder — 1.3 TBD μA 12 1. 2. 3. 4. 5. 6. 7. 8. 9. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of ~5 MHz (IREF = 5 μA, REFCHRG = 4), PS = 128, NSCN = 2; Iext = 16 (EXTCHRG = 15). 10. Typical value depends on the configuration used. 11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, DELVOL = 2, EXTCHRG = 15. 12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window. 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 32-pin QFN 98ARE10566D 44-pin Laminate QFN 98ASA00239D 48-pin LQFP 98ASH00962A 64-pin Laminate QFN 98ASA00279D 64-pin LQFP 98ASS23234W MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 49 Pinout 8 Pinout 8.1 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Mux Control module is responsible for selecting which ALT functionality is available on each pin. NOTE • On PTB0, EZP_MS_b is active only during reset. Refer to the detailed boot description. • PTC1 is open drain. 64pin 48pin 44pin 32pin Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort 1 — — — VDD VDD 2 — — — VSS VSS 3 — — — Disabled Disabled PTC6 UART0_TX I2C0_SCL RGPIO6 SPI1_MOSI FBa_AD11 4 — — — Disabled Disabled PTC7 UART0_RX I2C0_SDA RGPIO7 SPI1_MISO FBa_AD12 5 1 — — Disabled Disabled PTD0 UART0_CT S_b I2C1_SDA RGPIO8 SPI1_SCLK FBa_AD13 6 2 — — Disabled Disabled PTD1 UART0_RT S_b I2C1_SCL RGPIO9 SPI1_SS FBa_AD14 7 3 1 1 Disabled Disabled PTA0 I2C2_SCL FTM1_CH0 SPI0_SS FBa_AD15 8 4 2 2 Disabled Disabled PTA1 I2C2_SDA FTM1_CH1 9 5 3 3 Disabled Disabled PTA2 UART1_TX FTM1_CH2 SPI1_SS 10 6 4 4 Disabled Disabled PTA3 UART1_RX FTM1_CH3 SPI1_SCLK EZP_CLK 11 7 5 5 ADC0_SE2 ADC0_SE2 PTA4 UART1_CT S_b I2C2_SCL FTM1_CH4 SPI1_MISO EZP_DI 12 8 6 6 ADC0_SE3 ADC0_SE3 PTA5 UART1_RT S_b I2C2_SDA FTM1_CH5 SPI1_MOSI CLKOUT EZP_DO 13 9 7 7 VDDA VDDA 14 10 8 — VREFH VREFH 15 11 9 — VREF_OUT VREF_OUT 16 12 10 — VREFL VREFL VSSA 17 13 11 8 VSSA 18 14 12 9 DAC0_OUT DAC0_OUT 19 15 13 10 ADC0_SE0 ADC0_SE0 20 16 14 11 ADC0_SE1 ADC0_SE1 21 17 15 12 VREGIN VREGIN 22 18 16 13 VOUT33 VOUT33 23 19 17 14 VSS VSS FBa_AD16 MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 50 Preliminary Freescale Semiconductor, Inc. Pinout 64pin 48pin 44pin 32pin Default ALT0 ALT1 ALT2 ALT3 ALT4 LPTMR_AL T1 FTM_FLT1 FTM0_QD_ PHA RGPIO10 FTM0_CH0 FTM0_QD_ PHB RGPIO11 FTM0_CH1 ALT5 ALT6 24 20 18 — VDD 25 21 19 15 ADC0_SE8/ ADC0_SE8/ PTA6 TSI0_CH0 TSI0_CH0 26 — — — ADC0_SE9/ ADC0_SE9/ PTD2 TSI0_CH1 TSI0_CH1 27 22 20 — ADC0_SE1 ADC0_SE1 PTD3 0/TSI0_CH2 0/TSI0_CH2 28 — — — ADC0_SE1 ADC0_SE1 PTD4 1/TSI0_CH3 1/TSI0_CH3 RGPIO12 FBa_D7 29 — — — ADC0_SE1 ADC0_SE1 PTD5 2/TSI0_CH4 2/TSI0_CH4 RGPIO13 FBa_D6 30 23 21 16 ADC0_SE1 ADC0_SE1 PTA7 3/TSI0_CH5 3/TSI0_CH5 UART0_TX 31 24 22 — ADC0_SE1 ADC0_SE1 PTD6 4/TSI0_CH6 4/TSI0_CH6 UART0_RX RGPIO14 32 — — — ADC0_SE1 ADC0_SE1 PTD7 5/TSI0_CH7 5/TSI0_CH7 UART0_CT S_b I2C3_SCL 33 — — — TSI0_CH8 TSI0_CH8 PTE0 UART0_RT S_b I2C3_SDA 34 — — — TSI0_CH9 TSI0_CH9 PTE1 SPI0_SS 35 25 23 17 IRQ/ EZP_MS_b Disabled PTB0 I2C0_SCL 36 26 24 18 TSI0_CH10 TSI0_CH10 PTB1 SPI0_SCLK I2C0_SDA 37 — — — TSI0_CH11 TSI0_CH11 PTE2 I2C3_SCL 38 — — — ADC0_SE1 6/ TSI0_CH12 ADC0_SE1 6/ TSI0_CH12 PTE3 SPI0_MOSI I2C3_SDA FBa_OE_b 39 27 25 19 ADC0_SE1 7/ TSI0_CH13 ADC0_SE1 7/ TSI0_CH13 PTB2 SPI0_MISO FBa_CS0_b 40 28 26 20 ADC0_SE1 8/ TSI0_CH14 ADC0_SE1 8/ TSI0_CH14 PTB3 SPI0_MOSI 41 29 — — ADC0_SE1 9/ TSI0_CH15 ADC0_SE1 9/ TSI0_CH15 PTE4 UART0_RT S_b LPTMR_AL T3 SPI1_SS FBa_AD1 42 30 — — ADC0_SE2 0 ADC0_SE2 0 PTE5 UART0_CT S_b I2C1_SCL SPI1_SCLK FBa_AD2 43 — — — ADC0_SE2 1 ADC0_SE2 1 PTE6 UART0_RX I2C1_SDA SPI1_MISO FBa_AD3 44 31 27 — ADC0_SE2 2 ADC0_SE2 2 PTE7 UART0_TX PDB0_EXT RG SPI1_MOSI FBa_RW_b FBa_AD4 45 32 28 21 BKGD/MS Disabled PTB4 BKGD/MS 46 33 29 22 XTAL2 XTAL2 PTB5 47 34 30 23 EXTAL2 EXTAL2 PTB6 48 35 31 24 VDD VDD ALT7 EzPort VDD FBa_D7 FBa_AD17 FBa_D6 FBa_AD0 FTM0_QD_ PHA FBa_D5 FBa_D4 RGPIO15 FBa_D3 FBa_D2 FTM_FLT0 FBa_D1 IRQ/ EZP_MS_b FTM_FLT2 LPTMR_AL T2 EZP_CS_b FTM0_QD_ PHB FB_CLKOU T FBa_D0 FBa_CS1_b FBa_ALE MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 51 Pinout 64pin 48pin 44pin 32pin Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 49 36 32 25 VSS VSS 50 37 33 26 EXTAL1 EXTAL1 PTB7 I2C1_SDA TMR_CLKI N1 51 38 34 27 XTAL1 XTAL1 PTC0 I2C1_SCL TMR_CLKI N0 52 39 35 28 RESET_b Disabled PTC1 RESET_b 53 — — — CMP0_IN0 CMP0_IN0 PTF0 SPI0_SS 54 — — — Disabled Disabled PTF1 SPI0_SCLK CMP0_OUT FBa_AD6 55 — — — CMP0_IN1 CMP0_IN1 PTF2 SPI0_MISO FBa_AD7 56 40 36 — CMP0_IN2 CMP0_IN2 PTF3 SPI0_MOSI 57 41 37 29 CMP0_IN3 CMP0_IN3 PTC2 UART1_RT S_b 58 42 38 — Disabled Disabled PTF4 59 43 39 — Disabled Disabled 60 44 40 — Disabled 61 45 41 — 62 46 42 63 47 64 48 ALT7 EzPort RGPIO0 FBa_AD5 RGPIO1 FBa_AD8 SPI1_SS RGPIO2 FBa_AD18 UART1_CT S_b SPI1_SCLK FBa_D3 FBa_AD19 PTF5 UART1_RX SPI1_MISO FBa_D2 FBa_RW_b Disabled PTF6 UART1_TX SPI1_MOSI FBa_D1 FBa_AD9 Disabled Disabled PTF7 UART0_RT S_b FBa_D0 FBa_AD10 30 Disabled Disabled PTC3 UART0_CT S_b RGPIO3 SPI0_SCLK CLKOUT 43 31 Disabled Disabled PTC4 UART0_RX RGPIO4 SPI0_MISO PDB0_EXT RG 44 32 Disabled Disabled PTC5 UART0_TX RGPIO5 SPI0_MOSI CMT_IRO SPI0_SS 8.2 Pinout diagrams The following diagrams show pinouts for the 64-pin, 48-pin, 44-pin, and 32-pin packages. For each pin, the diagrams show the default function or (when disabled is the default) the ALT1 signal for a GPIO function. However, many signals may be multiplexed onto a single pin. MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 52 Preliminary Freescale Semiconductor, Inc. PTC5 PTC4 PTC3 PTF7 PTF6 PTF5 PTF4 CMP0_IN3 CMP0_IN2 CMP0_IN1 PTF1 CMP0_IN0 RESET_b XTAL1 EXTAL1 VSS 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pinout PTA2 9 40 ADC0_SE18/TSI0_CH14 PTA3 10 39 ADC0_SE17/TSI0_CH13 ADC0_SE2 11 38 ADC0_SE16/TSI0_CH12 ADC0_SE3 12 37 TSI0_CH11 VDDA 13 36 TSI0_CH10 VREFH 14 35 IRQ/EZP_MS_b VREF_OUT 15 34 TSI0_CH9 VREFL 16 33 TSI0_CH8 32 ADC0_SE19/TSI0_CH15 ADC0_SE15/TSI0_CH7 41 31 8 ADC0_SE14/TSI0_CH6 PTA1 30 ADC0_SE20 ADC0_SE13/TSI0_CH5 42 29 7 ADC0_SE12/TSI0_CH4 PTA0 28 ADC0_SE21 ADC0_SE11/TSI0_CH3 43 27 6 ADC0_SE10/TSI0_CH2 PTD1 26 ADC0_SE22 ADC0_SE9/TSI0_CH1 44 25 5 ADC0_SE8/TSI0_CH0 PTD0 24 BKGD/MS VDD 45 23 4 VSS PTC7 22 XTAL2 VOUT33 46 21 3 VREGIN PTC6 20 EXTAL2 ADC0_SE1 47 19 2 ADC0_SE0 VSS 18 VDD DAC0_OUT 48 17 1 VSSA VDD Figure 21. 64-pin Laminate QFN (pinout identical for 64-pin LQFP) MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 53 PTC5 PTC4 PTC3 PTF7 PTF6 PTF5 PTF4 CMP0_IN3 CMP0_IN2 RESET_b XTAL1 EXTAL1 48 47 46 45 44 43 42 41 40 39 38 37 Pinout ADC0_SE2 7 30 ADC0_SE20 ADC0_SE3 8 29 ADC0_SE19/TSI0_CH15 VDDA 9 28 ADC0_SE18/TSI0_CH14 VREFH 10 27 ADC0_SE17/TSI0_CH13 VREF_OUT 11 26 TSI0_CH10 VREFL 12 25 IRQ/EZP_MS_b 24 ADC0_SE22 ADC0_SE14/TSI0_CH6 31 23 6 ADC0_SE13/TSI0_CH5 PTA3 22 BKGD/MS ADC0_SE10/TSI0_CH2 32 21 5 ADC0_SE8/TSI0_CH0 PTA2 20 XTAL2 VDD 33 19 4 VSS PTA1 18 EXTAL2 VOUT33 34 17 3 VREGIN PTA0 16 VDD ADC0_SE1 35 15 2 ADC0_SE0 PTD1 14 VSS DAC0_OUT 36 13 1 VSSA PTD0 Figure 22. 48-pin LQFP MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 54 Preliminary Freescale Semiconductor, Inc. PTC5 PTC4 PTC3 PTF7 PTF6 PTF5 PTF4 CMP0_IN3 CMP0_IN2 RESET_b XTAL1 44 43 42 41 40 39 38 37 36 35 34 Pinout 28 BKGD/MS VDDA 7 27 ADC0_SE22 VREFH 8 26 ADC0_SE18/TSI0_CH14 VREF_OUT 9 25 ADC0_SE17/TSI0_CH13 VREFL 10 24 TSI0_CH10 VSSA 11 23 IRQ/EZP_MS_b 22 6 ADC0_SE14/TSI0_CH6 ADC0_SE3 21 XTAL2 ADC0_SE13/TSI0_CH5 29 20 5 ADC0_SE10/TSI0_CH2 ADC0_SE2 19 EXTAL2 ADC0_SE8/TSI0_CH0 30 18 4 VDD PTA3 17 VDD VSS 31 16 3 VOUT33 PTA2 15 VSS VREGIN 32 14 2 ADC0_SE1 PTA1 13 EXTAL1 ADC0_SE0 33 12 1 DAC0_OUT PTA0 Figure 23. 44-pin Laminate QFN MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 55 PTC5 PTC4 PTC3 CMP0_IN3 RESET_b XTAL1 EXTAL1 VSS 32 31 30 29 28 27 26 25 Pinout 21 BKGD/MS ADC0_SE2 5 20 ADC0_SE18/TSI0_CH14 ADC0_SE3 6 19 ADC0_SE17/TSI0_CH13 VDDA 7 18 TSI0_CH10 VSSA 8 17 IRQ/EZP_MS_b ADC0_SE0 DAC0_OUT 16 4 ADC0_SE13/TSI0_CH5 PTA3 15 XTAL2 ADC0_SE8/TSI0_CH0 22 14 3 VSS PTA2 13 EXTAL2 VOUT33 23 12 2 VREGIN PTA1 11 VDD ADC0_SE1 24 10 1 9 PTA0 Figure 24. 32-pin QFN 8.3 Module-by-module signals NOTE • On PTB0, EZP_MS_b is active only during reset. Refer to the detailed boot description. • PTC1 is open drain. Table 35. Module signals by GPIO port and pin 64-pin 48-pin 44-pin 32-pin Port Module signal(s) Power and ground 1 24 VDD 20 18 VDD Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 56 Preliminary Freescale Semiconductor, Inc. Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 32-pin 48 35 31 24 Port Module signal(s) VDD 2 VSS 23 19 17 14 VSS 49 36 32 25 VSS System 45 32 28 21 PTB4 BKGD/MS 12 8 6 6 PTA5 CLKOUT 62 46 42 30 PTC3 CLKOUT 10 6 4 4 PTA3 EZP_CLK 11 7 5 5 PTA4 EZP_DI 12 8 6 6 PTA5 EZP_DO 35 25 23 17 PTB0 IRQ/EZP_MS_b, EZP_CS_b 52 39 35 28 PTC1 RESET_b OSC 50 37 33 26 PTB7 EXTAL1 47 34 30 23 PTB6 EXTAL2 51 38 34 27 PTC0 XTAL1 46 33 29 22 PTB5 XTAL2 PTC7 LLWU_P0 PTD1 LLWU_P1 LLWU 4 6 2 12 8 6 6 PTA5 LLWU_P2 30 23 21 16 PTA7 LLWU_P3 PTD7 LLWU_P4 32 35 25 23 17 PTB0 LLWU_P5 36 26 24 18 PTB1 LLWU_P6 39 27 25 19 PTB2 LLWU_P7 44 31 27 PTE7 LLWU_P8 45 32 28 PTB4 LLWU_P9 PTF2 LLWU_P10 PTF3 LLWU_P11 PTC2 LLWU_P12 PTF5 LLWU_P13 PTC3 LLWU_P14 21 55 56 40 36 57 41 37 59 43 39 62 46 42 29 30 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 57 Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 32-pin Port Module signal(s) 63 47 43 31 PTC4 LLWU_P15 27 PTC0 RGPIO0 PTF3 RGPIO1 RGPIO 51 38 34 56 40 36 57 41 37 29 PTC2 RGPIO2 62 46 42 30 PTC3 RGPIO3 63 47 43 31 PTC4 RGPIO4 64 48 44 32 PTC5 RGPIO5 3 PTC6 RGPIO6 4 PTC7 RGPIO7 5 1 PTD0 RGPIO8 6 2 PTD1 RGPIO9 PTD2 RGPIO10 PTD3 RGPIO11 28 PTD4 RGPIO12 29 PTD5 RGPIO13 PTD6 RGPIO14 PTD7 RGPIO15 26 27 31 22 24 20 22 32 LPTMR 25 21 19 15 PTA6 LPTMR_ALT1 36 26 24 18 PTB1 LPTMR_ALT2 41 29 PTE4 LPTMR_ALT3 LPTMR-TOD 50 37 33 26 PTB7 EXTAL1 47 34 30 23 PTB6 EXTAL2 25 21 19 15 PTA6 LPTMR_ALT1 36 26 24 18 PTB1 LPTMR_ALT2 41 29 PTE4 LPTMR_ALT3 51 38 34 27 PTC0 XTAL1 46 33 29 22 PTB5 XTAL2 PTA 7 3 1 1 PTA0 PTA0 8 4 2 2 PTA1 PTA1 9 5 3 3 PTA2 PTA2 10 6 4 4 PTA3 PTA3 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 58 Preliminary Freescale Semiconductor, Inc. Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 32-pin Port Module signal(s) 11 7 5 5 PTA4 PTA4 12 8 6 6 PTA5 PTA5 25 21 19 15 PTA6 PTA6 30 23 21 16 PTA7 PTA7 PTB 35 25 23 17 PTB0 PTB0 36 26 24 18 PTB1 PTB1 39 27 25 19 PTB2 PTB2 40 28 26 20 PTB3 PTB3 45 32 28 21 PTB4 PTB4 46 33 29 22 PTB5 PTB5 47 34 30 23 PTB6 PTB6 50 37 33 26 PTB7 PTB7 PTC 51 38 34 27 PTC0 PTC0 52 39 35 28 PTC1 PTC1 57 41 37 29 PTC2 PTC2 62 46 42 30 PTC3 PTC3 63 47 43 31 PTC4 PTC4 64 48 44 32 PTC5 PTC5 3 PTC6 PTC6 4 PTC7 PTC7 PTD 5 1 PTD0 PTD0 6 2 PTD1 PTD1 PTD2 PTD2 PTD3 PTD3 28 PTD4 PTD4 29 PTD5 PTD5 PTD6 PTD6 PTD7 PTD7 33 PTE0 PTE0 34 PTE1 PTE1 38 PTE3 PTE2 26 27 31 22 24 20 22 32 PTE Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 59 Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 32-pin Port Module signal(s) 39 27 25 19 PTB2 PTE3 41 29 PTE4 PTE4 42 30 PTE5 PTE5 PTE6 PTE6 PTE7 PTE7 53 PTF0 PTF0 54 PTF1 PTF1 55 PTF2 PTF2 43 44 31 27 PTF 56 40 36 PTF3 PTF3 58 42 38 PTF4 PTF4 59 43 39 PTF5 PTF5 60 44 40 PTF6 PTF6 61 45 41 PTF7 PTF7 5 V VREG 22 18 16 13 VOUT33 21 17 15 12 VREGIN ADC0 11 7 5 5 PTA4 ADC0_SE2 12 8 6 6 PTA5 ADC0_SE3 25 21 19 15 PTA6 ADC0_SE8 PTD2 ADC0_SE9 PTD3 ADC0_SE10 28 PTD4 ADC0_SE11 29 PTD5 ADC0_SE12 PTA7 ADC0_SE13 PTD6 ADC0_SE14 32 PTD7 ADC0_SE15 38 PTE3 ADC0_SE16 26 27 22 20 30 23 21 31 24 22 16 39 27 25 19 PTB2 ADC0_SE17 40 28 26 20 PTB3 ADC0_SE18 41 29 PTE4 ADC0_SE19 42 30 PTE5 ADC0_SE20 PTE6 ADC0_SE21 PTE7 ADC0_SE22 43 44 31 27 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 60 Preliminary Freescale Semiconductor, Inc. Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 32-pin Port Module signal(s) 13 9 7 7 14 10 8 VREFH 16 12 10 VREFL 17 13 11 VDDA 8 VSSA 9 DAC0_OUT DAC0 18 14 12 VREF 15 11 9 VREF_OUT CMP0 53 PTF0 CMP0_IN0 55 PTF2 CMP0_IN1 PTF3 CMP0_IN2 PTC2 CMP0_IN3 PTF1 CMP0_OUT 32 PTC5 CMT_IRO 15 PTA6 TSI0_CH0 PTD2 TSI0_CH1 PTD3 TSI0_CH2 28 PTD4 TSI0_CH3 29 PTD5 TSI0_CH4 PTA7 TSI0_CH5 PTD6 TSI0_CH6 32 PTD7 TSI0_CH7 33 PTE0 TSI0_CH8 34 PTE1 TSI0_CH9 PTB1 TSI0_CH10 37 PTE2 TSI0_CH11 38 PTE3 TSI0_CH12 56 40 36 57 41 37 29 54 CMT 64 48 44 TSI0 25 21 19 26 27 22 20 30 23 21 31 24 22 36 26 16 24 18 39 27 25 19 PTB2 TSI0_CH13 40 28 26 20 PTB3 TSI0_CH14 41 29 PTE4 TSI0_CH15 PTE7 PDB0_EXTRG PDB0 44 31 27 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 61 Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 32-pin Port Module signal(s) 63 47 43 31 PTC4 PDB0_EXTRG PTE1 FTM_FLT0 FTM0 34 25 21 19 15 PTA6 FTM_FLT1 36 26 24 18 PTB1 FTM_FLT2 / FTM0_QD_PHB PTD2 FTM0_CH0/ FTM0_QD_PHA PTD3 FTM0_CH1 / FTM0_QD_PHB 26 27 22 20 30 23 21 16 PTA7 FTM0_QD_PHA 51 38 34 27 PTC0 TMR_CLKIN0 50 37 33 26 PTB7 TMR_CLKIN1 PTE1 FTM_FLT0 FTM1 34 25 21 19 15 PTA6 FTM_FLT1 36 26 24 18 PTB1 FTM_FLT2 7 3 1 1 PTA0 FTM1_CH0 8 4 2 2 PTA1 FTM1_CH1 9 5 3 3 PTA2 FTM1_CH2 10 6 4 4 PTA3 FTM1_CH3 11 7 5 5 PTA4 FTM1_CH4 12 8 6 6 PTA5 FTM1_CH5 51 38 34 27 PTC0 TMR_CLKIN0 50 37 33 26 PTB7 TMR_CLKIN1 MTIM 51 38 34 27 PTC0 TMR_CLKIN0 50 37 33 26 PTB7 TMR_CLKIN1 18 PTB1 FB_CLKOUT PTD3 FBa_AD0 Mini-FlexBus 36 26 24 27 22 20 41 29 PTE4 FBa_AD1 42 30 PTE5 FBa_AD2 PTE6 FBa_AD3 PTE7 FBa_AD4 PTF0 FBa_AD5 43 44 31 27 53 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 62 Preliminary Freescale Semiconductor, Inc. Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 32-pin Port Module signal(s) 54 PTF1 FBa_AD6 55 PTF2 FBa_AD7 56 40 36 PTF3 FBa_AD8 60 44 40 PTF6 FBa_AD9 61 45 41 PTF7 FBa_AD10 3 PTC6 FBa_AD11 4 PTC7 FBa_AD12 5 1 PTD0 FBa_AD13 6 2 PTD1 FBa_AD14 7 3 1 1 PTA0 FBa_AD15 8 4 2 2 PTA1 FBa_AD16 25 21 19 15 PTA6 FBa_AD17 57 41 37 29 PTC2 FBa_AD18 58 42 38 PTF4 FBa_AD19 40 28 26 20 PTB3 FBa_ALE 39 27 25 19 PTB2 FBa_CS0_b 37 PTE2 FBa_D0 34 PTE1 FBa_D1 33 PTE0 FBa_D2 32 PTD7 FBa_D3 PTD6 FBa_D4 PTA7 FBa_D5 29 PTD5 FBa_D6 28 PTD4 FBa_D7 38 PTE3 FBa_OE_b PTF5 FBa_RW_b 31 24 22 30 23 21 59 43 16 39 DATA_BUS 8 4 2 2 PTA1 FBa_AD16 39 27 25 19 PTB2 FBa_CS0_b 61 45 41 PTF7 FBa_D0 60 44 40 PTF6 FBa_D1 59 43 39 PTF5 FBa_D2 58 42 38 PTF4 FBa_D3 31 24 22 PTD6 FBa_D4 30 23 21 PTA7 FBa_D5 16 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 63 Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 27 22 20 25 21 19 44 31 27 32-pin 15 Port Module signal(s) PTD3 FBa_D6 PTA6 FBa_D7 PTE7 FBa_RW_b PTC6 I2C0_SCL PTB0 I2C0_SCL PTC7 I2C0_SDA PTB1 I2C0_SDA I2C0 and I2C1 3 35 25 23 17 4 36 26 24 18 6 2 PTD1 I2C1_SCL 42 30 PTE5 I2C1_SCL 51 38 PTC0 I2C1_SCL 5 1 PTD0 I2C1_SDA PTE6 I2C1_SDA 26 PTB7 I2C1_SDA 34 27 43 50 37 33 I2C2 and I2C3 7 3 1 1 PTA0 I2C2_SCL 11 7 5 5 PTA4 I2C2_SCL 8 4 2 2 PTA1 I2C2_SDA 12 8 6 6 PTA5 I2C2_SDA 32 PTD7 I2C3_SCL 37 PTE2 I2C3_SCL 33 PTE0 I2C3_SDA 38 PTE3 I2C3_SDA PTB2 SPI0_MISO PTF2 SPI0_MISO PTC4 SPI0_MISO PTE3 SPI0_MOSI PTB3 SPI0_MOSI PTF3 SPI0_MOSI SPI0 39 27 25 19 55 63 47 43 31 38 40 28 26 20 56 40 36 64 48 44 32 PTC5 SPI0_MOSI 36 26 24 18 PTB1 SPI0_SCLK PTF1 SPI0_SCLK 54 62 46 42 30 PTC3 SPI0_SCLK 7 3 1 1 PTA0 SPI0_SS Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 64 Preliminary Freescale Semiconductor, Inc. Pinout Table 35. Module signals by GPIO port and pin (continued) 64-pin Port Module signal(s) 34 PTE1 SPI0_SS 53 PTF0 SPI0_SS PTF7 SPI0_SS PTC7 SPI1_MISO PTA4 SPI1_MISO PTE6 SPI1_MISO PTF5 SPI1_MISO PTC6 SPI1_MOSI PTA5 SPI1_MOSI 61 48-pin 45 44-pin 32-pin 41 SPI1 4 11 7 5 5 43 59 43 39 3 12 8 6 6 44 31 27 PTE7 SPI1_MOSI 60 44 40 PTF6 SPI1_MOSI 5 1 PTD0 SPI1_SCLK 10 6 PTA3 SPI1_SCLK 42 30 PTE5 SPI1_SCLK 58 42 PTF4 SPI1_SCLK 6 2 PTD1 SPI1_SS 9 5 PTA2 SPI1_SS 41 29 PTE4 SPI1_SS 57 41 PTC2 SPI1_SS PTD0 UART0_CTS_b PTD7 UART0_CTS_b PTE5 UART0_CTS_b PTC3 UART0_CTS_b PTD1 UART0_RTS_b PTE0 UART0_RTS_b PTE4 UART0_RTS_b PTF7 UART0_RTS_b PTC7 UART0_RX PTD6 UART0_RX PTE6 UART0_RX PTC4 UART0_RX PTC6 UART0_TX PTA7 UART0_TX 4 4 38 3 3 37 29 UART0 5 1 32 42 30 62 46 6 2 42 30 33 41 29 61 45 41 4 31 24 22 43 63 47 43 31 3 30 23 21 16 Table continues on the next page... MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. Freescale Semiconductor, Inc. Preliminary 65 Revision History Table 35. Module signals by GPIO port and pin (continued) 64-pin 48-pin 44-pin 44 31 27 64 48 44 32-pin Port Module signal(s) PTE7 UART0_TX 32 PTC5 UART0_TX 5 PTA4 UART1_CTS_b PTF4 UART1_CTS_b UART1 11 7 5 58 42 38 12 8 6 6 PTA5 UART1_RTS_b 57 41 37 29 PTC2 UART1_RTS_b 10 6 4 4 PTA3 UART1_RX 59 43 39 PTF5 UART1_RX 9 5 3 PTA2 UART1_TX 60 44 40 PTF6 UART1_TX 3 9 Revision History The following table provides a revision history for this document. Table 36. Revision History Rev. No. Date Substantial Changes 0 05/2011 Initial released version MCF51QU128 Advance Information Data Sheet, Rev. 0, 05/2011. 66 Preliminary Freescale Semiconductor, Inc. How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] Document Number: MCF51QU128 Rev. 0, 05/2011 Preliminary Information in this document is provided solely to enable system and sofware implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc.