Freescale Semiconductor Data Sheet: Advance Information Document Number: MPC5604BC Rev. 11, 12/2012 MPC5604B/C MAPBGA–225 QFN12 144 LQFP ##_mm_x_##mm 208 MAPBGA 15 mm x 15 mm (17 x 17 x 1.7 mm) MPC5604B/C Microcontroller Data Sheet Features • • • • • • • • • • • • • • • • • • • • • • SOT-343R ##_mm_x_##mm 100 LQFP (14 x 14 x 1.4 mm) 1 Single issue, 32-bit CPU core complex (e200z0) — Compliant with the Power Architecture® embedded category — Includes an instruction set enhancement allowing variable length encoding (VLE) for code size footprint reduction. With the optional encoding of mixed 16-bit and 32-bit instructions, it is possible to achieve significant code size footprint reduction. Up to 512 KB on-chip code flash supported with the flash controller and ECC 64 (4 × 16) KB on-chip data flash memory with ECC Up to 48 KB on-chip SRAM with ECC Memory protection unit (MPU) with 8 region descriptors and 32-byte region granularity Interrupt controller (INTC) with 148 interrupt vectors, including 16 external interrupt sources and 18 external interrupt/wakeup sources Frequency modulated phase-locked loop (FMPLL) Crossbar switch architecture for concurrent access to peripherals, flash memory, or RAM from multiple bus masters Boot assist module (BAM) supports internal flash programming via a serial link (CAN or SCI) Timer supports input/output channels providing a range of 16-bit input capture, output compare, and pulse width modulation functions (eMIOS-lite) 10-bit analog-to-digital converter (ADC) 3 serial peripheral interface (DSPI) modules Up to 4 serial communication interface (LINFlex) modules Up to 6 enhanced full CAN (FlexCAN) modules with configurable buffers 1 inter IC communication interface (I2C) module Up to 123 configurable general purpose pins supporting input and output operations (package dependent) Real Time Counter (RTC) with clock source from 128 kHz or 16 MHz internal RC oscillator supporting autonomous wakeup with 1 ms resolution with max timeout of 2 seconds Up to 6 periodic interrupt timers (PIT) with 32-bit counter resolution 1 System Module Timer (STM) Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus standard Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) On-chip voltage regulator (VREG) for regulation of input supply for all internal levels TBD PKG-TBD ## mm x ## mm 64 LQFP (10 x 10 x 1.4 mm) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . 9 3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Pad configuration during reset phases . . . . . . . . . . . . . 13 3.3 Voltage supply pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 Nexus 2+ pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 31 3.9 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.10 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . 32 3.11 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.12 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . 34 3.13 Recommended operating conditions . . . . . . . . . . . . . . 35 3.14 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 37 3.15 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . . 38 3.16 RESET electrical characteristics . . . . . . . . . . . . . . . . . 48 3.17 Power management electrical characteristics . . . . . . . 50 3.18 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.19 Flash memory electrical characteristics . . . . . . . . . . . . 58 3.20 Electromagnetic compatibility (EMC) characteristics . . 60 3.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.22 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.23 FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . 67 3.24 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.25 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.26 ADC electrical characteristics. . . . . . . . . . . . . . . . . . . . 71 3.27 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 88 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Appendix AAbbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2009-2012. All rights reserved. (20 x 20 x 1.4 mm) Introduction 1 Introduction 1.1 Document overview This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet. 1.2 Description The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture® embedded category. The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. MPC5604B/C Microcontroller Data Sheet, Rev. 11 2 Freescale Semiconductor 3 Table 1. MPC5604B/C device comparison1 Feature MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC5604 02BxLH 02BxLL 02BxLQ 02CxLH 02CxLL 03BxLH 03BxLL 03BxLQ 03CxLH 03CxLL 04BxLH 04BxLL 04BxLQ 04CxLH 04CxLL BxMG CPU e200z0h Execution speed2 Static – up to 64 MHz Code Flash 256 KB 384 KB Data Flash 64 KB (4 × 16 KB) MPC5604B/C Microcontroller Data Sheet, Rev. 11 RAM 24 KB 32 KB 28 KB 40 KB MPU ADC (10-bit) 512 KB 32 KB 48 KB 8-entry 12 ch 28 ch 36 ch 8 ch 28 ch 12 ch 28 ch 36 ch CTU 8 ch 28 ch 12 ch 28 ch 36 ch 8 ch 28 ch 36 ch Yes 12 ch, 16-bit 28 ch, 16-bit 56 ch, 16-bit 12 ch, 16-bit 28 ch, 16-bit 12 ch, 16-bit 28 ch, 16-bit 56 ch, 16-bit 12 ch, 16-bit 28 ch, 16-bit 12 ch, 16-bit 28 ch, 16-bit 56 ch, 16-bit 12 ch, 16-bit 28 ch, 16-bit 56 ch, 16-bit • PWM + MC + IC/OC4 2 ch 5 ch 10 ch 2 ch 5 ch 2 ch 5 ch 10 ch 2 ch 5 ch 2 ch 5 ch 10 ch 2 ch 5 ch 10 ch • PWM + IC/OC4 10 ch 20 ch 40 ch 10 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 40 ch • IC/OC4 — 3 ch 6 ch — 3 ch — 3 ch 6 ch — 3 ch — 3 ch 6 ch — 3 ch 6 ch Total timer I/O3 eMIOS SCI (LINFlex) SPI (DSPI) 3 5 2 4 3 2 26 CAN (FlexCAN) 5 3 2 3 2 37 6 I2C Freescale Semiconductor 6 45 79 3 37 2 3 5 6 Yes 45 79 123 45 79 45 79 Debug Package 5 2 1 32 kHz oscillator GPIO8 3 123 45 79 123 45 JTAG 64 LQFP 100 LQFP 144 LQFP 64 LQFP 100 LQFP 64 LQFP 100 LQFP 144 LQFP 79 123 Nexus2+ 64 LQFP 100 LQFP 64 LQFP 100 LQFP 144 LQFP 64 LQFP 100 208 LQFP MAPBGA9 Introduction Device 4 1 2 4 5 6 7 8 9 Introduction 3 Feature set dependent on selected peripheral multiplexing—table shows example implementation Based on 125 °C ambient operating temperature See the eMIOS section of the device reference manual for information on the channel configuration and functions. IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter SCI0, SCI1 and SCI2 are available. SCI3 is not available. CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available. CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available. I/O count based on multiplexing with peripherals 208 MAPBGA available only as development package for Nexus2+ MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 5 Table 2. MPC5604B/C device comparison1 Feature SPC560B 40L1 SPC560B 40L3 SPC560B 40L5 SPC560C 40L1 SPC560C 40L3 CPU SPC560B 50L1 SPC560B 50L5 SPC560C 50L1 SPC560C 50L3 SPC560B 50B2 e200z0h Execution speed2 Static – up to 64 MHz Code Flash 256 KB 512 KB Data Flash 64 KB (4 × 16 KB) MPC5604B/C Microcontroller Data Sheet, Rev. 11 RAM 24 KB 32 KB 32 KB MPU 48 KB 8-entry ADC (10-bit) 12 ch 28 ch 36 ch 8 ch 28 ch 12 ch CTU 28 ch 36 ch 8 ch 28 ch 36 ch Yes Total timer I/O3 eMIOS 12 ch, 16-bit 28 ch, 16-bit 56 ch, 16-bit 12 ch, 16-bit 28 ch, 16-bit 12 ch, 16-bit 28 ch, 16-bit 56 ch, 16-bit 12 ch, 16-bit 28 ch, 16-bit 56 ch, 16-bit • PWM + MC + IC/OC4 2 ch 5 ch 10 ch 2 ch 5 ch 2 ch 5 ch 10 ch 2 ch 5 ch 10 ch • PWM + IC/OC4 10 ch 20 ch 40 ch 10 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 40 ch 4 — 3 ch 6 ch — 3 ch — 3 ch 6 ch — 3 ch 6 ch • IC/OC SCI (LINFlex) SPI (DSPI) 3 5 2 4 3 26 CAN (FlexCAN) I SPC560B 50L3 2 3 5 6 2 37 2C Freescale Semiconductor 1 45 79 123 45 79 45 79 123 5 6 45 79 JTAG LQFP649 LQFP100 LQFP144 LQFP649 LQFP100 LQFP649 123 Nexus2+ LQFP100 LQFP144 Feature set dependent on selected peripheral multiplexing—table shows example implementation Based on 125 °C ambient operating temperature 3 See the eMIOS section of the device reference manual for information on the channel configuration and functions. 4 IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter 5 SCI0, SCI1 and SCI2 are available. SCI3 is not available. 2 3 Yes Debug Package 2 1 32 kHz oscillator GPIO8 3 LQFP649 LQFP100 LBGA20810 Introduction Device 6 Freescale Semiconductor CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available. CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available. 8 I/O count based on multiplexing with peripherals 9 All LQFP64information is indicative and must be confirmed during silicon validation. 10 LBGA208 available only as development package for Nexus2+ 7 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Introduction 6 Block diagram 2 Block diagram Figure 1 shows a top-level block diagram of the MPC5604B/C device series. SRAM 48 KB Code Flash Data Flash 512 KB 64 KB SRAM controller Flash controller JTAG e200z0h Nexus (Master) Data NMI Nexus 2+ (Master) SIUL Voltage regulator Interrupt requests from peripheral blocks NMI INTC Clocks MPU Instructions Nexus port 64-bit 2 x 3 Crossbar Switch JTAG port (Slave) (Slave) (Slave) MPU registers CMU FMPLL RTC STM SWT ECSM MC_RGM MC_CGM MC_ME MC_PCU PIT SSCM BAM Peripheral bridge Interrupt request SIUL Reset control 36 Ch. ADC CTU 2x eMIOS 4x LINFlex 3x DSPI 6x FlexCAN I2C External interrupt request IMUX WKPU GPIO and pad control I/O ... ... ... ... ... Interrupt request with wakeup functionality Legend: ADC BAM FlexCAN CMU CTU DSPI eMIOS FMPLL I2C IMUX INTC JTAG LINFlex ECSM MC_CGM Analog-to-Digital Converter Boot Assist Module Controller Area Network Clock Monitor Unit Cross Triggering Unit Deserial Serial Peripheral Interface Enhanced Modular Input Output System Frequency-Modulated Phase-Locked Loop Inter-integrated Circuit Bus Internal Multiplexer Interrupt Controller JTAG controller Serial Communication Interface (LIN support) Error Correction Status Module Clock Generation Module MC_ME MC_PCU MC_RGM MPU Nexus NMI PIT RTC SIUL SRAM SSCM STM SWT WKPU Mode Entry Module Power Control Unit Reset Generation Module Memory Protection Unit Nexus Development Interface (NDI) Level Non-Maskable Interrupt Periodic Interrupt Timer Real-Time Clock System Integration Unit Lite Static Random-Access Memory System Status Configuration Module System Timer Module Software Watchdog Timer Wakeup Unit Figure 1. MPC5604B/C block diagram MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 7 Block diagram Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package. Table 3. MPC5604B/C series block summary Block Function Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock monitor unit (CMU) Monitors clock source (internal and external) integrity Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices (DSPI) Error Correction Status Module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host processor (eDMA) via “n” programmable channels. Enhanced modular input output system (eMIOS) Provides the functionality to generate or measure events Flash memory Provides non-volatile storage for program code, constants and variables FlexCAN (controller area network) Supports the standard CAN communications protocol Frequency-modulated phase-locked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency modulation Internal multiplexer (IMUX) SIU subblock Allows flexible mapping of peripheral interface on the different pins of the device Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device MPC5604B/C Microcontroller Data Sheet, Rev. 11 8 Freescale Semiconductor Package pinouts and signal descriptions Table 3. MPC5604B/C series block summary (continued) Block Function Memory protection unit (MPU) Provides hardware access control for all memory references generated in a device Nexus development interface (NDI) Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2003 standard Periodic interrupt timer (PIT) Produces periodic interrupts and triggers Real-time counter (RTC) A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode) System integration unit (SIU) Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration Static random-access memory (SRAM) Provides storage for program code, constants, and variables System status configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks Software watchdog timer (SWT) Provides protection from runaway code Wakeup unit (WKPU) The wakeup unit supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events. Crossbar (XBAR) switch Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. 3 Package pinouts and signal descriptions 3.1 Package pinouts The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions, please refer to the device reference manual. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 9 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PB[2] PC[8] PC[4] PC[5] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] Package pinouts and signal descriptions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 64 LQFP Top view 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PA[11] PA[10] PA[9] PA[8] PA[7] PA[3] PB[15] PB[14] PB[13] PB[12] PB[11] PB[7] PB[6] PB[5] VDD_HV_ADC VSS_HV_ADC PC[7] PA[15] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PB[4] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PB[3] PC[9] PA[2] PA[1] PA[0] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PC[10] PB[0] PB[1] PC[6] 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PB[2] PC[8] PC[4] PC[5] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] Figure 2. MPC560xB LQFP 64-pin configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 64 LQFP Top view 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PA[11] PA[10] PA[9] PA[8] PA[7] PF[14] PF[15] PG[0] PG[1] PA[3] PB[15] PB[14] PB[11] PB[7] VDD_HV_ADC VSS_HV_ADC PC[7] PA[15] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PB[4] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PB[3] PC[9] PA[2] PA[1] PA[0] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PC[10] PB[0] PB[1] PC[6] Figure 3. MPC560xC LQFP 64-pin configuration MPC5604B/C Microcontroller Data Sheet, Rev. 11 10 Freescale Semiconductor 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PB[2] PC[8] PC[13] PC[12] PE[7] PE[6] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PE[12] Package pinouts and signal descriptions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 100 LQFP Top view 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PA[11] PA[10] PA[9] PA[8] PA[7] VDD_HV VSS_HV PA[3] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] PD[12] PB[11] PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC VSS_HV_ADC PC[7] PA[15] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] PD[8] PB[4] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PB[3] PC[9] PC[14] PC[15] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PC[11] PC[10] PB[0] PB[1] PC[6] Note: Availability of port pin alternate functions depends on product selection. Figure 4. LQFP 100-pin configuration MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 LQFP Top view 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 PA[11] PA[10] PA[9] PA[8] PA[7] PE[13] PF[14] PF[15] VDD_HV VSS_HV PG[0] PG[1] PH[3] PH[2] PH[1] PH[0] PG[12] PG[13] PA[3] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] PD[12] PB[11] PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC VSS_HV_ADC PC[7] PF[10] PF[11] PA[15] PF[13] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] PD[8] PB[4] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PB[3] PC[9] PC[14] PC[15] PG[5] PG[4] PG[3] PG[2] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PG[9] PG[8] PC[11] PC[10] PG[7] PG[6] PB[0] PB[1] PF[9] PF[8] PF[12] PC[6] 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 PB[2] PC[8] PC[13] PC[12] PE[7] PE[6] PH[8] PH[7] PH[6] PH[5] PH[4] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PG[11] PG[10] PE[15] PE[14] PG[15] PG[14] PE[12] Package pinouts and signal descriptions Note: Availability of port pin alternate functions depends on product selection. Figure 5. LQFP 144-pin configuration MPC5604B/C Microcontroller Data Sheet, Rev. 11 12 Freescale Semiconductor Package pinouts and signal descriptions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A PC[8] PC[13] NC NC PH[8] PH[4] PC[5] PC[0] NC NC PC[2] NC PE[15] NC NC NC A B PC[9] PB[2] NC PC[12] PE[6] PH[5] PC[4] PH[9] PH[10] NC PC[3] PG[11] PG[15] PG[14] PA[11] PA[10] B C PC[14] VDD_HV PB[3] PE[7] PH[7] PE[5] PE[3] VSS_LV PC[1] NC PA[5] NC PE[14] PE[12] PA[9] PA[8] C D NC NC PC[15] NC PH[6] PE[4] PE[2] VDD_LV VDD_HV NC PA[6] NC PG[10] PF[14] PE[13] PA[7] D E PG[4] PG[5] PG[3] PG[2] PG[1] PG[0] PF[15] VDD_HV E F PE[0] PA[2] PA[1] PE[1] PH[0] PH[1] PH[3] PH[2] F G PE[9] PE[8] PE[10] PA[0] VSS_HV VSS_HV VSS_HV VSS_HV VDD_HV NC NC MSEO G H VSS_HV PE[11] VDD_HV NC VSS_HV VSS_HV VSS_HV VSS_HV MDO3 MDO2 MDO0 MDO1 H J RESET VSS_LV NC NC VSS_HV VSS_HV VSS_HV VSS_HV NC NC NC NC J K EVTI NC VDD_BV VDD_LV VSS_HV VSS_HV VSS_HV VSS_HV NC PG[12] PA[3] PG[13] K L PG[9] PG[8] NC EVTO PB[15] PD[15] PD[14] PB[14] L M PG[7] PG[6] PC[10] PC[11] PB[13] PD[13] PD[12] PB[12] M N PB[1] PF[9] PB[0] NC NC PA[4] VSS_LV EXTAL VDD_HV PF[0] PF[4] NC PB[11] PD[10] PD[9] PD[11] N P PF[8] NC PC[7] NC NC PA[14] VDD_LV XTAL PB[10] PF[1] PF[5] PD[0] PD[3] VDD_HV _ADC PB[6] PB[7] P R PF[12] PC[6] PF[10] PF[11] VDD_HV PA[15] PA[13] NC OSC32K _XTAL PF[3] PF[7] PD[2] PD[4] PD[7] VSS_HV _ADC PB[5] R T NC NC NC MCKO NC PF[13] PA[12] NC OSC32K _EXTAL PF[2] PF[6] PD[1] PD[5] PD[6] PD[8] PB[4] T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Note: 208 MAPBGA available only as development package for Nexus 2+. NC = Not connected Figure 6. 208 MAPBGA configuration 3.2 Pad configuration during reset phases All pads have a fixed configuration under reset. During the power-up phase, all pads are forced to tristate. After power-up phase, all pads are forced to tristate with the following exceptions: • • • • • • • PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash. PA[8] (ABS[0]) is pull-up. RESET pad is driven low. This is pull-up only after PHASE2 reset completion. JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate. Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available). Main oscillator pads (EXTAL, XTAL) are tristate. Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 13 Package pinouts and signal descriptions 3.3 Voltage supply pins Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization. Table 4. Voltage supply pin descriptions Pin number Port pin Function VDD_HV Digital supply voltage VSS_HV Digital ground VDD_LV 64 LQFP1 7, 28, 56 100 LQFP 144 LQFP 208 MAPBGA2 15, 37, 70, 84 19, 51, 100, C2, D9, E16, 123 G13, H3, N9, R5 6, 8, 26, 55 14, 16, 35, 69, 83 18, 20, 49, 99, 122 G7, G8, G9, G10, H1, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10 1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest VSS_LV pin.3 11, 23, 57 19, 32, 85 23, 46, 124 D8, K4, P7 VSS_LV 1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest VDD_LV pin.3 10, 24, 58 18, 33, 86 22, 47, 125 C8, J2, N7 VDD_BV Internal regulator supply voltage 12 20 24 K3 VSS_HV_ADC Reference ground and analog ground for the ADC 33 51 73 R15 VDD_HV_ADC Reference voltage and analog supply for the ADC 34 52 74 P14 1 Pin numbers apply to both the MPC560xB and MPC560xC packages. 208 MAPBGA available only as development package for Nexus2+ 3 A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details). 2 3.4 Pad types In the device the following types of pads are available for system pins and functional port pins: S = Slow1 M = Medium1 2 F = Fast1 2 I = Input only with analog feature1 J = Input/Output (‘S’ pad) with analog feature X = Oscillator 1. See the I/O pad electrical characteristics in the device datasheet for details. 2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual). MPC5604B/C Microcontroller Data Sheet, Rev. 11 14 Freescale Semiconductor Package pinouts and signal descriptions 3.5 System pins The system pins are listed in Table 5. RESET configuration Table 5. System pin descriptions Pad type 64 LQFP1 100 LQFP 144 LQFP 208 MAPBGA2 I/O M Input, weak pull-up only after PHASE2 9 17 21 J1 EXTAL Analog output of the oscillator amplifier circuit, when the I/O oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode.3 X Tristate 27 36 50 N8 X Tristate 25 34 48 P8 System pin I/O direction Pin number Function RESET Bidirectional reset with Schmitt-Trigger characteristics and noise filter. XTAL Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode.3 I 1 Pin numbers apply to both the MPC560xB and MPC560xC packages. 208 MAPBGA available only as development package for Nexus2+ 3 See the relevant section of the datasheet 2 3.6 Functional ports The functional port pins are listed in Table 6. Table 6. Functional port pin descriptions Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PA[0] PCR[0] AF0 AF1 AF2 AF3 — GPIO[0] E0UC[0] CLKOUT — WKPU[19]4 SIUL eMIOS_0 CGL — WKPU I/O I/O O — I M Tristate 5 5 12 16 G4 PA[1] PCR[1] AF0 AF1 AF2 AF3 — — GPIO[1] E0UC[1] — — NMI5 WKPU[2]4 SIUL eMIOS_0 — — WKPU WKPU I/O I/O — — I I S Tristate 4 4 7 11 F3 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 15 Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PA[2] PCR[2] AF0 AF1 AF2 AF3 — GPIO[2] E0UC[2] — — WKPU[3]4 SIUL eMIOS_0 — — WKPU I/O I/O — — I S Tristate 3 3 5 9 F2 PA[3] PCR[3] AF0 AF1 AF2 AF3 — GPIO[3] E0UC[3] — — EIRQ[0] SIUL eMIOS_0 — — SIUL I/O I/O — — I S Tristate 43 39 68 90 K15 PA[4] PCR[4] AF0 AF1 AF2 AF3 — GPIO[4] E0UC[4] — — WKPU[9]4 SIUL eMIOS_0 — — WKPU I/O I/O — — I S Tristate 20 20 29 43 N6 PA[5] PCR[5] AF0 AF1 AF2 AF3 GPIO[5] E0UC[5] — — SIUL eMIOS_0 — — I/O I/O — — M Tristate 51 51 79 118 C11 PA[6] PCR[6] AF0 AF1 AF2 AF3 — GPIO[6] E0UC[6] — — EIRQ[1] SIUL eMIOS_0 — — SIUL I/O I/O — — I S Tristate 52 52 80 119 D11 PA[7] PCR[7] AF0 AF1 AF2 AF3 — GPIO[7] E0UC[7] LIN3TX — EIRQ[2] SIUL eMIOS_0 LINFlex_3 — SIUL I/O I/O O — I S Tristate 44 44 71 104 D16 PA[8] PCR[8] AF0 AF1 AF2 AF3 — N/A6 — GPIO[8] E0UC[8] — — EIRQ[3] ABS[0] LIN3RX SIUL eMIOS_0 — — SIUL BAM LINFlex_3 I/O I/O — — I I I S Input, weak pull-up 45 45 72 105 C16 PA[9] PCR[9] AF0 AF1 AF2 AF3 N/A6 GPIO[9] E0UC[9] — — FAB SIUL eMIOS_0 — — BAM I/O I/O — — I S Pull-down 46 46 73 106 C15 MPC5604B/C Microcontroller Data Sheet, Rev. 11 16 Freescale Semiconductor Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP PA[10] PCR[10] AF0 AF1 AF2 AF3 GPIO[10] E0UC[10] SDA — SIUL eMIOS_0 I2C_0 — I/O I/O I/O — S Tristate 47 47 74 107 B16 PA[11] PCR[11] AF0 AF1 AF2 AF3 GPIO[11] E0UC[11] SCL — SIUL eMIOS_0 I2C_0 — I/O I/O I/O — S Tristate 48 48 75 108 B15 PA[12] PCR[12] AF0 AF1 AF2 AF3 — GPIO[12] — — — SIN_0 SIUL — — — DSPI0 I/O — — — I S Tristate 22 22 31 45 T7 PA[13] PCR[13] AF0 AF1 AF2 AF3 GPIO[13] SOUT_0 — — SIUL DSPI_0 — — I/O O — — M Tristate 21 21 30 44 R7 PA[14] PCR[14] AF0 AF1 AF2 AF3 — GPIO[14] SCK_0 CS0_0 — EIRQ[4] SIUL DSPI_0 DSPI_0 — SIUL I/O I/O I/O — I M Tristate 19 19 28 42 P6 PA[15] PCR[15] AF0 AF1 AF2 AF3 — GPIO[15] CS0_0 SCK_0 — WKPU[10]4 SIUL DSPI_0 DSPI_0 — WKPU I/O I/O I/O — I M Tristate 18 18 27 40 R6 PB[0] PCR[16] AF0 AF1 AF2 AF3 GPIO[16] CAN0TX — — SIUL FlexCAN_0 — — I/O O — — M Tristate 14 14 23 31 N3 PB[1] PCR[17] AF0 AF1 AF2 AF3 — — GPIO[17] — — — WKPU[4]4 CAN0RX SIUL — — — WKPU FlexCAN_0 I/O — — — I I S Tristate 15 15 24 32 N1 PB[2] PCR[18] AF0 AF1 AF2 AF3 GPIO[18] LIN0TX SDA — SIUL LINFlex_0 I2C_0 — I/O O I/O — M Tristate 64 64 100 144 B2 208 MAPBGA3 Port pin Pin number MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 17 Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PB[3] PCR[19] AF0 AF1 AF2 AF3 — — GPIO[19] — SCL — WKPU[11]4 LIN0RX SIUL — I2C_0 — WKPU LINFlex_0 I/O — I/O — I I S Tristate 1 1 1 1 C3 PB[4] PCR[20] AF0 AF1 AF2 AF3 — GPIO[20] — — — GPI[0] SIUL — — — ADC I — — — I I Tristate 32 32 50 72 T16 PB[5] PCR[21] AF0 AF1 AF2 AF3 — GPIO[21] — — — GPI[1] SIUL — — — ADC I — — — I I Tristate 35 — 53 75 R16 PB[6] PCR[22] AF0 AF1 AF2 AF3 — GPIO[22] — — — GPI[2] SIUL — — — ADC I — — — I I Tristate 36 — 54 76 P15 PB[7] PCR[23] AF0 AF1 AF2 AF3 — GPIO[23] — — — GPI[3] SIUL — — — ADC I — — — I I Tristate 37 35 55 77 P16 PB[8] PCR[24] AF0 AF1 AF2 AF3 — — GPIO[24] — — — ANS[0] OSC32K_XTAL7 SIUL — — — ADC SXOSC I — — — I I/O I Tristate 30 30 39 53 R9 PB[9] PCR[25] AF0 AF1 AF2 AF3 — — GPIO[25] — — — ANS[1] OSC32K_EXTAL7 SIUL — — — ADC SXOSC I — — — I I/O I Tristate 29 29 38 52 T9 MPC5604B/C Microcontroller Data Sheet, Rev. 11 18 Freescale Semiconductor Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PB[10] PCR[26] AF0 AF1 AF2 AF3 — — GPIO[26] — — — ANS[2] WKPU[8]4 SIUL — — — ADC WKPU I/O — — — I I J Tristate 31 31 40 54 P9 PB[11]8 PCR[27] AF0 AF1 AF2 AF3 — GPIO[27] E0UC[3] — CS0_0 ANS[3] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — I/O I J Tristate 38 36 59 81 N13 PB[12] PCR[28] AF0 AF1 AF2 AF3 — GPIO[28] E0UC[4] — CS1_0 ANX[0] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 39 — 61 83 M16 PB[13] PCR[29] AF0 AF1 AF2 AF3 — GPIO[29] E0UC[5] — CS2_0 ANX[1] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 40 — 63 85 M13 PB[14] PCR[30] AF0 AF1 AF2 AF3 — GPIO[30] E0UC[6] — CS3_0 ANX[2] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 41 37 65 87 L16 PB[15] PCR[31] AF0 AF1 AF2 AF3 — GPIO[31] E0UC[7] — CS4_0 ANX[3] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 42 38 67 89 L13 PC[0]9 PCR[32] AF0 AF1 AF2 AF3 GPIO[32] — TDI — SIUL — JTAGC — I/O — I — M Input, weak pull-up 59 59 87 126 A8 PC[1]9 PCR[33] AF0 AF1 AF2 AF3 GPIO[33] — TDO10 — SIUL — JTAGC — I/O — O — M Tristate 54 54 82 121 C9 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 19 Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP PC[2] PCR[34] AF0 AF1 AF2 AF3 — GPIO[34] SCK_1 CAN4TX11 — EIRQ[5] SIUL DSPI_1 FlexCAN_4 — SIUL I/O I/O O — I M Tristate 50 50 78 117 A11 PC[3] PCR[35] AF0 AF1 AF2 AF3 — — — GPIO[35] CS0_1 MA[0] — CAN1RX CAN4RX11 EIRQ[6] SIUL DSPI_1 ADC — FlexCAN_1 FlexCAN_4 SIUL I/O I/O O — I I I S Tristate 49 49 77 116 B11 PC[4] PCR[36] AF0 AF1 AF2 AF3 — — GPIO[36] — — — SIN_1 CAN3RX11 SIUL — — — DSPI_1 FlexCAN_3 I/O — — — I I M Tristate 62 62 92 131 B7 PC[5] PCR[37] AF0 AF1 AF2 AF3 — GPIO[37] SOUT_1 CAN3TX11 — EIRQ[7] SIUL DSPI1 FlexCAN_3 — SIUL I/O O O — I M Tristate 61 61 91 130 A7 PC[6] PCR[38] AF0 AF1 AF2 AF3 GPIO[38] LIN1TX — — SIUL LINFlex_1 — — I/O O — — S Tristate 16 16 25 36 R2 PC[7] PCR[39] AF0 AF1 AF2 AF3 — — GPIO[39] — — — LIN1RX WKPU[12]4 SIUL — — — LINFlex_1 WKPU I/O — — — I I S Tristate 17 17 26 37 P3 PC[8] PCR[40] AF0 AF1 AF2 AF3 GPIO[40] LIN2TX — — SIUL LINFlex_2 — — I/O O — — S Tristate 63 63 99 143 A1 208 MAPBGA3 Port pin Pin number MPC5604B/C Microcontroller Data Sheet, Rev. 11 20 Freescale Semiconductor Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PC[9] PCR[41] AF0 AF1 AF2 AF3 — — GPIO[41] — — — LIN2RX WKPU[13]4 SIUL — — — LINFlex_2 WKPU I/O — — — I I S Tristate 2 2 2 2 B1 PC[10] PCR[42] AF0 AF1 AF2 AF3 GPIO[42] CAN1TX CAN4TX11 MA[1] SIUL FlexCAN_1 FlexCAN_4 ADC I/O O O O M Tristate 13 13 22 28 M3 PC[11] PCR[43] AF0 AF1 AF2 AF3 — — — GPIO[43] — — — CAN1RX CAN4RX11 WKPU[5]4 SIUL — — — FlexCAN_1 FlexCAN_4 WKPU I/O — — — I I I S Tristate — — 21 27 M4 PC[12] PCR[44] AF0 AF1 AF2 AF3 — GPIO[44] E0UC[12] — — SIN_2 SIUL eMIOS_0 — — DSPI_2 I/O I/O — — I M Tristate — — 97 141 B4 PC[13] PCR[45] AF0 AF1 AF2 AF3 GPIO[45] E0UC[13] SOUT_2 — SIUL eMIOS_0 DSPI_2 — I/O I/O O — S Tristate — — 98 142 A2 PC[14] PCR[46] AF0 AF1 AF2 AF3 — GPIO[46] E0UC[14] SCK_2 — EIRQ[8] SIUL eMIOS_0 DSPI_2 — SIUL I/O I/O I/O — I S Tristate — — 3 3 C1 PC[15] PCR[47] AF0 AF1 AF2 AF3 GPIO[47] E0UC[15] CS0_2 — SIUL eMIOS_0 DSPI_2 — I/O I/O I/O — M Tristate — — 4 4 D3 PD[0] PCR[48] AF0 AF1 AF2 AF3 — GPIO[48] — — — GPI[4] SIUL — — — ADC I — — — I I Tristate — — 41 63 P12 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 21 Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PD[1] PCR[49] AF0 AF1 AF2 AF3 — GPIO[49] — — — GPI[5] SIUL — — — ADC I — — — I I Tristate — — 42 64 T12 PD[2] PCR[50] AF0 AF1 AF2 AF3 — GPIO[50] — — — GPI[6] SIUL — — — ADC I — — — I I Tristate — — 43 65 R12 PD[3] PCR[51] AF0 AF1 AF2 AF3 — GPIO[51] — — — GPI[7] SIUL — — — ADC I — — — I I Tristate — — 44 66 P13 PD[4] PCR[52] AF0 AF1 AF2 AF3 — GPIO[52] — — — GPI[8] SIUL — — — ADC I — — — I I Tristate — — 45 67 R13 PD[5] PCR[53] AF0 AF1 AF2 AF3 — GPIO[53] — — — GPI[9] SIUL — — — ADC I — — — I I Tristate — — 46 68 T13 PD[6] PCR[54] AF0 AF1 AF2 AF3 — GPIO[54] — — — GPI[10] SIUL — — — ADC I — — — I I Tristate — — 47 69 T14 PD[7] PCR[55] AF0 AF1 AF2 AF3 — GPIO[55] — — — GPI[11] SIUL — — — ADC I — — — I I Tristate — — 48 70 R14 PD[8] PCR[56] AF0 AF1 AF2 AF3 — GPIO[56] — — — GPI[12] SIUL — — — ADC I — — — I I Tristate — — 49 71 T15 MPC5604B/C Microcontroller Data Sheet, Rev. 11 22 Freescale Semiconductor Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PD[9] PCR[57] AF0 AF1 AF2 AF3 — GPIO[57] — — — GPI[13] SIUL — — — ADC I — — — I I Tristate — — 56 78 N15 PD[10] PCR[58] AF0 AF1 AF2 AF3 — GPIO[58] — — — GPI[14] SIUL — — — ADC I — — — I I Tristate — — 57 79 N14 PD[11] PCR[59] AF0 AF1 AF2 AF3 — GPIO[59] — — — GPI[15] SIUL — — — ADC I — — — I I Tristate — — 58 80 N16 PD[12]8 PCR[60] AF0 AF1 AF2 AF3 — GPIO[60] CS5_0 E0UC[24] — ANS[4] SIUL DSPI_0 eMIOS_0 — ADC I/O O I/O — I J Tristate — — 60 82 M15 PD[13] PCR[61] AF0 AF1 AF2 AF3 — GPIO[61] CS0_1 E0UC[25] — ANS[5] SIUL DSPI_1 eMIOS_0 — ADC I/O I/O I/O — I J Tristate — — 62 84 M14 PD[14] PCR[62] AF0 AF1 AF2 AF3 — GPIO[62] CS1_1 E0UC[26] — ANS[6] SIUL DSPI_1 eMIOS_0 — ADC I/O O I/O — I J Tristate — — 64 86 L15 PD[15] PCR[63] AF0 AF1 AF2 AF3 — GPIO[63] CS2_1 E0UC[27] — ANS[7] SIUL DSPI_1 eMIOS_0 — ADC I/O O I/O — I J Tristate — — 66 88 L14 PE[0] PCR[64] AF0 AF1 AF2 AF3 — — GPIO[64] E0UC[16] — — CAN5RX11 WKPU[6]4 SIUL eMIOS_0 — — FlexCAN_5 WKPU I/O I/O — — I I S Tristate — — 6 10 F1 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 23 Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PE[1] PCR[65] AF0 AF1 AF2 AF3 GPIO[65] E0UC[17] CAN5TX11 — SIUL eMIOS_0 FlexCAN_5 — I/O I/O O — M Tristate — — 8 12 F4 PE[2] PCR[66] AF0 AF1 AF2 AF3 — GPIO[66] E0UC[18] — — SIN_1 SIUL eMIOS_0 — — DSPI_1 I/O I/O — — I M Tristate — — 89 128 D7 PE[3] PCR[67] AF0 AF1 AF2 AF3 GPIO[67] E0UC[19] SOUT_1 — SIUL eMIOS_0 DSPI_1 — I/O I/O O — M Tristate — — 90 129 C7 PE[4] PCR[68] AF0 AF1 AF2 AF3 — GPIO[68] E0UC[20] SCK_1 — EIRQ[9] SIUL eMIOS_0 DSPI_1 — SIUL I/O I/O I/O — I M Tristate — — 93 132 D6 PE[5] PCR[69] AF0 AF1 AF2 AF3 GPIO[69] E0UC[21] CS0_1 MA[2] SIUL eMIOS_0 DSPI_1 ADC I/O I/O I/O O M Tristate — — 94 133 C6 PE[6] PCR[70] AF0 AF1 AF2 AF3 GPIO[70] E0UC[22] CS3_0 MA[1] SIUL eMIOS_0 DSPI_0 ADC I/O I/O O O M Tristate — — 95 139 B5 PE[7] PCR[71] AF0 AF1 AF2 AF3 GPIO[71] E0UC[23] CS2_0 MA[0] SIUL eMIOS_0 DSPI_0 ADC I/O I/O O O M Tristate — — 96 140 C4 PE[8] PCR[72] AF0 AF1 AF2 AF3 GPIO[72] CAN2TX12 E0UC[22] CAN3TX11 SIUL FlexCAN_2 eMIOS_0 FlexCAN_3 I/O O I/O O M Tristate — — 9 13 G2 PE[9] PCR[73] AF0 AF1 AF2 AF3 — — — GPIO[73] — E0UC[23] — WKPU[7]4 CAN2RX12 CAN3RX11 SIUL — eMIOS_0 — WKPU FlexCAN_2 FlexCAN_3 I/O — I/O — I I I S Tristate — — 10 14 G1 MPC5604B/C Microcontroller Data Sheet, Rev. 11 24 Freescale Semiconductor Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PE[10] PCR[74] AF0 AF1 AF2 AF3 — GPIO[74] LIN3TX CS3_1 — EIRQ[10] SIUL LINFlex_3 DSPI_1 — SIUL I/O O O — I S Tristate — — 11 15 G3 PE[11] PCR[75] AF0 AF1 AF2 AF3 — — GPIO[75] — CS4_1 — LIN3RX WKPU[14]4 SIUL — DSPI_1 — LINFlex_3 WKPU I/O — O — I I S Tristate — — 13 17 H2 PE[12] PCR[76] AF0 AF1 AF2 AF3 — — GPIO[76] — E1UC[19]13 — SIN_2 EIRQ[11] SIUL — eMIOS_1 — DSPI_2 SIUL I/O — I/O — I I S Tristate — — 76 109 C14 PE[13] PCR[77] AF0 AF1 AF2 AF3 GPIO[77] SOUT2 E1UC[20] — SIUL DSPI_2 eMIOS_1 — I/O O I/O — S Tristate — — — 103 D15 PE[14] PCR[78] AF0 AF1 AF2 AF3 — GPIO[78] SCK_2 E1UC[21] — EIRQ[12] SIUL DSPI_2 eMIOS_1 — SIUL I/O I/O I/O — I S Tristate — — — 112 C13 PE[15] PCR[79] AF0 AF1 AF2 AF3 GPIO[79] CS0_2 E1UC[22] — SIUL DSPI_2 eMIOS_1 — I/O I/O I/O — M Tristate — — — 113 A13 PF[0] PCR[80] AF0 AF1 AF2 AF3 — GPIO[80] E0UC[10] CS3_1 — ANS[8] SIUL eMIOS_0 DSPI_1 — ADC I/O I/O O — I J Tristate — — — 55 N10 PF[1] PCR[81] AF0 AF1 AF2 AF3 — GPIO[81] E0UC[11] CS4_1 — ANS[9] SIUL eMIOS_0 DSPI_1 — I I/O I/O O — I J Tristate — — — 56 P10 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 25 Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PF[2] PCR[82] AF0 AF1 AF2 AF3 — GPIO[82] E0UC[12] CS0_2 — ANS[10] SIUL eMIOS_0 DSPI_2 — ADC I/O I/O I/O — I J Tristate — — — 57 T10 PF[3] PCR[83] AF0 AF1 AF2 AF3 — GPIO[83] E0UC[13] CS1_2 — ANS[11] SIUL eMIOS_0 DSPI_2 — ADC I/O I/O O — I J Tristate — — — 58 R10 PF[4] PCR[84] AF0 AF1 AF2 AF3 — GPIO[84] E0UC[14] CS2_2 — ANS[12] SIUL eMIOS_0 DSPI_2 — ADC I/O I/O O — I J Tristate — — — 59 N11 PF[5] PCR[85] AF0 AF1 AF2 AF3 — GPIO[85] E0UC[22] CS3_2 — ANS[13] SIUL eMIOS_0 DSPI_2 — ADC I/O I/O O — I J Tristate — — — 60 P11 PF[6] PCR[86] AF0 AF1 AF2 AF3 — GPIO[86] E0UC[23] — — ANS[14] SIUL eMIOS_0 — — ADC I/O I/O — — I J Tristate — — — 61 T11 PF[7] PCR[87] AF0 AF1 AF2 AF3 — GPIO[87] — — — ANS[15] SIUL — — — ADC I/O — — — I J Tristate — — — 62 R11 PF[8] PCR[88] AF0 AF1 AF2 AF3 GPIO[88] CAN3TX14 CS4_0 CAN2TX15 SIUL FlexCAN_3 DSPI_0 FlexCAN_2 I/O O O O M Tristate — — — 34 P1 PF[9] PCR[89] AF0 AF1 AF2 AF3 — — GPIO[89] — CS5_0 — CAN2RX15 CAN3RX14 SIUL — DSPI_0 — FlexCAN_2 FlexCAN_3 I/O — O — I I S Tristate — — — 33 N2 MPC5604B/C Microcontroller Data Sheet, Rev. 11 26 Freescale Semiconductor Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PF[10] PCR[90] AF0 AF1 AF2 AF3 GPIO[90] — — — SIUL — — — I/O — — — M Tristate — — — 38 R3 PF[11] PCR[91] AF0 AF1 AF2 AF3 — GPIO[91] — — — WKPU[15]4 SIUL — — — WKPU I/O — — — I S Tristate — — — 39 R4 PF[12] PCR[92] AF0 AF1 AF2 AF3 GPIO[92] E1UC[25] — — SIUL eMIOS_1 — — I/O I/O — — M Tristate — — — 35 R1 PF[13] PCR[93] AF0 AF1 AF2 AF3 — GPIO[93] E1UC[26] — — WKPU[16]4 SIUL eMIOS_1 — — WKPU I/O I/O — — I S Tristate — — — 41 T6 PF[14] PCR[94] AF0 AF1 AF2 AF3 GPIO[94] CAN4TX11 E1UC[27] CAN1TX SIUL FlexCAN_4 eMIOS_1 FlexCAN_4 I/O O I/O O M Tristate — 43 — 102 D14 PF[15] PCR[95] AF0 AF1 AF2 AF3 — — — GPIO[95] — — — CAN1RX CAN4RX11 EIRQ[13] SIUL — — — FlexCAN_1 FlexCAN_4 SIUL I/O — — — I I I S Tristate — 42 — 101 E15 PG[0] PCR[96] AF0 AF1 AF2 AF3 GPIO[96] CAN5TX11 E1UC[23] — SIUL FlexCAN_5 eMIOS_1 — I/O O I/O — M Tristate — 41 — 98 E14 PG[1] PCR[97] AF0 AF1 AF2 AF3 — — GPIO[97] — E1UC[24] — CAN5RX11 EIRQ[14] SIUL — eMIOS_1 — FlexCAN_5 SIUL I/O — I/O — I I S Tristate — 40 — 97 E13 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 27 Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PCR Alternate function1 Function Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 Pin number PG[2] PCR[98] AF0 AF1 AF2 AF3 GPIO[98] E1UC[11] — — SIUL eMIOS_1 — — I/O I/O — — M Tristate — — — 8 E4 PG[3] PCR[99] AF0 AF1 AF2 AF3 — GPIO[99] E1UC[12] — — WKPU[17]4 SIUL eMIOS_1 — — WKPU I/O I/O — — I S Tristate — — — 7 E3 PG[4] PCR[100] AF0 AF1 AF2 AF3 GPIO[100] E1UC[13] — — SIUL eMIOS_1 — — I/O I/O — — M Tristate — — — 6 E1 PG[5] PCR[101] AF0 AF1 AF2 AF3 — GPIO[101] E1UC[14] — — WKPU[18]4 SIUL eMIOS_1 — — WKPU I/O I/O — — I S Tristate — — — 5 E2 PG[6] PCR[102] AF0 AF1 AF2 AF3 GPIO[102] E1UC[15] — — SIUL eMIOS_1 — — I/O I/O — — M Tristate — — — 30 M2 PG[7] PCR[103] AF0 AF1 AF2 AF3 GPIO[103] E1UC[16] — — SIUL eMIOS_1 — — I/O I/O — — M Tristate — — — 29 M1 PG[8] PCR[104] AF0 AF1 AF2 AF3 — GPIO[104] E1UC[17] — CS0_2 EIRQ[15] SIUL eMIOS_1 — DSPI_2 SIUL I/O I/O — I/O I S Tristate — — — 26 L2 PG[9] PCR[105] AF0 AF1 AF2 AF3 GPIO[105] E1UC[18] — SCK_2 SIUL eMIOS_1 — DSPI_2 I/O I/O — I/O S Tristate — — — 25 L1 PG[10] PCR[106] AF0 AF1 AF2 AF3 GPIO[106] E0UC[24] — — SIUL eMIOS_0 — — I/O I/O — — S Tristate — — — 114 D13 MPC5604B/C Microcontroller Data Sheet, Rev. 11 28 Freescale Semiconductor Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP SIUL eMIOS_0 — — I/O I/O — — M Tristate — — — 115 B12 PG[12] PCR[108] AF0 AF1 AF2 AF3 GPIO[108] E0UC[26] — — SIUL eMIOS_0 — — I/O I/O — — M Tristate — — — 92 K14 PG[13] PCR[109] AF0 AF1 AF2 AF3 GPIO[109] E0UC[27] — — SIUL eMIOS_0 — — I/O I/O — — M Tristate — — — 91 K16 PG[14] PCR[110] AF0 AF1 AF2 AF3 GPIO[110] E1UC[0] — — SIUL eMIOS_1 — — I/O I/O — — S Tristate — — — 110 B14 PG[15] PCR[111] AF0 AF1 AF2 AF3 GPIO[111] E1UC[1] — — SIUL eMIOS_1 — — I/O I/O — — M Tristate — — — 111 B13 PH[0] PCR[112] AF0 AF1 AF2 AF3 — GPIO[112] E1UC[2] — — SIN1 SIUL eMIOS_1 — — DSPI_1 I/O I/O — — I M Tristate — — — 93 F13 PH[1] PCR[113] AF0 AF1 AF2 AF3 GPIO[113] E1UC[3] SOUT1 — SIUL eMIOS_1 DSPI_1 — I/O I/O O — M Tristate — — — 94 F14 PH[2] PCR[114] AF0 AF1 AF2 AF3 GPIO[114] E1UC[4] SCK_1 — SIUL eMIOS_1 DSPI_1 — I/O I/O I/O — M Tristate — — — 95 F16 PH[3] PCR[115] AF0 AF1 AF2 AF3 GPIO[115] E1UC[5] CS0_1 — SIUL eMIOS_1 DSPI_1 — I/O I/O I/O — M Tristate — — — 96 F15 208 MAPBGA3 Peripheral GPIO[107] E0UC[25] — — Alternate function1 PCR[107] AF0 AF1 AF2 AF3 PCR PG[11] Port pin Function Pin number MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 29 Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Peripheral I/O direction2 Pad type RESET configuration MPC560xB 64 LQFP MPC560xC 64 LQFP 100 LQFP 144 LQFP 208 MAPBGA3 GPIO[116] E1UC[6] — — SIUL eMIOS_1 — — I/O I/O — — M Tristate — — — 134 A6 PH[5] PCR[117] AF0 AF1 AF2 AF3 GPIO[117] E1UC[7] — — SIUL eMIOS_1 — — I/O I/O — — S Tristate — — — 135 B6 PH[6] PCR[118] AF0 AF1 AF2 AF3 GPIO[118] E1UC[8] — MA[2] SIUL eMIOS_1 — ADC I/O I/O — O M Tristate — — — 136 D5 PH[7] PCR[119] AF0 AF1 AF2 AF3 GPIO[119] E1UC[9] CS3_2 MA[1] SIUL eMIOS_1 DSPI_2 ADC I/O I/O O O M Tristate — — — 137 C5 PH[8] PCR[120] AF0 AF1 AF2 AF3 GPIO[120] E1UC[10] CS2_2 MA[0] SIUL eMIOS_1 DSPI_2 ADC I/O I/O O O M Tristate — — — 138 A5 PH[9]9 PCR[121] AF0 AF1 AF2 AF3 GPIO[121] — TCK — SIUL — JTAGC — I/O — I — S Input, weak pull-up 60 60 88 127 B8 PH[10]9 PCR[122] AF0 AF1 AF2 AF3 GPIO[122] — TMS — SIUL — JTAGC — I/O — I — S Input, weak pull-up 53 53 81 120 B9 1 2 3 4 5 6 Alternate function1 PCR[116] AF0 AF1 AF2 AF3 PCR PH[4] Port pin Function Pin number Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module. 208 MAPBGA available only as development package for Nexus2+ All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored. “Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details. MPC5604B/C Microcontroller Data Sheet, Rev. 11 30 Freescale Semiconductor Package pinouts and signal descriptions 7 Value of PCR.IBE bit must be 0 Be aware that this pad is used on the MPC5607B 100-pin and 144-pin to provide VDD_HV_ADC and VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between MPC5604B/C and MPC5607B. 9 Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively). If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001. 10 The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of 47–100 k should be added between the TDO pin and VDD_HV. Only in case the TDO pin is used as application pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin and GND instead. 11 Available only on MPC560xC versions, MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices 12 Not available on MPC5602B devices 13 Not available in 100 LQFP package 14 Available only on MPC5604B 208 MAPBGA devices 15 Not available on MPC5603B 144-pin devices 8 3.7 Nexus 2+ pins In the 208 MAPBGA package, eight additional debug pins are available (see Table 7). Table 7. Nexus 2+ pin descriptions Pin number Debug pin Function I/O direction MCKO Message clock out O F MDO0 Message data out 0 O MDO1 Message data out 1 MDO2 1 Pad type Function after reset 100 LQFP 144 LQFP 208 MAP BGA1 — — — T4 M — — — H15 O M — — — H16 Message data out 2 O M — — — H14 MDO3 Message data out 3 O M — — — H13 EVTI Event in I M Pull-up — — K1 EVTO Event out O M — — — L4 MSEO Message start/end out O M — — — G16 208 MAPBGA available only as development package for Nexus2+ 3.8 Electrical characteristics 3.9 Introduction This section contains electrical characteristics of the device as well as temperature and power considerations. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 31 Package pinouts and signal descriptions This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 3.10 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 8 are used and the parameters are tagged accordingly in the tables where appropriate. Table 8. Parameter classifications Classification tag Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 3.11 NVUSRO register Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset). For a detailed description of the NVUSRO register, please refer to the device reference manual. 3.11.1 NVUSRO[PAD3V5V] field description The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 9 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 9. PAD3V5V field description Value1 Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V MPC5604B/C Microcontroller Data Sheet, Rev. 11 32 Freescale Semiconductor Package pinouts and signal descriptions 1 3.11.2 Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. NVUSRO[OSCILLATOR_MARGIN] field description The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 10 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration. Table 10. OSCILLATOR_MARGIN field description Value1 1 3.11.3 Description 0 Low consumption configuration (4 MHz/8 MHz) 1 High margin configuration (4 MHz/16 MHz) Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. NVUSRO[WATCHDOG_EN] field description The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 11 shows how NVUSRO[WATCHDOG_EN] controls the device configuration. Table 11. WATCHDOG_EN field description Value1 1 Description 0 Disable after reset 1 Enable after reset Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 33 Package pinouts and signal descriptions 3.12 Absolute maximum ratings Table 12. Absolute maximum ratings Value Symbol Parameter Conditions Unit Min Max VSS SR Digital ground on VSS_HV pins — 0 0 V VDD SR Voltage on VDD_HV pins with respect to ground (VSS) — 0.3 6.0 V VSS_LV SR Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS) — VDD_BV SR Voltage on VDD_BV pin (regulator supply) with respect to ground (VSS) — Relative to VDD VSS_ADC SR Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (VSS) — VDD_ADC SR Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (VSS) — VIN SR Voltage on any GPIO pin with respect to ground (VSS) VSS0.1 VSS+0.1 0.3 6.0 0.3 VDD+0.3 VSS0.1 VSS+0.1 0.3 6.0 V V V V VDD 0.3 VDD+0.3 Relative to VDD — Relative to VDD 0.3 6.0 — VDD+0.3 V IINJPAD SR Injected input current on any pin during overload condition — 10 10 IINJSUM SR Absolute sum of all injected input currents during overload condition — 50 50 — 70 — 64 — — 150 mA — 55 150 °C IAVGSEG SR Sum of all the static I/O current within a VDD = 5.0 V ± 10%, PAD3V5V = 0 supply segment VDD = 3.3 V ± 10%, PAD3V5V = 1 ICORELV SR Low voltage static current sink through VDD_BV TSTORAGE SR Storage temperature mA mA NOTE Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS), the voltage on pins with respect to ground (VSS) must not exceed the recommended values. MPC5604B/C Microcontroller Data Sheet, Rev. 11 34 Freescale Semiconductor Package pinouts and signal descriptions 3.13 Recommended operating conditions Table 13. Recommended operating conditions (3.3 V) Value Symbol VSS Parameter 0 0 V SR Voltage on VDD_HV pins with respect to ground (VSS) — 3.0 3.6 V VSS_LV2 SR Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS) — VSS0.1 VSS+0.1 V VDD_BV3 SR Voltage on VDD_BV pin (regulator supply) with respect to ground (VSS) — 3.0 3.6 V 4 6 VDD+0.1 SR Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (VSS) — VSS0.1 VSS+0.1 V VDD_ADC4 SR Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (VSS) — 3.05 3.6 V SR Voltage on any GPIO pin with respect to ground (VSS) Relative to VDD VDD0.1 VDD+0.1 — VSS0.1 — Relative to VDD — VDD+0.1 V IINJPAD SR Injected input current on any pin during overload condition — 5 5 IINJSUM SR Absolute sum of all injected input currents during overload condition — 50 50 SR VDD slope to ensure correct power up6 — — 0.25 V/µs fCPU 64 MHz 40 85 °C TJ C-Grade Part SR Junction temperature under bias 40 110 TA V-Grade Part SR Ambient temperature under bias 40 105 TJ V-Grade Part SR Junction temperature under bias 40 130 TA M-Grade Part SR Ambient temperature under bias 40 125 TJ M-Grade Part SR Junction temperature under bias 40 150 TA C-Grade Part SR Ambient temperature under bias 5 Relative to VDD VDD0.1 VSS_ADC TVDD 3 Max — 1 VIN 1 Unit Min SR Digital ground on VSS_HV pins VDD 2 Conditions mA 100 nF capacitance needs to be provided between each VDD/VSS pair 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 400 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed depending on external regulator characteristics). 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is reset. Guaranteed by device validation MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 35 Package pinouts and signal descriptions Table 14. Recommended operating conditions (5.0 V) Value Symbol 3 4 5 6 Unit Min Max SR Digital ground on VSS_HV pins — 0 0 V VDD1 SR Voltage on VDD_HV pins with respect to ground (VSS) — 4.5 5.5 V Voltage drop2 3.0 5.5 VSS0.1 VSS+0.1 V 4.5 5.5 V 3.0 5.5 Relative to VDD VDD0.1 VDD+0.1 VSS0.1 VSS+0.1 V 4.5 5.5 V 3.0 5.5 Relative to VDD VDD0.1 VDD+0.1 — VSS0.1 — Relative to VDD — VDD+0.1 VSS_LV3 SR Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS) — VDD_BV4 SR Voltage on VDD_BV pin (regulator supply) with respect to ground (VSS) — Voltage drop VSS_ADC SR Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (VSS — VDD_ADC5 SR Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (VSS) — SR Voltage on any GPIO pin with respect to ground (VSS) Voltage drop 2 2 V IINJPAD SR Injected input current on any pin during overload condition — 5 5 IINJSUM SR Absolute sum of all injected input currents during overload condition — 50 50 SR VDD slope to ensure correct power up6 — — 0.25 V/µs fCPU 64 MHz 40 85 °C TVDD 2 Conditions VSS VIN 1 Parameter TA C-Grade Part SR Ambient temperature under bias TJ C-Grade Part SR Junction temperature under bias 40 110 TA V-Grade Part SR Ambient temperature under bias 40 105 TJ V-Grade Part SR Junction temperature under bias 40 130 TA M-Grade Part SR Ambient temperature under bias 40 125 TJ M-Grade Part SR Junction temperature under bias 40 150 mA 100 nF capacitance needs to be provided between each VDD/VSS pair. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 100 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed depending on external regulator characteristics). 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. Guaranteed by device validation NOTE RAM data retention is guaranteed with VDD_LV not below 1.08 V. MPC5604B/C Microcontroller Data Sheet, Rev. 11 36 Freescale Semiconductor Package pinouts and signal descriptions 3.14 Thermal characteristics 3.14.1 Package thermal characteristics Table 15. LQFP thermal characteristics1 Symbol RJA CC C D Parameter Thermal resistance, junction-to-ambient natural convection3 Conditions2 Single-layer board - 1s Four-layer board - 2s2p RJB CC D Thermal resistance, junction-to-board4 Single-layer board - 1s Four-layer board - 2s2p RJC CC D Thermal resistance, junction-to-case5 Single-layer board - 1s Four-layer board - 2s2p JB CC D Junction-to-board thermal characterization parameter, natural convection Single-layer board - 1s Four-layer board - 2s2p JC CC D Junction-to-case thermal characterization parameter, natural convection Single-layer board - 1s Four-layer board - 2s2p 1 Pin count Value Unit 64 60 °C/W 100 64 144 64 64 42 100 51 144 49 64 24 100 36 144 37 64 24 100 34 144 35 64 11 100 22 144 22 64 11 100 22 144 22 64 TBD 100 33 144 34 64 TBD 100 34 144 35 64 TBD 100 9 144 10 64 TBD 100 9 144 10 °C/W °C/W °C/W °C/W Thermal characteristics are based on simulation. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 37 Package pinouts and signal descriptions 2 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 4 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 5 Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 3 3.14.2 Power considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1: TJ = TA + (PD x RJA) Eqn. 1 Where: TA is the ambient temperature in °C. RJA is the package junction-to-ambient thermal resistance, in °C/W. PD is the sum of PINT and PI/O (PD = PINT + PI/O). PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power. PI/O represents the power dissipation on input and output pins; user determined. Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand, PI/O may be significant, if the device is configured to continuously drive external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273 °C) Eqn. 2 K = PD x (TA + 273 °C) + RJA x PD2 Eqn. 3 Therefore, solving equations 1 and 2: Where: K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations 1 and 2 iteratively for any value of TA. 3.15 I/O pad electrical characteristics 3.15.1 I/O pad types The device provides four main I/O pad types depending on the associated alternate functions: • • • • Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission. Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging capability. Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal oscillator (SXOSC) providing low input leakage. Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. MPC5604B/C Microcontroller Data Sheet, Rev. 11 38 Freescale Semiconductor Package pinouts and signal descriptions 3.15.2 I/O input DC characteristics Table 16 provides input DC electrical characteristics as described in Figure 7. VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Figure 7. I/O input DC electrical characteristics definition Table 16. I/O input DC electrical characteristics Symbol C Parameter Typ Max SR P Input high level CMOS (Schmitt Trigger) — 0.65VDD — VDD+0.4 VIL SR P Input low level CMOS (Schmitt Trigger) — 0.4 — 0.35VDD — 0.1VDD — — TA = 40 °C — 2 200 TA = 25 °C — 2 200 D TA = 85 °C — 5 300 D TA = 105 °C — 12 500 P TA = 125 °C — 70 1000 — — — 40 ns — 1000 — — ns ILKG CC D Digital input leakage D WFI 2 SR P Wakeup input filtered pulse WNFI2 SR P Wakeup input not filtered pulse 2 Unit Min VIH VHYS CC C Input hysteresis CMOS (Schmitt Trigger) 1 Value Conditions1 No injection on adjacent pin V nA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 39 Package pinouts and signal descriptions 3.15.3 I/O output DC characteristics The following tables provide DC characteristics for bidirectional pads: • • • • Table 17 provides weak pull figures. Both pull-up and pull-down resistances are supported. Table 18 provides output driver characteristics for I/O pads when in SLOW configuration. Table 19 provides output driver characteristics for I/O pads when in MEDIUM configuration. Table 20 provides output driver characteristics for I/O pads when in FAST configuration. Table 17. I/O pull-up/pull-down DC electrical characteristics Symbol C Parameter |IWPU| CC P Weak pull-up current absolute value C P P 1 2 Unit Min Typ Max 10 — 150 PAD3V5V = 1 10 — 250 PAD3V5V = 1 10 — 150 VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0 10 — 150 PAD3V5V = 1 10 — 250 VIN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 — 150 VIN = VIL, VDD = 5.0 V ± 10% PAD3V5V = 0 2 VIN = VIL, VDD = 3.3 V ± 10% |IWPD| CC P Weak pull-down current absolute value C Value Conditions1 µA µA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. Table 18. SLOW configuration output buffer electrical characteristics Symbol C Parameter Value Conditions1 Push Pull IOH = 2 mA, VOH CC P Output high level SLOW configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) Unit Min Typ Max 0.8VDD — — C IOH = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 0.8VDD — — C IOH = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD0.8 — — — — 0.1VDD VOL CC P Output low level Push Pull IOL = 2 mA, SLOW configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) 1 2 C IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 V V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. MPC5604B/C Microcontroller Data Sheet, Rev. 11 40 Freescale Semiconductor Package pinouts and signal descriptions Table 19. MEDIUM configuration output buffer electrical characteristics Symbol C Value Conditions1 Parameter Unit Min Typ Max Push Pull IOH = 3.8 mA, VOH CC C Output high level MEDIUM configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — P IOH = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) 0.8VDD — — C IOH = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 0.8VDD — — C IOH = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD0.8 — — C IOH = 100 µA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — VOL CC C Output low level Push Pull IOL = 3.8 mA, MEDIUM configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.2VDD P IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD C IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 C IOL = 100 µA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.1VDD 1 2 V V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. Table 20. FAST configuration output buffer electrical characteristics Symbol C Value Conditions1 Parameter VOH CC P Output high level FAST configuration Unit Push Pull IOH = 14mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) Min Typ Max 0.8VDD — — C IOH = 7mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 0.8VDD — — C IOH = 11mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD0.8 — — V MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 41 Package pinouts and signal descriptions Table 20. FAST configuration output buffer electrical characteristics (continued) Symbol C VOL CC P Output low level FAST configuration 1 2 Value Conditions1 Parameter Push Pull IOL = 14mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) Unit Min Typ Max — — 0.1VDD C IOL = 7mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C IOL = 11mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 3.15.4 Output pin transition times Table 21. Output pin transition times Symbol C Value Conditions1 Parameter Unit Min Typ Max ttr ttr ttr CC D Output transition time output pin2 T SLOW configuration D CL = 25 pF — — 50 CL = 50 pF — — 100 CL = 100 pF — — 125 — — 50 D CL = 25 pF T CL = 50 pF — — 100 D CL = 100 pF — — 125 — — 10 — — 20 — — 40 — — 12 — — 25 — — 40 — — 4 CL = 50 pF — — 6 CL = 100 pF — — 12 — — 4 CL = 50 pF — — 7 CL = 100 pF — — 12 CC D Output transition time output pin2 T MEDIUM configuration D CL = 25 pF CL = 50 pF D CL = 25 pF T CL = 50 pF D CL = 100 pF CC D Output transition time output pin2 FAST configuration VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 CL = 100 pF CL = 25 pF CL = 25 pF 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 ns ns ns VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified MPC5604B/C Microcontroller Data Sheet, Rev. 11 42 Freescale Semiconductor Package pinouts and signal descriptions 2 CL includes device and package capacitances (CPKG < 5 pF). 3.15.5 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 22. Table 22. I/O supply segment Supply segment Package 1 208 MAPBGA1 1 2 3 4 Equivalent to 144 LQFP segment pad distribution pin100–pin122 pin 123–pin19 5 6 MCKO MDOn/MSEO — — 144 LQFP pin20–pin49 pin51–pin99 100 LQFP pin16–pin35 pin37–pin69 pin70–pin83 pin 84–pin15 — — 64 LQFP pin8–pin26 pin28–pin55 pin56–pin7 — — — 208 MAPBGA available only as development package for Nexus2+ Table 23 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. Table 23. I/O consumption Symbol C ISWTSLW,2 CC D Dynamic I/O current for CL = 25 pF SLOW configuration ISWTMED2 CC D Dynamic I/O current for CL = 25 pF MEDIUM configuration ISWTFST2 CC D Dynamic I/O current for CL = 25 pF FAST configuration IRMSSLW CC D Root mean square I/O current for SLOW configuration Value Conditions1 Parameter CL = 25 pF, 2 MHz CL = 25 pF, 4 MHz Typ Max VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 29 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 17 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 110 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 50 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 2.3 — — 3.2 — — 6.6 — — 1.6 — — 2.3 — — 4.7 CL = 100 pF, 2 MHz CL = 25 pF, 2 MHz CL = 25 pF, 4 MHz Unit Min VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz mA mA mA mA MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 43 Package pinouts and signal descriptions Table 23. I/O consumption (continued) Symbol C Value Conditions1 Parameter IRMSMED CC D Root mean square I/O current for MEDIUM configuration CL = 25 pF, 13 MHz CL = 25 pF, 40 MHz Unit Min Typ Max — — 6.6 — — 13.4 — — 18.3 — — 5 — — 8.5 — — 11 — — 22 — — 33 — — 56 — — 14 — — 20 — — 35 — — 70 — — 65 VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 100 pF, 13 MHz CL = 25 pF, 13 MHz CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 13 MHz IRMSFST CC D Root mean square I/O current for FAST configuration CL = 25 pF, 40 MHz CL = 25 pF, 64 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 100 pF, 40 MHz CL = 25 pF, 40 MHz CL = 25 pF, 64 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 40 MHz IAVGSEG SR D Sum of all the static I/O VDD = 5.0 V ± 10%, PAD3V5V = 0 current within a supply VDD = 3.3 V ± 10%, PAD3V5V = 1 segment 1 2 mA mA mA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. Table 24 provides the weight of concurrent switching I/Os. Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed 100% to ensure device functionality. Table 24. I/O weight1 144/100 LQFP 64 LQFP Supply segment Pad 144 100 64 LQFP LQFP LQFP2 4 4 3 Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 PB[3] 10% — 12% — 10% — 12% — PC[9] 10% — 12% — 10% — 12% — — PC[14] 9% — 11% — — — — — — PC[15] 9% 13% 11% 12% — — — — — — PG[5] 9% — 11% — — — — — — — PG[4] 9% 12% 10% 11% — — — — — — PG[3] 9% — 10% — — — — — MPC5604B/C Microcontroller Data Sheet, Rev. 11 44 Freescale Semiconductor Package pinouts and signal descriptions Table 24. I/O weight1 (continued) 144/100 LQFP 64 LQFP Supply segment Pad 144 100 64 LQFP LQFP LQFP2 4 1 Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 — — PG[2] 8% 12% 10% 10% — — — — 4 3 PA[2] 8% — 9% — 8% — 9% — — PE[0] 8% — 9% — — — — — 3 PA[1] 7% — 9% — 7% — 9% — — PE[1] 7% 10% 8% 9% — — — — — PE[8] 7% 9% 8% 8% — — — — — PE[9] 6% — 7% — — — — — — PE[10] 6% — 7% — — — — — 3 PA[0] 5% 8% 6% 7% 5% 8% 6% 7% — PE[11] 5% — 6% — — — — — — — PG[9] 9% — 10% — — — — — — — PG[8] 9% — 11% — — — — — 1 — PC[11] 9% — 11% — — — — — 1 PC[10] 9% 13% 11% 12% 9% 13% 11% 12% — — PG[7] 10% 14% 11% 12% — — — — — — PG[6] 10% 14% 12% 12% — — — — 1 1 PB[0] 10% 14% 12% 12% 10% 14% 12% 12% PB[1] 10% — 12% — 10% — 12% — — — PF[9] 10% — 12% — — — — — — — PF[8] 10% 15% 12% 13% — — — — — — PF[12] 10% 15% 12% 13% — — — — 1 1 PC[6] 10% — 12% — 10% — 12% — PC[7] 10% — 12% — 10% — 12% — — — PF[10] 10% 14% 12% 12% — — — — — — PF[11] 10% — 11% — — — — — 1 1 PA[15] 9% 12% 10% 11% 9% 12% 10% 11% — — PF[13] 8% — 10% — — — — — 1 1 PA[14] 8% 11% 9% 10% 8% 11% 9% 10% PA[4] 8% — 9% — 8% — 9% — PA[13] 7% 10% 9% 9% 7% 10% 9% 9% PA[12] 7% — 8% — 7% — 8% — MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 45 Package pinouts and signal descriptions Table 24. I/O weight1 (continued) 144/100 LQFP 64 LQFP Supply segment Pad 144 100 64 LQFP LQFP LQFP2 2 2 2 Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 PB[9] 1% — 1% — 1% — 1% — PB[8] 1% — 1% — 1% — 1% — PB[10] 6% — 7% — 6% — 7% — — — PF[0] 6% — 7% — — — — — — — PF[1] 7% — 8% — — — — — — — PF[2] 7% — 8% — — — — — — — PF[3] 7% — 9% — — — — — — — PF[4] 8% — 9% — — — — — — — PF[5] 8% — 10% — — — — — — — PF[6] 8% — 10% — — — — — — — PF[7] 9% — 10% — — — — — 2 — PD[0] 1% — 1% — — — — — — PD[1] 1% — 1% — — — — — — PD[2] 1% — 1% — — — — — — PD[3] 1% — 1% — — — — — — PD[4] 1% — 1% — — — — — — PD[5] 1% — 1% — — — — — — PD[6] 1% — 1% — — — — — — PD[7] 1% — 1% — — — — — — PD[8] 1% — 1% — — — — — 2 PB[4] 1% — 1% — 1% — 1% — PB[5] 1% — 1% — 1% — 2% — PB[6] 1% — 1% — 1% — 2% — PB[7] 1% — 1% — 1% — 2% — — PD[9] 1% — 1% — — — — — — PD[10] 1% — 1% — — — — — — PD[11] 1% — 1% — — — — — 2 PB[11] 11% — 13% — 17% — 21% — — PD[12] 11% — 13% — — — — — 2 PB[12] 11% — 13% — 18% — 21% — — PD[13] 10% — 12% — — — — — MPC5604B/C Microcontroller Data Sheet, Rev. 11 46 Freescale Semiconductor Package pinouts and signal descriptions Table 24. I/O weight1 (continued) 144/100 LQFP 64 LQFP Supply segment Pad 144 100 64 LQFP LQFP LQFP2 2 3 2 Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 2 PB[13] 10% — 12% — 18% — 21% — — PD[14] 10% — 12% — — — — — 2 PB[14] 10% — 12% — 18% — 21% — — PD[15] 10% — 11% — — — — — 2 PB[15] 9% — 11% — 18% — 21% — PA[3] 9% — 11% — 18% — 21% — — — PG[13] 9% 13% 10% 11% — — — — — — PG[12] 9% 12% 10% 11% — — — — — — PH[0] 5% 8% 6% 7% — — — — — — PH[1] 5% 7% 6% 6% — — — — — — PH[2] 5% 6% 5% 6% — — — — — — PH[3] 4% 6% 5% 5% — — — — — — PG[1] 4% — 4% — — — — — — — PG[0] 3% 4% 4% 4% — — — — — — PF[15] 3% — 4% — — — — — — — PF[14] 4% 5% 5% 5% — — — — — — PE[13] 4% — 5% — — — — — 3 2 PA[7] 5% — 6% — 16% — 19% — PA[8] 5% — 6% — 16% — 19% — PA[9] 5% — 6% — 15% — 18% — PA[10] 6% — 7% — 15% — 18% — PA[11] 6% — 8% — 14% — 17% — — PE[12] 7% — 8% — — — — — — — PG[14] 7% — 8% — — — — — — — PG[15] 7% 10% 8% 9% — — — — — — PE[14] 7% — 8% — — — — — — — PE[15] 7% 9% 8% 8% — — — — — — PG[10] 6% — 8% — — — — — — — PG[11] 6% 9% 7% 8% — — — — 3 2 PC[3] 6% — 7% — 7% — 9% — PC[2] 6% 8% 7% 7% 6% 9% 8% 8% MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 47 Package pinouts and signal descriptions Table 24. I/O weight1 (continued) 144/100 LQFP 64 LQFP Supply segment Pad 144 100 64 LQFP LQFP LQFP2 3 4 3 Weight 3.3 V Weight 5 V Weight 3.3 V SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 PA[5] 5% 7% 6% 6% 6% 8% 7% 7% PA[6] 5% — 6% — 5% — 6% — PH[10] 4% 6% 5% 5% 5% 7% 6% 6% PC[1] 5% — 5% — 5% — 5% — PC[0] 6% 9% 7% 8% 6% 9% 7% 8% PH[9] 7 7 8 8 7 7 8 8 — PE[2] 7% 10% 9% 9% — — — — — PE[3] 8% 11% 9% 9% — — — — 3 PC[5] 8% 11% 9% 10% 8% 11% 9% 10% PC[4] 8% 12% 10% 10% 8% 12% 10% 10% — PE[4] 8% 12% 10% 11% — — — — — PE[5] 9% 12% 10% 11% — — — — — — PH[4] 9% 13% 11% 11% — — — — — — PH[5] 9% — 11% — — — — — — — PH[6] 9% 13% 11% 12% — — — — — — PH[7] 9% 13% 11% 12% — — — — — — PH[8] 10% 14% 11% 12% — — — — 4 — PE[6] 10% 14% 12% 12% — — — — — PE[7] 10% 14% 12% 12% — — — — — PC[12] 10% 14% 12% 13% — — — — — PC[13] 10% — 12% — — — — — 3 PC[8] 10% — 12% — 10% — 12% — PB[2] 10% 15% 12% 13% 10% 15% 12% 13% 4 2 Weight 5 V 3 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified Segments shown apply to MPC560xB devices only 3 SRC: “Slew Rate Control” bit in SIU_PCR 2 3.16 RESET electrical characteristics The device implements a dedicated bidirectional RESET pin. MPC5604B/C Microcontroller Data Sheet, Rev. 11 48 Freescale Semiconductor Package pinouts and signal descriptions VDD VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase Figure 8. Start-up reset requirements VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Figure 9. Noise filtering on reset signal Table 25. Reset electrical characteristics Symbol VIH C Parameter SR P Input High Level CMOS (Schmitt Trigger) Value Conditions1 — Unit Min Typ Max 0.65VDD — VDD+0.4 V MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 49 Package pinouts and signal descriptions Table 25. Reset electrical characteristics (continued) Symbol C Parameter Value Conditions1 Unit Min Typ Max VIL SR P Input low Level CMOS (Schmitt Trigger) — 0.4 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V VOL CC P Output low level Push Pull, IOL = 2mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD V C Push Pull, IOL = 1mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C Push Pull, IOL = 1mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CL = 25pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 WFRST SR P RESET input filtered pulse — — — 40 ns WNFRST SR P RESET input not filtered pulse — 1000 — — ns VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 µA VDD = 5.0 V ± 10%, PAD3V5V = 0 10 — 150 10 — 250 ttr CC D Output transition time output pin3 |IWPU| CC P Weak pull-up current absolute value D P VDD = 5.0 V ± 10%, PAD3V5V = 12 ns 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified This transient configuration does not occurs when device is used in the VDD = 3.3 V ± 10% range. 3 CL includes device and package capacitance (CPKG < 5 pF). 2 3.17 3.17.1 Power management electrical characteristics Voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage ballast supply VDD_BV. The regulator itself is supplied by the common I/O supply VDD. The following supplies are involved: MPC5604B/C Microcontroller Data Sheet, Rev. 11 50 Freescale Semiconductor Package pinouts and signal descriptions • • • HV—High voltage external power supply for voltage regulator module. This must be provided externally through VDD_HV power pin. BV—High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV power pin. Voltage values should be aligned with VDD. LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device: — LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding. — LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. — LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. — LV_PLL—Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding. CREG2 (LV_COR/LV_CFLA) VDD_HV VSS_LV VDD_BV Voltage Regulator I VSS_LVn DEVICE VDD_BV CREG1 (LV_COR/LV_DFLA) VDD_LVn CDEC1 (Ballast decoupling) VREF VDD_LV VDD_LV DEVICE VSS_LV VSS_LV VDD_LV CREG3 (LV_COR/LV_PLL) VSS_HV VDD_HV CDEC2 (supply/IO decoupling) Figure 10. Voltage regulator capacitance connection The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH. Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see Section 3.13, Recommended operating conditions). The internal voltage regulator requires a controlled slew rate of both VDD_HV and VDD_BV as described in Figure 11. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 51 Package pinouts and signal descriptions VDD_HV VDD_HV(MAX) d VDD dt VDD_HV(MIN) POWER UP FUNCTIONAL RANGE POWER DOWN FUNCTIONAL RANGE POWER DOWN VDD_HV VDD_HV(MAX) d VDD dt VPORH(MAX) POWER UP Figure 11. VDD_HV and VDD_BV maximum slope When STANDBY mode is used, further constraints are applied to the both VDD_HV and VDD_BV in order to guarantee correct regulator function during STANDBY exit. This is described on Figure 12. STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY capacitance on application board (capacitance and ESR typical values), but would actually depend on exact characteristics of application external regulator. MPC5604B/C Microcontroller Data Sheet, Rev. 11 52 Freescale Semiconductor Package pinouts and signal descriptions VDD_HV VDD_HV VDD_HV(MAX) d VDD STDBY dt VDD(STDBY) VDD(STDBY) VDD_HV(MIN) d VDD STDBY dt VDD_LV VDD_LV(NOMINAL) 0V Figure 12. VDD_HV and VDD_BV supply constraints during STANDBY mode exit Table 26. Voltage regulator electrical characteristics Symbol C Parameter Value Conditions1 CREGn SR — Internal voltage regulator external capacitance — RREG SR — Stability capacitor equivalent serial Range: resistance 10 kHz to 20 MHz CDEC1 SR — Decoupling capacitance2 ballast Unit Min Typ Max 200 — 500 nF — — 0.2 4704 — nF 1003 VDD_BV/VSS_LV pair: VDD_BV = 4.5 V to 5.5 V VDD_BV/VSS_LV pair: VDD_BV = 3 V to 3.6 V 400 — CDEC2 SR — Decoupling capacitance regulator VDD/VSS pair supply 10 100 d VDD dt SR — Maximum slope on VDD — — 250 mV/µs SR — Maximum instant variation on VDD during standby exit — — 30 VDD(STDBY)| — nF mV MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 53 Package pinouts and signal descriptions Table 26. Voltage regulator electrical characteristics (continued) Symbol C Parameter d VDD STDBY SR — Maximum slope on VDD during standby exit dt VMREG CC T Main regulator output voltage P IMREG IMREGINT 4 5 6 Max — — 15 mV/µs — 1.32 — V 1.16 1.28 — — — 150 mA mA — — 2 IMREG = 0 mA — — 1 VLPREG CC P Low power regulator output voltage After trimming 1.16 1.28 — V ILPREG SR — Low power regulator current provided to VDD_LV domain — — 15 mA ILPREGINT CC D Low power regulator module current consumption ILPREG = 15 mA; TA = 55 °C — — 600 µA ILPREG = 0 mA; TA = 55 °C — 5 — After trimming 1.16 1.28 — V — — 5 mA CC D Ultra low power regulator module IULPREG = 5 mA; current consumption TA = 55 °C — — 100 µA IULPREG = 0 mA; TA = 55 °C — 2 — — — 3006 VULPREG CC P Ultra low power regulator output voltage IULPREG SR — Ultra low power regulator current provided to VDD_LV domain IDD_BV 3 Typ IMREG = 200 mA IULPREGINT 2 — Unit Min CC D Main regulator module current consumption — 1 Before exiting from reset After trimming SR — Main regulator current provided to VDD_LV domain Value Conditions1 CC D In-rush average current on VDD_BV during power-up5 — — — mA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical value is in the range of 470 nF. This value is acceptable to guarantee operation from 4.5 V to 5.5 V External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in operating range. In-rush average current is seen only for short time (maximum 20 µs) during power-up and on standby exit. It is dependant on the sum of the CREGn capacitances. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc. The VDD(STDBY)| and dVDD(STDBY)/dt system requirement can be used to define the component used for the VDD supply generation. The following two examples describe how to calculate capacitance size: MPC5604B/C Microcontroller Data Sheet, Rev. 11 54 Freescale Semiconductor Package pinouts and signal descriptions Example 1. No regulator (worst case) The VDD(STDBY)| parameter can be seen as the VDD voltage drop through the ESR resistance of the regulator stability capacitor when the IDD_BV current required to load VDD_LV domain during the standby exit. It is thus possible to define the maximum equivalent resistance ESRSTDBY(MAX) of the total capacitance on the VDD supply: ESRSTDBY(MAX) = VDD(STDBY)|/IDD_BV = (30 mV)/(300 mA) = 0.1 1 The dVDD(STDBY)/dt parameter can be seen as the VDD voltage drop at the capacitance pin (excluding ESR drop) while providing the IDD_BV supply required to load VDD_LV domain during the standby exit. It is thus possible to define the minimum equivalent capacitance CSTDBY(MIN) of the total capacitance on the VDD supply: CSTDBY(MIN) = IDD_BV/dVDD(STDBY)/dt = (300 mA)/(15 mV/µs) = 20 µF This configuration is a worst case, with the assumption no regulator is available. Example 2. Simplified regulator The regulator should be able to provide significant amount of the current during the standby exit process. For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate the equivalent ESRSTDBY(MAX) and CSTDBY(MIN) as follows: ESRSTDBY(MAX) = VDD(STDBY)|/(IDD_BV 200 mA) = (30 mV)/(100 mA) = 0.3 CSTDBY(MIN) = (IDD_BV 200 mA)/dVDD(STDBY)/dt = (300 mA 200 mA)/(15 mV/µs) = 6.7 µF In case optimization is required, CSTDBY(MIN) and ESRSTDBY(MAX) should be calculated based on the regulator characteristics as well as the board VDD plane characteristics. 3.17.2 Low voltage detector electrical characteristics The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the VDD and the VDD_LV voltage while device is supplied: • • • • • POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual) LVDHV3 monitors VDD to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual) LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual) LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual) NOTE When enabled, power domain No. 2 is monitored through LVDLVBKP. 1. Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 55 Package pinouts and signal descriptions VDD VLVDHVxH VLVDHVxL RESET Figure 13. Low voltage detector vs reset Table 27. Low voltage detector electrical characteristics Symbol C Parameter VPORUP SR P Supply for functional POR module VPORH CC P Power-on reset threshold T Value Conditions1 Unit Min Typ Max 1.0 — 5.5 1.5 — 2.6 — 1.5 — 2.6 — — — 2.95 — TA = 25 °C, after trimming VLVDHV3H CC T LVDHV3 low voltage detector high threshold VLVDHV3L CC P LVDHV3 low voltage detector low threshold 2.6 — 2.9 VLVDHV5H CC T LVDHV5 low voltage detector high threshold — — 4.5 VLVDHV5L CC P LVDHV5 low voltage detector low threshold 3.8 — 4.4 VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold 1.08 — 1.16 VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold 1.08 — 1.16 1 3.18 V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified Power consumption Table 28 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application. MPC5604B/C Microcontroller Data Sheet, Rev. 11 56 Freescale Semiconductor Package pinouts and signal descriptions Table 28. Power consumption on VDD_BV and VDD_HV Symbol C Typ Max — 115 1403 mA fCPU = 8 MHz — 7 — mA fCPU = 16 MHz — 18 — T fCPU = 32 MHz — 29 — P fCPU = 48 MHz — 40 100 fCPU = 64 MHz — 51 125 Slow internal RC oscillator TA = 25 °C (128 kHz) running TA = 125 °C — 8 15 — 14 25 — 180 7008 D Slow internal RC oscillator TA = 25 °C (128 kHz) running TA = 55 °C — 500 — D TA = 85 °C — 1 68 CC D RUN mode maximum average current IDDRUN4 CC T RUN mode typical average current5 T P CC C HALT mode current 6 P IDDSTOP IDDSTDBY2 IDDSTDBY1 Unit Min IDDMAX2 IDDHALT Value Conditions1 Parameter CC P STOP mode current7 — D TA = 105 °C — 2 98 P TA = 125 °C — 4.5 128 Slow internal RC oscillator TA = 25 °C (128 kHz) running TA = 55 °C — 30 100 — 75 — D TA = 85 °C — 180 700 D TA = 105 °C — 315 1000 P TA = 125 °C — 560 1700 Slow internal RC oscillator TA = 25 °C (128 kHz) running TA = 55 °C — 20 60 — 45 — D TA = 85 °C — 100 350 D TA = 105 °C — 165 500 D TA = 125 °C — 280 900 CC P STANDBY2 mode current9 D CC T STANDBY1 mode current10 D mA µA mA µA µA 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified IDDMAX is drawn only from the VDD_BV pin. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible. 3 Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 26. 4 I DDRUN is drawn only from the VDD_BV pin. RUN current measured with typical application with accesses on both flash and RAM. 5 Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled. 2 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 57 Package pinouts and signal descriptions 6 Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog. 7 Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode. 8 When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA. 9 Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off. 10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off. 3.19 Flash memory electrical characteristics 3.19.1 Program/Erase characteristics Table 29 shows the program and erase characteristics. Table 29. Program and erase specifications Value Symbol C Parameter Tdwprogram CC C Double word (64 bits) program time4 Unit Min Typ1 Initial max2 Max3 — 22 50 500 µs T16Kpperase 16 KB block preprogram and erase time — 300 500 5000 ms T32Kpperase 32 KB block preprogram and erase time — 400 600 5000 ms T128Kpperase 128 KB block preprogram and erase time — 800 1300 7500 ms — — 30 30 µs Tesus CC D Erase suspend latency 1 Typical program and erase times assume nominal supply values and operation at 25 °C. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3 The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4 Actual hardware programming times. This does not include software overhead. 2 MPC5604B/C Microcontroller Data Sheet, Rev. 11 58 Freescale Semiconductor Package pinouts and signal descriptions Table 30. Flash module life Value Symbol C Parameter Conditions Unit CC C Number of program/erase cycles 16 KB blocks per block over the operating 32 KB blocks temperature range (TJ) 128 KB blocks P/E Typ Max 100,000 — — 10,000 100,000 — 1,000 100,000 — 20 — — Blocks with 1,001–10,000 P/E cycles 10 — — Blocks with 10,001–100,000 P/E cycles 5 — — Retention CC C Minimum data retention at 85 °C Blocks with average ambient temperature1 0–1,000 P/E cycles 1 Min cycles years Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability. Table 31. Flash read access timing Symbol fREAD 1 3.19.2 C Conditions1 Parameter Max Unit 2 wait states 64 MHz C 1 wait state 40 C 0 wait states 20 CC P Maximum frequency for Flash reading VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified Flash power supply DC characteristics Table 32 shows the power supply DC characteristics on external supply. Table 32. Flash memory power supply DC electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max Code flash memory module read IFREAD2 CC D Sum of the current consumption on VDD_HV and VDD_BV on read access fCPU = 64 MHz3 — 15 33 Data flash memory module read fCPU = 64 MHz3 — 15 33 Program/Erase ongoing while reading code flash memory registers fCPU = 64 MHz3 — 15 33 Program/Erase ongoing while reading data flash memory registers fCPU = 64 MHz3 — 15 33 IFMOD2 CC D Sum of the current consumption on VDD_HV and VDD_BV on matrix modification (program/erase) mA mA MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 59 Package pinouts and signal descriptions Table 32. Flash memory power supply DC electrical characteristics Symbol IFLPW IFPWD C CC D Sum of the current consumption on VDD_HV and VDD_BV CC D Sum of the current consumption on VDD_HV and VDD_BV Value Conditions1 Parameter Unit Min Typ Max During code flash memory low-power mode — — 900 During data flash memory low-power mode — — 900 During code flash memory power-down mode — — 150 During data flash memory power-down mode — — 150 µA µA 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified This value is only relative to the actual duration of the read cycle 3 f CPU 64 MHz can be achieved only at up to 105 °C 2 3.19.3 Start-up/Switch-off timings Table 33. Start-up time/Switch-off time Symbol C Parameter Value Conditions1 Unit Min Typ Max Code Flash — — 125 Data Flash — — 125 CC T Delay for Flash module to exit low-power mode T Code Flash — — 0.5 Data Flash — — 0.5 CC T Delay for Flash module to exit power-down mode T Code Flash — — 30 Data Flash — — 30 TFLALPENTRY CC T Delay for Flash module to enter low-power mode T Code Flash — — 0.5 Data Flash — — 0.5 TFLAPDENTRY CC T Delay for Flash module to enter power-down Code Flash T mode Data Flash — — 1.5 — — 1.5 TFLARSTEXIT CC T Delay for Flash module to exit reset mode T TFLALPEXIT TFLAPDEXIT 1 µs VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified 3.20 Electromagnetic compatibility (EMC) characteristics Susceptibility tests are performed on a sample basis during product characterization. 3.20.1 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. MPC5604B/C Microcontroller Data Sheet, Rev. 11 60 Freescale Semiconductor Package pinouts and signal descriptions Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application. • Software recommendations:The software flowchart must include the management of runaway conditions such as: — Corrupted program counter — Unexpected reset — Critical data corruption (control registers...) Prequalification trials:Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. • 3.20.2 Electromagnetic interference (EMI) The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements. Table 34. EMI radiated emission measurement1,2 Value Symbol C Parameter Conditions Unit Min Typ — 0.150 — fCPU SR — Operating frequency — — 64 — MHz VDD_LV SR — LV operating voltages — — 1.28 — V No PLL frequency VDD = 5 V, TA = 25 °C, modulation LQFP144 package Test conforming to IEC 61967-2, ±2% PLL frequency fOSC = 8 MHz/fCPU = 64 MHz modulation — — 18 dBµ V — — 14 dBµ V — SR — Scan range SEMI CC T Peak level 1 2 Max 1000 MHz EMI testing and I/O port waveforms per IEC 61967-1, -2, -4 For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative. 3.20.3 Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. 3.20.3.1 Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 61 Package pinouts and signal descriptions Table 35. ESD absolute maximum ratings1 2 Symbol C Ratings Conditions Class Max value Unit V VESD(HBM) CC T Electrostatic discharge voltage (Human Body Model) TA = 25 °C conforming to AEC-Q100-002 H1C 2000 VESD(MM) CC T Electrostatic discharge voltage (Machine Model) TA = 25 °C conforming to AEC-Q100-003 M2 200 VESD(CDM) CC T Electrostatic discharge voltage (Charged Device Model) TA = 25 °C conforming to AEC-Q100-011 C3A 500 750 (corners) 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3.20.3.2 Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance: • • A supply overvoltage is applied to each power supply pin. A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 36. Latch-up results Symbol LU 3.21 CC C Parameter T Static latch-up class Conditions TA = 125 °C conforming to JESD 78 Class II level A Fast external crystal oscillator (4 to 16 MHz) electrical characteristics The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations. MPC5604B/C Microcontroller Data Sheet, Rev. 11 62 Freescale Semiconductor Package pinouts and signal descriptions EXTAL C1 Crystal EXTAL XTAL C2 DEVICE VDD I R EXTAL XTAL Resonator DEVICE XTAL DEVICE Notes: 1. XTAL/EXTAL must not be directly used to drive external circuits 2. A series resistor may be required, according to crystal oscillator supplier recommendations. Figure 14. Crystal oscillator and resonator connection scheme Table 37. Crystal description Crystal motional capacitance (Cm) fF Crystal motional inductance (Lm) mH Load on xtalin/xtalout C1 = C2 (pF)1 Shunt capacitance between xtalout and xtalin C02 (pF) Nominal frequency (MHz) NDK crystal reference Crystal equivalent series resistance ESR 4 NX8045GB 300 2.68 591.0 21 2.93 8 NX5032GA 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 12 120 3.11 56.5 15 2.93 16 120 3.90 25.3 10 3.00 1 The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them. 2 The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.). MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 63 Package pinouts and signal descriptions S_MTRANS bit (ME_GS register) ‘1’ ‘0’ VXTAL 1/fFXOSC VFXOSC 90% VFXOSCOP 10% tFXOSCSU valid internal clock Figure 15. Fast external crystal oscillator (4 to 16 MHz) timing diagram MPC5604B/C Microcontroller Data Sheet, Rev. 11 64 Freescale Semiconductor Package pinouts and signal descriptions Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Symbol fFXOSC C SR — Fast external crystal oscillator frequency — gmFXOSC CC C Fast external crystal VDD = 3.3 V ± 10%, oscillator transconductance PAD3V5V = 1 OSCILLATOR_MARGIN = 0 VFXOSC 1 3.22 Typ Max 4.0 — 16.0 MHz 2.2 — 8.2 mA/V VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 0 2.0 — 7.4 CC C VDD = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 1 2.7 — 9.7 CC C VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 1 2.5 — 9.2 CC T Oscillation amplitude at EXTAL fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 1.3 — — fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 1.3 — — — — 0.95 — V — — 2 3 mA fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 — — 6 ms fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 — — 1.8 CC T Fast external crystal oscillator consumption tFXOSCSU CC T Fast external crystal oscillator start-up time 2 Unit Min CC P VFXOSCOP CC C Oscillation operating point IFXOSC,2 Value Conditions1 Parameter V VIH SR P Input high level CMOS (Schmitt Trigger) Oscillator bypass mode 0.65VDD — VDD+0.4 V VIL SR P Input low level CMOS (Schmitt Trigger) Oscillator bypass mode 0.4 — 0.35VDD V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals) Slow external crystal oscillator (32 kHz) electrical characteristics The device provides a low power oscillator/resonator driver. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 65 Package pinouts and signal descriptions OSC32K_EXTAL OSC32K_EXTAL Crystal Resonator C1 OSC32K_XTAL OSC32K_XTAL C2 DEVICE DEVICE Note: OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits. Figure 16. Crystal oscillator and resonator connection scheme C0 C1 Crystal Cm C2 Rm Lm C1 C2 Figure 17. Equivalent circuit of a quartz crystal Table 39. Crystal motional characteristics1 Value Symbol Parameter Conditions Unit Typ Max Lm Motional inductance — — 11.796 — KH Cm Motional capacitance — — 2 — fF — 18 — 28 pF AC coupled @ C0 = 2.85 pF4 — — 65 k AC coupled @ C0 = 4.9 pF4 — — 50 pF4 — — 35 4 — — 30 C1/C2 Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground2 Rm3 Motional resistance AC coupled @ C0 = 7.0 AC coupled @ C0 = 9.0 pF 1 Min Crystal used: Epson Toyocom MC306 MPC5604B/C Microcontroller Data Sheet, Rev. 11 66 Freescale Semiconductor Package pinouts and signal descriptions 2 This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package. 3 Maximum ESR (Rm) of the crystal is 50 k 4 C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins OSCON bit (OSC_CTL register) 1 0 VOSC32K_XTAL 1/fSXOSC VSXOSC 90% 10% TSXOSCSU valid internal clock Figure 18. Slow external crystal oscillator (32 kHz) timing diagram Table 40. Slow external crystal oscillator (32 kHz) electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max fSXOSC SR — Slow external crystal oscillator frequency — 32 32.768 40 kHz VSXOSC CC T Oscillation amplitude — — 2.1 — V — — 2.5 — µA — — — 8 µA — 2 ISXOSCBIAS CC T Oscillation bias current ISXOSC CC T Slow external crystal oscillator consumption TSXOSCSU CC T Slow external crystal oscillator start-up time — — 2 s 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle. 2 Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal. 3.23 FMPLL electrical characteristics The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 67 Package pinouts and signal descriptions Table 41. FMPLL electrical characteristics Symbol C Value Conditions1 Parameter Unit Min Typ Max fPLLIN SR — FMPLL reference clock2 — 4 — 64 MHz PLLIN SR — FMPLL reference clock duty cycle2 — 40 — 60 % — 16 — 64 MHz — 256 — 512 MHz — 245 — 533 fPLLOUT CC D FMPLL output clock frequency fVCO3 CC P VCO frequency without frequency modulation C VCO frequency with frequency modulation fCPU SR — System clock frequency — — — 64 MHz fFREE CC P Free-running frequency — 20 — 150 MHz tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) — 40 100 µs fsys maximum –4 — 4 % fPLLIN = 16 MHz (resonator), fPLLCLK @ 64 MHz, 4000 cycles — — 10 ns TA = 25 °C — — 4 mA tSTJIT CC — FMPLL short term jitter4 tLTJIT CC — FMPLL long term jitter IPLL CC C FMPLL consumption 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN. 3 Frequency modulation is considered ±4% 4 Short term jitter is measured on the clock rising edge at cycle n and n+4. 2 3.24 Fast internal RC oscillator (16 MHz) electrical characteristics The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device. Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics Symbol fFIRC IFIRCRUN2, C Parameter Value Conditions1 Unit Min Typ Max — 16 — CC P Fast internal RC oscillator high frequency SR — TA = 25 °C, trimmed CC T Fast internal RC oscillator high frequency current in running mode TA = 25 °C, trimmed — — 200 µA TA = 125 °C — — 10 µA IFIRCPWD CC D Fast internal RC oscillator high frequency current in power down mode — 12 MHz 20 MPC5604B/C Microcontroller Data Sheet, Rev. 11 68 Freescale Semiconductor Package pinouts and signal descriptions Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics (continued) Symbol C Value Conditions1 Parameter Unit Min Typ Max sysclk = off — 500 — sysclk = 2 MHz — 600 — sysclk = 4 MHz — 700 — sysclk = 8 MHz — 900 — sysclk = 16 MHz — 1250 — — 1.1 2.0 µs FIRCPRE CC T Fast internal RC oscillator precision TA = 25 °C after software trimming of fFIRC 1 — +1 % FIRCTRIM CC T Fast internal RC oscillator trimming TA = 25 °C step — 1.6 5 — IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C frequency and system clock current in stop mode tFIRCSU CC C Fast internal RC oscillator start-up time VDD = 5.0 V ± 10% FIRCVAR CC P Fast internal RC oscillator variation in overtemperature and supply with respect to fFIRC at TA = 25 °C in high-frequency configuration 1 — µA % +5 % VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 2 3.25 Slow internal RC oscillator (128 kHz) electrical characteristics The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module. Table 43. Slow internal RC oscillator (128 kHz) electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max — 128 — 100 — 150 — — 5 µA CC P Slow internal RC oscillator low frequency SR — TA = 25 °C, trimmed ISIRC2, CC C Slow internal RC oscillator low frequency current TA = 25 °C, trimmed tSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10% time — 8 12 µs SIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C after software trimming of fSIRC 2 — +2 % SIRCTRIM CC C Slow internal RC oscillator trimming step — 2.7 — SIRCVAR CC C Slow internal RC oscillator variation High frequency configuration in temperature and supply with respect to fSIRC at TA = 55 °C in high frequency configuration 10 — +10 fSIRC — — kHz % MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 69 Package pinouts and signal descriptions 1 2 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. MPC5604B/C Microcontroller Data Sheet, Rev. 11 70 Freescale Semiconductor Package pinouts and signal descriptions 3.26 3.26.1 ADC electrical characteristics Introduction The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter. Offset error (EO) Gain error (EG) 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 5 (1) Example of an actual transfer curve (5) (2) The ideal transfer curve 4 (3) Differential non-linearity error (DNL) (4) (4) Integral non-linearity error (INL) 3 (5) Center of a step of the actual transfer curve (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset error (EO) Figure 19. ADC characteristic and error definitions 3.26.2 Input impedance and ADC accuracy In the following analysis, the input circuit corresponding to the precise channels is considered. To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 71 Package pinouts and signal descriptions possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being CS and Cp2 substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS+Cp2 equal to 3 pF, a resistance of 330 k is obtained (REQ = 1 / (fc × (CS+Cp2)), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of RS + RF, the external circuit must be designed to respect the Equation 4: Eqn. 4 RS + RF V A --------------------- 1 --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on a resistive path. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter RL CF CP1 Channel Selection Sampling RSW1 RAD CP2 CS RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1 and CP2) CS: Sampling capacitance Figure 20. Input equivalent circuit (precise channels) MPC5604B/C Microcontroller Data Sheet, Rev. 11 72 Freescale Semiconductor Package pinouts and signal descriptions EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS Current Limiter RF Extended Switch Sampling RSW1 RSW2 RAD RL CF VA Channel Selection CP1 CP3 CP2 CS RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2) RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1, CP2 and CP3) CS: Sampling capacitance Figure 21. Input equivalent circuit (extended channels) A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit in Figure 20): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Voltage transient on CS VCS VA VA2 V <0.5 LSB 1 2 1 < (RSW + RAD) CS << ts 2 = RL (CS + CP1 + CP2) VA1 ts t Figure 22. Transient behavior during sampling phase In particular two different transient periods can be distinguished: MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 73 Package pinouts and signal descriptions 1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is CP CS 1 = R SW + R AD --------------------CP + CS Eqn. 5 Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time ts is always much longer than the internal time constant: Eqn. 6 1 R SW + R AD C S « t s The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Eqn. 7 V A1 C S + C P1 + C P2 = V A C P1 + C P2 2. A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Eqn. 8 2 R L C S + C P1 + C P2 In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time ts, a constraints on RL sizing is obtained: Eqn. 9 8.5 = 8.5 R C + C 2 L S P1 + C P2 t s Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): Eqn. 10 VA2 C S + C P1 + C P2 + C F = V A C F + V A1 C P1 + C P2 + C S The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (ts). The filter is typically designed to act as anti-aliasing. MPC5604B/C Microcontroller Data Sheet, Rev. 11 74 Freescale Semiconductor Package pinouts and signal descriptions Analog source bandwidth (VA) tc < 2 RFCF (conversion rate vs. filter pole) Noise fF = f0 (anti-aliasing filtering condition) 2 f0 < fC (Nyquist) f0 f Anti-aliasing filter (fF = RC filter pole) fF Sampled signal spectrum (fC = conversion rate) f0 f fC f Figure 23. Spectral representation of input signal Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (tc). Again the conversion period tc is longer than the sampling time ts, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time ts, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: Eqn. 11 C P1 + C P2 + C F V A2 ------------ = -------------------------------------------------------VA C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Eqn. 12 C F 2048 C S MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 75 Package pinouts and signal descriptions 3.26.3 ADC electrical characteristics Table 44. ADC input leakage current Value Symbol C Parameter Conditions Unit ILKG CC D Input leakage current TA = 40 °C No current injection on adjacent pin Min Typ Max — 1 70 D TA = 25 °C — 1 70 D TA = 85 °C — 3 100 D TA = 105 °C — 8 200 P TA = 125 °C — 45 400 nA Table 45. ADC conversion characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max VSS_ADC SR — Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (VSS)2 — 0.1 — 0.1 V VDD_ADC SR — Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (VSS) — VDD0.1 — VDD+0.1 V VAINx SR — Analog input voltage3 — VSS_ADC0.1 — VDD_ADC+0.1 V fADC SR — ADC analog frequency — 6 — 32 + 4% MHz ADC_SYS SR — ADC digital clock duty ADCLKSEL = cycle (ipg_clk) 14 45 — 55 % IADCPWD SR — ADC0 consumption in power down mode — — — 50 µA IADCRUN SR — ADC0 consumption in running mode — — — 4 mA tADC_PU SR — ADC power up delay — — — 1.5 µs fADC = 32 MHz, INPSAMP = 17 0.5 — fADC = 6 MHz, INPSAMP = 255 — — 0.625 — ts CC T Sampling time5 6 fADC = 32 MHz, INPCMP = 2 µs 42 tc CC P Conversion time µs CS CC D ADC input sampling capacitance — — — 3 pF CP1 CC D ADC input pin capacitance 1 — — — 3 pF CP2 CC D ADC input pin capacitance 2 — — — 1 pF MPC5604B/C Microcontroller Data Sheet, Rev. 11 76 Freescale Semiconductor Package pinouts and signal descriptions Table 45. ADC conversion characteristics (continued) Symbol CP3 3 4 5 6 7 Value Conditions1 Unit Min Typ Max — — — 1 pF RSW1 CC D Internal resistance of analog source — — — 3 k RSW2 CC D Internal resistance of analog source — — — 2 k RAD CC D Internal resistance of analog source — — — 2 k IINJ SR — Input current Injection Current injection on one ADC input, different from the converted one VDD = 3.3 V ± 10% 5 — 5 mA VDD = 5.0 V ± 10% 5 — 5 CC T Absolute value for integral non-linearity No overload — 0.5 1.5 LSB | DNL | CC T Absolute differential non-linearity No overload — 0.5 1.0 LSB | EO | CC T Absolute offset error — — 0.5 — LSB | EG | CC T Absolute gain error — — 0.6 — LSB TUEp CC P Total unadjusted error7 Without current injection for precise channels, T With current injection input only pins 2 0.6 2 LSB CC T Total unadjusted error7 Without current injection for extended channel T With current injection 3 TUEx 2 Parameter CC D ADC input pin capacitance 3 | INL | 1 C 3 4 3 1 3 LSB 4 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. Analog and digital VSS must be common (to be tied together externally). VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2. During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within ts. After the end of the sampling time ts, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock ts depend on programming. This parameter does not include the sampling time ts, but only the time for determining the digital result and the time to load the result’s register with the conversion result. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 77 Package pinouts and signal descriptions 3.27 On-chip peripherals 3.27.1 Current consumption Table 46. On-chip peripherals current consumption1 Symbol IDD_BV(CAN) IDD_BV(eMIOS) C Parameter CC T CAN (FlexCAN) supply current on VDD_BV Conditions Bitrate: Total (static + dynamic) 8 * fperiph + 85 500 Kbyte/s consumption: • FlexCAN in loop-back Bitrate: 8 * fperiph + 27 mode 125 Kbyte/s • XTAL @ 8 MHz used as CAN engine clock source • Message sending period is 580 µs CC T eMIOS supply current on Static consumption: VDD_BV • eMIOS channel OFF • Global prescaler enabled Dynamic consumption: • It does not change varying the frequency (0.003 mA) IDD_BV(SCI) CC T SCI (LINFlex) supply current on VDD_BV IDD_BV(SPI) CC T SPI (DSPI) supply current Ballast static consumption (only clocked) on VDD_BV Ballast dynamic consumption (continuous communication): • Baudrate: 2 Mbit/s • Transmission every 8 µs • Frame: 16 bits IDD_BV(ADC) CC T ADC supply current on VDD_BV Total (static + dynamic) consumption: • LIN mode • Baudrate: 20 Kbyte/s VDD = 5.5 V Ballast static consumption (no conversion) Ballast dynamic consumption (continuous conversion)3 IDD_HV_ADC(ADC) CC T ADC supply current on VDD_HV_ADC VDD = 5.5 V Analog static consumption (no conversion) Analog dynamic consumption (continuous conversion) IDD_HV(FLASH) IDD_HV(PLL) 1 2 Typical value2 Unit 29 * fperiph µA µA 3 5 * fperiph + 31 µA 1 µA 16 * fperiph 41 * fperiph µA 5 * fperiph 2 * fperiph µA 75 * fperiph + 32 CC T Code Flash + Data Flash VDD = 5.5 V supply current on VDD_HV — 8.21 mA CC T PLL supply current on VDD_HV — 30 * fperiph µA VDD = 5.5 V Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz fperiph is an absolute value. MPC5604B/C Microcontroller Data Sheet, Rev. 11 78 Freescale Semiconductor Package pinouts and signal descriptions 3 During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., (41 + 5) * fperiph. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 79 80 3.27.2 DSPI characteristics DSPI0/DSPI1 No. 1 MPC5604B/C Microcontroller Data Sheet, Rev. 11 — Symbol tSCK fDSPI C DSPI2 Parameter Unit Min Typ Max Min Typ Max Master mode (MTFE = 0) 125 — — 333 — — D Slave mode (MTFE = 0) 125 — — 333 — — D Master mode (MTFE = 1) 83 — — 125 — — D Slave mode (MTFE = 1) 83 — — 125 — — — — fCPU — — fCPU MHz — — 153 ns SR D SCK cycle time SR D DSPI digital controller frequency ns — tCSC CC D Internal delay between pad Master mode associated to SCK and pad associated to CSn in master mode for CSn10 — — 1302 — tASC CC D Internal delay between pad Master mode associated to SCK and pad associated to CSn in master mode for CSn11 — — 1303 — — 1303 ns 2 tCSCext4 SR D CS to SCK delay Slave mode 32 — — 32 — — ns 3 tASCext5 SR D After SCK delay Slave mode 1/fDSPI + 5 — — 1/fDSPI + 5 — — ns CC D SCK duty cycle Master mode — tSCK/2 — — tSCK/2 — ns SR D Slave mode tSCK/2 — — tSCK/2 — — 4 tSDC Freescale Semiconductor 5 tA SR D Slave access time Slave mode — — 1/fDSPI + 70 — — 1/fDSPI + 130 ns 6 tDI SR D Slave SOUT disable time Slave mode 7 — — 7 — — ns 7 tPCSC SR D PCSx to PCSS time 0 — — 0 — — ns 8 tPASC SR D PCSS to PCSx time 0 — — 0 — — ns 9 tSUI SR D Data setup time for inputs Master mode 43 — — 145 — — ns 5 — — 5 — — Slave mode Package pinouts and signal descriptions Table 47. DSPI characteristics1 81 Table 47. DSPI characteristics1 (continued) 10 Symbol tHI 11 tSUO7 12 tHO7 C SR D Data hold time for inputs Unit Min Typ Max Min Typ Max Master mode 0 — — 0 — — Slave mode 26 — — 26 — — — — 32 — — 50 — — 52 — — 160 0 — — 0 — — 8 — — 13 — — CC D Data valid after SCK edge Master mode Slave mode CC D Data hold time for outputs Master mode MPC5604B/C Microcontroller Data Sheet, Rev. 11 Slave mode 1 2 3 4 5 6 7 DSPI2 Parameter ns ns ns Operating conditions: CL = 10 to 50 pF, SlewIN = 3.5 to 15 ns. Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is asserted. DSPI2 has only SLOW SCK available. Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available. The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than tCSC to ensure positive tCSCext. The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than tASC to ensure positive tASCext. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR. SCK and SOUT configured as MEDIUM pad Package pinouts and signal descriptions DSPI0/DSPI1 No. Freescale Semiconductor Package pinouts and signal descriptions 2 3 PCSx 1 4 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 10 First Data SIN Last Data Data 12 First Data SOUT 11 Data Last Data Note: Numbers shown reference Table 47. Figure 24. DSPI classic SPI timing – master, CPHA = 0 PCSx SCK Output (CPOL = 0) 10 SCK Output (CPOL = 1) 9 SIN Data First Data 12 SOUT First Data Last Data 11 Data Last Data Note: Numbers shown reference Table 47. Figure 25. DSPI classic SPI timing – master, CPHA = 1 MPC5604B/C Microcontroller Data Sheet, Rev. 11 82 Freescale Semiconductor Package pinouts and signal descriptions 3 2 SS 1 4 SCK Input (CPOL = 0) 4 SCK Input (CPOL = 1) 5 First Data SOUT 9 6 Data Last Data Data Last Data 10 First Data SIN 11 12 Note: Numbers shown reference Table 47. Figure 26. DSPI classic SPI timing – slave, CPHA = 0 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 47. Figure 27. DSPI classic SPI timing – slave, CPHA = 1 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 83 Package pinouts and signal descriptions 3 PCSx 4 1 2 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN 10 First Data Last Data Data 12 SOUT 11 First Data Last Data Data Note: Numbers shown reference Table 47. Figure 28. DSPI modified transfer format timing – master, CPHA = 0 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) 10 9 SIN First Data Data 12 SOUT First Data Data Last Data 11 Last Data Note: Numbers shown reference Table 47. Figure 29. DSPI modified transfer format timing – master, CPHA = 1 MPC5604B/C Microcontroller Data Sheet, Rev. 11 84 Freescale Semiconductor Package pinouts and signal descriptions 3 2 SS 1 SCK Input (CPOL = 0) 4 4 SCK Input (CPOL = 1) First Data SOUT Data 6 Last Data 10 9 Data First Data SIN 12 11 5 Last Data Note: Numbers shown reference Table 47. Figure 30. DSPI modified transfer format timing – slave, CPHA = 0 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 First Data SOUT 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 47. Figure 31. DSPI modified transfer format timing – slave, CPHA = 1 MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 85 Package pinouts and signal descriptions 8 7 PCSS PCSx Note: Numbers shown reference Table 47. Figure 32. DSPI PCS strobe (PCSS) timing 3.27.3 Nexus characteristics Table 48. Nexus characteristics Value No. Symbol C Parameter Unit Min Typ Max 1 tTCYC CC D TCK cycle time 64 — — ns 2 tMCYC CC D MCKO cycle time 32 — — ns 3 tMDOV CC D MCKO low to MDO data valid — — 8 ns 4 tMSEOV CC D MCKO low to MSEO_b data valid — — 8 ns 5 tEVTOV CC D MCKO low to EVTO data valid — — 8 ns 10 tNTDIS CC D TDI data setup time 15 — — ns tNTMSS CC D TMS data setup time 15 — — ns tNTDIH CC D TDI data hold time 5 — — ns tNTMSH CC D TMS data hold time 5 — — ns 11 12 tTDOV CC D TCK low to TDO data valid 35 — — ns 13 tTDOI CC D TCK low to TDO data invalid 6 — — ns MPC5604B/C Microcontroller Data Sheet, Rev. 11 86 Freescale Semiconductor Package pinouts and signal descriptions TCK 10 11 TMS, TDI 12 TDO Note: Numbers shown reference Table 48. Figure 33. Nexus TDI, TMS, TDO timing 3.27.4 JTAG characteristics Table 49. JTAG characteristics Value No. Symbol C Parameter Unit Min Typ Max 1 tJCYC CC D TCK cycle time 64 — — ns 2 tTDIS CC D TDI setup time 15 — — ns 3 tTDIH CC D TDI hold time 5 — — ns 4 tTMSS CC D TMS setup time 15 — — ns 5 tTMSH CC D TMS hold time 5 — — ns 6 tTDOV CC D TCK low to TDO valid — — 33 ns 7 tTDOI CC D TCK low to TDO invalid 6 — — ns MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 87 Package characteristics TCK 2/4 DATA INPUTS 3/5 INPUT DATA VALID 6 DATA OUTPUTS OUTPUT DATA VALID 7 DATA OUTPUTS Note: Numbers shown reference Table 49. Figure 34. Timing diagram – JTAG boundary scan 4 Package characteristics 4.1 Package mechanical data MPC5604B/C Microcontroller Data Sheet, Rev. 11 88 Freescale Semiconductor Package characteristics 4.1.1 64 LQFP Figure 35. 64 LQFP package mechanical drawing (1 of 3) MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 89 Package characteristics Figure 36. 64 LQFP package mechanical drawing (2 of 3) MPC5604B/C Microcontroller Data Sheet, Rev. 11 90 Freescale Semiconductor Package characteristics Figure 37. 64 LQFP package mechanical drawing (3 of 3) MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 91 Package characteristics 4.1.2 100 LQFP Figure 38. 100 LQFP package mechanical drawing (1 of 3) MPC5604B/C Microcontroller Data Sheet, Rev. 11 92 Freescale Semiconductor Package characteristics Figure 39. 100 LQFP package mechanical drawing (2 of 3) MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 93 Package characteristics Figure 40. 100 LQFP package mechanical drawing (3 of 3) MPC5604B/C Microcontroller Data Sheet, Rev. 11 94 Freescale Semiconductor Package characteristics 4.1.3 144 LQFP Figure 41. 144 LQFP package mechanical drawing (1 of 2) MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 95 Package characteristics Figure 42. 144 LQFP package mechanical drawing (2 of 2) MPC5604B/C Microcontroller Data Sheet, Rev. 11 96 Freescale Semiconductor Package characteristics 4.1.4 208 MAPBGA Figure 43. 208 MAPBGA package mechanical drawing (1 of 2) MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 97 Package characteristics Figure 44. 208 MAPBGA package mechanical drawing (2 of 2) MPC5604B/C Microcontroller Data Sheet, Rev. 11 98 Freescale Semiconductor Ordering information 5 Ordering information Figure 45. Commercial product code structure Example code: M PC 56 0 4 B F1 M LL 4 R Qualification Status PowerPC Core Automotive Platform Core Version Flash Size (core dependent) Product Fab and Mask Indicator Temperature spec. Package Code Frequency R = Tape & Reel (blank if Tray) Qualification Status M = MC status S = Auto qualified P = PC status Flash Size (z0 core) 2 = 256 KB 3 = 384 KB 4 = 512 KB Temperature spec. C = 40 to 85 °C V = 40 to 105 °C M = 40 to 125 °C Automotive Platform 56 = PPC in 90nm Product B = Body C = Gateway Package Code LH = 64 LQFP LL = 100 LQFP LQ = 144 LQFP MG = 208 MAPBGA1 Core Version 0 = e200z0 1 Fab and Mask Indicator F = ATMC 1 = Maskset Revision Frequency 4 = Up to 48 MHz 6 = Up to 64 MHz 208 MAPBGA available only as development package for Nexus2+ 6 Document revision history Table 50 summarizes revisions to this document. Table 50. Revision history Revision 1 Date Description of Changes 04-Apr-2008 Initial release. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 99 Document revision history Table 50. Revision history (continued) Revision 2 Date Description of Changes 06-Mar-2009 Made minor editing and formatting changes to improve readability Harmonized oscillator naming throughout document Features: —Replaced 32 KB with 48 KB as max SRAM size —Updated description of INTC —Changed max number of GPIO pins from 121 to 123 Updated Section 1.2, Description Updated Table 2 Added Section 2, Block diagram Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these are found in the device reference manual) Updated Figure 5: —Replaced VPP with VSS_HV on pin 18 —Added MA[1] as AF3 for PC[10] (pin 28) —Added MA[0] as AF2 for PC[3] (pin 116) —Changed description for pin 120 to PH[10] / GPIO[122] / TMS —Changed description for pin 127 to PH[9] / GPIO[121] / TCK —Replaced NMI[0] with NMI on pin 11 Updated Figure 4: —Replaced VPP with VSS_HV on pin 14 —Added MA[1] as AF3 for PC[10] (pin 22) —Added MA[0] as AF2 for PC[3] (pin 77) —Changed description for pin 81 to PH[10] / GPIO[122] / TMS —Changed description for pin 88 to PH[9] / GPIO[121] / TCK —Removed E1UC[19] from pin 76 —Replaced [11] with WKUP[11] for PB[3] (pin 1) —Replaced NMI[0] with NMI on pin 7 Updated Figure 6: —Changed description for ball B8 from TCK to PH[9] —Changed description for ball B9 from TMS to PH[10] —Updated descriptions for balls R9 and T9 Added Section 3.10, Parameter classification and tagged parameters in tables where appropriate Added Section 3.11, NVUSRO register Updated Table 12 Section 3.13, Recommended operating conditions: Added note on RAM data retention to end of section Updated Table 13 and Table 14 Added Section 3.14.1, Package thermal characteristics Updated Section 3.14.2, Power considerations Updated Figure 7 MPC5604B/C Microcontroller Data Sheet, Rev. 11 100 Freescale Semiconductor Document revision history Table 50. Revision history (continued) Revision 2 (cont.) Date Description of Changes 06-Mar-2009 Updated Table 16, Table 17, Table 18, Table 19 and Table 20 Added Section 3.15.4, Output pin transition times Updated Table 23 Updated Figure 8 Updated Table 25 Section 3.17.1, Voltage regulator electrical characteristics: Amended description of LV_PLL Figure 10: Exchanged position of symbols CDEC1 and CDEC2 Updated Table 26 Added Figure 13 Updated Table 27 and Table 28 Updated Section 3.19, Flash memory electrical characteristics Added Section 3.20, Electromagnetic compatibility (EMC) characteristics Updated Section 3.21, Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Updated Section 3.22, Slow external crystal oscillator (32 kHz) electrical characteristics Updated Table 41, Table 42 and Table 43 Added Section 3.27, On-chip peripherals Added Table 44 Updated Table 45 Updated Table 47 Added Section Appendix A, Abbreviations MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 101 Document revision history Table 50. Revision history (continued) Revision 4 Date Description of Changes 06-Aug-2009 Updated Figure 6 Table 12 • VDD_ADC: changed min value for “relative to VDD” condition • VIN: changed min value for “relative to VDD” condition • ICORELV: added new row Table 14 • TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part: added new rows • Changed capacitance value in footnote Table 21 • MEDIUM configuration: added condition for PAD3V5V = 0 Updated Figure 10 Table 26 • CDEC1: changed min value • IMREG: changed max value • IDD_BV: added max value footnote Table 27 • VLVDHV3H: changed max value • VLVDHV3L: added max value • VLVDHV5H: changed max value • VLVDHV5L: added max value Updated Table 28 Table 30 • Retention: deleted min value footnote for “Blocks with 100,000 P/E cycles“ Table 38 • IFXOSC: added typ value Table 40 • VSXOSC: changed typ value • TSXOSCSU: added max value footnote Table 41 • tLTJIT: added max value Updated Figure 38 MPC5604B/C Microcontroller Data Sheet, Rev. 11 102 Freescale Semiconductor Document revision history Table 50. Revision history (continued) Revision 5 Date Description of Changes 02-Nov-2009 In the “MPC5604B/C series block summary” table, added a new row. In the “Absolute maximum ratings” table, changed max value of VDD_BV, VDD_ADC, and VIN. In the “Recommended operating conditions (3.3 V)” table, deleted min value of TVDD. In the “Reset electrical characteristics” table, changed footnotes 3 and 5. In the “Voltage regulator electrical characteristics” table: • CREGn: changed max value. • CDEC1: split into 2 rows. • Updated voltage values in footnote 4 In the “Low voltage monitor electrical characteristics” table: • Updated column Conditions. • VLVDLVCORL, VLVDLVBKPL: changed min/max value. In the “Program and erase specifications” table, added initial max value of Tdwprogram. In the “Flash module life” table, changed min value for blocks with 100K P/E cycles In the “Flash power supply DC electrical characteristics” table: • IFREAD, IFMOD: added typ value. • Added footnote 1. Added “NVUSRO[WATCHDOG_EN] field description” section. Section 4.18: “ADC electrical characteristics” has been moved up in hierarchy (it was Section 4.18.5). In the “ADC conversion characteristics” table, changed initial max value of RAD. In the “On-chip peripherals current consumption” table: • Removed min/max from the heading. • Changed unit of measurement and consequently rounded the values. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 103 Document revision history Table 50. Revision history (continued) Revision 6 Date Description of Changes 15-Mar-2010 In the “Introduction” section, relocated a note. In the “MPC5604B/C device comparison” table, added footnote regarding SCI and CAN. In the “Absolute maximum ratings” table, removed the min value of VIN relative to VDD. In the “Recommended operating conditions (3.3 V)” table: • TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part: added new rows. • TVDD: made single row. In the “LQFP thermal characteristics” table, added more rows. Removed “208 MAPBGA thermal characteristics” table. In the “I/O consumption” table: • Removed IDYNSEG row. • Added “I/O weight” table. In the “Voltage regulator electrical characteristics” table: • Updated the values. • Removed IVREGREF and IVREDLVD12. • Added a note about IDD_BC. In the “Low voltage monitor electrical characteristics” table: • Updated VPORH values. • Updated VLVDLVCORL value. Entirely updated the “Low voltage power domain electrical characteristics” table. In the “Program and erase specifications” table, inserted Teslat row. Entirely updated the “Flash power supply DC electrical characteristics” table. Entirely updated the “Start-up time/Switch-off time” table. In the “Crystal oscillator and resonator connection scheme” figure, relocated a note. In the “Slow external crystal oscillator (32 kHz) electrical characteristics” table: • Removed gmSXOSC row. • Inserted values of ISXOSCBIAS. Entirely updated the “Fast internal RC oscillator (16 MHz) electrical characteristics” table. In the “ADC conversion characteristics” table: updated the description of the conditions of tADC_PU and tADC_S. Entirely updated the “DSPI characteristics” table. In the “Orderable part number summary” table, modified some orderable part number. Updated the “Commercial product code structure” figure. Removed the note about the condition from “Flash read access timing” table Removed the notes that assert the values need to be confirmed before validation Exchanged the order of “LQFP 100-pin configuration” and “LQFP 144-pin configuration” Exchanged the order of “LQFP 100-pin package mechanical drawing” and “LQFP 144-pin package mechanical drawing” MPC5604B/C Microcontroller Data Sheet, Rev. 11 104 Freescale Semiconductor Document revision history Table 50. Revision history (continued) Revision Date 7 05-Jul-2010 Description of Changes Added 64 LQFP package information Updated the “Features” section. Figures “LQFP 100-pin configuration” and “LQFP 100-pin configuration”: removed alternate function information Added “Functional port pin descriptions” table Added eDMA block in the “MPC5604B/C series block diagram” figure Deleted the “NVUSRO[WATCHDOG_EN] field description” section In the “Recommended operating conditions (3.3 V)” and “Recommended operating conditions (5.0 V)” tables, deleted the conditions of TA C-Grade Part, TA V-Grade Part, TA M-Grade Part In the “LQFP thermal characteristics” table, rounded the values. In the “RESET electrical characteristics” section, replaced “nRSTIN” with “RESET”. In the “I/O input DC electrical characteristics” table: • WFI: inserted a footnote • WNFI: inserted a footnote In the “Low voltage monitor electrical characteristics” table: • changed min value VLVDHV3L, from 2.7 to 2.6 • Inserted max value of VLVDLVCORL In the “FMPLL electrical characteristics” table, rounded the values of fVCO. In the “DSPI characteristics” table: • Added tASC row • Update values of tA In the “ADC conversion characteristics” table, added “IADCPWD” and “IADCRUN” rows Removed “Orderable part number summary” table. 8 25-Nov-2010 Editorial changes and improvements. In the “MPC5604B/C device comparison” table, changed the temperature value from 105 to 125 °C, in the footnote regarding “Execution speed”. In the “Recommended operating conditions (3.3 V)” and “Recommended operating conditions (5.0 V)” tables, restored the conditions of TA C-Grade Part, TA V-Grade Part, TA M-Grade Part In the “LQFP thermal characteristics” table, added values concerning 64 LQFP package. In the “MEDIUM configuration output buffer electrical characteristics” table: fixed a typo in last row of conditions column, there was IOH that now is IOL. In the “Reset electrical characteristics” table, changed the parameter classification tag for VOL and |IWPU|. In the “Low voltage monitor electrical characteristics” table, changed the max value of VLVDLVCORL from 1.5V to 1.15V. In the “Program and erase specifications” table, replaced “Teslat” with “Tesus”. In the “FMPLL electrical characteristics” table, changed the parameter classification tag for fVCO. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 105 Document revision history Table 50. Revision history (continued) Revision 9 Date Description of Changes 16 June 2011 Formatting and minor editorial changes throughout Harmonized oscillator nomenclature Removed all instances of note “All 64 LQFP information is indicative and must be confirmed during silicon validation.” Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration: renamed pin 6 from VPP_TEST to VSS_HV Removed “Pin Muxing” section; added sections “Pad configuration during reset phases”, “Voltage supply pins”, “Pad types”, “System pins,” “Functional ports”, and “Nexus 2+ pins” Section “NVUSRO register”: edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of ‘1’ in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN] Added section “NVUSRO[WATCHDOG_EN] field description” Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics I/O input DC electrical characteristics: updated ILKG characteristics Section “I/O pad current specification”: removed content referencing the IDYNSEG maximum value I/O consumption: replaced instances of “Root medium square” with “Root mean square” I/O weight: replaced instances of bit “SRE” with “SRC”; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package Reset electrical characteristics: updated parameter classification for |IWPU| Updated Voltage regulator electrical characteristics Section “Low voltage detector electrical characteristics”: changed title (was “Voltage monitor electrical characteristics”); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of “Low voltage monitor” with “Low voltage detector”; updated values for VLVDLVBKPL and VLVDLVCORL; replaced “LVD_DIGBKP” with “LVDLVBKP” in note Updated section “Power consumption” Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter classification for VFXOSCOP Crystal oscillator and resonator connection scheme: added footnote about possibility of adding a series resistor Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1 FMPLL electrical characteristics: added short term jitter characteristics; inserted “—” in empty min value cell of tlock row Section “Input impedance and ADC accuracy”: changed “VA/VA2” to “VA2/VA” in Equation 11 ADC input leakage current: updated ILKG characteristics ADC conversion characteristics: updated symbols On-chip peripherals current consumption: changed “supply current on “VDD_HV_ADC” to “supply current on” VDD_HV” in IDD_HV(FLASH) row; updated IDD_HV(PLL) value—was 3 * fperiph, is 30 * fperiph; updated footnotes DSPI characteristics: added rows tPCSC and tPASC Added DSPI PCS strobe (PCSS) timing diagram MPC5604B/C Microcontroller Data Sheet, Rev. 11 106 Freescale Semiconductor Document revision history Table 50. Revision history (continued) Revision Date Description of Changes 10 15 Oct 2012 Table 1 (MPC5604B/C device comparison), added footnote for MPC5603BxLH and MPC5604BxLH about FlexCAN availability. Table 3 (MPC5604B/C series block summary), replaced “System watchdog timer” with “Software watchdog timer” and specified AUTOSAR (Automotive Open System Architecture) Table 6 (Functional port pin descriptions): replaced footnote “Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices” with “Available only on MPC560xC versions, MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices”, replaced VDD with VDD_HV Figure 10 (Voltage regulator capacitance connection), updated pin name apperence Renamed Figure 11 (VDD_HV and VDD_BV maximum slope) (was “VDD and VDD_BV maximum slope”) Renamed Figure 12 (VDD_HV and VDD_BV supply constraints during STANDBY mode exit) (was “VDD and VDD_BV supply constraints during STANDBY mode exit”) Table 13 (Recommended operating conditions (3.3 V)), added minimum value of TVDD and footnote about it. Table 14 (Recommended operating conditions (5.0 V)), added minimum value of TVDD and footnote about it. Section 3.17.1, “Voltage regulator electrical characteristics: replaced “slew rate of VDD/VDD_BV” with “slew rate of both VDD_HV and VDD_BV” replaced “When STANDBY mode is used, further constraints apply to the VDD/VDD_BV in order to guarantee correct regulator functionality during STANDBY exit.” with “When STANDBY mode is used, further constraints are applied to the both VDD_HV and VDD_BV in order to guarantee correct regulator function during STANDBY exit.” Table 28 (Power consumption on VDD_BV and VDD_HV), updated footnotes of IDDMAX and IDDRUN stating that both currents are drawn only from the VDD_BV pin. Table 32 (Flash memory power supply DC electrical characteristics), in the paremeter column replaced VDD_BV and VDD_HV respectively with VDD_BV and VDD_HV. Table 46 (On-chip peripherals current consumption), in the paremeter column replaced VDD_BV, VDD_HV and VDD_HV_ADC respectively with VDD_BV, VDD_HV and VDD_HV_ADC Updated Section 3.26.2, “Input impedance and ADC accuracy Table 47 (DSPI characteristics), modified symbol for tPCSC and tPASC 11 14 Nov 2012 In the cover feature list: added “and ECC” at the end of “Up to 512 KB on-chip code flash supported with the flash controller” added “with ECC” at the end of “Up to 48 KB on-chip SRAM” Table 13 (Recommended operating conditions (3.3 V)), removed minimum value of TVDD and relative footnote. Table 14 (Recommended operating conditions (5.0 V)), removed minimum value of TVDD and relative footnote. MPC5604B/C Microcontroller Data Sheet, Rev. 11 Freescale Semiconductor 107 Abbreviations Appendix A Abbreviations Table A-1 lists abbreviations used but not defined elsewhere in this document. Table A-1. Abbreviations Abbreviation Meaning CMOS Complementary metal–oxide–semiconductor CPHA Clock phase CPOL Clock polarity CS Peripheral chip select EVTO Event out MCKO Message clock out MDO Message data out MSEO Message start/end out MTFE Modified timing format enable SCK Serial communications clock SOUT Serial data out TBD To be defined TCK Test clock input TDI Test data input TDO Test data output TMS Test mode select MPC5604B/C Microcontroller Data Sheet, Rev. 11 108 Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2012. All rights reserved. MPC5604BC Rev. 11 12/2012