IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) - 200 RDS(on) (Ω) VGS = - 10 V 1.5 Qg (Max.) (nC) 20 Qgs (nC) 3.3 Qgd (nC) 11 Configuration Single S DPAK (TO-252) IPAK (TO-251) • • • • • • • • Dynamic dV/dt Rating Repetitive Avalanche Rated Surface Mount (IRFR9220/SiHFR9220) Straight Lead (IRFUFU9220/SiHFU9220) Available in Tape and Reel P-Channel Fast Switching Lead (Pb)-free Available Available RoHS* COMPLIANT DESCRIPTION G D P-Channel MOSFET Third Power MOSFETs technology is the key to Vishay advanced line of Power MOSFET transistors. The efficient geometry and unique processing of the Power MOSFETs design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness. The DPAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU/SiHFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 W are possible in typical surface mount applications. ORDERING INFORMATION Package Lead (Pb)-free SnPb DPAK (TO-252) IRFR9220PbF SiHFR9220-E3 IRFR9220 SiHFR9220 DPAK (TO-252) IIRFR9220TRLPbFa SiHFR9220TL-E3a IRFR9220TRLa SiHFR9220TLa DPAK (TO-252) IRFR9220TRRPbFa SiHFR9220TR-E3a IRFR9220TRRa SiHFR9220TRa DPAK (TO-252) IRFR9220TRPbFa SiHFR9220T-E3a IRFR9220TRa SiHFR9220Ta IPAK (TO-251) IRFU9220PbF SiHFU9220-E3 IRFU9220 SiHFU9220 Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current SYMBOL VDS VGS VGS at - 10 V TC = 25 °C TC = 100 °C ID Pulsed Drain Currenta IDM Linear Derating Factor Linear Derating Factor (PCB Mount)e EAS Single Pulse Avalanche Energyb Repetitive Avalanche Currenta IAR EAR Repetitive Avalanche Energya Maximum Power Dissipation TC = 25 °C PD TA = 25 °C Maximum Power Dissipation (PCB Mount)e c dV/dt Peak Diode Recovery dV/dt Operating Junction and Storage Temperature Range TJ, Tstg Soldering Recommendations (Peak Temperature) for 10 s Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = - 50 V, Starting TJ = 25 °C, L = 35 mH, RG = 25 Ω, IAS = - 3.6 A (see fig. 12). c. ISD ≤ - 3.9 A, dI/dt ≤ 95 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. e. When mounted on 1" square PCB (FR-4 or G-10 material). LIMIT - 200 ± 20 - 3.6 - 2.3 - 14 0.33 0.020 310 - 3.6 4.2 42 2.5 - 5.0 - 55 to + 150 260d UNIT V A W/°C mJ A mJ W V/ns °C www.kersemi.com 1 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 THERMAL RESISTANCE RATINGS PARAMETER SYMBOL MIN. TYP. MAX. Maximum Junction-to-Ambient RthJA - - 110 Maximum Junction-to-Ambient (PCB Mount)a RthJA - - 50 Maximum Junction-to-Case (Drain) RthJC - - 3.0 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = - 250 µA - 200 - - V ΔVDS/TJ Reference to 25 °C, ID = - 1 mA - - 0.22 - V/°C VGS(th) VDS = VGS, ID = - 250 µA - 2.0 - - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = - 200 V, VGS = 0 V - - - 100 VDS = - 160 V, VGS = 0 V, TJ = 125 °C - - - 500 Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = - 2.2 Ab VGS = - 10 V VDS = - 50 V, ID = - 2.2 A µA - - 1.5 Ω 1.1 - - S - 340 - - 110 - - 33 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time VGS = 0 V, VDS = - 25 V, f = 1.0 MHz, see fig. 5 pF - - 20 - - 3.3 Qgd - - 11 td(on) - 8.8 - tr - 27 - - 7.3 - - 19 - - 4.5 - - 7.5 - - - - 3.6 - - - 14 - - - 6.3 V - 150 300 ns - 0.97 2.0 µC td(off) VGS = - 10 V ID = - 3.9 A, VDS = - 160 V, see fig. 6 and 13b VDD = - 100 V, ID = - 3.9 A, RG = 18 Ω, RD = 24 Ω, see fig. 10b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D nC ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode A G TJ = 25 °C, IS = - 3.6 A, VGS = 0 S Vb TJ = 25 °C, IF = - 3.9 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. www.kersemi.com 2 D IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted Fig. 1 - Typical Output Characteristics, TC = 25 °C Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics, TC = 150 °C Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.kersemi.com 4 Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 8 - Maximum Safe Operating Area IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 RD VDS VGS D.U.T. RG +VDD - 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit td(on) tr td(off) tf VGS 10 % 90 % VDS Fig. 9 - Maximum Drain Current vs. Case Temperature Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 L VDS IAS + VDD A D.U.T. RG IAS - 20 V tp Driver 0.01 Ω tp 15 V VDS Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG - 10 V 12 V 0.2 µF 0.3 µF QGS - QGD D.U.T. VG + VDS VGS - 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.kersemi.com 6 Fig. 13b - Gate Charge Test Circuit IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 Peak Diode Recovery dV/dt Test Circuit D.U.T. + Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG + • dV/dt controlled by RG • ISD controlled by duty factor "D" • D.U.T. - device under test + - VDD Compliment N-Channel of D.U.T. for driver Driver gate drive P.W. Period D= P.W. Period VGS = - 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % * ISD VGS = - 5 V for logic level and - 3 V drive devices Fig. 14 - For P-Channel www.kersemi.com 7