SCHS354 − AUGUST 2004 D Matched Switching Characteristics, Features D Qualification in Accordance With D D D D D D AEC-Q100† Qualified for Automotive Applications Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval Wide Range of Digital and Analog Signal Levels − Digital: 3 V to 20 V − Analog: 3 20 VP-P Low ON Resistance, 125 Ω (Typ) Over 15 VP-P Signal Input Range for VDD − VEE = 18 V High OFF Resistance, Channel Leakage of +100 pA (Typ) at VDD − VEE = 18 V Logic-Level Conversion for Digital Addressing Signals of 3 V to 20 V (VDD − VSS = 3 V to 20 V) to Switch Analog Signals to 20 VP-P (VDD − VEE = 20 V) † Contact factory for details. Q100 qualification data available on request. D D D D D D ron = 5 Ω (Typ) for VDD − VEE = 15 V Very Low Quiescent Power Dissipation Under All Digital-Control Input and Supply Conditions, 0.2 µW (Typ) at VDD − VSS = VDD − VEE = 10 V Binary Address Decoding on Chip 5-V, 10-V, and 15-V Parametric Ratings 100% Tested for Quiescent Current at 20 V Maximum Input Current of 1µA at 18 V Over Full Package Temperature Range, 100 nA at 18 V and 25°C Break-Before-Make Switching Eliminates Channel Overlap Applications D Analog and Digital Multiplexing and Demultiplexing D Analog-to-Digital (A/D) and D Digital-to-Analog (D/A) Conversion Signal Gating description/ordering information The CD4051B, CD4052B, and CD4053B analog multiplexers are digitally-controlled analog switches that have low ON impedance and very low OFF leakage current. Control of analog signals up to 20 VP-P can be achieved by digital signal amplitudes of 4.5 V to 20 V (If VDD − VSS = 3 V, a VDD − VEE of up to 13 V can be controlled; for VDD − VEE level differences above 13 V, a VDD − VSS of at least 4.5 V is required). For example, if VDD = 4.5 V, VSS = 0 V, and VEE = −13.5 V, analog signals from −13.5 V to 4.5 V can be controlled by digital inputs of 0 V to 5 V. These multiplexer circuits dissipate extremely low quiescent power over the full VDD − VSS and VDD − VEE supply-voltage ranges, independent of the logic state of the control signals. When a logic high (H) is present at the inhibit (INH) input, all channels are off. ORDERING INFORMATION PACKAGE‡ TA −40°C to 125°C ORDERABLE PART NUMBER TOP-SIDE MARKING SOIC − M Reel of 2500 CD4051BQM96Q1 CD4051Q TSSOP − PW Reel of 2000 CD4051BQPWRQ1 CM051BQ SOIC − M Reel of 2500 CD4052BQM96Q1§ CD4052Q TSSOP − PW Reel of 2000 CD4052BQPWRQ1§ CD4052Q SOIC − M Reel of 2500 CD4053BQM96Q1 CD4053Q TSSOP − PW Reel of 2000 CD4053BQPWRQ1§ CD4053Q ‡ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. § Product Preview Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2004, Texas Instruments Incorporated !"#$ %&'()*+! '&+!,#+$ #+-&.),!#&+ '(..*+! ,$ &- /(01#',!#&+ %,!*2 .&%('!$ '&+-&.) !& $/*'#-#',!#&+$ /*. !"* !*.)$ &- *3,$ +$!.()*+!$ $!,+%,.% 4,..,+!52 .&%('!#&+ /.&'*$$#+6 %&*$ +&! +*'*$$,.#15 #+'1(%* !*$!#+6 &- ,11 /,.,)*!*.$2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCHS354 − AUGUST 2004 description/ordering information (continued) The CD4051B is a single eight-channel multiplexer that has three binary control inputs (A, B, and C) and an inhibit input. The three binary signals select one of eight channels to be turned on and connect one of the eight inputs to the output. The CD4052B is a differential four-channel multiplexer that has two binary control inputs (A and B) and an inhibit input. The two binary input signals select one of four pairs of channels to be turned on and connect the analog inputs to the outputs. The CD4053B is a triple two-channel multiplexer with three separate digital control inputs (A, B, and C) and an inhibit input. Each control input selects one of a pair of channels, which are connected in a single-pole, double-throw configuration. When these devices are used as demultiplexers, the CHANNEL IN/OUT terminals are the outputs, and the common (COM OUT/IN) terminals are the inputs. CD4051 M OR PW PACKAGE (TOP VIEW) CHANNEL I/O 4 CHANNEL I/O 6 COM OUT/IN CHANNEL I/O 7 CHANNEL I/O 5 INH VEE VSS 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 CD4052 M OR PW PACKAGE (TOP VIEW) VDD CHANNEL I/O 2 CHANNEL I/O 1 CHANNEL I/O 0 CHANNEL I/O 3 A B C Y CHANNEL I/O 0 Y CHANNEL I/O 2 COM Y OUT/IN Y CHANNEL I/O 3 Y CHANNEL I/O 1 INH VEE VSS CD4053 M OR PW PACKAGE (TOP VIEW) IN/OUT by IN/OUT bx IN/OUT cy OUT/IN CX OR CY IN/OUT CX INH VEE VSS 2 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 POST OFFICE BOX 655303 VDD OUT/IN bx or by OUT/IN ax or ay IN/OUT ay IN/OUT ax A B C • DALLAS, TEXAS 75265 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 VDD X CHANNEL I/O 2 X CHANNEL I/O 1 COM X OUT/IN X CHANNEL I/O 0 X CHANNEL I/O 3 A B SCHS354 − AUGUST 2004 Function Tables CD4051 INPUTS B ON CHANNEL INH C L L L L 0 L L L H 1 L L H L 2 L L H H 3 L H L L 4 L H L H 5 L H H L 6 L H H H 7 H X X X None A X = don’t care CD4052 INPUTS INH B A ON CHANNEL L L L 0x, 0y L L H 1x, 2y L H L 2x, 2y L H H 3x, 3y H X X None X = don’t care CD4053 INPUTS INH A OR B OR C ON CHANNEL L L ax or bx or cx L H ay or by or cy H X None X = don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SCHS354 − AUGUST 2004 logic diagram (positive logic) CD4051B CHANNEL I/O 16 VDD 7 6 5 4 3 2 1 0 4 2 5 1 12 15 14 13 TG TG A† 11 TG Binary to 1-of-8 Decoder With Inhibit B† 10 Logic-Level Conversion C† 9 TG 3 COM OUT/IN TG TG TG INH† 6 TG 8 VSS 7 VEE † All inputs are protected by CMOS protection network. CD4052B X CHANNEL I/O 3 2 1 0 11 15 14 12 TG VDD 16 TG TG A† 10 B† 9 Binary to 1-of-4 Decoder With Inhibit Logic-Level Conversion INH† 6 TG 13 COM X TG 3 TG TG TG 8 VSS 7 VEE 1 5 2 4 0 1 2 3 Y CHANNEL I/O † All inputs are protected by CMOS protection network. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 OUT/IN COM Y OUT/IN SCHS354 − AUGUST 2004 logic diagrams (positive logic) (continued) CD4053B IN/OUT 16 VDD A† 11 cy cx by bx ay ax 3 5 1 2 13 12 Binary to 1-of-2 Decoders With Inhibit Logic-Level Conversion TG COM OUT/IN ac or ay 14 TG TG B† 10 COM OUT/IN bc or by 15 TG C† TG 9 COM OUT/IN xc or xy 4 TG INH† 6 VDD 8 VSS 7 VEE † All inputs are protected by standard CMOS protection network. absolute maximum ratings over operating free-air temperature (unless otherwise noted)‡ Supply voltage range, V+ to V− (voltages referenced to VSS terminal) . . . . . . . . . . . . . . . . . . . . . −0.5 to 20 V DC input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VDD + 0.5 V DC input current, any one input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA Package thermal impedance, θJA (see Note 1): M package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Lead temperature (during soldering): At distance 1/16 ± 1/32 inch (1,59 ± 0,79 mm) from case for 10 s max . . . . . . . . . . . . . . . . . . . . . . . 265°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C ĕ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SCHS354 − AUGUST 2004 recommended operating conditions MIN VDD Supply voltage TA Operating free-air temperature MAX UNIT 5 20 V −40 125 °C electrical characteristics, VSUPPLY = ±5 V, AV = 1 V, RL = 100 Ω, unless otherwise noted (see Note 2) PARAMETER IDD VDD (V) TEST CONDITIONS Quiescent device current LIMITS AT INDICATED TEMPERATURES UNIT 25°C −40°C 125°C 5 5 150 0.04 5 10 10 300 0.04 10 15 20 600 0.04 20 20 100 3000 0.08 100 MIN TYP MAX µA A Signal Input (Vis) and Output (Vos) ron ∆ron Drain-to-source ON-state resistance ON-state resistance difference between any two switches VEE = 0 V, VSS = 0 V, VIS = 0 to VDD VEE = 0 V, VSS = 0 V 5 850 1300 470 1050 10 330 550 180 400 15 210 320 125 240 5 15 10 10 15 5 Cis Input capacitance Cos Output capacitance VEE = −5 V, VSS = −5 V Cios Feedthrough capacitance VEE = −5 V, VSS = −5 V 5 0.2 5 30 60 tpd Propagation delay (signal input to output) VIS(p-p) = VDD, RL = 200 kΩ, kΩ CL = 50 pF, tr, tf = 20 ns 10 15 30 15 10 20 18 5 CD4051 CD4052 ±1 ±10−5 ±0.1 5 µA pF 18 pF 9 NOTES: 2. Peak-to-peak voltage symmetrical about VDD − VEE 2 3. Determined by minimum feasible leakage measurement for automatic testing POST OFFICE BOX 655303 ±0.1 30 5 CD4053 6 Ω Any channel OFF (MAX) or all channels OFF (COM OUT/IN) (Max), VEE = 0 V, VSS = 0 V, See Note 3 VEE = −5 V, VSS = −5 V Input/output leakage current (switch off) Ω • DALLAS, TEXAS 75265 pF ns SCHS354 − AUGUST 2004 electrical characteristics, VSUPPLY = ±5 V, AV = 1 V, RL = 100 Ω, unless otherwise noted (see Note 2) (continued) PARAMETER TEST CONDITIONS VEE (V) VDD (V) LIMITS AT INDICATED TEMPERATURES UNIT 25°C −40°C 125°C MIN TYP MAX Control (Address or Inhibit), VC VIL VIH IIN tpd1 tpd2 tpd3 CIN VSS 5 1.5 1.5 1.5 Input low voltage VIL = VDD through 1k 1kΩ,, VIH = VDD through 1kΩ, 1k , RL = 1kΩ to VSS, Iis < 2 µA on all OFF channels VSS 10 3 3 3 VSS 15 4 4 VSS 5 3.5 3.5 Input high voltage VIL = VDD through 1k 1kΩ,, VIH = VDD through 1kΩ, 1k , RL = 1kΩ to VSS, Iis < 2 µA on all OFF channels VSS 10 7 7 7 VSS 15 11 11 11 18 ±0.1 ±1 Input current VIN = 0 V, 18 V Address-to-signal OUT (channels ON or OFF) propagation delay tr, tf = 20 ns, CL = 50 pF, RL = 10 kΩ, VSS = 0 V, See Figure 10, Figure 11, and Figure 14 Inhibit-to-signal OUT (channel turning ON) propagation delay tr, tf = 20 ns, CL = 50 pF, RL = 1 kΩ, VSS = 0 V, V See Figure 11 Inhibit-to-signal OUT (channel turning OFF) propagation delay tr, tf = 20 ns, CL = 50 pF, RL = 10 kΩ, VSS = 0 V, V See Figure 15 4 3.5 V ±10−5 ±0.1 0 5 450 720 0 10 160 320 0 15 120 240 −5 5 225 450 0 5 400 720 0 10 160 320 0 15 120 240 −10 5 200 400 0 5 200 450 0 10 90 210 0 15 70 160 −10 5 130 300 5 7.5 Input capacitance, any address or inhibit input V µA ns ns ns pF NOTES: 2: Peak-to-peak voltage symmetrical about VDD − VEE 2 3: Determined by minimum feasible leakage measurement for automatic testing POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SCHS354 − AUGUST 2004 electrical specifications PARAMETER VIS (V) TEST CONDITIONS VDD (V) LIMITS AT INDICATED TEMPERATURES MIN −3-dB cutoff frequency, channel ON (sine-wave input) THD Total harmonic distortion RL = 1 kΩ, k , VOS at COM OUT/IN, See Note 2, VOS at COM OUT/IN VEE = VSS, 20log VOS/VIS = −3 dB, VOS at any channel 5 10 30 CD4052 5 10 25 CD4051 5 10 20 RL = 10 kΩ, See Note 2 2 5 3 10 0.2 5 15 0.12 RL = 1 kΩ, VOS at COM OUT/IN, See Note 2 VEE = VSS, 20log VOS/VIS = −40 dB, Between sections, Measured on any channel 5 10 8 CD4052 5 10 10 CD4051 5 10 12 % MHz 8 5 10 3 6 CD4052 10 MHz VEE = VSS, 20log VOS/VIS = −40 dB, Between any two sections, In pin 2, Out pin 14 2.5 CD4053 RL = 10 kΩ, See Note 4 6 10 VEE = 0 V, VSS = 0 V, tr, tf = 20 ns, VCC = VDD − VSS (square wave) 65 65 NOTES: 2. Peak-to-peak voltage symmetrical about VDD − VEE 2 4. Both ends of channel POST OFFICE BOX 655303 0.3 CD4053 VEE = VSS, 20log VOS/VIS = −40 dB, VOS at any channel VEE = VSS, 20log VOS/VIS = −40 dB, Between any two sections, In pin 15, Out pin 14 8 MHz 0.12 VEE = VSS, 20log VOS/VIS = −40 dB, Between sections, Measured on common Address or inhibit to signal crosstalk MAX 60 RL = 1 kΩ, between any two channels, See Note 2 −40-dB signal crosstalk frequency TYP CD4053 VEE = VSS, fis = 1-kHz sine wave −40-dB feedthrough frequency (all channels OFF) UNIT 25°C • DALLAS, TEXAS 75265 mVPEAK SCHS354 − AUGUST 2004 TYPICAL CHARACTERISTICS 600 Supply Voltage (VDD − VEE) = 5 V 500 TA = 125°C CHANNEL ON-STATE RESISTANCE vs INPUT SIGNAL VOLTAGE 400 300 25°C 200 −55°C 100 0 −4 −3 −2 −1 0 1 2 3 4 ron − Channel ON−State Resistance − W ron − Channel ON−State Resistance − W CHANNEL ON-STATE RESISTANCE vs INPUT SIGNAL VOLTAGE 300 Supply Voltage (VDD − VEE) = 10 V 250 TA = 125°C 200 25°C 150 −55°C 100 50 0 −10 −7.5 −5 Vis − Input Signal Voltage − V −2.5 0 2.5 5 7.5 Vis − Input Signal Voltage − V 92CS-27326RI 92CS-27327RI Figure 1 Figure 2 CHANNEL ON-STATE RESISTANCE vs INPUT SIGNAL VOLTAGE TA = 25°C 300 Supply Voltage (VDD − VEE) = 5 V 200 150 100 10 V 15 V 50 0 −10 −7.5 −5 −2.5 0 2.5 5 7.5 Vis − Input Signal Voltage − V 10 92CS-27330RI ron − Channel ON−State Resistance − W ron − Channel ON−State Resistance − W CHANNEL ON-STATE RESISTANCE vs INPUT SIGNAL VOLTAGE 250 10 Supply Voltage (VDD − VEE) = 15 V 300 250 200 TA = 125°C 150 25°C 100 −55°C 50 0 −10 −7.5 −5 −2.5 0 2.5 5 Vis − Input Signal Voltage − V Figure 3 7.5 10 92CS-27329RI Figure 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SCHS354 − AUGUST 2004 TYPICAL CHARACTERISTICS DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4051B) PD − Power Dissipation Per Package − mW ON CHARACTERISTICS FOR 1-OF-8 CHANNELS (CD4051B) Vos − Output Signal Voltage − V 6 VDD = 5 V RL = 100 kW, RL = 10 kW VSS = 0 V 4 1 kW 500 W VEE = −5 V 100 W TA = 255C 2 0 −2 −4 −6 −6 −4 −2 0 2 4 6 10 5 TA = 255C Alternating O Test Circuit VDD and I Pattern 10 4 VDD = 10 V 10 2 VDD = 5 V 100 Ω 10 1 10 2 10 CD4029 B/D A B 100 Ω 10 9 1 5 2 4 CD4052 10 3 VDD = 10 V VDD = 5 V 6 7 3 CL 13 12 14 15 11 8 CL = 15 pF Ι 10 3 10 4 10 5 PD − Power Dissipation Per Package − mW VDD VDD = 15 V 100 Ω PD − Power Dissipation Per Package − mW f 10 2 10 5 VDD = 15 V TA = 255C Alternating O VDD = 10 V and I Pattern 10 4 CL = 50 pF VDD f VDD = 5 V 10 2 CL = 15 pF 9 3 5 10 1 10 10 2 10 3 f − Switching Frequency − kHz Figure 7 Figure 8 POST OFFICE BOX 655303 Test Circuit 4 CL 12 13 100 W CD4053 2 10 1 11 15 6 14 7 8 Ι 100 W 10 3 f − Switching Frequency − kHz 10 10 5 DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4053B) Test Circuit CL = 50 pF 10 10 4 Figure 6 and ÒIÓ Pattern 1 10 3 f − Switching Frequency − kHz TA = 255C Alternating ÒOÓ 10 Ι CL = 15 pF DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4052B) 10 2 13 14 15 12 CD4051 1 5 3 2 4 8 7 6 CL 10 3 Figure 5 10 4 VDD 100 Ω 11 10 9 VDD = 15 V Vis − Input Signal Voltage − V 10 5 B/D CD4029 A B C f CL = 50 pF • DALLAS, TEXAS 75265 10 4 10 5 SCHS354 − AUGUST 2004 PARAMETER MEASUREMENT INFORMATION VDD = 15 V VDD = 7.5 V VDD = 5 V 5V 7.5 V 16 7 8 VSS = 0 V VEE = –7.5 V 5V 16 16 7 8 VEE = –10 V 7 8 VEE = –5 V 7 8 (D) (C) (B) (A) 16 VSS = 0 V VSS = 0 V VSS = 0 V VEE = 0 V VDD = 5 V NOTE: The A, B, C, and INH input logic levels are L = VSS and H = VDD. The analog signal (through the TG) may swing from VEE to VDD. Figure 9. Typical Bias-Voltage Test Circuits tr = 20 ns 90% 50% 90% 50% 10% tr = 20 ns tf = 20 ns 10% 90% 50% 10% tf = 20 ns 90% 50% 10% Turn-On Time 90% 50% 90% 10% 10% 10% Turn-Off Time Turn-Off Time Turn-On Time tPHZ Figure 10. Channel Turned ON Waveforms (RL = 1 kΩ) POST OFFICE BOX 655303 Figure 11. Channel Turned OFF Waveforms (RL = 1 kΩ) • DALLAS, TEXAS 75265 11 SCHS354 − AUGUST 2004 PARAMETER MEASUREMENT INFORMATION 1 2 3 4 5 6 7 16 15 14 13 12 11 10 8 9 VDD VDD VDD 1 2 3 4 5 6 7 8 IDD CD4051 16 15 14 13 12 11 10 CD40529 1 2 3 4 5 6 7 8 IDD 16 15 14 13 12 11 10 9 IDD CD4053 CD4052 Figure 12. OFF Channel Leakage Current, Any Channel OFF VDD 1 2 3 4 5 6 7 8 IDD VDD VDD 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 IDD 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 CD4052 CD4051 16 15 14 13 12 11 10 9 IDD CD4053 Figure 13. OFF Channel Leakage Current, All Channels OFF VDD VDD 1 2 3 4 5 6 7 VDD VEE 16 15 14 13 12 11 10 8 Output RL Output Output CL CL RL VDD VEE VDD VSS 9 VEE VEE Clock In 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 VDD VEE VDD VSS VSS VSS VSS CD4051 CD4052 Clock In 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 RL CL VEE VDD VSS Clock In VSS CD4053 VSS VSS Figure 14. Propagation Delay, Address Input to Signal Output 50 pF RL VDD VSS VEE VDD Clock In VEE VSS 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 VDD Output VDD Output 50 pF RL VEE VDD VDD VSS Clock In VEE VSS 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 Output RL 50 pF VEE VDD VDD VSS Clock In VEE VSS tPHL and tPLH VSS tPHL and tPLH VSS CD4052 CD4051 Figure 15. Propagation Delay, Inhibit Input to Signal Output 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 tPHL and tPLH VSS CD4053 VDD SCHS354 − AUGUST 2004 PARAMETER MEASUREMENT INFORMATION VDD VDD VDD µA VIH 1K 1K VIH VIL 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 CD4051B VIH VIL 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 1K 1K µA VIH 1K VIL VIH 16 15 14 13 12 11 10 9 1K mA VIH VIL CD4053B CD4052B VIL 1 2 3 4 5 6 7 8 VIL Measure <2 mA on All OFF Channels (e.g., Channel 2x) Measure <2 mA on All OFF Channels (e.g., Channel 6) Measure <2 mA on All OFF Channels (e.g., Channel by) Figure 16. Input-Voltage Test Circuit (Noise Immunity) VDD VDD 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 Ι CD4051 CD4053 Ι 16 15 14 13 12 11 10 9 CD4052 Figure 17. Quiescent Device Current Keithley 610 Digital Multimeter VDD TG On 10 kW 1-kW Range Y X−Y Plotter VSS H.P. Moseley 7030A X Figure 18. Channel ON-Resistance Test Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SCHS354 − AUGUST 2004 PARAMETER MEASUREMENT INFORMATION VDD 1 2 3 4 5 6 7 8 VSS VDD 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 VDD Ι VSS CD4051 CD4053 VSS NOTE: Measure inputs sequentially to both VDD and VSS. Connect all unused inputs to either VDD or VSS. 16 15 14 13 12 11 10 9 VDD Ι VSS CD4051 CD4053 NOTE: Measure inputs sequentially to both VDD and VSS. Connect all unused inputs to either VDD or VSS. Figure 19. Input Current 5 VP−P Channel ON OFF Channel 5 VP−P Common RF VM RL 1K VDD Channel ON RF VM Channel OFF 6 7 8 Channel In Y ON or OFF Channel In X ON or OFF RF VM RL Figure 22. Crosstalk Between Duals or Triplets (CD4052B, CD4053B) CD4052 CD4052 Communications Link Differential Amplifier/Line Driver . Differential Receiver Differential Multiplexing Demultiplexing Figure 23. Typical Time-Division Application of the CD4052B 14 RL Figure 21. Crosstalk Between Any Two Channels RL Differential Signals RF VM RL RL Figure 20. Feedthrough 5 VP−P Channel OFF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCHS354 − AUGUST 2004 APPLICATION INFORMATION In applications where separate power sources drive VDD and the signal inputs, the VDD current capability should exceed VDD/RL (RL = effective external load). This provision avoids permanent current flow or clamp action on the VDD supply when power is applied or removed from the CD4051B, CD4052B, or CD4053B. A B C D E A B CD4051B C INH Q0 A B E 1/2 CD4556 Q1 Q2 A B CD4051B C INH Common Output A B CD4051B C INH Figure 24. 24-to-1 Multiplexer Addressing POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2004, Texas Instruments Incorporated