ONSEMI NL17SH126

NL17SH126
Noninverting 3-State Buffer
The NL17SH126 is an advanced high speed CMOS noninverting
3−state buffer fabricated with silicon gate CMOS technology. It
achieves high speed operation similar to equivalent Bipolar Schottky
TTL while maintaining CMOS low power dissipation.
The internal circuit is composed of three stages, including a buffered
3−state output which provides high noise immunity and stable output.
The NL17SH126 input structure provides protection when voltages
up to 7 V are applied, regardless of the supply voltage. This allows the
NL17SH126 to be used to interface 5 V circuits to 3 V circuits.
http://onsemi.com
MARKING
DIAGRAM
Features
•
•
•
•
•
•
SOT−953
CASE 527AE
High Speed: tPD = 3.5 ns (Typ) at VCC = 5 V
Low Power Dissipation: ICC = 1 mA (Max) at TA = 25°C
Power Down Protection Provided on Inputs
Balanced Propagation Delays
Pin and Function Compatible with Other Standard Logic Families
These are Pb−Free Devices
J
M
JM
1
= Specific Device Code
= Month Code
PIN ASSIGNMENT
IN A
5
1
GND
2
OE
3
VCC
4
EN
IN A
August, 2011 − Rev. 1
3
OE
4
OUT Y
5
VCC
FUNCTION TABLE
OUT Y
A Input
OE Input
Y Output
L
H
X
H
H
L
L
H
Z
ORDERING INFORMATION
See detailed ordering and shipping information in the
package dimensions section on page 4 of this data sheet.
Figure 2. Logic Symbol
© Semiconductor Components Industries, LLC, 2011
IN A
GND
OUT Y
Figure 1. Pinout (Top View)
OE
1
2
1
Publication Order Number:
NL17SH126/D
NL17SH126
MAXIMUM RATINGS
Symbol
Characteristics
Value
Unit
VCC
DC Supply Voltage
−0.5 to +7.0
V
VIN
DC Input Voltage
−0.5 to +7.0
V
−0.5 to 7.0
−0.5 to VCC + 0.5
V
−20
mA
±20
mA
VOUT
DC Output Voltage
VCC = 0
High or Low State
IIK
Input Diode Current
IOK
Output Diode Current
IOUT
DC Output Current, per Pin
±25
mA
ICC
DC Supply Current, VCC and GND
50
mA
PD
Power dissipation in still air
50
mW
TL
Lead temperature, 1 mm from case for 10 secs
260
°C
TJ
Junction temperature under bias
+150
°C
Tstg
Storage temperature
−65 to +150
°C
ILatchup
Latchup Performance
±100
mA
VOUT < GND; VOUT > VCC
Above VCC and Below GND at 125°C (Note 1)
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Tested to EIA/JESD78.
RECOMMENDED OPERATING CONDITIONS
Symbol
Characteristics
Min
Max
Unit
VCC
DC Supply Voltage
2.0
5.5
V
VIN
DC Input Voltage
0.0
5.5
V
DC Output Voltage
0.0
VCC
V
Operating Temperature Range
−55
+125
°C
0
0
100
20
ns/V
VOUT
TA
tr , tf
Input Rise and Fall Time
VCC = 3.3 V ± 0.3 V
VCC = 5.0 V ± 0.5 V
47.9
100
178,700
20.4
110
79,600
9.4
120
37,000
4.2
130
17,800
2.0
140
8,900
1.0
TJ = 80 ° C
117.8
419,300
TJ = 90 ° C
1,032,200
90
TJ = 100 ° C
80
FAILURE RATE OF PLASTIC = CERAMIC
UNTIL INTERMETALLICS OCCUR
TJ = 110° C
Time, Years
TJ = 120° C
Time, Hours
TJ = 130 ° C
Junction
Temperature °C
NORMALIZED FAILURE RATE
Device Junction Temperature versus
Time to 0.1% Bond Failures
1
1
10
100
1000
TIME, YEARS
Figure 3. Failure Rate vs. Time Junction Temperature
http://onsemi.com
2
NL17SH126
DC ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Test Conditions
Min
1.5
2.1
3.15
3.85
VIH
Minimum High−Level
Input Voltage
2.0
3.0
4.5
5.5
VIL
Maximum Low−Level
Input Voltage
2.0
3.0
4.5
5.5
VOH
Minimum High−Level
Output Voltage
VIN = VIH or VIL
VOL
Maximum Low−Level
Output Voltage
VIN = VIH or VIL
TA = 25°C
VCC
(V)
Typ
TA ≤ 85°C
Max
Min
1.5
2.1
3.15
3.85
0.5
0.9
1.35
1.65
VIN = VIH or VIL
IOH = −50 mA
2.0
3.0
4.5
1.9
2.9
4.4
VIN = VIH or VIL
IOH = −4 mA
IOH = −8 mA
3.0
4.5
2.58
3.94
VIN = VIH or VIL
IOL = 50 mA
2.0
3.0
4.5
VIN = VIH or VIL
IOL = 4 mA
IOL = 8 mA
Max
2.0
3.0
4.5
0.0
0.0
0.0
−55 ≤ TA ≤ 125°C
Min
Max
1.5
2.1
3.15
3.85
0.5
0.9
1.35
1.65
V
0.5
0.9
1.35
1.65
1.9
2.9
4.4
1.9
2.9
4.4
2.48
3.80
2.34
3.66
Unit
V
V
V
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3.0
4.5
0.36
0.36
0.44
0.44
0.52
0.52
V
V
IOZ
Maximum 3−State
Leakage Current
VIN = VIH or VIL
VOUT = VCC or GND
5.5
±0.2
5
±2.5
±2.5
mA
IIN
Maximum Input
Leakage Current
VIN = 5.5 V or GND
0 to
5.5
±0.1
±1.0
±1.0
mA
ICC
Maximum Quiescent
Supply Current
VIN = VCC or GND
5.5
1.0
20
40
mA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS Cload = 50 pF, Input tr = tf = 3.0 ns
TA = 25°C
Symbol
tPLH,
tPHL
tPZL,
tPZH
tPLZ,
tPHZ
CIN
COUT
Parameter
Min
Test Conditions
TA ≤ 85°C
Typ
Max
Min
Max
−55 ≤ TA ≤ 125°C
Min
Max
Unit
ns
Maximum Propagation
Delay, Input A to Y
(Figures 3. and 5.)
VCC = 3.3 ± 0.3 V
CL = 15 pF
CL = 50 pF
4.5
6.4
8.0
11.5
9.5
13.0
12.0
16.0
VCC = 5.0 ± 0.5 V
CL = 15 pF
CL = 50 pF
3.5
4.5
5.5
7.5
6.5
8.5
8.5
10.5
Maximum Output Enable
Time, Input OE to Y
(Figures 4. and 5.)
VCC = 3.3 ± 0.3 V
RL = 1000 W
CL = 15 pF
CL = 50 pF
4.5
6.4
8.0
11.5
9.5
13.0
11.5
15.0
VCC = 5.0 ± 0.5 V
RL = 1000 W
CL = 15 pF
CL = 50 pF
3.5
4.5
5.1
7.1
6.0
8.0
8.5
10.5
Maximum Output Disable
Time, Input OE to Y
(Figures 4. and 5.)
VCC = 3.3 ± 0.3 V
RL = 1000 W
CL = 15 pF
CL = 50 pF
6.5
8.0
9.7
13.2
11.5
15.0
14.5
18.0
VCC = 5.0 ± 0.5 V
RL = 1000 W
CL = 15 pF
CL = 50 pF
4.8
7.0
6.8
8.8
8.0
10.0
10.0
12.0
Maximum Input
Capacitance
4.0
10
10
10
Maximum 3−State Output
Capacitance (Output in
High Impedance State)
6.0
ns
ns
pF
pF
Typical @ 25°C, VCC = 5.0 V
8.0
CPD
Power Dissipation Capacitance (Note 2)
pF
2. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no−load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
http://onsemi.com
3
NL17SH126
SWITCHING WAVEFORMS
OE
VCC
50%
GND
tPZL
VCC
50%
GND
tPZH
tPHL
tPLH
HIGH
IMPEDANCE
50% VCC
Y
A
tPLZ
VOL + 0.3V
tPHZ
VOH - 0.3V
50% VCC
50% VCC
Y
HIGH
IMPEDANCE
Y
Figure 4. Switching Waveforms
Figure 5.
TEST POINT
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
OUTPUT
1 kW
CL *
CONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
*Includes all probe and jig capacitance
Figure 6. Test Circuit
Figure 7. Test Circuit
INPUT
Figure 8. Input Equivalent Circuit
ORDERING INFORMATION
Device
NL17SH126P5T5G
Package
Shipping†
SOT−953
(Pb−Free)
8000 Units / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
4
NL17SH126
PACKAGE DIMENSIONS
SOT−953
CASE 527AE
ISSUE E
X
Y
D
PIN ONE
INDICATOR
5
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH. MINIMUM LEAD THICKNESS IS THE
MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS.
A
4
HE
E
1
2 3
DIM
A
b
C
D
E
e
HE
L
L2
L3
C
TOP VIEW
SIDE VIEW
e
L
5X
5X
L3
MILLIMETERS
MIN
NOM
MAX
0.34
0.37
0.40
0.10
0.15
0.20
0.07
0.12
0.17
0.95
1.00
1.05
0.75
0.80
0.85
0.35 BSC
0.95
1.00
1.05
0.175 REF
0.05
0.10
0.15
−−−
−−−
0.15
SOLDERING FOOTPRINT*
5X
0.35
5X
0.20
5X
L2
5X
BOTTOM VIEW
b
PACKAGE
OUTLINE
0.08 X Y
1.20
1
0.35
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
5
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NL17SH126/D