STMICROELECTRONICS M24M01

M24M01-R M24M01-DF
1-Mbit serial I²C bus EEPROM
Datasheet − production data
Features
■
Compatible with all I2C bus modes:
– 1 MHz
– 400 kHz
– 100 kHz
■
Memory array:
– 1 Mbit (128 Kbytes) of EEPROM
– Page size: 256 bytes
– Additional Write lockable page
(M24M01-D order codes)
■
Single supply voltage and high speed:
– 1 MHz clock from 1.7 V to 5.5 V
■
Write:
– Byte Write within 5 ms
– Page Write within 5 ms
SO8 (MN)
150 mil width
TSSOP8 (DW)
■
Operating temperature range: from -40 °C up
to +85 °C
■
Random and sequential Read modes
■
Write protect of the whole memory array
■
Enhanced ESD/Latch-Up protection
■
More than 4 million Write cycles
■
More than 200-year data retention
■
Packages:
– RoHS compliant and halogen-free
(ECOPACK®)
September 2012
This is information on a product in full production.
WLCSP (CS)
Doc ID 12943 Rev 10
1/38
www.st.com
1
Contents
M24M01-R M24M01-DF
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Chip Enable (E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.1
2.6.2
Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.3
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.4
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
4.1
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1
5.2
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.3
Write Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . 17
5.1.4
Lock Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . 17
5.1.5
ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 18
5.1.6
Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 19
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1
2/38
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
Contents
5.2.2
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3
Read Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . . 21
5.4
Read the lock status (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Doc ID 12943 Rev 10
3/38
List of tables
M24M01-R M24M01-DF
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
4/38
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Operating conditions (voltage range R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Operating conditions (voltage range F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Cycling performance by groups of four bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DC characteristics (M24M01-R, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DC characteristics (M24M01-F, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 32
SO8N – 8 lead plastic small outline, 150 mils body width, package data . . . . . . . . . . . . . . 33
M24M01-DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package mechanical data 35
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8-pin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
WLCSP connections for M24M01 DFCS6TP/K
(top view, marking side, with balls on the underside) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 15
Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 16
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Maximum Rbus value versus bus parasitic capacitance Cbus) for
an I2C bus at maximum frequency fC = 1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 32
SO8N – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 33
M24M01 DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package outline . . . . . . . . 34
Doc ID 12943 Rev 10
5/38
Description
1
M24M01-R M24M01-DF
Description
The M24M01 is a 1 Mb I2C-compatible EEPROM (Electrically Erasable PROgrammable
Memory) organized as 128 K × 8 bits.
The M24M01-R can operate with a supply voltage from 1.8 V to 5.5 V, and the M24M01-DF
can operate with a supply voltage from 1.7 V to 5.5 V, over an ambient temperature range of
–40 °C / +85 °C.
The M24M01-D offers an additional page, named the Identification Page (256 bytes). The
Identification Page can be used to store sensitive application parameters which can be
(later) permanently locked in Read-only mode.
Figure 1.
Logic diagram
6##
%%
3$!
-XXX
3#,
7#
633
.47
Table 1.
Signal names
Signal name
6/38
Function
Direction
E1, E2
Chip Enable
Input
SDA
Serial Data
I/O
SCL
Serial Clock
Input
WC
Write Control
Input
VCC
Supply voltage
VSS
Ground
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
Figure 2.
Description
8-pin package connections
$5
%
%
633
6##
7#
3#,
3$!
-36
1. DU: Don't Use (if connected, must be connected to VSS)
2. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.
Figure 3.
WLCSP connections for M24M01 DFCS6TP/K
(top view, marking side, with balls on the underside)
VCC
SDA
SCL
E2
WC
E1
VSS
DU
MS30966V2
3. DU: Don't Use (if connected, must be connected to VSS)
4. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.
Doc ID 12943 Rev 10
7/38
Signal description
M24M01-R M24M01-DF
2
Signal description
2.1
Serial Clock (SCL)
The signal applied on the SCL input is used to strobe the data available on SDA(in) and to
output the data on SDA(out).
2.2
Serial Data (SDA)
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an open
drain output that may be wire-OR’ed with other open drain or open collector signals on the
bus. A pull-up resistor must be connected (Figure 12 indicates how to calculate the value of
the pull-up resistor).
2.3
Chip Enable (E1, E2)
These input signals are used to set the value that is to be looked for on the two bits (b3, b2)
of the 7-bit device select code. These inputs must be tied to VCC or VSS, to establish the
device select code as shown in Figure 4. When not connected (left floating), these inputs
are read as low (0,0).
Figure 4.
Device select code
VCC
VCC
M24xxx
M24xxx
Ei
Ei
VSS
VSS
Ai12806
2.4
Write Control (WC)
This input signal is useful for protecting the entire contents of the memory from inadvertent
write operations. Write operations are disabled to the entire memory array when Write
Control (WC) is driven high. Write operations are enabled when Write Control (WC) is either
driven low or left floating.
When Write Control (WC) is driven high, device select and address bytes are
acknowledged, Data bytes are not acknowledged.
2.5
VSS (ground)
VSS is the reference for the VCC supply voltage.
8/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
Signal description
2.6
Supply voltage (VCC)
2.6.1
Operating supply voltage VCC
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied (see Operating conditions
in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is
recommended to decouple the VCC line with a suitable capacitor (usually of the order of
10 nF to 100 nF) close to the VCC/VSS package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a write instruction, until the completion of the internal write cycle (tW).
2.6.2
Power-up conditions
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage
(see Operating conditions in Section 8: DC and AC parameters) and the rise time must not
vary faster than 1 V/µs.
2.6.3
Device reset
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)
circuit is included.
At power-up, the device does not respond to any instruction until VCC has reached the
internal reset threshold voltage. This threshold is lower than the minimum VCC operating
voltage (see Operating conditions in Section 8: DC and AC parameters). When VCC passes
over the POR threshold, the device is reset and enters the Standby Power mode; however,
the device must not be accessed until VCC reaches a valid and stable DC voltage within the
specified [VCC(min), VCC(max)] range (see Operating conditions in Section 8: DC and AC
parameters).
In a similar way, during power-down (continuous decrease in VCC), the device must not be
accessed when VCC drops below VCC(min). When VCC drops below the internal reset
threshold voltage, the device stops responding to any instruction sent to it.
2.6.4
Power-down conditions
During power-down (continuous decrease in VCC), the device must be in the Standby Power
mode (mode reached after decoding a Stop condition, assuming that there is no internal
write cycle in progress).
Doc ID 12943 Rev 10
9/38
Memory organization
3
M24M01-R M24M01-DF
Memory organization
The memory is organized as shown below.
Figure 5.
Block diagram
7#
%
%
(IGHVOLTAGE
GENERATOR
#ONTROLLOGIC
3#,
3$!
)/SHIFTREGISTER
$ATA
REGISTER
9DECODER
!DDRESSREGISTER
ANDCOUNTER
PAGE
)DENTIFICATIONPAGE
8DECODER
-36
10/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
4
Device operation
Device operation
The device supports the I2C protocol. This is summarized in Figure 6. Any device that sends
data on to the bus is defined to be a transmitter, and any device that reads the data to be a
receiver. The device that controls the data transfer is known as the bus master, and the
other as the slave device. A data transfer can only be initiated by the bus master, which will
also provide the serial clock for synchronization. The device is always a slave in all
communications.
Figure 6.
I2C bus protocol
SCL
SDA
SDA
Input
START
Condition
SCL
1
SDA
MSB
2
SDA
Change
STOP
Condition
3
7
8
9
ACK
START
Condition
SCL
1
SDA
MSB
2
3
7
8
9
ACK
STOP
Condition
AI00792B
Doc ID 12943 Rev 10
11/38
Device operation
4.1
M24M01-R M24M01-DF
Start condition
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in
the high state. A Start condition must precede any data transfer instruction. The device
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock
(SCL) for a Start condition.
4.2
Stop condition
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable
and driven high. A Stop condition terminates communication between the device and the
bus master. A Read instruction that is followed by NoAck can be followed by a Stop
condition to force the device into the Standby mode.
A Stop condition at the end of a Write instruction triggers the internal Write cycle.
4.3
Data input
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock
(SCL) is driven low.
4.4
Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits
of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) low to
acknowledge the receipt of the eight data bits.
12/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
4.5
Device operation
Device addressing
To start communication between the bus master and the slave device, the bus master must
initiate a Start condition. Following this, the bus master sends the device select code, shown
in Table 2 (on Serial Data (SDA), most significant bit first).
Table 2.
Device select code
Chip Enable
address(2)
Device type identifier(1)
When accessing
the memory
When accessing
the Identification
page
Address
bit
RW
b7
b6
b5
b4
b3
b2
b1
b0
1
0
1
0
E2
E1
A16
RW
1
0
1
1
E2
E1
X(3)
RW
1. The most significant bit, b7, is sent first.
2. E2,E1 are compared against the external pin on the memory device.
3. X = don’t care.
When the device select code is received, the device only responds if the Chip Enable
address is the same as the value on its Chip Enable E2,E1 inputs.
The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.
If a match occurs on the device select code, the corresponding device gives an
acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match
the device select code, the device deselects itself from the bus, and goes into Standby
mode.
Doc ID 12943 Rev 10
13/38
Instructions
M24M01-R M24M01-DF
5
Instructions
5.1
Write operations
Following a Start condition the bus master sends a device select code with the R/W bit (RW)
reset to 0. The device acknowledges this, as shown in Figure 7, and waits for two address
bytes. The device responds to each address byte with an acknowledge bit, and then waits
for the data byte.
Table 3.
A15
Table 4.
A7
Most significant address byte
A14
A13
A12
A11
A10
A9
A8
A3
A2
A1
A0
Least significant address byte
A6
A5
A4
The 128 Kbytes (1 Mb) are addressed with 17 address bits, the 16 lower address bits being
defined by the two address bytes and the most significant address bit (A16) being included
in the Device Select code (see Table 2).
When the bus master generates a Stop condition immediately after a data byte Ack bit (in
the “10th bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write
cycle tW is triggered. A Stop condition at any other time slot does not trigger the internal
Write cycle.
After the Stop condition and the successful completion of an internal Write cycle (tW), the
device internal address counter is automatically incremented to point to the next byte after
the last modified byte.
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does
not respond to any requests.
If the Write Control input (WC) is driven High, the Write instruction is not executed and the
accompanying data bytes are not acknowledged, as shown in Figure 8.
14/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
Byte Write
After the device select code and the address bytes, the bus master sends one data byte. If
the addressed location is Write-protected, by Write Control (WC) being driven high, the
device replies with NoAck, and the location is not modified. If, instead, the addressed
location is not Write-protected, the device replies with Ack. The bus master terminates the
transfer by generating a Stop condition, as shown in Figure 7.
Figure 7.
Write mode sequences with WC = 0 (data write enabled)
WC
ACK
ACK
ACK
Byte addr
Byte addr
ACK
Data in
Stop
Dev sel
Start
Byte Write
R/W
WC
ACK
Page Write
Dev sel
Start
ACK
Byte addr
ACK
Byte addr
ACK
Data in 1
Data in 2
R/W
WC (cont'd)
ACK
Page Write (cont'd)
ACK
Data in N
Stop
5.1.1
Instructions
Doc ID 12943 Rev 10
AI01106d
15/38
Instructions
5.1.2
M24M01-R M24M01-DF
Page Write
The Page Write mode allows up to 256 bytes to be written in a single Write cycle, provided
that they are all located in the same page in the memory: that is, the most significant
memory address bits, b16-b8, are the same. If more bytes are sent than will fit up to the end
of the page, a “roll-over” occurs, i.e. the bytes exceeding the page end are written on the
same page, from location 0.
The bus master sends from 1 to 256 bytes of data, each of which is acknowledged by the
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the
addressed memory location are not modified, and each data byte is followed by a NoAck, as
shown in Figure 8. After each transferred byte, the internal page address counter is
incremented.
The transfer is terminated by the bus master generating a Stop condition.
Figure 8.
Write mode sequences with WC = 1 (data write inhibited)
WC
ACK
Byte addr
ACK
Byte addr
NO ACK
Data in
Stop
Dev sel
Start
Byte Write
ACK
R/W
WC
ACK
Dev sel
Start
Page Write
ACK
Byte addr
ACK
Byte addr
NO ACK
Data in 1
Data in 2
R/W
WC (cont'd)
NO ACK
Data in N
Stop
Page Write (cont'd)
NO ACK
16/38
Doc ID 12943 Rev 10
AI01120d
M24M01-R M24M01-DF
5.1.3
Instructions
Write Identification Page (M24M01-D only)
The Identification Page (256 bytes) is an additional page which can be written and (later)
permanently locked in Read-only mode. It is written by issuing the Write Identification Page
instruction. This instruction uses the same protocol and format as Page Write (into memory
array), except for the following differences:
●
Device type identifier = 1011b
●
MSB address bits A16/A8 are don't care except for address bit A10 which must be ‘0’.
LSB address bits A7/A0 define the byte address inside the Identification page.
If the Identification page is locked, the data bytes transferred during the Write Identification
Page instruction are not acknowledged (NoAck).
5.1.4
Lock Identification Page (M24M01-D only)
The Lock Identification Page instruction (Lock ID) permanently locks the Identification page
in Read-only mode. The Lock ID instruction is similar to Byte Write (into memory array) with
the following specific conditions:
●
Device type identifier = 1011b
●
Address bit A10 must be ‘1’; all other address bits are don't care
●
The data byte must be equal to the binary value xxxx xx1x, where x is don't care
Doc ID 12943 Rev 10
17/38
Instructions
5.1.5
M24M01-R M24M01-DF
ECC (Error Correction Code) and Write cycling
The Error Correction Code (ECC) is an internal logic function which is transparent for the
I2C communication protocol.
The ECC logic is implemented on each group of four EEPROM bytes(a). Inside a group, if a
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC
detects this bit and replaces it with the correct value. The read reliability is therefore much
improved.
Even if the ECC function is performed on groups of four bytes, a single byte can be
written/cycled independently. In this case, the ECC function also writes/cycles the three
other bytes located in the same group(a). As a consequence, the maximum cycling budget is
defined at group level and the cycling can be distributed over the 4 bytes of the group: the
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain
below the maximum value defined Table 10: Cycling performance by groups of four bytes.
a. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an
integer.
18/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
5.1.6
Instructions
Minimizing Write delays by polling on ACK
The maximum Write time (tw) is shown in AC characteristics tables in Section 8: DC and AC
parameters, but the typical time is shorter. To make use of this, a polling sequence can be
used by the bus master.
The sequence, as shown in Figure 9, is:
●
Initial condition: a Write cycle is in progress.
●
Step 1: the bus master issues a Start condition followed by a device select code (the
first byte of the new instruction).
●
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and
the bus master goes back to Step 1. If the device has terminated the internal Write
cycle, it responds with an Ack, indicating that the device is ready to receive the second
part of the instruction (the first byte of this instruction having been sent during Step 1).
Figure 9.
Write cycle polling flowchart using ACK
Write cycle
in progress
Start condition
Device select
with RW = 0
NO
First byte of instruction
with RW = 0 already
decoded by the device
ACK
returned
YES
NO
Next
Operation is
addressing the
memory
YES
Send Address
and Receive ACK
ReStart
Stop
NO
StartCondition
YES
Data for the
Write cperation
Device select
with RW = 1
Continue the
Write operation
Continue the
Random Read operation
AI01847e
AI01847d
1. The seven most significant bits of the Device Select code of a Random Read (bottom right box in the
figure) must be identical to the seven most significant bits of the Device Select code of the Write (polling
instruction in the figure).
Doc ID 12943 Rev 10
19/38
Instructions
5.2
M24M01-R M24M01-DF
Read operations
Read operations are performed independently of the state of the Write Control (WC) signal.
After the successful completion of a Read operation, the device internal address counter is
incremented by one, to point to the next byte address.
For the Read instructions, after each byte read (data out), the device waits for an
acknowledgment (data in) during the 9th bit time. If the bus master does not acknowledge
during this 9th time, the device terminates the data transfer and switches to its Standby
mode.
Figure 10. Read mode sequences
ACK
Data out
Stop
Start
Dev sel
NO ACK
R/W
ACK
Random
Address
Read
Byte addr
Dev sel *
ACK
ACK
Data out 1
ACK
NO ACK
Data out N
ACK
Byte addr
ACK
Byte addr
R/W
ACK
Dev sel *
Start
Dev sel *
Start
Data out
R/W
R/W
ACK
NO ACK
Stop
Start
Dev sel
Sequention
Random
Read
ACK
Byte addr
R/W
ACK
Sequential
Current
Read
ACK
Start
Start
Dev sel *
ACK
Stop
Current
Address
Read
ACK
Data out1
R/W
NO ACK
Stop
Data out N
20/38
Doc ID 12943 Rev 10
AI01105d
M24M01-R M24M01-DF
5.2.1
Instructions
Random Address Read
A dummy Write is first performed to load the address into this address counter (as shown in
Figure 10) but without sending a Stop condition. Then, the bus master sends another Start
condition, and repeats the device select code, with the RW bit set to 1. The device
acknowledges this, and outputs the contents of the addressed byte. The bus master must
not acknowledge the byte, and terminates the transfer with a Stop condition.
5.2.2
Current Address Read
For the Current Address Read operation, following a Start condition, the bus master only
sends a device select code with the R/W bit set to 1. The device acknowledges this, and
outputs the byte addressed by the internal address counter. The counter is then
incremented. The bus master terminates the transfer with a Stop condition, as shown in
Figure 10, without acknowledging the byte.
Note that the address counter value is defined by instructions accessing either the memory
or the Identification page. When accessing the Identification page, the address counter
value is loaded with the byte location in the Identification page, therefore the next Current
Address Read in the memory uses this new address counter value. When accessing the
memory, it is safer to always use the Random Address Read instruction (this instruction
loads the address counter with the byte location to read in the memory, see Section 5.2.1)
instead of the Current Address Read instruction.
5.2.3
Sequential Read
This operation can be used after a Current Address Read or a Random Address Read. The
bus master does acknowledge the data byte output, and sends additional clock pulses so
that the device continues to output the next byte in sequence. To terminate the stream of
bytes, the bus master must not acknowledge the last byte, and must generate a Stop
condition, as shown in Figure 10.
The output data comes from consecutive addresses, with the internal address counter
automatically incremented after each byte output. After the last memory address, the
address counter “rolls-over”, and the device continues to output data from memory address
00h.
5.3
Read Identification Page (M24M01-D only)
The Identification Page (256 bytes) is an additional page which can be written and (later)
permanently locked in Read-only mode.
The Identification Page can be read by issuing an Read Identification Page instruction. This
instruction uses the same protocol and format as the Random Address Read (from memory
array) with device type identifier defined as 1011b. The MSB address bits A16/A8 are don't
care, the LSB address bits A7/A0 define the byte address inside the Identification Page. The
number of bytes to read in the ID page must not exceed the page boundary (e.g.: when
reading the Identification Page from location 100d, the number of bytes should be less than
or equal to 156, as the ID page boundary is 256 bytes).
Doc ID 12943 Rev 10
21/38
Initial delivery state
5.4
M24M01-R M24M01-DF
Read the lock status (M24M01-D only)
The locked/unlocked status of the Identification page can be checked by transmitting a
specific truncated command [Identification Page Write instruction + one data byte] to the
device. The device returns an acknowledge bit if the Identification page is unlocked,
otherwise a NoAck bit if the Identification page is locked.
Right after this, it is recommended to transmit to the device a Start condition followed by a
Stop condition, so that:
6
●
Start: the truncated command is not executed because the Start condition resets the
device internal logic,
●
Stop: the device is then set back into Standby mode by the Stop condition.
Initial delivery state
The device is delivered with all bits set to 1 (both in the memory array and in the
Identification page - that is, each byte contains FFh).
22/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
7
Maximum rating
Maximum rating
Stressing the device outside the ratings listed in Table 5 may cause permanent damage to
the device. These are stress ratings only, and operation of the device at these, or any other
conditions outside those indicated in the operating sections of this specification, is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 5.
Absolute maximum ratings
Symbol
TSTG
TLEAD
Parameter
Min.
Max.
Unit
Ambient operating temperature
–40
130
°C
Storage temperature
–65
150
°C
(1)
°C
–0.50
VCC+0.6
V
-
5
mA
–0.50
6.5
V
-
4000(3)
V
Lead temperature during soldering
VIO
Input or output range
IOL
DC output current (SDA = 0)
VCC
Supply voltage
VESD
Electrostatic pulse (Human Body
model)(2)
see note
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)
2002/95/EU.
2. Positive and negative pulses applied on different combinations of pin connections, according to AECQ100-002 (compliant with JEDEC Std JESD22-A114, C1=100 pF, R1=1500 Ω).
3. 3000 V for previous devices (process letter A or B).
Doc ID 12943 Rev 10
23/38
DC and AC parameters
8
M24M01-R M24M01-DF
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device.
Table 6.
Operating conditions (voltage range R)
Symbol
Min.
Max.
Unit
Supply voltage
1.8
5.5
V
TA
Ambient operating temperature
–40
85
°C
fC
Operating clock frequency
-
1
MHz
Min.
Max.
Unit
Supply voltage
1.7
5.5
V
TA
Ambient operating temperature
–40
85
°C
fC
Operating clock frequency
-
1
MHz
Min.
Max.
Unit
VCC
Table 7.
Parameter
Operating conditions (voltage range F)
Symbol
VCC
Table 8.
Parameter
AC measurement conditions
Symbol
Cbus
Parameter
Load capacitance
100
SCL input rise/fall time, SDA input fall time
-
pF
50
ns
Input levels
0.2 VCC to 0.8 VCC
V
Input and output timing reference levels
0.3 VCC to 0.7 VCC
V
Figure 11. AC measurement I/O waveform
)NPUTVOLTAGELEVELS
)NPUTANDOUTPUT
4IMINGREFERENCELEVELS
6##
6##
6##
6##
-36
Table 9.
Input parameters
Symbol
Parameter(1)
Test condition
Max.
Unit
CIN
Input capacitance (SDA)
8
pF
CIN
Input capacitance (other pins)
6
pF
ZL
ZH
Input impedance (WC)
VIN < 0.3 VCC
30
kΩ
VIN > 0.7 VCC
400
kΩ
1. Sampled only, not 100% tested.
24/38
Min.
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
Table 10.
Symbol
Ncycle
DC and AC parameters
Cycling performance by groups of four bytes
Parameter
Write cycle
endurance(2)
Test condition(1)
Max.
TA ≤ 25 °C, VCC(min) < VCC < VCC(max)
4,000,000
TA = 85 °C, VCC(min) < VCC < VCC(max)
1,200,000
Unit
Write cycle(3)
1. Cycling performance for products identified by process letter K.
2. The Write cycle endurance is defined for groups of four data bytes located at addresses [4*N, 4*N+1,
4*N+2, 4*N+3] where N is an integer. The Write cycle endurance is defined by characterization and
qualification.
3. A Write cycle is executed when either a Page Write, a Byte Write, a Write Identification Page or a Lock
Identification Page instruction is decoded. When using the Byte Write, the Page Write or the Write
Identification Page, refer also to Section 5.1.5: ECC (Error Correction Code) and Write cycling.
Table 11.
Memory cell data retention
Parameter
Data
retention(1)
Test condition
TA = 55 °C
Min.
Unit
200
Year
1. For products identified by process letter K. The data retention behavior is checked in production. The 200year limit is defined from characterization and qualification results.
Doc ID 12943 Rev 10
25/38
DC and AC parameters
.
Table 12.
Symbol
M24M01-R M24M01-DF
DC characteristics (M24M01-R, device grade 6)
Test conditions (in addition to
those in Table 6)
Parameter
Min.
Max.
Unit
ILI
Input leakage current
(E1, E2, SCL, SDA)
VIN = VSS or VCC
device in Standby mode
±2
µA
ILO
Output leakage current
SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
±2
µA
VCC = 1.8 V, fc= 400 kHz
1(1)
mA
VCC = 2.5 V, fc =400 kHz
1
mA
VCC = 5.5 V, fc =400 kHz
1.5(2)
mA
fc= 1 MHz
1.5(3)
mA
During tW
2(4)(5)
mA
Device not selected,
VIN = VSS or VCC, VCC = 1.8 V
3(6)
µA
Device not selected,
VIN = VSS or VCC, VCC = 2.5 V
3(7)
µA
Device not selected,
VIN = VSS or VCC, VCC = 5.5 V
5(8)
µA
ICC
ICC0
ICC1
Supply current (Read)
Supply current (Write)
Standby supply current
VIL
Input low voltage
(SCL, SDA, WC)
VIH
Input high voltage
(SCL, SDA)
VOL
Output low voltage
1.8 V ≤ VCC < 2.5 V
–0.45
0.25 VCC
V
2.5 V ≤ VCC < 5.5 V
–0.45
0.30 VCC
V
1.8 V ≤ VCC < 2.5 V
0.75 VCC
VCC+1
v
2.5 V ≤ VCC < 5.5 V
0.70 VCC
0 VCC+1
v
IOL = 1.0 mA, VCC = 1.8 V
0.2
V
IOL = 2.1 mA, VCC = 2.5 V
0.4
V
IOL = 3.0 mA, VCC = 5.5 V
0.4
V
1. Devices identified by process letter A or B offer ICC = 0.8 mA
2. The previous product identified by process letter A or B was specified with Icc(max) = 2 mA.
3. Devices identified by process letter A or B offer ICC = 2.5 mA.
4. Characterized only, not tested in production.
5. The previous product identified by process letter A or B was characterized with Icc0(max) = 5 mA.
6. Devices identified by process letter A or B offer ICC1 = 1 µA.
7. Devices identified by process letter A or B offer ICC1 = 2 µA.
8. Devices identified by process letter A or B offer ICC1 = 3 µA.
26/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
Table 13.
Symbol
DC and AC parameters
DC characteristics (M24M01-F, device grade 6)
Test conditions (in addition to
those in Table 6)
Parameter
Min.
Max.
Unit
ILI
Input leakage current
(E1, E2, SCL, SDA)
VIN = VSS or VCC
device in Standby mode
±2
µA
ILO
Output leakage current
SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
±2
µA
VCC = 1.7 V, fc= 400 kHz
1
mA
VCC = 2.5 V, fc =400 kHz
1
mA
VCC = 5.5 V, fc =400 kHz
1.5
mA
fc= 1 MHz
1.5
mA
During tW
2(1)
mA
Device not selected,
VIN = VSS or VCC, VCC = 1.7 V
3
µA
Device not selected,
VIN = VSS or VCC, VCC = 2.5 V
3
µA
Device not selected,
VIN = VSS or VCC, VCC = 5.5 V
5
µA
ICC
ICC0
ICC1
Supply current (Read)
Supply current (Write)
Standby supply current
VIL
Input low voltage
(SCL, SDA, WC)
VIH
Input high voltage
(SCL, SDA)
VOL
Output low voltage
1.7 V ≤ VCC < 2.5 V
–0.45
0.25 VCC
V
2.5 V ≤ VCC < 5.5 V
–0.45
0.30 VCC
V
1.7 V ≤ VCC < 2.5 V
0.75 VCC
VCC+1
v
2.5 V ≤ VCC < 5.5 V
0.70 VCC
0 VCC+1
v
IOL = 1.0 mA, VCC = 1.7 V
0.2
V
IOL = 2.1 mA, VCC = 2.5 V
0.4
V
IOL = 3.0 mA, VCC = 5.5 V
0.4
V
1. Characterized only, not tested in production.
Doc ID 12943 Rev 10
27/38
DC and AC parameters
Table 14.
M24M01-R M24M01-DF
400 kHz AC characteristics
Symbol
Alt.
fC
fSCL
Clock frequency
tCHCL
tHIGH
tCLCH
tLOW
tQL1QL2(1)
tF
tXH1XH2
tR
Parameter
Min.
Max.
Unit
-
400
kHz
Clock pulse width high
600
-
ns
Clock pulse width low
1300
-
ns
SDA (out) fall time
20(2)
300
ns
Input signal rise time
(3)
(3)
ns
(3)
ns
tXL1XL2
tF
Input signal fall time
(3)
tDXCH
tSU:DAT
Data in set up time
100
-
ns
tCLDX
tHD:DAT
Data in hold time
0
-
ns
100(5)
-
ns
-
900
ns
tCLQX
(4)
tDH
Data out hold time
tCLQV
(6)
tAA
Clock low to next data valid (access time)
tCHDL
tSU:STA
Start condition setup time
600
-
ns
tDLCL
tHD:STA
Start condition hold time
600
-
ns
tCHDH
tSU:STO
Stop condition set up time
600
-
ns
tDHDL
tBUF
Time between Stop condition and next Start
condition
1300
-
ns
tWLDL(7)(1)
tSU:WC
WC set up time (before the Start condition)
0
-
µs
tDHWH(8)(1)
tHD:WC
WC hold time (after the Stop condition)
1
-
µs
tW
tWR
Internal Write cycle duration
-
5
ms
Pulse width ignored (input filter on SCL and
SDA) - single glitch
-
80(9)
ns
tNS(1)
1. Characterized only, not tested in production.
2. With CL = 10 pF.
3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the
I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when
fC < 400 kHz.
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
5. The previous product identified by process letter P was specified with tCLQX = 200 ns (min). Both values
offer a safe margin compared to the I2C specification recommendations.
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or
0.7VCC, assuming that Rbus × Cbus time constant is within the values specified in Figure 12.
7. WC=0 set up time condition to enable the execution of a WRITE command.
8. WC=0 hold time condition to enable the execution of a WRITE command.
9. The previous product identified by process letter A or B was specified with tNS = 100 ns (max).
28/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
Table 15.
DC and AC parameters
1 MHz AC characteristics
Symbol
Alt.
fC
fSCL
Clock frequency
tCHCL
tHIGH
tCLCH
tXH1XH2
tXL1XL2
tQL1QL2
(8)
Parameter
Min.
Max.
Unit
0
1
MHz
Clock pulse width high
300
-
ns
tLOW
Clock pulse width low
400
-
ns
tR
Input signal rise time
(1)
(1)
ns
tF
Input signal fall time
(1)
(1)
ns
tF
SDA (out) fall time
-
120
ns
tDXCX
tSU:DAT Data in setup time
80
-
ns
tCLDX
tHD:DAT Data in hold time
0
-
ns
50
-
ns
-
500
ns
tCLQX(2)
tDH
Data out hold time
tCLQV(3)
tAA
Clock low to next data valid (access time)
tCHDL
tSU:STA Start condition setup time
250
-
ns
tDLCL
tHD:STA Start condition hold time
250
-
ns
tCHDH
tSU:STO Stop condition setup time
250
-
ns
500
-
ns
tSU:WC WC set up time (before the Start condition)
0
-
µs
tHD:WC WC hold time (after the Stop condition)
1
-
µs
Write time
-
5
ms
Pulse width ignored (input filter on SCL and
SDA)
-
80(7)
ns
tDHDL
tWLDL(4)(8)
tDHWH
(5)(8)
tW
tNS(6)
tBUF
tWR
Time between Stop condition and next Start
condition
1. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the
I²C specification that the input signal rise and fall times be more than 20 ns and less than 120 ns when
fC < 1 MHz.
2. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
3. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or
0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 13.
4. WC=0 set up time condition to enable the execution of a WRITE command.
5. WC=0 hold time condition to enable the execution of a WRITE command.
6. Characterized only, not tested in production.
7. The previous product identified by process letter A or B was specified with tNS = 50 ns (max).
Doc ID 12943 Rev 10
29/38
DC and AC parameters
M24M01-R M24M01-DF
"USLINEPULLUPRESISTOR
K Figure 12. Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz
2
BU
S §
(ERE2BUS §#BUSNS
4HE2X#TIMECONSTANT
BUS
BUS
MUSTBEBELOWTHENS
TIMECONSTANTLINEREPRESENTED
ONTHELEFT
6##
#
BU
S 2BUS
N
K½
S
)£#BUS
MASTER
3#,
-XXX
3$!
P&
"USLINECAPACITORP&
#BUS
AIB
Figure 13. Maximum Rbus value versus bus parasitic capacitance Cbus) for
an I2C bus at maximum frequency fC = 1MHz
"USLINEPULLUPRESISTORK 6##
4HE2BUS§#BUSTIMECONSTANT
MUSTBEBELOWTHENS
TIMECONSTANTLINEREPRESENTED
ONTHELEFT
2
BUS §
#
BUS NS
2BUS
)£#BUS
MASTER
3#,
-XXX
3$!
(ERE
2 BUS § #BUSNS
#BUS
"USLINECAPACITORP&
-36
30/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
DC and AC parameters
Figure 14. AC waveforms
3TART
CONDITION
3TART
3TOP
CONDITION CONDITION
T8,8,
T8(8(
T#(#,
T#,#(
3#,
T$,#,
T8,8,
3$!)N
T#($,
T8(8(
3$!
)NPUT
T#,$8
3$! T$8#(
#HANGE
T#($(
T$($,
7#
T$(7(
T7,$,
3TOP
CONDITION
3TART
CONDITION
3#,
3$!)N
T7
T#($(
T#($,
7RITECYCLE
3#,
T#,16
3$!/UT
T#,18
$ATAVALID
T1,1,
$ATAVALID
!)G
Doc ID 12943 Rev 10
31/38
Package mechanical data
9
M24M01-R M24M01-DF
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 15. TSSOP8 – 8-lead thin shrink small outline, package outline
1. Drawing is not to scale.
Table 16.
TSSOP8 – 8-lead thin shrink small outline, package mechanical data
inches(1)
millimeters
Symbol
Typ.
Min.
A
Max.
0.050
0.150
0.800
1.050
b
0.190
c
0.090
1.000
CP
0.0472
0.0059
0.0315
0.0413
0.300
0.0075
0.0118
0.200
0.0035
0.0079
0.0394
0.100
2.900
3.000
3.100
e
0.650
E
6.400
6.200
6.600
E1
4.400
4.300
L
0.600
0.450
L1
1.000
0.0039
0.1181
0.1142
0.1220
0.2520
0.2441
0.2598
4.500
0.1732
0.1693
0.1772
0.750
0.0236
0.0177
0.0295
0°
8°
0.0256
0.0394
0°
8°
1. Values in inches are converted from mm and rounded to four decimal digits.
32/38
Max.
0.0020
D
α
Min.
1.200
A1
A2
Typ.
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
Package mechanical data
Figure 16. SO8N – 8 lead plastic small outline, 150 mils body width, package outline
h x 45˚
A2
A
c
ccc
b
e
0.25 mm
GAUGE PLANE
D
k
8
E1
E
1
L
A1
L1
SO-A
1. Drawing is not to scale.
Table 17.
SO8N – 8 lead plastic small outline, 150 mils body width, package data
inches (1)
millimeters
Symbol
Typ
Min
A
Max
Typ
Min
1.750
Max
0.0689
A1
0.100
A2
1.250
b
0.280
0.480
0.0110
0.0189
c
0.170
0.230
0.0067
0.0091
ccc
0.250
0.0039
0.0098
0.0492
0.100
0.0039
D
4.900
4.800
5.000
0.1929
0.1890
0.1969
E
6.000
5.800
6.200
0.2362
0.2283
0.2441
E1
3.900
3.800
4.000
0.1535
0.1496
0.1575
e
1.270
0.0500
h
0.250
0.500
0.0098
0.0197
k
0°
8°
0°
8°
L
0.400
1.270
0.0157
0.0500
L1
1.040
0.0409
1. Values in inches are converted from mm and rounded to four decimal digits.
Doc ID 12943 Rev 10
33/38
Package mechanical data
M24M01-R M24M01-DF
Figure 17. M24M01 DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package
outline
BBB :
$
E
9
8
E
$ETAIL!
%
E
&
E
AAA
2EFERENCE
&
!
!
8
7AFERBACKSIDE
'
'
/RIENTATION
"UMPSSIDE
3IDEVIEW
"UMP
!
EEE :
B
ŒCCCŒDDD-
3EATINGPLANE
: 89
:
$ETAIL!
2OTATED 1. Drawing is not to scale.
34/38
:
Doc ID 12943 Rev 10
#E?-%?6
M24M01-R M24M01-DF
Table 18.
Package mechanical data
M24M01-DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package
mechanical data
inches(1)
millimeters
Symbol
Typ
Min
Max
Typ
Min
Max
A
0.540
0.500
0.580
0.0213
0.0197
0.0228
A1
0.190
0.0075
A2
0.350
0.0138
b
0.270
0.0106
D
2.560
2.580
0.1008
0.1016
E
1.698
1.718
0.0669
0.0676
e
1.000
0.0394
e1
0.866
0.0341
e2
0.500
0.0197
e3
0.500
0.0197
F
0.416
0.0164
G
0.780
0.0307
8
8
aaa
0.110
0.0039
bbb
0.110
0.0039
ccc
0.110
0.0039
ddd
0.060
0.0020
eee
0.060
0.0020
N (number of terminals)
1. Values in inches are converted from mm and rounded to four decimal digits.
Doc ID 12943 Rev 10
35/38
Part numbering
10
M24M01-R M24M01-DF
Part numbering
Table 19.
Ordering information scheme
Example:
M24M01 - D
R MN 6
T
P /K
Device type
M24 = I2C serial access EEPROM
Device function
M01 = 1 Mbit (128 Kb × 8 bits)
Device family
Blank: Without Identification page
D: With additional Identification page
Operating voltage
R = VCC = 1.8 V to 5.5 V
F = VCC = 1.7 V to 5.5 V
Package
MN = SO8 (150 mil width)(1)
DW = TSSOP8 (169 mil width)
CS = WLCSP(1)
Device grade
6 = Industrial: device tested with standard test flow over –40 to 85 °C
Option
blank = standard packing
T = Tape and reel packing
Plating technology
P = ECOPACK® (RoHS compliant)
Process(2)
/K = Manufacturing technology code
1. RoHS-compliant and halogen-free (ECOPACK2®)
2. The process letters apply to WLCSP devices only. The process letters appear on the device package
(marking) and on the shipment box. Please contact your nearest ST Sales Office for further information.
36/38
Doc ID 12943 Rev 10
M24M01-R M24M01-DF
11
Revision history
Revision history
Table 20.
Document revision history
Date
02-May-2011
23-Apr-2012
26-Sep-2012
Revision
Changes
8
Updated Features on page 1.
Updated Figure 3: WLCSP8 connections (bumps side view), Figure 5:
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an
I2C bus at maximum frequency fC = 400 kHz and Figure 6: Maximum
Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at
maximum frequency fC = 1MHz.
Updated Table 10: DC characteristics (M24M01-R and M24M01-HR).
Updated footnote 5 of Table 14: AC characteristics at 1 MHz
(M24M01-HR).
Modified description of Write Control in Section 3.6: Write operations.
Replaced CL with Cbus in Table 7: AC measurement conditions.
Changed note 4 about tCLQV in Table 13: AC characteristics at
400 kHz (M24M01-R and M24M01-W).
9
Datasheet split into:
– M24M01-R, M24M01-DF (this datasheet) for standard products
(range 6),
– M24M01-125 datasheet for automotive products (range 3).
10
Updated:
– Section 5.2.2: Current Address Read
– Table 2: Device select code
– WLCSP package
Changed layout of Features.
Rephrased some parts of Section 5.1.2: Page Write, Section 5.2:
Read operations, Table 10: Cycling performance by groups of four
bytes and Table 11: Memory cell data retention.
Doc ID 12943 Rev 10
37/38
M24M01-R M24M01-DF
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
38/38
Doc ID 12943 Rev 10