STMICROELECTRONICS STA333W_10

STA333W
2-channel high-efficiency digital audio system
Sound Terminal™
Features
„
Wide supply-voltage range (4.5 V - 20 V)
„
2 power output configurations
– 2 channels of binary PWM (stereo mode)
– 2 channels of ternary PWM (stereo mode)
„
PowerSSO-36 with exposed pad down
„
2 channels of 24-bit DDX®
„
100-dB SNR and dynamic range
„
Selectable 32- to 192-kHz input sample rates
„
I2C control with selectable device address
„
Digital gain -80 dB to +48 dB in 0.5-dB steps
„
Software volume update
„
Individual channel and master gain/attenuation
„
Individual channel and master software and
hardware mute
„
Independent channel volume bypass
„
Automatic zero-detect mute
„
Automatic invalid input detect mute
„
2-channel I2S input data Interface
„
Selectable clock input ratio
„
Input channel mapping
„
Automatic volume control for limiting maximum
power
„
96-kHz internal processing sample rate, 24-bit
precision
„
Advanced AM interference frequency
switching and noise suppression modes
„
Thermal-overload and short-circuit protection
embedded
„
Video application: 576 * fS input mode support
Table 1.
PowerSSO-36 package
with exposed
pad down (EPD)
Applications
„
LCD
„
DVD
„
Cradle
„
Digital speaker
„
Wireless-speaker cradle
Description
The STA333W is an integrated circuit comprising
digital audio processing, digital amplifier control
and DDX® power output stage to create a highpower, single-chip DDX® solution for all-digital
amplification with high quality and high efficiency.
The STA333W power section consists of four
independent half-bridges stages. These can be
configured via digital control to operate in different
modes. 2 channels can be provided by two full
bridges, providing up to 20 W + 20 W of power.
Also provided in the STA333W are new advanced
AM radio interference reduction modes. The serial
audio data input interface accepts all possible
formats, including the popular I2S format. Three
channels of DDX® processing are provided.
The STA333W is part of the Sound Terminal™
family that provides full digital audio streaming to
the speaker offering cost effectiveness, low power
dissipation and sound enrichment.
Device summary
Order code
Package
Packaging
STA333W
PowerSSO-36 EPD
Tube
STA333W13TR
PowerSSO-36 EPD
Tape and reel
January 2010
Doc ID 13365 Rev 2
1/49
www.st.com
49
Contents
STA333W
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
4
2.1
Pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3
Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4
Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5
Power-on/off sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1
4.2
Functional pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1
Power-down function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2
Reset function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Serial audio interface description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1
5
I2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1
Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.1
Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.2
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.3
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.4
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4
2/49
Serial audio interface protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.1
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2
Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Doc ID 13365 Rev 2
STA333W
6
Contents
5.4.1
Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.2
Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.3
Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.4
Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1
6.2
Configuration registers (addr 0x00 to 0x05) . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.1
Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2
Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.3
Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.4
Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.5
Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.6
Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Volume control registers (addr 0x06 to 0x09) . . . . . . . . . . . . . . . . . . . . . . 32
6.2.1
Mute/line output configuration register (addr 0x06) . . . . . . . . . . . . . . . . 32
6.2.2
Master volume register (addr 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.3
Channel volume (addr 0x08, 0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3
Automodes™ register (0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4
Channel configuration registers (addr 0x0E, 0x0F) . . . . . . . . . . . . . . . . . 35
6.5
Variable max power correction registers (addr 0x27, 0x28) . . . . . . . . . . . 35
6.6
Variable distortion compensation registers (addr 0x29, 0x2A) . . . . . . . . . 36
6.7
Fault detect recovery constant registers (addr 0x2B, 0x2C) . . . . . . . . . . 36
6.8
Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.9
Reserved registers (addr 0x2E, 0x2F, 0x30, 0x31) . . . . . . . . . . . . . . . . . 37
6.10
Postscale registers (addr 0x32, 0x33) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.11
Output limit register (addr 0x34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.11.1
7
Thermal and overcurrent warning output limit register . . . . . . . . . . . . . 38
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1
Applications scheme for power supplies . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2
PLL filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3
Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8
Characterization data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Doc ID 13365 Rev 2
3/49
Contents
STA333W
10
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11
Trademarks and other acknowledgements . . . . . . . . . . . . . . . . . . . . . . 47
12
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4/49
Doc ID 13365 Rev 2
STA333W
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical characteristics for digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical specifications for power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
MCS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Thermal warning recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Thermal warning adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Fault detect recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Support serial audio input formats for MSB first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . . 25
Supported serial audio input formats for LSB-First (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 26
Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DDX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DDX compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Overcurrent warning detect adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Zero detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Master mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Channel mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Master volume offset as a function of MV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Channel volume as a function of CxV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Automodes™ AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Status bits description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Output limit values for thermal and overcurrent warnings. . . . . . . . . . . . . . . . . . . . . . . . . . 38
PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Doc ID 13365 Rev 2
5/49
List of figures
STA333W
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
6/49
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin connection (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Power-on sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power-off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Current dead-time test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Left justified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Write-mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Read-mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Applications diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
PLL filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Output configuration for stereo BTL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Output power vs. supply voltage (THD = 1%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
FFT 0 dBfs (VCC = 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
FFT -60 dBfs (VCC = 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
THD vs. frequency (VCC = 12 V, Po = 1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FFT 0 dBfs (VCC = 18 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
FFT -60 dBfs (VCC = 18 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
THD vs. frequency (VCC = 18 V, Po = 1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Double-layer PCB with two copper ground areas and 16 vias . . . . . . . . . . . . . . . . . . . . . . 44
Power derating curve for PCB used as heatsink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Doc ID 13365 Rev 2
STA333W
1
Block diagram
Block diagram
Figure 1.
Block diagram
I2 C
Protection
current/thermal
2
I S
interface
Volume
control
Channel
1A
Power
control
Logic
Channel
1B
DDX
Channel
2A
Regulators
Channel
2B
PLL
Bias
Digital DSP
Power
Doc ID 13365 Rev 2
7/49
Pin description
STA333W
2
Pin description
2.1
Pin out
Figure 2.
Pin connection (package top view)
GND_SUB
1
36
VDD_DIG
SA
2
35
GND_DIG
TEST_MODE
3
34
SCL
VSS
4
33
SDA
VCC_REG
5
32
INT_LINE
OUT2B
6
31
RESET
GND2
7
30
SDI
VCC2
8
29
LRCKI
OUT2A
9
28
BICKI
OUT1B
10
27
XTI
VCC1
11
26
GND_PLL
GND1
12
25
FILTER_PLL
VDD_PLL
OUT1A
13
GND_REG
14
VDD_REG
15
24
EP
exposed pad (down) 23
Connect to ground
22
CONFIG
16
21
VDD_DIG
N.C.
17
20
N.C.
N.C.
18
19
N.C.
PWRDN
GND_DIG
D05AU1638
2.2
Pin list
Table 2.
Pin description
Number
8/49
Type
Name
Description
1
PWR
GND_SUB
Substrate ground
2
I
SA
I2C select address
3
I
TEST_MODE
This pin must be connected to ground
4
I/O
VSS
Internal reference at VCC - 3.3 V
5
I/O
VCC_REG
Internal VCC reference
6
O
OUT2B
Output half bridge 2B
7
PWR
GND2
Power negative supply
8
PWR
VCC2
Power positive supply
9
O
OUT2A
Output half bridge 2A
Doc ID 13365 Rev 2
STA333W
Pin description
Table 2.
Pin description (continued)
Number
Type
Name
Description
10
O
OUT1B
Output half bridge 1B
11
PWR
VCC1
Power positive supply
12
PWR
GND1
Power negative supply
13
O
OUT1A
Output half bridge 1A
14
PWR
GND_REG
Internal ground reference
15
PWR
VDD_REG
Internal 3.3-V reference voltage
16
I
CONFIG
Paralleled mode command
17
-
N.C.
No internal connection
18
-
N.C.
No internal connection
19
-
N.C.
No internal connection
20
-
N.C.
No internal connection
21
PWR
VDD_DIG
Positive supply digital
22
PWR
GND_DIG
Digital ground
23
I
PWRDN
Power down:
0: power stage is switched off then the PLL is also
switched off (this operation take 13 million clock cycles)
1: normal operation
24
PWR
VDD_PLL
Positive supply for PLL
25
I
FILTER_PLL
Connection to PLL filter
26
PWR
GND_PLL
Negative supply for PLL
27
I
XTI
PLL input clock, 256 * fS, or 384 * fS
28
I
BICKI
I2S serial clock
29
I
LRCKI
I2S left/right clock
30
I
SDI
I2S serial data channel
31
I
RESET
Reset:
0: reset state, power stage is switched off, all registers are
set to default value
1: normal operation
32
O
INT_LINE
Fault interrupt
33
I/O
SDA
I2C serial data, used as SDA_OUT
34
I
SCL
I2C serial clock
35
PWR
GND_DIG
Digital ground
36
PWR
VDD_DIG
Digital supply
-
-
EP
Exposed pad for ground-plane heatsink, to be connected
to GND
Doc ID 13365 Rev 2
9/49
Pin description
2.3
STA333W
Thermal data
Table 3.
Symbol
Thermal data
Parameter
RTh(j-case) Thermal resistance junction to case (thermal pad)
10/49
Min
Typ
Max
Unit
-
1.5
2.0
°C/W
Tsd
Thermal-shutdown junction temperature
140
150
160
°C
Tw
Thermal-warning temperature
-
130
-
°C
Thsd
Thermal-shutdown hysteresis
18
20
22
°C
Doc ID 13365 Rev 2
STA333W
Electrical specification
3
Electrical specification
3.1
Absolute maximum ratings
Table 4.
Absolute maximum ratings
Symbol
Parameter
Typ
Max
Unit
VCC
Analog supply voltage (pins VCCx)
-
-
23
V
VDD
Digital supply voltage (pins VDD_DIG)
-
-
4.0
V
IL
Logic input interface
-0.3
-
4.0
V
Top
Operating junction temperature
0
-
150
°C
Tstg
Storage temperature
-40
-
150
°C
Warning:
3.2
Min
Stresses beyond those listed in Table 4: Absolute maximum
ratings may cause permanent damage to the device. These
are stress ratings only, and functional operation of the device
at these or any other conditions beyond those indicated in
Table 5: Recommended operating conditions are not implied.
Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability. In the real
application, a power supply with nominal value rated within
the limits of the recommended operating conditions, may
experience some rising beyond the maximum operating
conditions for a short time when no or very low current is
being sinked (amplifier in mute state). In this case the
reliability of the device is guaranteed, provided that the
absolute maximum ratings are not exceeded.
Recommended operating conditions
Table 5.
Recommended operating conditions
Symbol
Parameter
Min
Typ
Max
Unit
VCC
Analog supply voltage (VCCx)
4.5
-
20.0
V
VDD
Digital supply voltage (VDD_DIG)
2.7
3.3
3.6
V
IL
Logic input interface
2.7
3.3
3.6
V
Tamb
Ambient temperature
0
-
70
°C
Doc ID 13365 Rev 2
11/49
Electrical specification
3.3
STA333W
Electrical specifications - digital section
Table 6.
Electrical characteristics for digital section
Symbol
Iil
Conditions
Min
Typ
Max
Unit
Input current, no pull-up or
pull-down resistor
Vi = 0 V
-
-
±10
µA
Vi = VDD = 3.6 V
-
-
±10
µA
Vil
Low-level input voltage
-
-
-
0.2 *
VDD
V
Vih
High-level input voltage
-
0.8 *
VDD
-
-
V
Vol
Low-level output voltage
Iol = 2 mA
-
-
0.4 *
VDD
V
Voh
High-level output voltage
Ioh = 2 mA
0.8 *
VDD
-
-
V
Ipu
Pull-up current
-
25
66
125
µA
Rpu
Equivalent pull-up
resistance
-
-
50
-
kΩ
Iih
3.4
Parameter
Electrical specifications - power section
The specifications in Table 7 below are given for the conditions VCC = 18 V, VDD = 3.3 V,
fSW = 384 kHz, Tamb = 25 °C and RL = 8 Ω, unless otherwise specified.
Table 7.
Electrical specifications for power section
Symbol
Po
12/49
Parameter
Conditions
Min
Typ
Max
THD = 1%
-
16
-
THD = 10%
-
20
-
Output power BTL
Unit
W
RdsON
Power P-channel/N-channel
ld = 1 A
MOSFET (total bridge)
-
180
250
mΩ
ldss
Power P-channel/N-channel
VCC = 18 V
leakage
-
-
10
µA
gP
Power P-channel RdsON
matching
ld = 1 A
95
-
-
%
gN
Power N-channel RdsON
matching
ld = 1 A
95
-
-
%
ILDT
Low-current dead time
(static)
Resistive load,
refer to Figure 5
-
5
10
ns
IHDT
High-current dead time
(dynamic)
Refer to Figure 6
-
10
20
ns
tr
Rise time
Resistive load,
refer to Figure 5
-
8
10
ns
tf
Fall time
Resistive load,
refer to Figure 5
-
8
10
ns
Doc ID 13365 Rev 2
STA333W
Electrical specification
Table 7.
Symbol
VCC
IVCC
IVDD_DIG
Electrical specifications for power section (continued)
Parameter
Conditions
Min
Typ
Max
Unit
Supply voltage
-
4.5
-
20
V
Supply current from VCC in
power down
PWRDN = 0
30
60
200
µA
Supply current from VCC in
operation
PCM input signal = -60 dBfs
Switching frequency =
384 kHz
No LC filters
-
30
50
mA
Supply current for DDX
Internal clock = 49.152 MHz
processing (reference only)
10
30
50
mA
Supply current in standby
8
11
25
mA
2.2
3.5
4.3
A
(1)
ILIM
Overcurrent limit
Non-linear output
ISCP
Short-circuit protection
High-impedance output (2)
2.7
3.8
5.0
A
VUVP
Undervoltage protection
threshold
-
-
3.5
4.3
V
tmin
Output minimum pulse
width
No load
20
30
60
ns
THD+N
Total harmonic distortion
and noise
DXX stereo mode, Po = 1 W,
f = 1 kHz
-
0.05
0.2
%
DR
Dynamic range
-
-
100
-
dB
Signal to noise ratio in
ternary mode
A-weighted
-
100
-
Signal to noise ratio in
binary mode
A-weighted
-
90
-
-
80
-
dB
SNR
dB
PSRR
DXX stereo mode, < 5 kHz,
Power supply rejection ratio VRIPPLE = 1 V RMS
audio input = dither only
XTALK
Crosstalk
DXX stereo mode, < 5 kHz,
One channel driven at 1 W
the other channel measured
-
80
-
dB
η
Peak efficiency
in DXX mode
Po = 2 x 20 W into 8 Ω
-
90
-
%
1. The ILIM data is for 1 channel of BTL configuration, thus, 2 * ILIM drives the 2-channel BTL configuration.
The current limit is active when OCRB = 0 (see Table 23: Overcurrent warning detect adjustment bypass
on page 28. When OCRB = 1 then ISC applies.
2. The ISCP current limit data is for 1 channel of BTL configuration, thus, 2 * ISCP drives the 2-channel BTL
configuration. The short-circuit current is applicable when OCRB = 1 (see Table 23: Overcurrent warning
detect adjustment bypass on page 28.
Doc ID 13365 Rev 2
13/49
Electrical specification
3.5
STA333W
Power-on/off sequences
The power-on/off sequences shown in Figure 3 and Figure 4 below ensure a pop-free turn
on and turn off.
Figure 3.
Power-on sequence
No specific VCC and VDD_DIG turn-on sequence is required
VCC
VCC
Don’t care
VDD_Dig
VDD_DIG
XTI
XTI
Don’t care
Reset
RESET
TR
PWRDN
PWRDN
Bit
EAPD
Soft
EAPD
Register
Reg. 0x050x05
TC
Bit 7 = 1
TR = mimimum time between XTI master clock stable and reset removal: 1 ms
TC = minimum time between reset removal and I2C program sequence start: 1 ms
Clock stable means: fmax - fmin < 1 MHz
Figure 4.
Power-off sequence
No specific VCC and VDD_DIG turn-off sequence is required
VCC
VCC
Don’t care
VDD_DIG
VDD_Dig
XTI
XTI
MuteMute
Soft
Register
Reg.
0x07 0x07
Data 0xFE
Don’t care
Don’t care
FE
Bit EAPD
Soft
EAPD
Register
0x05
Reg. 0x05
Bit 7 = 0
14/49
Doc ID 13365 Rev 2
Don’t care
STA333W
3.6
Electrical specification
Testing
Figure 5.
Test circuit
OUTxY
Vcc
(3/4)Vcc
Low current dead time = MAX(DTr,DTf)
(1/2)Vcc
(1/4)Vcc
+Vcc
t
DTr
Duty cycle = 50%
DTf
M58
OUTxY
INxY
R 8Ω
M57
+
-
V67 =
vdc = Vcc/2
gnd
Figure 6.
D03AU1458
Current dead-time test circuit
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))
+VCC
Duty cycle=A
Duty cycle=B
DTout(A)
M58
DTin(A)
Q2
Q1
OUTA
INA
L67 22µ
Q3
C69
470nF
M64
DTin(B)
OUTB
INB
L68 22µ
Iout=4A
Lout
= 1.5 A
M57
DTout(B)
Rload=8Ω
Iout=4A
Lout
= 1.5 A
C71 470nF
C70
470nF
Q4
Duty cycle A and B: Fixed to have DC output current of 4A in the direction shown in figure
Doc ID 13365 Rev 2
M63
D03AU1517
15/49
Functional description
STA333W
4
Functional description
4.1
Functional pins
4.1.1
Power-down function
Pin PWRDN (23) is used to power down the STA333W.
PWRDN = 0 (0 V): power-down state.
PWRND = 1 (VDD): normal operation.
During the power-down sequence the output begins to mute. After the mute condition is
reached the power stage is switched off and the output becomes high impedance. Then the
master clock to all internal hardware blocks is gated off. The PLL is also switched off. The
complete power-down sequence takes 13 million cycles.
4.1.2
Reset function
Pin RESET (31) is used to reset the STA333W.
RESET = 0 (0 V): reset state.
RESET = 1 (VDD): normal operation.
When pin RESET is forced to 0 the power stage is switched off (with high-impedance
output) and the master clock to all internal hardware blocks is gated off.
Note:
16/49
Reset has a higher priority than power down.
Doc ID 13365 Rev 2
STA333W
Functional description
4.2
Serial audio interface description
4.2.1
Serial audio interface protocols
The STA333W serial audio input was designed to interface with standard digital audio
components and to accept serial data formats. The STA333W always acts as a slave when
receiving audio input from standard digital audio components. Serial data for two channels
is provided using 3 input pins: left/right clock LRCKI (pin 29), serial clock BICKI (pin 28), and
serial data SDI (pin 30).
The available formats are showed in Table 7 and Table 8, and set through register CONFB
on page 24.
Figure 7.
I2 S
LRCLKI
BICKI
SDI
Figure 8.
11 2 33
n-1 n
1 2 3
n-1 n
Left justified
LRCLKI
BICKI
SDI
1 2 3
n-1 n
1 2
Doc ID 13365 Rev 2
3
n-1 n
17/49
I2C bus specification
5
STA333W
I2C bus specification
The STA333W supports the I2C protocol via the input ports SCL and SDA. This protocol
defines any device that sends data on to the bus as a transmitter and any device that reads
the data as a receiver. The device that controls the data transfer is known as the master and
the other as the slave. The master always starts the transfer and provides the serial clock for
synchronization. The STA333W is always a slave device in all of its communications. It
supports up to 400 kb/s (fast-mode bit rate).
5.1
Communication protocol
5.1.1
Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition
while the clock is high is used to identify a START or STOP condition.
5.1.2
Start condition
START is identified by a high to low transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A START condition must precede any command for
data transfer.
5.1.3
Stop condition
STOP is identified by low to high transition of the data bus SDA signal while the clock signal
SCL is stable in the high state. A STOP condition terminates communication between
STA333W and the bus master.
5.1.4
Data input
During the data input the STA333W samples the SDA signal on the rising edge of clock
SCL. For correct device operation the SDA signal must be stable during the rising edge of
the clock and the data can change only when the SCL line is low.
5.2
Device addressing
To start communication between the master and the STA333W, the master must initiate a
start condition. Following this, the master sends onto the SDA line 8 bits (MSB first)
corresponding to the device-select address and read or write mode.
The 7 most significant bits are the device address identifiers, corresponding to the I2C bus
definition. In the STA333W the I2C interface has two device addresses depending on the SA
port configuration, 0x38 when SA = 0, and 0x3A when SA = 1.
The 8th bit (LSB) identifies read or write operation RW, this bit is set to 1 for read mode and
0 for write mode. After a START condition the STA333W identifies the device address on the
SDA bus and if a match is found, acknowledges the identification during the 9th bit time. The
byte following the device identification byte is the internal space address.
18/49
Doc ID 13365 Rev 2
I2C bus specification
STA333W
5.3
Write operation
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA333W acknowledges this and then waits for the byte of internal address. After
receiving the internal byte address the STA333W again responds with an
acknowledgement.
5.3.1
Byte write
In the byte write mode the master sends one data byte, this is acknowledged by the
STA333W. The master then terminates the transfer by generating a STOP condition.
5.3.2
Multi-byte write
The multi-byte write modes can start from any internal address. The master generating a
STOP condition terminates the transfer.
Figure 9.
Write-mode sequence
ACK
ACK
DEV-ADDR
BYTE
WRITE
SUB-ADDR
RW
START
STOP
ACK
MULTIBYTE
WRITE
ACK
DATA IN
ACK
DEV-ADDR
START
SUB-ADDR
ACK
DATA IN
ACK
DATA IN
STOP
RW
5.4
Read operation
5.4.1
Current address byte read
Following the START condition the master sends a device select code with the RW bit set
to 1. The STA333W acknowledges this and then responds by sending one byte of data. The
master then terminates the transfer by generating a STOP condition.
5.4.2
Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA333W. The master acknowledges each data
byte read and then generates a STOP condition terminating the transfer.
5.4.3
Random address byte read
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA333W acknowledges this and then the master writes the internal address byte.
After receiving, the internal byte address the STA333W again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA333W acknowledges this and then responds
by sending one byte of data. The master then terminates the transfer by generating a STOP
condition.
Doc ID 13365 Rev 2
19/49
I2C bus specification
5.4.4
STA333W
Random address multi-byte read
The multi-byte read modes could start from any internal address. Sequential data bytes are
read from sequential addresses within the STA333W. The master acknowledges each data
byte read and then generates a STOP condition to terminate the transfer.
Figure 10. Read-mode sequence
ACK
CURRENT
ADDRESS
READ
DEV-ADDR
NO ACK
DATA
RW
START
STOP
ACK
RANDOM
ADDRESS
READ
DEV-ADDR
SUB-ADDR
RW
RW= ACK
HIGH
START
SEQUENTIAL
CURRENT
READ
ACK
DEV-ADDR
ACK
DEV-ADDR
START
RW
ACK
DATA
NO ACK
DATA
STOP
ACK
DATA
NO ACK
DATA
STOP
START
ACK
SEQUENTIAL
RANDOM
READ
DEV-ADDR
START
20/49
ACK
SUB-ADDR
RW
ACK
DEV-ADDR
START
ACK
DATA
RW
Doc ID 13365 Rev 2
ACK
DATA
NO ACK
DATA
STOP
STA333W
6
Register description
Register description
Table 8.
Addr
Register summary
Name
D7
D6
D5
D4
D3
D2
D1
D0
0x00
CONFA
FDRB
TWAB
TWRB
IR1
IR0
MCS2
MCS1
MCS0
0x01
CONFB
C2IM
C1IM
Reserved
SAIFB
SAI3
SAI2
SAI1
SAI0
0x02
CONFC
OCRB
Reserved
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
0x03
CONFD
Reserved
ZDE
0x04
CONFE
SVE
ZCE
DCCV
PWMS
AME
NSBW
MPC
MPCV
0x05
CONFF
EAPD
PWDN
ECLE
LDTE
BCLE
IDE
0x06
MUTE
0x07
MVOL
MV7
MV6
MV5
MV4
0x08
C1VOL
C1V7
C1V6
C1V5
0x09
C2VOL
C2V7
C2V6
C2V5
0x0C
AUTO
0x0E
C1CFG
Reserved
C1VBP
Reserved
0x0F
C2CFG
Reserved
C2VBP
Reserved
0x27
MPCC1
MPCC15
MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0x28
MPCC2
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
0x29
DCC1
DCC15
DCC14
DCC13
DCC12
DCC11
DCC10
DCC9
DCC8
0x2A
DCC2
DCC7
DCC6
DCC5
DCC4
DCC3
DCC2
DCC1
DCC0
0x2B
FDRC1
FDRC15
FDRC14
FDRC13
FDRC12
FDRC11
FDRC10
FDRC9
FDRC8
0x2C
FDRC2
FDRC7
FDRC6
FDRC5
FDRC4
FDRC3
FDRC2
FDRC1
FDRC0
0x2D
STATUS
PLLUL
FAULT
UVFAULT
Reserved
OCFAULT
OCWARN
TFAULT
TWARN
0x2E
BIST1
Reserved
RO1BACT
R5BACT
R4BACT
R3BACT
R2BACT
R1BACT
0x2F
BIST2
Reserved
R01BEND
R5BEND
R4BEND
R3BEND
R2BEND
R1BEND
0x30
BIST3
R5BBAD
R4BBAD
R3BBAD
R1BBAD
R1BBAD
0x31
TSTCTL
0x32
C1PS
C1PS7
C1PS6
C1PS5
C1PS4
C1PS3
C1PS2
C1PS1
C1PS0
0x33
C2PS
C2PS7
C2PS6
C2PS5
C2PS4
C2PS3
C2PS2
C2PS1
C2PS0
0x34
OLIM
OLIM7
OLIM6
OLIM5
OLIM4
OLIM3
OLIM2
OLIM1
OLIM0
Reserved
Reserved
C2M
C1M
MMUTE
MV3
MV2
MV1
MV0
C1V4
C1V3
C1V2
C1V1
C1V0
C2V4
C2V3
C2V2
C2V1
C2V0
AMAM2
AMAM1
AMAM0
AMAME
Reserved
Reserved
Reserved
Reserved
Doc ID 13365 Rev 2
21/49
Register description
STA333W
6.1
Configuration registers (addr 0x00 to 0x05)
6.1.1
Configuration register A (addr 0x00)
D7
D6
D5
D4
D3
D2
D1
D0
FDRB
TWAB
TWRB
IR1
IR0
MCS2
MCS1
MCS0
0
1
1
0
0
0
1
1
Master clock select
Table 9.
Master clock select
Bit
R/W
RST
Name
0
R/W
1
MCS0
1
R/W
1
MCS1
2
R/W
0
MCS2
Description
Master clock select: Selects the ratio between the
input I2S sample frequency and the input clock.
The STA333W supports sample rates of 32 kHz, 44.1 kHz, 48 KHz, 88.2 kHz, 96 kHz,
176.4 kHz, and 192 kHz. Therefore the internal clock is:
z
32.768 MHz for 32 kHz
z
45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
z
49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
The external clock frequency provided to the XTI pin must be a multiple of the input sample
frequency (fS).
The relationship between the input clock and the input sample rate is determined by both
the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor
generating the internal clock and the IR bit determines the oversampling ratio used
internally.
Table 10.
MCS bits
Input sample rate
fS (kHz)
22/49
MCS[2:0]
IR
101
100
011
010
001
000
32, 44.1, 48
00
576 * fS
128 * fS
256 * fS
384 * fS 512 * fS 768 * fS
88.2, 96
01
NA
64 * fS
128 * fS
192 * fS 256 * fS 384 * fS
176.4, 192
1X
NA
32 * fS
64 * fS
96 * fS
Doc ID 13365 Rev 2
128 * fS 192 * fS
STA333W
Register description
Interpolation ratio select
Table 11.
Bit
4:3
Interpolation ratio select
R/W
R/W
RST
00
Name
IR [1:0]
Description
Interpolation ratio select: Selects internal
interpolation ratio based on input I2S sample
frequency.
The STA333W has variable interpolation (oversampling) settings such that internal
processing and DDX output rates remain consistent. The first processing block interpolates
by either 2 times or 1 time (pass-through) or provides a 2-times downsample. The
oversampling ratio of this interpolation is determined by the IR bits.
Table 12.
IR bit settings as a function of input sample rate
Input sample rate fS (kHz)
IR
1st stage interpolation ratio
32
00
2-times oversampling
44.1
00
2-times oversampling
48
00
2-times oversampling
88.2
01
Pass-through
96
01
Pass-through
176.2
10
2-times downsampling
192
10
2-times downsampling
Thermal warning recovery bypass
Table 13.
Bit
5
Thermal warning recovery
R/W
R/W
RST
1
Name
TWRB
Description
Thermal warning recovery bypass:
0: thermal warning recovery enabled
1: thermal warning recovery disabled
If the thermal warning adjustment is enabled (TWAB = 0), then the thermal warning
recovery determines if the -3 dB output limit is removed when thermal warning is negative.
If TWRB = 0 and TWAB = 0, then when a thermal warning disappears the -3 dB output limit
is removed and the gain is added back to the system. If TWRB = 1 and TWAB = 0, then
when a thermal warning disappears the -3 dB output limit remains until TWRB is changed to
zero or the device is reset.
Doc ID 13365 Rev 2
23/49
Register description
STA333W
Thermal warning adjustment bypass
Table 14.
Bit
6
Thermal warning adjustment
R/W
RST
R/W
1
Name
Description
Thermal warning adjustment bypass:
0: thermal warning adjustment enabled
1: thermal warning adjustment disabled
TWAB
The on-chip STA333W power output block provides feedback to the digital controller using
inputs to the power control block. The TWARN input is used to indicate a thermal warning
condition. When TWARN is asserted (set to 0) for a period of time greater than 400 ms, the
power control block will force a -3dB output limit (determined by TWOCL in coefficient RAM)
to the modulation limit in an attempt to eliminate the thermal warning condition. Once the
thermal warning output limit adjustment is applied, it remains in this state until reset, unless
FDRB = 0.
Fault detect recovery bypass
Table 15.
Bit
7
Fault detect recovery
R/W
RST
R/W
0
Name
Description
Fault detect recovery bypass:
0: fault detect recovery enabled
1: fault detect recovery disabled
FDRB
The on-chip STA333W power output block provides feedback to the digital controller using
inputs to the power control block. The FAULT input is used to indicate a fault condition (either
overcurrent or thermal). When FAULT is asserted (set to 0), the power control block attempts
a recovery from the fault by asserting the 3-state output (setting it to 0 which directs the
power output block to begin recovery), holding it at 0 for period of time in the range of 0.1 ms
to 1 second as defined by the fault detect recovery constant register (FDRC registers 0x2B,
0x2C), then toggling it back to 1. This sequence is repeated as log as the fault indication
exists. This feature is enabled by default but can be bypassed by setting the FDRB control
bit to 1.
6.1.2
24/49
Configuration register B (addr 0x01)
D7
D6
D5
D4
D3
D2
D1
D0
C2IM
C1IM
Reserved
SAIFB
SAI3
SAI2
SAI1
SAI0
1
0
0
0
0
0
0
0
Doc ID 13365 Rev 2
STA333W
Register description
Serial audio input interface format
Table 16.
Bit
Serial audio input interface format
R/W
RST
Name
0
R/W
0
SAI0
1
R/W
0
SAI1
2
R/W
0
SAI2
3
R/W
0
SAI3
Description
Determines the interface format of the input serial
digital audio interface.
Serial data interface
The STA333W audio serial input interfaces with standard digital audio components and
accepts a number of serial data formats. STA333W always acts a slave when receiving
audio input from standard digital audio components. Serial data for two channels is provided
using three inputs: left/right clock LRCKI, serial clock BICKI, and serial data SDI.
Bits SAI and bit SAIFB are used to specify the serial data format. The default serial data
format is I2S, MSB first. Available formats are shown in the tables and figure that follow.
Serial data first bit
Table 17.
Serial data first bit
SAIFB
Format
0
MSB-first
1
LSB-first
Table 18.
Support serial audio input formats for MSB first (SAIFB = 0)
BICKI
32 * fS
48* fS
SAI [3:0]
SAIFB
Interface format
0000
0
I2S 15-bit data
0001
0
Left/right justified 16-bit data
0000
0
I2S 16- to 23-bit data
0001
0
Left justified 16- to 24-bit data
0010
0
Right justified 24-bit data
0110
0
Right justified 20-bit data
1010
0
Right justified 18-bit data
1110
0
Right justified 16-bit data
Doc ID 13365 Rev 2
25/49
Register description
Table 18.
STA333W
Support serial audio input formats for MSB first (SAIFB = 0) (continued)
64* fS
Table 19.
48* fS
48* fS
64* fS
26/49
0
I2S 16- to 24-bit data
0001
0
Left justified 16- to 24-bit data
0010
0
Right justified 24-bit data
0110
0
Right justified 20-bit data
1010
0
Right justified 18-bit data
1110
0
Right justified 16-bit data
Supported serial audio input formats for LSB-First (SAIFB = 1)
BICKI
32* fS
0000
SAI[3:0]
SAIFB
Interface format
1100
1
I2S 15-bit data
1110
1
Left/right justified 16-bit data
0100
1
I2S 23-bit data
0100
1
I2S 20-bit data
1000
1
I2S 18-bit data
1100
1
LSB first I2S 16-bit data
0001
1
Left justified 24-bit data
0101
1
Left justified 20-bit data
1001
1
Left justified 18-bit data
1101
1
Left justified 16-bit data
0010
1
Right justified 24-bit data
0110
1
Right justified 20-bit data
1010
1
Right justified 18-bit data
1110
1
Right justified 16-bit data
0000
1
I2S 24-bit data
0100
1
I2S 20-bit data
1000
1
I2S 18-bit data
1100
1
LSB First I2S 16-bit data
0001
1
Left justified 24-bit data
0101
1
Left justified 20-bit data
1001
1
Left justified 18-bit data
1101
1
Left justified 16-bit data
0010
1
Right justified 24-bit data
0110
1
Right justified 20-bit data
1010
1
Right justified 18-bit data
1110
1
Right justified 16-bit data
Doc ID 13365 Rev 2
STA333W
Register description
Channel input mapping
Table 20.
Bit
Channel input mapping
R/W
RST
Name
Description
6
R/W
0
C1IM
0: processing channel 1 receives left I2S input
1: processing channel 1 receives right I2S input
7
R/W
0
C2IM
0: processing channel 2 receives left I2S input
1: processing channel 2 receives right I2S input
Each channel received via I2S can be mapped to any internal processing channel via the
channel input mapping registers. This allows for flexibility in processing. The default settings
of these registers map each I2S input channel to its corresponding processing channel.
6.1.3
Configuration register C (addr 0x02)
D7
D6
D5
D4
D3
D2
D1
D0
OCRB
Reserved
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
1
0
0
1
0
1
1
1
DDX power output mode
Table 21.
Bit
DDX power output mode
R/W
RST
Name
0
R/W
1
OM0
1
R/W
1
OM1
Description
The DDX power output mode selects the configuration
of the DDX output:
00: drop compensation
01: discrete output stage: tapered compensation
10: full-power mode
11: variable drop compensation (CSZx bits)
DDX compensation pulse size register
Table 22.
Bit
DDX compensating pulse size
R/W
RST
Name
2
R/W
1
CSZ0
3
R/W
0
CSZ1
4
R/W
1
CSZ2
5
R/W
0
CSZ3
Description
When OM[1:0] = 11, this register determines the size of
the DDX compensating pulse from 0 to 15 clock periods:
0000: 0 ns (0 ticks) compensating pulse size
0001: 20 ns (1 tick) clock period compensating pulse
size
.....
1111: 300 ns (15 ticks) clock period compensating pulse
size
Doc ID 13365 Rev 2
27/49
Register description
STA333W
Overcurrent warning detect adjustment bypass
Table 23.
Bit
7
Overcurrent warning detect adjustment bypass
R/W
RST
R/W
1
Name
Description
0: overcurrent warning adjustment enabled
1: overcurrent warning adjustment disabled
OCRB
The status bit OCWARN is used to warn of an overcurrent condition. When OCWARN is
asserted (set to 0), the power control block forces an adjustment to the modulation limit
(default -3dB) in an attempt to eliminate the overcurrent warning condition. Once the
overcurrent warning volume adjustment is applied, it remains applied until the device is
reset. The overcurrent limit can be changed via register OLIM (Output limit register (addr
0x34) on page 38).
6.1.4
Configuration register D (addr 0x03)
D7
D6
Reserved
ZDE
D5
0
1
D4
D3
D2
D1
D0
0
0
0
Reserved
0
0
0
Zero-detect mute enable
Table 24.
Bit
6
Zero detect mute enable
R/W
RST
R/W
1
Name
Description
ZDE
1: enable the automatic zero-detect mute
Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at
the data for each processing channel at the output of the crossover (bass management)
filter. If any channel receives 2048 consecutive zero value samples (regardless of fS) then
that individual channel is muted if this function is enabled.
6.1.5
Configuration register E (addr 0x04)
D7
D6
D5
D4
D3
D2
D1
D0
SVE
ZCE
DCCV
PWMS
AME
NSBW
MPC
MPCV
1
1
0
0
0
0
1
0
Max power correction variable
Table 25.
Bit
0
28/49
Max power correction variable
R/W
R/W
RST
0
Name
MPCV
Description
0: use standard MPC coefficient
1: use MPCC bits for MPC coefficient
Doc ID 13365 Rev 2
STA333W
Register description
Max power correction
Table 26.
Bit
1
Max power correction
R/W
R/W
RST
1
Name
MPC
Description
1: enable power bridge correction for THD reduction
near maximum power output.
Setting the MPC bit turns on special processing that corrects the STA333W power device at
high power. This mode lowers the THD+N of a full DDX system at maximum power output
and slightly below. If enabled, MPC is operational in all output modes except tapered
(OM[1:0] = 01) and binary. When OCFG = 00, MPC does not affect channels 3 and 4, the
line-out channels.
Noise-shaper bandwidth selection
Table 27.
Bit
2
Noise-shaper bandwidth selection
R/W
R/W
RST
0
Name
NSBW
Description
1: 3rd order NS
0: 4th order NS
AM mode enable
Table 28.
Bit
3
AM mode enable
R/W
R/W
RST
0
Name
AME
Description
0: normal DDX operation
1: AM reduction mode DDX operation
The STA333W features a DDX processing mode that minimizes the amount of noise
generated in frequency range of AM radio. This mode is intended for use when DDX is
operating in a device with an AM tuner active. The SNR of the DDX processing is reduced to
approximately 83 dB in this mode, which is still greater than the SNR of AM radio.
PWM speed mode
Table 29.
Bit
4
PWM speed mode
R/W
R/W
RST
0
Name
PWMS
Description
0: normal speed (384 kHz) all channels
1: odd speed (341.3 kHz) all channels
Distortion compensation variable enable
Table 30.
Bit
5
Distortion compensation variable enable
R/W
R/W
RST
0
Name
DCCV
Description
0: uses preset DC coefficient.
1: uses DCC coefficient.
Doc ID 13365 Rev 2
29/49
Register description
STA333W
Zero-crossing volume enable
Table 31.
Bit
6
Zero-crossing volume enable
R/W
RST
R/W
1
Name
Description
1: volume adjustments will only occur at digital
zero-crossings
0: volume adjustments will occur immediately
ZCE
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital
zero-crossings no clicks will be audible.
Soft volume update enable
Table 32.
Bit
7
6.1.6
Zero-crossing volume enable
R/W
RST
R/W
1
Name
Description
1: volume adjustments ramp according to SVR
settings
0: volume adjustments will occur immediately
SVE
Configuration register F (addr 0x05)
D7
D6
D5
D4
D3
D2
EAPD
PWDN
ECLE
LDTE
BCLE
IDE
0
1
0
1
1
1
D1
D0
Reserved
0
0
Invalid Input detect mute enable
Table 33.
Bit
2
Invalid input detect mute enable
R/W
R/W
RST
1
Name
IDE
Description
1: enables the automatic invalid input detect mute
Setting the IDE bit enables this function, which looks at the input I2S data and will
automatically mute if the signals are perceived as invalid.
Binary output mode clock loss detection
Table 34.
Bit
3
Binary output mode clock loss detection
R/W
R/W
RST
1
Name
BCLE
Description
Binary output mode clock loss detection enable
Detects loss of input MCLK in binary mode and outputs 50% of the duty cycle.
30/49
Doc ID 13365 Rev 2
STA333W
Register description
LRCK double trigger protection
Table 35.
Bit
4
LRCK double trigger protection
R/W
R/W
RST
1
Name
Description
LDTE
LRCLK double trigger protection enable
Actively prevents double trigger of LRCLK.
Auto EAPD on clock loss
Table 36.
Bit
5
Auto EAPD on clock loss
R/W
R/W
RST
0
Name
ECLE
Description
Auto EAPD on clock loss
When active will issue a power device power-down signal (EAPD) on clock loss detection.
IC power down
Table 37.
Bit
6
Power down
R/W
R/W
RST
1
Name
PWDN
Description
0: power down, low-power condition
1: normal operation
The PWDN register is used to put the IC in a low-power state. When PWDN is 0, the output
begins a soft-mute. After the mute condition is reached, EAPD is asserted to power down
the power stage, then the master clock to all internal hardware except the I2C block is gated.
This puts the IC in a very low power consumption state.
External amplifier power down
Table 38.
Bit
7
External amplifier power down
R/W
R/W
RST
1
Name
EAPD
Description
0: external power stage power down active
1: normal operation
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed in a low-power state (disabled).
Doc ID 13365 Rev 2
31/49
Register description
STA333W
6.2
Volume control registers (addr 0x06 to 0x09)
6.2.1
Mute/line output configuration register (addr 0x06)
D7
D6
D5
D4
D3
Reserved
0
0
0
0
0
D2
D1
D0
C2M
C1M
MMUTE
0
0
0
Master mute
Table 39.
Bit
0
Master mute
R/W
R/W
RST
0
Name
MMUTE
Description
0: normal operation
1: all channels are in mute condition
Channel mute
Table 40.
Bit
32/49
Channel mute
R/W
RST
Name
Description
1
R/W
0
C1M
Channel 1 mute:
0: not muted, it is possible to set the channel volume
1: hardware muted
2
R/W
0
C2M
Channel 2 mute:
0: not muted, it is possible to set the channel volume
1: hardware muted
Doc ID 13365 Rev 2
STA333W
6.2.2
6.2.3
Register description
Master volume register (addr 0x07)
D7
D6
D5
D4
D3
D2
D1
D0
MV7
MV6
MV5
MV4
MV3
MV2
MV1
MV0
1
1
1
1
1
1
1
1
Channel volume (addr 0x08, 0x09)
D7
D6
D5
D4
D3
D2
D1
D0
C1V7
C1V6
C1V5
C1V4
C1V3
C1V2
C1V1
C1V0
0
1
1
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C2V7
C2V6
C2V5
C2V4
C2V3
C2V2
C2V1
C2V0
0
1
1
0
0
0
0
0
Volume setting
The volume structure of the STA333W consists of individual volume registers for each
channel and a master volume register that provides an offset to each channels volume
setting. The individual channel volumes are adjustable in 0.5-dB steps from +48 dB to
-80 dB. As an example if C3V = 0x00 or +48 dB and MV = 0x18 or -12 dB, then the total gain
for channel 3 = +36 dB.
The master mute when set to 1 will mute all channels at once, whereas the individual
channel mutes (CxM) mute only that channel. Both the master mute and the channel mutes
provide a “soft mute” with the volume ramping down to mute in 4096 samples from the
maximum volume setting at the internal processing rate (about 96 kHz). A hard mute can be
obtained by commanding a value of all 1’s (255) to any channel volume register or the
master volume register. When volume offsets are provided via the master volume register
any channel that whose total volume is less than -80 dB is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (configuration register F)
on a per channel basis as this creates the smoothest possible volume transitions. When
ZCE = 0, volume updates will occur immediately.
Table 41.
Master volume offset as a function of MV
MV[7:0]
Volume offset from channel value
00000000 (0x00)
0 dB
00000001 (0x01)
-0.5 dB
00000010 (0x02)
-1 dB
…
…
01001100 (0x4C)
-38 dB
…
…
11111110 (0xFE)
-127.5 dB
11111111 (0xFF)
Hard master mute
Doc ID 13365 Rev 2
33/49
Register description
STA333W
Table 42.
Channel volume as a function of CxV
CxV[7:0]
6.3
Volume
00000000 (0x00)
+48 dB
00000001 (0x01)
+47.5 dB
00000010 (0x02)
+47 dB
…
…
01011111 (0x5F)
+0.5 dB
01100000 (0x60)
0 dB
01100001 (0x61)
-0.5 dB
…
…
11010111 (0xD7)
-59.5 dB
11011000 (0xD8)
-60 dB
11011001 (0xD9)
-61 dB
11011010 (0xDA)
-62 dB
…
…
11101100 (0xEC)
-80 dB
11101101 (0xED)
Hard channel mute
…
…
11111111 (0xFF)
Hard channel mute
Automodes™ register (0x0C)
D7
D6
D5
D4
Reserved
0
0
0
D3
D2
D1
D0
AMAM2
AMAM1
AMAM0
AMAME
0
0
0
0
0
AM interference frequency switching
Table 43.
Bit
0
AM interference frequency switching
R/W
R/W
RST
0
Name
AMAME
Description
0: switching frequency determined by PWMS setting
1: switching frequency determined by AMAM setting
AMAM bits
Table 44.
Automodes™ AM switching frequency selection
AMAM[2:0]
34/49
48 kHz / 96 kHz input fS
44.1 kHz / 88.2 kHz input fS
000
0.535 MHz - 0.720 MHz
0.535 MHz - 0.670 MHz
001
0.721 MHz - 0.900 MHz
0.671 MHz - 0.800 MHz
Doc ID 13365 Rev 2
STA333W
Register description
Table 44.
6.4
Automodes™ AM switching frequency selection
010
0.901 MHz - 1.100 MHz
0.801 MHz - 1.000 MHz
011
1.101 MHz - 1.300 MHz
1.001 MHz - 1.180 MHz
100
1.301 MHz - 1.480 MHz
1.181 MHz - 1.340 MHz
101
1.481 MHz - 1.600 MHz
1.341 MHz - 1.500 MHz
110
1.601 MHz - 1.700 MHz
1.501 MHz - 1.700 MHz
Channel configuration registers (addr 0x0E, 0x0F)
D7
D6
0
0
D7
D6
D5
D4
D3
0
0
0
D5
D4
D3
Reserved
0
0
D1
C1VBP
Reserved
0
D2
Reserved
0
0
D2
D1
C2VBP
0
0
0
D0
0
D0
Reserved
0
0
Volume bypass
Each channel contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting will not affect that
channel.
6.5
Variable max power correction registers (addr 0x27, 0x28)
MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is
used in place of the default coefficient when MPCV = 1.
D7
D6
D5
D4
D3
D2
D1
D0
MPCC15
MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0
0
0
1
1
0
1
0
D7
D6
D5
D4
D3
D2
D1
D0
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
1
1
0
0
0
0
0
0
Doc ID 13365 Rev 2
35/49
Register description
6.6
STA333W
Variable distortion compensation registers (addr 0x29, 0x2A)
D7
D6
D5
D4
D3
D2
D1
D0
DCC15
DCC14
DCC13
DCC12
DCC11
DCC10
DCC9
DCC8
1
1
1
1
0
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
DCC7
DCC6
DCC5
DCC4
DCC3
DCC2
DCC1
DCC0
0
0
1
1
0
0
1
1
DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient
is used in place of the default coefficient when DCCV = 1.
6.7
Fault detect recovery constant registers (addr 0x2B, 0x2C)
D7
D6
D5
D4
D3
D2
D1
D0
FDRC15
FDRC14
FDRC13
FDRC12
FDRC11
FDRC10
FDRC9
FDRC8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
FDRC7
FDRC6
FDRC5
FDRC4
FDRC3
FDRC2
FDRC1
FDRC0
0
0
0
0
1
1
0
0
FDRC bits specify the 16-bit fault detect recovery time delay. When status register bit FAULT
is asserted, the tristate output is immediately asserted low and held low for the time period
specified by this constant. A value of 0x0001 in this register is approximately 0.083 ms. The
default value of 0x000C gives approximately 0.1 ms.
Note:
0x0000 is a reserved value for this register pair. This value must not be used.
6.8
Device status register (addr 0x2D)
D7
D6
D5
D4
D3
D2
D1
D0
PLLUL
FAULT
UVFAULT
Reserved
OCFAULT
OCWARN
TFAULT
TWARN
This read-only register provides the fault, warning and PLL status from the power control
block.
Table 45.
Bit
36/49
Status bits description
R/W
RST
Name
Description
0
RO
-
TWARN
Thermal warning:
0: junction temperature is close to the fault condition
1: normal operation
1
RO
-
TFAULT
Thermal fault:
0: junction temperature limit detection
1: normal operation
Doc ID 13365 Rev 2
STA333W
Register description
Table 45.
Bit
6.9
Status bits description (continued)
R/W
RST
Name
Description
2
RO
-
OCWARN
Overcurrent warning:
0: warning
1: normal operation
3
RO
-
OCFAULT
Overcurrent fault:
0: fault detected
1: normal operation
4
-
-
-
Reserved
5
RO
-
UVFAULT
Undervoltage warning:
0: VCCx below lower voltage threshold
1: normal operation
6
RO
-
FAULT
Power bridge fault:
0: fault detected
1: normal operation
7
RO
-
PLLUL
PLL lock:
0: locked
1: not locked
Reserved registers (addr 0x2E, 0x2F, 0x30, 0x31)
These registers are not to be used.
6.10
Postscale registers (addr 0x32, 0x33)
D7
D6
D5
D4
D3
D2
D1
D0
C1PS7
C1PS6
C1PS5
C1PS4
C1PS3
C1PS2
C1PS1
C1PS0
0
1
1
1
1
1
1
1
D7
D6
D5
D4
D3
D2
D1
D0
C2PS7
C2PS6
C2PS5
C2PS4
C2PS3
C2PS2
C2PS1
C2PS0
0
1
1
1
1
1
1
1
Postscale
The STA333W provides one additional multiplication after the last interpolation stage and
the distortion compensation on each channel, which can be used to limit the maximum
modulation index and therefore the peak current through the power device. The register
values represent an 8-bit signed fractional number. This number is extended to a 24-bit
number, by adding zeros to the right, and then directly multiplied by the data on that
channel. An independent postscale is provided for each channel but all channels can use
channel 1 postscale factor by setting the postscale link bit. By default, all postscale factors
are set to 0x7F (pass-through).
Doc ID 13365 Rev 2
37/49
Register description
STA333W
6.11
Output limit register (addr 0x34)
6.11.1
Thermal and overcurrent warning output limit register
D7
D6
D5
D4
D3
D2
D1
D0
OLIM7
OLIM6
OLIM5
OLIM4
OLIM3
OLIM2
OLIM1
OLIM0
0
1
0
1
1
0
1
0
The STA333W provides a simple mechanism for reacting to a thermal or overcurrent
warning in the power device. When the TWARN or OCWARN status bit is asserted, the
output is limited to the OLIM setting. The limit can be adjusted by modifying the thermal
warning/overcurrent output limit value. As for the normal postscale, the register value
represents an 8-bit signed fractional number. This number is extended to a 24-bit number,
by adding zeros to the right, and then directly multiplied by the data on both channels. The
scaling value range is from 0x80 = -1 to 0x7F = 0.992. To avoid phase changes in the output
signal only the positive range is used (0x00 to 0x7F). The default setting of 0x5A provides a
-3-dB limit.
If the cause of the limiting is a thermal warning, the output limiting is removed when the
thermal warning situation disappears. If the cause of the limiting is an overcurrent warning,
output limiting remains in effect until the device is reset.
Table 46.
Output limit values for thermal and overcurrent warnings
OLIM[7:0]
38/49
Attenuation (dB)
0x7F
0.06
0x7E
0.13
....
....
0x5A
3.0
....
....
0x40
6.0
....
....
0x28
10
....
....
0x01
42
0x00
Inf
Doc ID 13365 Rev 2
STA333W
Applications information
7
Applications information
7.1
Applications scheme for power supplies
Figure 11 below shows a typical applications scheme for STA333W.
Special care has to be taken with regard to the power supplies when laying out the PCB. In
particular the 3.3-Ω resistors on the digital supplies (VDD_DIG) have to be placed as close
as possible to the device. This prevents unwanted oscillation on the digital parts of the
device due to the inductive effects of the PCB tracks. The same rule also applies to all the
decoulpling capacitors; they should be placed as close as possible to the device in order to
limit the effect of spikes on the supplies.
Figure 11. Applications diagram
3R3
1
+
1000uF 35V
100nF
1uF 35V
OUT2B
SA
3
TEST_MODE
SCL
34
4
VSS
SDA
33
5
VCC_REG
OUT2B
7
GND2
RESET 31
SDI 30
VCC2
LRCKI
29
BICKI
28
OUT2A
9
OUT2A
VCC
OUT1B
10
100nF
OUT1B
11
VCC1
12
GND1
13
OUT1A
1uF 35V
OUT1A
14
100nF
GND_REG
100nF
SCL
PWRDN
16
CONFIG
17
NC
VDD_DIG 21
NC 20
18
NC
NC 19
RESET
1nF
LRCKI
BICKI
GND_DIG
XTI
BEAD
PLL_FILT
100nF
PLL_GND
BEAD
23
VDD
10K
RESET
GND_DIG
3V3
PWDN
GND_DIG 22
15
GND_DIG
DATA
XTI 27
PLL_GND 26
FILTER_PLL 25
VDD_PLL 24
3V3
SDA
INTL
INT_LINE 32
6
100nF
3V3
VDD_DIG 36
GND_DIG 35
2
8
7.2
GND_SUB
3R3
100nF
GND_DIG
3V3
PLL filter
It is recommended to use the circuit in Figure 12 below for the PLL loop filter to achieve the
best performance from the device in general applications. Note that the ground of this filter
has to be connected to the ground of the PLL without any resistive path.
For the component values, it should be remembered that the greater the filter bandwidth, the
shorter the lock time but the higher the PLL output jitter.
Doc ID 13365 Rev 2
39/49
Applications information
STA333W
Figure 12. PLL filter circuit
F IL T E R _ P L L
2K2
680pF
100pF
4 .7 n F
BEAD
G N D _ D IG
7.3
PLL_G ND
Typical output configuration
Figure 13 below shows a typical output configuration used for BTL stereo mode.
Figure 13. Output configuration for stereo BTL mode
22uH
OUT1A
100nF
6.2
22
6.2
330pF
100nF
470nF
LEFT
470nF
RIGHT
100nF
100nF
OUT1B
22uH
22uH
OUT2A
100nF
6.2
22
6.2
330pF
100nF
OUT2B
22uH
40/49
Doc ID 13365 Rev 2
100nF
100nF
STA333W
Characterization data
The following characterizations were made with RL = 8 Ω and f = 1 kHz unless otherwise
stated.
Figure 14. Output power vs. supply voltage (THD = 1%)
30
RKP
25
Output power, W
8
Characterization data
20
6
Ω
RKP
4Ω
15
8
Ω
RKP
10
16 Ω
RKP
5
0
5
7
9
11
13
15
17
19
Supply voltage, V
Figure 15. FFT 0 dBfs (VCC = 12 V)
+10
+0
-10
-20
-30
-40
-50
d
B
r
-60
A
-80
-70
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Doc ID 13365 Rev 2
41/49
Characterization data
STA333W
Figure 16. FFT -60 dBfs (VCC = 12 V)
+10
+0
-10
-20
-30
-40
-50
d
B
r
-60
A
-80
-70
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 17. THD vs. frequency (VCC = 12 V, Po = 1 W)
1
0.5
6ohm 6
0.2
%
4ohm
4Ω
Ω
0.1
0.05
8Ω
8ohm
0.02
0.01
20
50
100
200
500
1k
Hz
42/49
Doc ID 13365 Rev 2
2k
5k
10k
20k
STA333W
Characterization data
Figure 18. FFT 0 dBfs (VCC = 18 V)
+10
+0
-10
-20
-30
-40
-50
d
B
r
-60
A
-80
-70
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
1k
2k
5k
10k
20k
1k
2k
5k
10k
20k
10k
20k
Hz
Figure 19. FFT -60 dBfs (VCC = 18 V)
+10
+0
-10
-20
-30
-40
-50
d
B
r
-60
A
-80
-70
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
Hz
Figure 20. THD vs. frequency (VCC = 18 V, Po = 1 W)
1
0.5
6ohm
6Ω
4ohm
4
Ω
0.2
0.1
%
0.05
8ohm
8
0.02
Ω
0.01
20
50
100
200
500
1k
2k
5k
Hz
Doc ID 13365 Rev 2
43/49
Package thermal characteristics
9
STA333W
Package thermal characteristics
A thermal resistance of 25 °C/W can be achieved by mounting the device on a PCB which
has two copper ground areas of 3 x 3 cm and 16 vias (see Figure 21).
Given that the amount of power dissipated within the device depends primarily on the supply
voltage, load impedance and output modulation level the maximum estimated dissipated
power for the STA333W is 3 W.
With the above suggested board as heatsink, a maximum junction temperature rise, ∆Tj, of
75 °C is possible. In consumer environments where 50 °C is the maximum ambient
temperature this provides some safety margin before the intervention of the thermal
protection (Tj = 150 °C).
Figure 21. Double-layer PCB with two copper ground areas and 16 vias
Figure 22 shows the power derating curve for the PowerSSO-36 package on PCBs with
copper areas of 2 x 2 cm2 and 3 x 3 cm2.
Figure 22. Power derating curve for PCB used as heatsink
Pd (W)
8
7
Copper Area 3x3 cm
and via holes
6
5
STA333W
STA333W
4
PSSO36
PowerSSO-36
3
Copper Area 2x2 cm
and via holes
2
1
0
0
20
40
60
80
Tamb ( °C)
44/49
Doc ID 13365 Rev 2
100
120
140
160
STA333W
Package mechanical data
The STA333W comes in a 36-pin PowerSSO package with exposed pad down (EPD).
Figure 23 below shows the package outline and Table 47 gives the dimensions.
Figure 23. PowerSSO-36 EPD outline drawing
h x 45°
10
Package mechanical data
Doc ID 13365 Rev 2
45/49
Package mechanical data
Table 47.
STA333W
PowerSSO-36 EPD dimensions
Dimensions in mm
Dimensions in inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
2.15
-
2.47
0.085
-
0.097
A2
2.15
-
2.40
0.085
-
0.094
a1
0.00
-
0.10
0.000
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
0
-
8 degrees
L
0.60
-
1.00
0.024
-
0.039
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
4.90
-
7.10
0.193
-
0.280
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
46/49
Doc ID 13365 Rev 2
STA333W
11
Trademarks and other acknowledgements
Trademarks and other acknowledgements
DDX is a registered trademark of Apogee Technology Inc.
Automodes is a trademark of Apogee Technology Inc.
ECOPACK is a registered trademark of STMicroelectronics.
Sound Terminal is a trademark of STMicroelectronics.
Doc ID 13365 Rev 2
47/49
Revision history
12
STA333W
Revision history
Table 48.
Document revision history
Date
Revision
25-May-2007
1
Initial release.
2
Updated features for operating voltage range, digital gain increments
and maximum power control on page 1
Updated description on page 1
Updated electrical specifications Table 4, Table 3 and Table 5 on
page 11
Added Section 3.3: Electrical specifications - digital section on
page 12
Added chapter Functional description on page 16
Updated usage of pin name SDA in first paragraph of Chapter 5: I2C
bus specification on page 18
Added Section 5.4: Read operation on page 19
Removed PSL (register add 0x03) in Table 8: Register summary on
page 21
Updated text concerning overcurrent warning for register CONFC on
page 27
Removed bit PSL in Configuration register D (addr 0x03) on page 28
Corrected reset value for register bit MPCV in Table 25 on page 28
Updated bit names and added register description table in Device
status register (addr 0x2D) on page 36
Updated text and added OLIM attenuation table in Output limit
register (addr 0x34) on page 38
Deleted mention of appsnote in Section 7.3 on page 40
Updated package Y (Min) dimension in Table 47 on page 46
Removed references to STA50x/51x throughout the document
21-Jan-2010
48/49
Changes
Doc ID 13365 Rev 2
STA333W
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 13365 Rev 2
49/49