Data Sheet - STMicroelectronics

STA323W
2.1 channel high-efficiency digital audio system
Datasheet - production data
 Individual channel volume and EQ bypass
 DDX® POP free operation
 Bass/treble tone control
 Dual independent programmable
limiters/compressors
 AutoModes™ settings for:
– 32 preset EQ curves
– 15 preset crossover settings
– Auto volume controlled loudness
– 3 preset volume curves
– 2 preset anti-clipping modes
– Preset night-time listening mode
– Preset TV AGC
PowerSO-36
(slug down)
Features
 Input and output channel mapping
 Wide supply voltage range (10 V - 36 V)
 AM noise-reduction and PWM frequency
shifting modes
 Three power output configurations
– 2 x 10 W + 1 x 20 W
– 2 x 20 W
– 1 x 40 W
 Soft volume update and muting
 Thermal protection
 Auto zero detect and invalid input detect
muting selectable DDX® ternary or binary
PWM output plus variable PWM speeds
 Under-voltage protection
 Selectable de-emphasis
 Short-circuit protection
 Post-EQ user programmable mix with default
2.1 bass-management settings
 PowerSO-36 slug down package
 Variable max power correction for lower
full-power THD
 2.1 channels of 24-bit DDX®
 100-dB SNR and dynamic range
 Four output routing configurations
 32 kHz to 192 kHz input sample rates
 Digital gain/attenuation +48 dB to -80 dB in
0.5-dB steps
 Four 28-bit user programmable biquads (EQ)
per channel
 Selectable clock input ratio
 96 kHz internal processing sample rate, 24 to
28-bit precision
 Video application supports 576 * fs input mode
 I²C control
Table 1. Device summary
 2-channel I²S input data interface
 Individual channel and master gain/attenuation
 Individual channel and master soft and hard
mute
February 2014
This is information on a product in full production.
Order code
Package
STA323W13TR
PowerSO-36 in tape & reel
DocID11535 Rev 7
1/78
www.st.com
Contents
STA323W
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1
EQ processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.2
Output options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3
Pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
5
6
7
3.1
Pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
General interface specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
DC electrical specifications (3.3 V buffers) . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3
Power electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4
Timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5
Power supply and control sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1
Output power against supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2
Audio performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1
Stereo mode, operation with VCC = 26 V, 8  load . . . . . . . . . . . . . . . . 23
5.2.2
Stereo mode, operation with VCC = 18.5 V . . . . . . . . . . . . . . . . . . . . . . 24
5.2.3
Half-bridge binary mode, operation with Vcc = 18.5 V . . . . . . . . . . . . . . 28
I²C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1
Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1
Configuration register A (address 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.1
2/78
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DocID11535 Rev 7
STA323W
Contents
7.2
7.3
7.4
7.5
7.6
7.1.2
Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3
Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.4
Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.5
Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Configuration register B (address 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.1
Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.2
Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.3
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Configuration register C (address 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3.1
DDX® power-output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3.2
DDX® variable compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . 43
Configuration register D (address 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.1
High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.2
De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.3
DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.4
Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4.5
Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4.6
Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 45
7.4.7
Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Configuration register E (address 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.1
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.2
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.3
AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.4
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.5
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5.6
Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Configuration register F (address 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.6.1
7.7
7.8
Output configuration selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Volume control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.1
Master controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.2
Channel controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.3
Volume description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
AutoModes™ registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.8.1
AutoModes™ EQ, volume, GC (address 0x0B) . . . . . . . . . . . . . . . . . . 52
7.8.2
AutoModes™ AM/pre-scale/bass management scale (address 0x0C) . 53
7.8.3
Preset EQ settings (address 0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
DocID11535 Rev 7
3/78
78
Contents
STA323W
7.9
8
4/78
Channel configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.1
Channel 1 configuration (address 0x0E) . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.2
Channel 2 configuration (address 0x0F) . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.3
Channel 3 configuration (address 0x10) . . . . . . . . . . . . . . . . . . . . . . . . 56
7.10
Tone control (address 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11
Dynamics control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11.1
Limiter 1 attack/release threshold (address 0x12) . . . . . . . . . . . . . . . . . 57
7.11.2
Limiter 1 attack/release threshold (address 0x13) . . . . . . . . . . . . . . . . . 57
7.11.3
Limiter 2 attack/release rate (address 0x14) . . . . . . . . . . . . . . . . . . . . . 57
7.11.4
Limiter 2 attack/release threshold (address 0x15) . . . . . . . . . . . . . . . . . 58
7.11.5
Dynamics control description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.11.6
Anti-clipping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.11.7
Dynamic range compression mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
User-programmable settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1
EQ - biquad equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2
Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3
Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.4
Mix/bass management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5
Calculating 24-bit signed fractional numbers from a dB value . . . . . . . . . 65
8.6
User defined coefficient RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.6.1
Coefficient address register 1 (address 0x16) . . . . . . . . . . . . . . . . . . . . 65
8.6.2
Coefficient b1data register bits 23:16 (address 0x17) . . . . . . . . . . . . . . 65
8.6.3
Coefficient b1data register bits 15:8 (address 0x18) . . . . . . . . . . . . . . . 65
8.6.4
Coefficient b1data register bits 7:0 (address 0x19) . . . . . . . . . . . . . . . . 65
8.6.5
Coefficient b2 data register bits 23:16 (address 0x1A) . . . . . . . . . . . . . 65
8.6.6
Coefficient b2 data register bits 15:8 (address 0x1B) . . . . . . . . . . . . . . 66
8.6.7
Coefficient b2 data register bits 7:0 (address 0x1C) . . . . . . . . . . . . . . . 66
8.6.8
Coefficient a1 data register bits 23:16 (address 0x1D) . . . . . . . . . . . . . 66
8.6.9
Coefficient a1 data register bits 15:8 (address 0x1E) . . . . . . . . . . . . . . 66
8.6.10
Coefficient a1 data register bits 7:0 (address 0x1F) . . . . . . . . . . . . . . . 66
8.6.11
Coefficient a2 data register bits 23:16 (address 0x20) . . . . . . . . . . . . . 66
8.6.12
Coefficient a2 data register bits 15:8 (address 0x21) . . . . . . . . . . . . . . 66
8.6.13
Coefficient a2 data register bits 7:0 (address 0x22) . . . . . . . . . . . . . . . 67
8.6.14
Coefficient b0 data register bits 23:16 (address 0x23) . . . . . . . . . . . . . 67
8.6.15
Coefficient b0 data register bits 15:8 (address 0x24) . . . . . . . . . . . . . . 67
DocID11535 Rev 7
STA323W
Contents
8.7
8.6.16
Coefficient b0 data register bits 7:0 (address 0x25) . . . . . . . . . . . . . . . 67
8.6.17
Coefficient write control register (address 0x26) . . . . . . . . . . . . . . . . . . 67
Reading and writing coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.1
Reading a coefficient from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.2
Reading a set of coefficients from RAM . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.3
Writing a single coefficient to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.4
Writing a set of coefficients to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.8
Variable max power correction (address 0x27-0x28) . . . . . . . . . . . . . . . . 70
8.9
Fault detect recovery (address 0x2B - 0x2C) . . . . . . . . . . . . . . . . . . . . . . 71
8.10
Status indicator register (address 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.1
Thermal warning indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.2
Fault detect indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.3
PLL unlock indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10
Trademarks and other acknowledgements . . . . . . . . . . . . . . . . . . . . . . 76
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DocID11535 Rev 7
5/78
78
List of tables
STA323W
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/78
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Component selection “Table A” - full-bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Component selection "Table B" - binary half-bridge operation . . . . . . . . . . . . . . . . . . . . . . 12
Component selection "Table C" - mono operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Recommended DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
General interface electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Power electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
IR and MCS settings for input sample rate and clock rate . . . . . . . . . . . . . . . . . . . . . . . . . 38
Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Supported serial audio input formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Serial input data timing characteristics (fs = 32 to 192 kHz). . . . . . . . . . . . . . . . . . . . . . . . 42
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
DDX® power-output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DDX® output modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DDX® compensating pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
PWM output speed selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Output configuration selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Output configuration selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Binary clock loss detection enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Auto-EAPD on clock loss enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Software power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DocID11535 Rev 7
STA323W
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
List of tables
External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Master volume offset as a function of MV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Channel volume as a function of CxV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
AutoModes™ EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
AutoModes™ volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
AutoModes™ gain compression/limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
AMPS - AutoModes™ auto pre scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
AutoModes™ AM switching enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
AutoModes™ AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
AutoModes™ crossover setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Crossover frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Preset EQ selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Channel Limiter Mapping Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Channel PWM output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Tone control boost/cut selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Limiter attack rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Limiter release rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Limiter attack - threshold selection (AC-mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Limiter release threshold selection (AC-mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Limiter attack - threshold selection (DRC-mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Limiter release threshold selection (DRC-mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
RAM block for biquads, mixing, and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Thermal warning indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Fault detect indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PLL unlock indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PowerSO-36 slug down dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DocID11535 Rev 7
7/78
78
List of figures
STA323W
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
8/78
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Channel signal flow diagram through the digital core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Channel signal flow diagram through the EQ block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output power stage configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Schematic for 2 (half-bridge) channels + 1 (full-bridge) channel . . . . . . . . . . . . . . . . . . . . 12
Power schematic for 2 (full-bridge) channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power schematic for 1 mono parallel channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Package pins (viewed from top of device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Test circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Test circuit 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Recommended power up and power down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Stereo mode - output power vs. supply voltage, THD+N = 10% . . . . . . . . . . . . . . . . . . . . 21
Output power vs. supply for stereo bridge, THD+N=1% . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Half-bridge binary mode output power vs. supply, THD+N=10% . . . . . . . . . . . . . . . . . . . 22
Half-bridge binary mode output power vs. supply voltage, THD+N=1% . . . . . . . . . . . . . . 22
Typical efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Typical frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
FFT -60 dB, 1 kHz output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
FFT inter-modulation distortion 19 kHz and 20 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Frequency response, 1 W, BTL, 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Channel separation, 1 W, BTL stereo mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
THD vs. output power, BTL, 1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
THD vs. frequency, 1 W output, stereo mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
THD vs. frequency, BTL, 16 W output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
FFT 0 dBFS 1 kHz, 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
FFT 0 dBFS 1 kHz, 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
FFT 0 dBFS 1 kHz, 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
FFT -60 dBFS 1 kHz, 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
FFT -60 dBFS 1 kHz, 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
FFT -60 dBFS 1 kHz, 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
PSRR BTL, 500 mV ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Frequency response, 1 W, binary half-bridge mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Channel separation, 1 W, half bridge binary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
THD+N vs. output power, single ended, 1 kHz, half-bridge binary . . . . . . . . . . . . . . . . . . . 29
THD vs. frequency, single ended, 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
THD vs. frequency, single ended, 8 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
FFT 0 dB, 1 kHz, single ended, 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FFT 0 dB, 1 kHz, single ended, 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FFT 0 dB, 1 kHz, single ended, 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FFT -60 dB, single ended, 1 kHz, 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
FFT -60 dB, single ended, 1 kHz, 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
FFT -60 dB, single ended, 1 kHz, 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
PSRR single ended, 500 mV ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
I²C write procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
I²C read procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
General serial input and output formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Serial input and data timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DocID11535 Rev 7
STA323W
List of figures
Figure 49.
Figure 50.
Figure 51.
Biquad filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Mix/bass management block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
PowerSO-36 slug down outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DocID11535 Rev 7
9/78
78
Description
1
STA323W
Description
The STA323W is a single-chip audio system comprising digital audio processing, digital
amplifier control and a DDX® power-output stage. The STA323W uses all-digital
amplification to provide high-power, high-quality and high-efficiency.
The STA323W power section consists of four independent half-bridges. These can be
configured, by digital control, to operate in the following modes.
Two channels, provided by two half-bridges, and a single full-bridge giving up to 2 x 10 W +
1 x 20 W of power output.
Two channels, provided by two full-bridges, giving up to 2 x 20 W of power.
A single, parallel, full-bridge channel capable of high-current operation and giving 1 x 40W
output.
The STA323W also provides a full set of digital processing features. This includes up to four
programmable 28-bit biquads (EQ) per channel, and bass and treble tone control.
AutoModes™ enable a time-to-market advantage by substantially reducing the amount of
software development needed for specific functions. These includes auto volume loudness,
preset volume curves and preset EQ settings. New advanced AM radio-interference
reduction modes are also provided.
The serial audio data input interface accepts all existing formats, including the I²S.
Three channels of DDX® processing are provided. This high-quality conversion from PCM
audio to DDX patented 3-state PWM switching provides over 100 dB of SNR and dynamic
range.
Figure 1. Block diagram
SDA
SCL
I²C
System control
LRCKI
BICKI
SDI_12
OUT1A
Audio EQ, mix,
crossover,
volume, limiter
processing
Serial data
input, channel
mapping and
resampling
DDX
processing
Quad
half-bridge
power stage
OUT1B
OUT2A
OUT2B
TWARN
System timing
Power down
EAPD
FAULT
Power down
CLK
Figure 2. Channel signal flow diagram through the digital core
I²S
input
10/78
Channel
mapping
Re-sampling
ED
processing
Mix
Crossover
filter
DocID11535 Rev 7
Volume
limiter
4x
Interpol
DDX
DDX
output
STA323W
1.1
Description
EQ processing
Two channels of input data (re-sampled if necessary) at 96 kHz are provided to the EQ
processing block. In these blocks, up to four user-defined Biquads can be applied to each of
the two channels.
Pre-scaling, DC-blocking high-pass, de-emphasis, bass, and tone control filters can also be
implemented by means of configuration parameter settings.
The entire EQ block can be bypassed for all channels simultaneously by setting the DSPB
bit to 1. The CxEQBP bits can also be used to bypass the EQ functionality on a per channel
basis. Figure 3 shows the internal signal flow through the EQ block.
Figure 3. Channel signal flow diagram through the EQ block
Re-sampled
input
pre-scale
High pass
filter
If HPB= 0
BQ#1
BQ#2
BQ#3
BQ#4
4 biquads
User defined if AMEQ = 00
Preset EQ if AMEQ = 01
Auto loudness if AMEQ = 10
Deemphasis
Bass
filter
If DEMP = 1
If CxTCB = 0
BTC: bass boost/cut
TTC: treble boost/cut
To
mix
Treble
filter
If DSPB = 0 and CxEQB = 0
1.2
Output options
Figure 4. Output power stage configurations
Half
bridge
OUT1A
Channel 1
Half
bridge
Half
bridge
2-channel (full bridge) configuration,
register bits OCFG[1:0] = 00
OUT1B
OUT2A
Channel 2
Half
bridge
Half
bridge
Half
bridge
Half
bridge
OUT2B
OUT1A
OUT1B
Channel 1
Channel 2
2.1-channel configuration,
register bits OCFG[1:0] = 01
OUT2A
Channel 3
Half
bridge
Half
bridge
Half
bridge
Half
bridge
Half
bridge
OUT2B
OUT1A
1-channel mono-parallel configuration,
register bits OCFG[1:0] = 11
OUT1B
Channel 3
OUT2A
The setup register is Configuration
register F (address 0x05) on page 48
OUT2B
DocID11535 Rev 7
11/78
78
Applications
2
STA323W
Applications
Table 2. Component selection “Table A” - full-bridge operation
Load
Inductor
Capacitor
4
10 H
1.0 F
6
15 H
470 nF
8
22 H
470 nF
Table 3. Component selection "Table B" - binary half-bridge operation
Load
Inductor
Capacitor
4
22 H
680 nF
6
33 H
470 nF
8
47 H
390 nF
Table 4. Component selection "Table C" - mono operation
Load
Inductor
Capacitor
2
4.7 H
2.0 F
3
6.8 H
1.0 F
4
10 H
1.0 F
Figure 5. Schematic for 2 (half-bridge) channels + 1 (full-bridge) channel
VCC_SIGN
SUB_GND
VSS
N.C.
VDD
OUT2B
GND
VCC2B
BICKI
N.C.
LRCKI
GND2B
SDI
GND2A
VDDA
VCC2A
GNDA
OUT2A
XTI
OUT1B
PLL_FILTER
VCC1B
RESERVED
GND1B
SDA
GND1A
SCL
RESET
CONFIG
VL
VDD_REG
N.C.
VCC1A
OUT1A
GND_CLEAN
GND_REG
STA323W
12/78
DocID11535 Rev 7
STA323W
Applications
Figure 6. Power schematic for 2 (full-bridge) channels
VCC_SIGN
SUB_GND
SUB_GND
VSS
N.C.
VDD
OUT2B
GND
VCC2B
BICKI
N.C.
LRCKI
GND2B
SDI
GND2A
VDDA
VCC2A
GNDA
OUT2A
XTI
OUT1B
PLL_FILTER
VCC1B
RESERVED
GND1B
SDA
GND1A
SCL
RESET
CONFIG
VL
VDD_REG
N.C.
VCC1A
OUT1A
GND_CLEAN
GND_REG
STA323W
Figure 7. Power schematic for 1 mono parallel channel
VCC_SIGN
SUB_GND
VSS
N.C.
VDD
OUT2B
GND
VCC2B
BICKI
N.C.
LRCKI
GND2B
SDI
GND2A
VDDA
VCC2A
GNDA
OUT2A
XTI
OUT1B
PLL_FILTER
VCC1B
RESERVED
GND1B
SDA
GND1A
SCL
RESET
CONFIG
VL
VDD_REG
N.C.
VCC1A
OUT1A
GND_CLEAN
GND_REG
STA323W
DocID11535 Rev 7
13/78
78
Pin out
STA323W
3
Pin out
3.1
Pin numbering
Figure 8. Package pins (viewed from top of device)
SUB_GND
N.C.
OUT2B
VCC2B
N.C.
GND2B
GND2A
VCC2A
OUT2A
OUT1B
VCC1B
GND1B
GND1A
N.C.
VCC1A
OUT1A
GND_CLEAN
GND_REG
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
VCC_SIGN
VSS
VDD
GND
BICKI
LRCKI
SDI
VDDA
GNDA
XTI
PLL_FILTER
RESERVED
SDA
SCL
RESET
CONFIG
VL
VDD_REG
Table 5. Pin list
14/78
Pin
Type
Name
1
I/O
SUB_GND
2
N.C.
N.C.
3
O
OUT2B
Output half bridge 2B
4
I/O
VCC2B
Positive supply
5
N.C.
N.C.
Not connected
6
I/O
GND2B
Negative supply
7
I/O
GND2A
Negative supply
8
I/O
VCC2A
Positive supply
9
O
OUT2A
Output half bridge 2A
10
O
OUT1B
Output half bridge 1B
11
I/O
VCC1B
Positive supply
12
I/O
GND1B
Negative supply
13
I/O.
GND1A
Negative supply
14
N.C.
N.C.
Not connected
15
I/O
VCC1A
Positive supply
16
O
OUT1A
Output half bridge 1A
DocID11535 Rev 7
Description
Ground
Not connected
STA323W
Pin out
Table 5. Pin list (continued)
3.2
Pin
Type
Name
Description
17
I/O
GND_CLEAN
Reference ground
18
I/O
GND_REG
Substrate ground
19
I/O
VDD_REG
Logic supply
20
I/O
VL
21
I
CONFIG
Logic levels
22
I
RESET
Reset
23
I
SCL
I²C serial clock
24
I/O
SDA
I²C serial data
25
-
RESERVED
Reserved test pin must be connected to ground
26
I
PLL_FILTER
Connection to PLL filter
27
I
XTI
PLL input clock
28
I/O
GNDA
Analog ground
29
I/O
VDDA
Analog supply 3.3
30
I
SDI_12
I²S serial data channels 1 and 2
31
I/O
LRCKI
I²S left/right clock,
32
I
BICKI
I²S serial clock
33
I/O
GND
Digital ground
34
I/O
VDD
Digital supply 3.3 V
35
I/O
VSS
5 V regulator referred to Vcc
36
I/O
VCC_SIGN
Logic supply to power section
5 V regulator referred to ground
Pin description
OUT1A, 1B, 2A and 2B (pins 16, 10, 9 and 3)
The half-bridge PWM outputs 1A, 1B, 2A and 2B provide the inputs signals to the speakers.
RESET (pin 22)
Driving RESET low sets all outputs low and returns all register settings to their default
(reset) values. The reset is asynchronous to the internal clock.
SDA, SCL (pins 24, 23)
The SDA (I²C Data) and SCL (I²C Clock) pins operate according to the I²C specification
(See Chapter 6 on page 33.) Fast-mode (400 kB/s) I²C communication is supported.
VDDA, GNDA (pins 29,28)
The phase locked loop power is applied here. This +3.3V supply must be well decoupled
and filtered for good noise immunity since the audio performance of the device depends
upon the PLL circuit.
DocID11535 Rev 7
15/78
78
Pin out
STA323W
CLK (pin 27)
This is the master clock input used by the digital core. The master clock must be an integer
multiple of the LR clock frequency. Typically, the master clock frequency is 12.288 MHz
(256 * fs) for a 48kHz sample rate; it is the default setting at power-up. Care must be taken
to provide the device with the nominal system clock frequency; over-clocking the device
may result in anomalous operation, such as inability to communicate.
PLL_FILTER (pin 26)
This is the connection for the external filter components for the PLL loop compensation.
Refer to the schematic diagram Figure 7: Power schematic for 1 mono parallel channel on
page 13 for the recommended circuit.
BICKI (pin 32)
The serial or bit clock input is for framing each data bit. The bit clock frequency is typically
64 * fs using I²S serial format.
SDI (pin 30)
This is the serial data input where PCM audio information enters the device. Six format
choices are available including I²S, left or right justified, LSB or MSB first, with word widths
of 16, 18, 20 and 24 bits.
LRCKI (pin 31)
The left/right clock input is for data word framing. The clock frequency is at the input sample
rate, fs.
16/78
DocID11535 Rev 7
STA323W
4
Electrical specifications
Electrical specifications
Table 6. Absolute maximum ratings
Symbol
Parameter
Value
Unit
VDD_3.3
3.3 V I/O power supply
-0.5 to 4
V
Vi
Voltage on input pins
-0.5 to (VDD+0.5)
V
Vo
Voltage on output pins
-0.5 to (VDD+0.5)
V
Tstg
Storage temperature
-40 to +150
C
Tamb
Ambient operating temperature
-40 to +85
C
VCC
DC supply voltage
40
V
VMAX
Maximum voltage on pin 20
5.5
V
Table 7. Thermal data
Symbol
Parameter
Min
Typ
Max
Unit
C/W
Rthj-case
Thermal resistance junction to case (thermal pad)
Tj-SD
Thermal shut-down junction temperature
150
C
TWARN
Thermal warning temperature
130
C
Th-SD
Thermal shut-down hysteresis
25
C
2.5
Table 8. Recommended DC operating conditions
Symbol
4.1
Parameter
Value
Unit
VDD_3.3
I/O power supply
3.0 to 3.6
V
Tj
Operating junction temperature
-40 to +125
C
General interface specifications
Operating conditions VDD33 = 3.3 V ±0.3 V, Tamb = 25° C unless otherwise specified.
Table 9. General interface electrical characteristics
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
Iil
Leakage current: low level
input, no pull-up
Vi = 0 V (1)
1
A
Iih
Leakage current: high level
input, no pull-down
Vi = VDD33 (1)
2
A
IOZ
Leakage current: 3-state
output without pull-up/down
Vi = VDD33 (1)
2
A
Vesd
Electrostatic protection
(human body model)
Leakage < 1A
2000
V
1. The leakage currents are generally very small < 1 nA. The values given here are maximum after an
electrostatic stress on the pin.
DocID11535 Rev 7
17/78
78
Electrical specifications
4.2
STA323W
DC electrical specifications (3.3 V buffers)
Operating conditions VDD33 = 3.3 V ±0.3 V, Tamb = 25° C unless otherwise specified
Table 10. DC electrical characteristics
Symbol
4.3
Parameter
Test condition
Min.
Typ.
Max.
Unit
VIL
Low level Input voltage
VIH
High level Input voltage
2.0
V
Vhyst
Schmitt trigger hysteresis
0.4
V
Vol
Low level output
IoI = 2mA
Voh
High level output
Ioh = -2mA
0.8
0.15
VDD 0.15
V
V
V
Power electrical specifications
Operating conditions VDD33 = 3.3 V ±0.3 V, VL = 3.3 V, VCC = 30 V, Tamb = 25° C unless
otherwise specified.
Table 11. Power electrical characteristics
Symbol
Test conditions
Min.
Typ.
Max.
Unit
RdsON
Power Pchannel/Nchannel
MOSFET RdsON
Id = 1 A
Idss
Power Pchannel/Nchannel
leakage Idss
Vcc = 35 V
gN
Power Pchannel RdsON
matching
Id = 1 A
95
%
gP
Power Nchannel RdsON
matching
Id = 1 A
95
%
Dt_s
Low current dead time (static)
See test circuits , Figure
9 and Figure 10
td ON
Turn-on delay time
td OFF
200
m
50
A
ns
Resistive load
100
ns
Turn-off delay time
Resistive load
100
ns
tr
Rise time
Resistive load, Figure 9
and Figure 10
25
ns
tf
Fall time
Resistive load, Figure 9
and Figure 10
25
ns
VCC
Supply voltage
36
V
VL
Low logical state voltage
VL = 3.3 V
VH
High logical state voltage
VL = 3.3 V
1.7
V
IVCC-
Supply current from Vcc in
PWRDN
PWRDN = 0
3
mA
Supply current from Vcc in 3state
VCC = 30 V, 3-state
IVCC-hiz
10
270
20
PWRDN
18/78
Parameter
8
DocID11535 Rev 7
0.8
V
22
mA
STA323W
Electrical specifications
Table 11. Power electrical characteristics (continued)
Symbol
4.4
Parameter
Test conditions
Min.
Typ.
Input pulse width = 50%
duty,
switching frequency =
384 kHz,
no LC filters;
Max.
Unit
IVCC
Supply current from VCC in
operation
(both channel switching)
Iout-sh
Overcurrent protection
threshold (short circuit current
limit)
VUV
Under voltage protection
threshold
tpw-min
Output minimum pulse width
No Load
Po
Output power
THD = 10%,
RL = 8 , VCC = 18 V
20
W
Po
Output power
THD = 1%,
RL = 8 , VCC = 18 V
16
W
4
80
mA
6
A
7
V
70
150
ns
Timing specifications
Table 12. Timing characteristics
Symbol
Parameter
Test condition
Min.
tRESET
Hold time for RESET (pin 22)
Active low rest
100
fVCO
VCO free run frequency
No clock applied to XTI
18
Typ.
Max.
Unit
ns
28
MHz
Figure 9. Test circuit 1
OUTxY
Vcc
(3/4)Vcc
Low current dead time = MAX(DTr, DTf)
(1/2)Vcc
(1/4)Vcc
+Vcc
t
DTr
Duty cycle = 50%
M58
OUTxY
INxY
M57
DTf
R8
+
-
V67
vdc = Vcc/2
gnd
DocID11535 Rev 7
19/78
78
Electrical specifications
STA323W
Figure 10. Test circuit 2
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))
+VCC
Duty cycle=A
Duty cycle=B
DTout(A)
M58
DTin(A)
Q1
Q2
OUTA
INA
Iout=1.5A
M57
Q3
DTout(B)
Rload=4Ω
L67 10μ
C69
470nF
L68 10μ
C71 470nF
C70
470nF
DTin(B)
OUTB
INB
Iout=1.5A
Q4
Duty cycle A and B: Fixed to have DC output current of 4A in the direction shown in figure
4.5
M64
M63
D06AU1651
Power supply and control sequencing
Figure 11 shows the recommended power-up and power-down sequencing. The "time zero"
reference point is taken where VCC crosses the under voltage lockout threshold.
Figure 11. Recommended power up and power down sequence
20/78
DocID11535 Rev 7
STA323W
Electrical characteristics curves
5
Electrical characteristics curves
5.1
Output power against supply voltage
Figure 12. Stereo mode - output power vs. supply voltage, THD+N = 10%
Output power (W)
80
70
60
50
6ohm
4ohm
40
8ohm
30
20
10
10
12
14
16
18
20
22
24
26
Power Supply Voltage (VDC)
Figure 12 shows the full-scale output power (0 dBFS digital input with unity amplifier gain)
as a function of power supply voltage for 4, 6, and 8  loads in either DDX® mode or binary
full bridge mode. Output power is constrained for higher impedance loads by the maximum
voltage limit of the STA323W and by the over-current protection limit for lower impedance
loads. The minimum threshold for the over-current protection circuit of the STA323W is 4 A
(at 25° C) but the typical threshold is 6 A for the device. The solid curves shows the typical
output power capability of the device. The dotted curves shows the output power capability
constrained to the minimum current specification of the STA323W. The output power curves
assume proper thermal management of the power device's internal dissipation.
Figure 13. Output power vs. supply for stereo bridge, THD+N=1%
output power (W) - BTL 1% THD
60
6 ohm
50
4 ohm
40
8 ohm
30
16ohm
20
10
0
10
15
20
25
30
supply voltage (V)
DocID11535 Rev 7
21/78
78
Electrical characteristics curves
STA323W
Figure 13 shows the mono mode output power as a function of power supply voltages for
loads of 4, 6, 8 and 16 . The same current limits as those given for Figure 12 apply, except
output current is 8 A minimum, with 12 A typical in the mono-bridge configuration. The solid
curves show typical performance and dashed curves depict the minimum current limit. The
output power curves assume proper thermal management of the power device internal
dissipation.
Figure 14. Half-bridge binary mode output power vs. supply, THD+N=10%
25
Output power (W)
Curves measured at
f = 1 kHz and using
a blocking capacitor
of 330 µF
20
15
6ohm
4ohm
10
8ohm
5
0
10
12
14
16
18
20
22
2
26
Power Supply Voltage (VDC)
Figure 14 shows the output power as a function of power supply voltages for loads of 4, 6,
and 8  when the STA323W is operated in a half-bridge binary mode. The curves depict
typical performance. Minimum current limit is not reached for these combinations of voltage
and load impedance. The output power curves assume proper thermal management of the
power device internal dissipation.
Figure 15. Half-bridge binary mode output power vs. supply voltage, THD+N=1%
output power (W)
25
3 ohm
2 ohm
20
4 ohm
15
8 ohm
10
5
0
10
15
20
supply voltage (V)
22/78
DocID11535 Rev 7
25
30
Curves measured at
f = 1 kHz and using
a blocking capacitor
of 330 µF
STA323W
Electrical characteristics curves
5.2
Audio performance
5.2.1
Stereo mode, operation with VCC = 26 V, 8  load
Figure 16. Typical efficiency
100
90
80
70
60
50
40
30
20
10
0
0
10
20
30
40
50
60
70
80
Total Output Power (Watts)
Figure 17. Typical frequency response
Figure 18. FFT -60 dB, 1 kHz output
DocID11535 Rev 7
23/78
78
Electrical characteristics curves
STA323W
Figure 19. FFT inter-modulation distortion 19 kHz and 20 kHz
5.2.2
Stereo mode, operation with VCC = 18.5 V
Figure 20. Frequency response, 1 W, BTL, 8 
dBr A
+3
+2.5
+2
+1.5
+1
+0.5
8ohm
+0
6ohm
-0.5
4 ohm
-1
-1.5
-2
-2.5
-3
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 21. Channel separation, 1 W, BTL stereo mode
dBr A
+10
+0
-10
-20
-30
-40
-50
-60
8ohm
-70
-80
4ohm
-90
-100
20
50
100
200
500
Hz
24/78
DocID11535 Rev 7
1k
2k
5k
10k
20k
STA323W
Electrical characteristics curves
Figure 22. THD vs. output power, BTL, 1 kHz
%
10
5
2
8ohm
6ohm
1
0.5
0.2
4ohm
0.1
0.05
0.02
0.01
100m 200m
500m
1
2
W
5
10
20
50
Figure 23. THD vs. frequency, 1 W output, stereo mode
%
1
0.5
0.2
0.1
0.05
4ohm
6ohm
8ohm
0.02
0.01
20
50
100
200
500
Hz
1k
2k
5k
10k
20k
Figure 24. THD vs. frequency, BTL, 16 W output
1
%
0.5
0.2
0.1
8ohm
0.05
4ohm
6ohm
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
DocID11535 Rev 7
25/78
78
Electrical characteristics curves
STA323W
Figure 25. FFT 0 dBFS 1 kHz, 8 
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 26. FFT 0 dBFS 1 kHz, 6 
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 27. FFT 0 dBFS 1 kHz, 4 
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
20
50
100
200
500
Hz
26/78
DocID11535 Rev 7
1k
2k
5k
10k
20k
STA323W
Electrical characteristics curves
Figure 28. FFT -60 dBFS 1 kHz, 8 
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
-160
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 29. FFT -60 dBFS 1 kHz, 6 
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
-160
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 30. FFT -60 dBFS 1 kHz, 4 
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
-160
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
DocID11535 Rev 7
27/78
78
Electrical characteristics curves
STA323W
Figure 31. PSRR BTL, 500 mV ripple
dBr
+10
T
T
+0
-10
-20
-30
-40
-50
8 ohm
6ohm
-60
4 ohm
-70
-80
-90
-100
20
30
40
50
60
70 80 90 100
200
Hz
5.2.3
Half-bridge binary mode, operation with Vcc = 18.5 V
Figure 32. Frequency response, 1 W, binary half-bridge mode
dBr A
+3
+2.5
+2
+1.5
+1
+0.5
+0
3ohm
-0.5
-1
-1.5
4ohm
-2
-2.5
2ohm
-3
20
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
Figure 33. Channel separation, 1 W, half bridge binary
dBr A
+10
+0
-10
-20
-30
-40
-50
8ohm
-60
4 ohm
-70
-80
-90
-100
20
50
100
200
500
Hz
28/78
DocID11535 Rev 7
1k
2k
5k
10k
20k
STA323W
Electrical characteristics curves
Figure 34. THD+N vs. output power, single ended, 1 kHz, half-bridge binary
%
10
5
2 ohm
2
4ohm
3 ohm
1
0.5
0.2
0.1
0.05
0.02
0.01
100m
200m
500m
1
2
5
10
20
50
W
Figure 35. THD vs. frequency, single ended, 1 W
%
0.5
0.4
0.3
0.2
2ohm
3ohm
4ohm
0.1
0.08
0.06
0.05
0.04
0.03
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 36. THD vs. frequency, single ended, 8 W
5
%
2
1
2ohm
0.5
3ohm
4ohm
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
DocID11535 Rev 7
29/78
78
Electrical characteristics curves
STA323W
Figure 37. FFT 0 dB, 1 kHz, single ended, 2 
dBr
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-120
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 38. FFT 0 dB, 1 kHz, single ended, 3 
+10
dBr
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-120
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 39. FFT 0 dB, 1 kHz, single ended, 4 
dBr
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
20
50
100
200
500
Hz
30/78
DocID11535 Rev 7
1k
2k
5k
10k
20k
STA323W
Electrical characteristics curves
Figure 40. FFT -60 dB, single ended, 1 kHz, 2 
dBr
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 41. FFT -60 dB, single ended, 1 kHz, 4 
dBr
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 42. FFT -60 dB, single ended, 1 kHz, 3 
dBr
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
DocID11535 Rev 7
31/78
78
Electrical characteristics curves
STA323W
Figure 43. PSRR single ended, 500 mV ripple
dBr A
+10
+0
-10
-20
-30
-40
-50
2 ohm
-60
3 ohm
-70
4 ohm
-80
-90
-100
20
30
40
50
60
70 80 90 100
Hz
32/78
DocID11535 Rev 7
200
STA323W
6
I²C bus specification
I²C bus specification
The STA323W supports the I²C fast mode (400 kbit/s) protocol. This protocol defines any
device that sends data on to the bus as a transmitter and any device that reads the data as
a receiver. The device that controls the data transfer is known as the master and the other
as the slave. The master always starts the transfer and provides the serial clock for
synchronization. The STA323W is always a slave device in all of its communications.
6.1
Communication protocol
Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition
while the clock is high is used to identify a START or STOP condition.
Start condition
START is identified by a high to low transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A START condition must precede any command for
data transfer.
Stop condition
STOP is identified by a low to high transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A STOP condition terminates communication between
STA323W and the bus master.
Data input
During the data input the STA323W samples the SDA signal on the rising edge of clock
SCL. For correct device operation the SDA signal must be stable during the rising edge of
the clock and the data can change only when the SCL line is low.
6.2
Device addressing
To start communication between the master and the STA323W, the master must initiate with
a START condition. Following this, the master sends 8 bits (MSB first) on the SDA line
corresponding to the device select address and read or write mode.
The 7 MSBs are the device address identifiers, corresponding to the I²C bus definition. In
the STA323W the I²C interface uses a device address of decimal 34 (binary 00100010).
The 8th bit (LSB) identifies read or write operation, RW. This bit is set to 1 in read mode and
0 for write mode. After a START condition the STA323W identifies the device address on the
bus. If a match is found, it acknowledges the identification on the SDA bus during the 9th bit
time. The byte following the device identification byte is the internal space address.
DocID11535 Rev 7
33/78
78
I²C bus specification
6.3
STA323W
Write operation
Figure 44. I²C write procedure
ACK
DEV-ADDR
BYTE
WRITE
START
ACK
ACK
SUB-ADDR
DATA IN
RW
STOP
ACK
DEV-ADDR
MULTIBYTE
WRITE
START
ACK
ACK
SUB-ADDR
ACK
DATA IN
DATA IN
RW
STOP
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA323W acknowledges this and then the master writes the internal address byte.
After receiving the internal byte address the STA323W again responds with an
acknowledgement.
Byte write
In the byte write mode the master sends one data byte. This is acknowledged by the
STA323W. The master then terminates the transfer by generating a STOP condition.
Multi-byte write
The multi-byte write modes can start from any internal address. Sequential data bytes are
written to sequential addresses within the STA323W.
The master generates a STOP condition to terminate the transfer.
6.4
Read operation
Figure 45. I²C read procedure
ACK
CURRENT
ADDRESS
READ
DEV-ADDR
NO ACK
DATA
RW
START
STOP
ACK
RANDOM
ADDRESS
READ
DEV-ADDR
START
ACK
DEV-ADDR
RW
START
RW= ACK
HIGH
SEQUENTIAL
CURRENT
READ
ACK
SUB-ADDR
DEV-ADDR
NO ACK
DATA
RW
ACK
STOP
ACK
DATA
DATA
NO ACK
DATA
STOP
START
ACK
SEQUENTIAL
RANDOM
READ
DEV-ADDR
START
ACK
ACK
SUB-ADDR
RW
DEV-ADDR
START
ACK
DATA
RW
ACK
DATA
NO ACK
DATA
STOP
Current address byte read
Following the START condition the master sends a device select code with the RW bit set
to 1. The STA323W acknowledges this and then responds by sending one byte of data. The
master then terminates the transfer by generating a STOP condition.
34/78
DocID11535 Rev 7
STA323W
I²C bus specification
Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA323W. The master acknowledges each data
byte read and then generates a STOP condition to terminate the transfer.
Random address byte read
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA323W acknowledges this and then the master writes the internal address byte.
After receiving, the internal byte address the STA323W again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA323W acknowledges this and then responds
by sending one byte of data. The master then terminates the transfer by generating a STOP
condition.
Random address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
then read from sequential addresses within the STA323W. The master acknowledges each
data byte read and then generates a STOP condition to terminate the transfer.
DocID11535 Rev 7
35/78
78
Register descriptions
7
STA323W
Register descriptions
You must not reprogram the register bits marked “Reserved”. It is important that these bits
keep their default reset values.
Table 13. Register summary
Address
Name
D7
D6
D5
D4
D3
D2
D1
D0
0x00
ConfA
FDRB
TWAB
TWRB
IR1
IR0
MCS2
MCS1
MCS0
0x01
ConfB
C2IM
C1IM
DSCKE
SAIFB
SAI3
SAI2
SAI1
SAI0
0x02
ConfC
Reserved CSZ4
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
0x03
ConfD
MME
ZDE
DRC
BQL
PSL
DSPB
DEMP
HPB
0x04
ConfE
SVE
ZCE
DCCV
PWMS
AME
Reserved MPC
MPCV
0x05
ConfF
EAPD
PWDN
ECLE
LDTE
BCLE
IDE
OCFG0
0x06
Mmute
Reserved Reserved Reserved Reserved Reserved Reserved Reserved MMute
0x07
Mvol
MV7
MV6
MV5
MV4
MV3
MV2
MV1
MV0
0x08
C1Vol
C1V7
C1V6
C1V5
C1V4
C1V3
C1V2
C1V1
C1V0
0x09
C2Vol
C2V7
C2V6
C2V5
C2V4
C2V3
C2V2
C2V1
C2V0
0x0A
C3Vol
C3V7
C3V6
C3V5
C3V4
C3V3
C3V2
C3V1
C3V0
0x0B
Auto1
AMPS
Reserved AMGC1
AMGC0
AMV1
AMV0
AMEQ1
AMEQ0
0x0C
Auto2
XO3
XO2
XO1
AMAM2
AMAM1
AMAM0
AMAME
0x0D
Auto3
Reserved Reserved Reserved PEQ4
PEQ3
PEQ2
PEQ1
PEQ0
0x0E
C1Cfg
C1OM1
C1OM0
C1LS1
C1LS0
C1BO
C1VBP
C1EQBP
C1TCB
0x1F
C2Cfg
C2OM1
C2OM0
C2LS1
C2LS0
C2BO
C2VBP
C2EQBP
C2TCB
0x10
C3Cfg
C3OM1
C3OM0
C3LS1
C3LS0
C3BO
C3VBP
Reserved Reserved
0x11
Tone
TTC3
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
0x12
L1ar
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0x13
L1atrt
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0x14
L2ar
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
0x15
L2atrt
L2AT3
L2AT2
L2AT1
L2AT0
L2RT3
L2RT2
L2RT1
L2RT0
0x16
Cfaddr2
CFA7
CFA6
CFA5
CFA4
CFA3
CFA2
CFA1
CFA0
0x17
B1cf1
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0x18
B1cf2
C1B15
C1B14
C1B13
C1B12
C1B11
C1B10
C1B9
C1B8
0x19
B1cf3
C1B7
C1B6
C1B5
C1B4
C1B3
C1B2
C1B1
C1B0
0x1A
B2cf1
C2B23
C2B22
C2B21
C2B20
C2B19
C2B18
C2B17
C2B16
0x1B
B2cf2
C2B15
C2B14
C2B13
C2B12
C2B11
C2B10
C2B9
C2B8
0x1C
B2cf3
C2B7
C2B6
C2B5
C2B4
C2B3
C2B2
C2B1
C2B0
0x1D
A1cf1
C3B23
C3B22
C3B21
C3B20
C3B19
C3B18
C3B17
C3B16
36/78
XO1
DocID11535 Rev 7
OCFG1
STA323W
Register descriptions
Table 13. Register summary (continued)
Address
Name
D7
D6
D5
D4
D3
D2
D1
D0
0x1E
A1cf2
C3B15
C3B14
C3B13
C3B12
C3B11
C3B10
C3B9
C3B8
0x1F
A1cf3
C3B7
C3B6
C3B5
C3B4
C3B3
C3B2
C3B1
C3B0
0x20
A2cf1
C4B23
C4B22
C4B21
C4B20
C4B19
C4B18
C4B17
C4B16
0x21
A2cf2
C4B15
C4B14
C4B13
C4B12
C4B11
C4B10
C4B9
C4B8
0x22
A2cf3
C4B7
C4B6
C4B5
C4B4
C4B3
C4B2
C4B1
C4B0
0x23
B0cf1
C5B23
C5B22
C5B21
C5B20
C5B19
C5B18
C5B17
C5B16
0x24
B0cf2
C5B15
C5B14
C5B13
C5B12
C5B11
C5B10
C5B9
C5B8
0x25
B0cf3
C5B7
C5B6
C5B5
C5B4
C5B3
C5B2
C5B1
C5B0
0x26
Cfud
Reserved Reserved Reserved Reserved Reserved Reserved WA
W1
0x27
MPCC1
MPCC15
MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0x28
MPCC2
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
0x29
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
0x2A
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
0x2B
FDRC1
FDRC15
FDRC14
FDRC13
FDRC12
FDRC11
FDRC10
FDRC9
FDRC8
0x2C
FDRC2
FDRC7
FDRC6
FDRC5
FDRC4
FDRC3
FDRC2
FDRC1
FDRC0
0x2D
Status
PLLUL
Reserved Reserved Reserved Reserved Reserved FAULT
7.1
7.1.1
TWARN
Configuration register A (address 0x00)
D7
D6
D5
D4
D3
D2
D1
D0
FDRB
TWAB
TWRB
IR1
IR0
MCS2
MCS1
MCS0
0
1
1
0
0
0
1
1
Master clock select
Table 14. Master clock select
Bit
R/W
RST
Name
0
RW
1
MCS0
1
RW
1
MCS1
2
RW
0
MCS2
Description
Master clock select: selects the ratio between the input
I²S sample frequency and the input clock.
The STA323W supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz.
Therefore the internal clock is:

32.768 MHz for 32 kHz

45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz

49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
DocID11535 Rev 7
37/78
78
Register descriptions
STA323W
The external clock frequency provided to the XTI pin must be a multiple of the input sample
frequency (fs). The correlation between the input clock and the input sample rate is
determined by the status of the MCSx bits and the IR (input rate) register bits. The MCSx
bits determine the PLL factor generating the internal clock and the IR bit determines the
oversampling ratio used internally.
Table 15. IR and MCS settings for input sample rate and clock rate
Input sample rate
fs (kHz)
7.1.2
MCS[2:0]
IR
000
001
010
011
100
101
32, 44.1, 48
00
768 * fs
512 * fs
384 * fs
256 * fs
128 * fs
576 * fs
88.2, 96
01
384 * fs
256 * fs
192 * fs
128 * fs
64 * fs
x
176.4, 192
1X
384 * fs
256 * fs
192 * fs
128 * fs
64 * fs
x
Interpolation ratio select
Table 16. Interpolation ratio select
Bit
R/W
4:3
RW
RST
00
Name
IR[1:0]
Description
Selects internal interpolation ratio based on input I²S sample
frequency
The STA323W has variable interpolation (re-sampling) settings such that internal
processing and DDX output rates remain consistent. The first processing block interpolates
by either 2 times or 1 time (pass-through) or provides a down-sample by a factor of 2.
The IR bits determine the re-sampling ratio of this interpolation.
Table 17. IR bit settings as a function of input sample rate
Input sample rate fs (kHz)
38/78
IR[1, 0]
1st stage interpolation ratio
32
00
2 times over-sampling
44.1
00
2 times over-sampling
48
00
2 times over-sampling
88.2
01
Pass-Through
96
01
Pass-Through
176.4
10
Down-sampling by 2
192
10
Down-sampling by 2
DocID11535 Rev 7
STA323W
7.1.3
Register descriptions
Thermal warning recovery bypass
Table 18. Thermal warning recovery bypass
Bit
5
R/W
RW
RST
1
Name
Description
0: thermal warning recovery enabled
1: thermal warning recovery disabled
TWRB
If the thermal warning adjustment is enabled (TWAB = 0), then the thermal warning recovery
determines if the adjustment is removed when thermal warning is negative. If TWRB = 0 and
TWAB = 0, then, when a thermal warning disappears, the gain adjustment determined by
the thermal warning post-scale (default = -3 dB) is removed and the gain is applied to the
system. If TWRB = 1 and TWAB = 0, then when a thermal warning disappears, the thermal
warning post-scale gain adjustment remains until TWRB is changed to zero or the device is
reset.
7.1.4
Thermal warning adjustment bypass
Table 19. Thermal warning adjustment bypass
Bit
6
R/W
RW
RST
1
Name
Description
0: thermal warning adjustment enabled
1: thermal warning adjustment disabled
TWAB
The STA323W on-chip power output block provides feedback to the digital controller by the
power control block inputs. The TWARN input is used to indicate a thermal warning
condition. When TWARN is active (set to 0 for a period greater than 400 ms) the power
control block forces an adjustment to the modulation limit in an attempt to eliminate the
thermal warning condition. Once the thermal warning volume adjustment is applied, whether
the gain is reapplied when TWARN is inactive, depends on the TWRB bit.
7.1.5
Fault detect recovery bypass
Table 20. Fault detect recovery bypass
Bit
7
R/W
RW
RST
0
Name
FDRB
Description
0: fault detector recovery enabled
1: fault detector recovery disabled
The DDX power block provides feedback to the digital controller using inputs to the power
control block. The FAULT input is used to indicate a fault condition (either over-current or
thermal). When FAULT is active (set to 0), the power control block attempts a recovery from
the fault by activating the 3-state output (setting it to 0 which directs the power output block
to begin recovery). It holds it at 0 for period of time in the range of 0.1 ms to 1 second as
defined by the fault-detect recovery constant register (FDRC registers 0x29-0x2A), then
toggles it back to 1. This sequence is repeated as long as the fault indication exists. This
feature is enabled by default but can be bypassed by setting the FDRB control bit to 1.
DocID11535 Rev 7
39/78
78
Register descriptions
7.2
7.2.1
STA323W
Configuration register B (address 0x01)
D7
D6
D5
D4
D3
D2
D1
D0
C2IM
C1IM
DSCKE
SAIFB
SAI3
SAI2
SAI1
SAI0
1
0
0
0
0
0
0
0
Serial audio input interface format
Table 21. Serial audio input interface format
Bit
7.2.2
R/W
RST
Name
Description
3:0
RW
0000
SAI[3:0]
Determines the interface format of the input serial digital
audio interface.
4
RW
0
SAIFB
Data format:
0: MSB first1: LSB first
Serial data interface
The STA323W serial audio input interfaces with standard digital audio components and
accepts several different serial data formats. The STA323W always acts as a slave when
receiving audio input from standard digital audio components. Serial data for two channels
is provided using 3 input pins: left/right clock LRCKI, serial clock BICKI, and serial data SDI.
The SAI register (configuration register B (address 0x01) bits D3-D0) and the SAIFB
register (configuration register B (address 0x01) bit D4) are used to specify the serial data
format. The default serial data format is I²SI²S, MSB first. The formats available are shown
in Figure 46 and in Table 21 and Table 22.
Figure 46. General serial input and output formats
2
IS
Left
LRCLK
Right
SCLK
MSB
SDATA
LSB
MSB
LSB
MSB
Left Justified
Left
LRCLK
Right
SCLK
SDATA
MSB
LSB
MSB
LSB
MSB
Right Justified
Left
LRCLK
Right
SCLK
SDATA
MSB
LSB
MSB
LSB
MSB
Table 22. lists the serial audio input formats supported by STA323W when
BICKI = 32 * fs, 48 * fs or 64 * fs, where the sampling rate fs = 32, 44.1, 48, 88.2, 96, 176.4
or 192 kHz.
40/78
DocID11535 Rev 7
STA323W
Register descriptions
Table 22. Supported serial audio input formats
BICKI
32 * fs
48 * fs
64 * fs
SAI[3:0]
SAIFB
Interface format
1100
X
I²S 15-bit data
1110
X
Left/right-justified 16-bit data
0100
X
I²S 23-bit data
0100
X
I²S 20-bit data
1000
X
I²S 18-bit data
0100
0
MSB first I²S 16-bit data
1100
1
LSB first I²S 16-bit data
0001
X
Left-justified 24-bit data
0101
X
Left-justified 20-bit data
1001
X
Left-justified 18-bit data
1101
X
Left-justified 16-bit data
0010
X
Right-justified 24-bit data
0110
X
Right-justified 20-bit data
1010
X
Right-justified 18-bit data
1110
X
Right-justified 16-bit data
0000
X
I²S 24-bit data
0100
X
I²S 20-bit data
1000
X
I²S 18-bit data
0000
0
MSB first I²S 16-bit data
1100
1
LSB first I²S 16-bit data
0001
X
Left-justified 24-bit data
0101
X
Left-justified 20-bit data
1001
X
Left-justified 18-bit data
1101
X
Left-justified 16-bit data
0010
X
Right-justified 24-bit data
0110
X
Right-justified 20-bit data
1010
X
Right-justified 18-bit data
1110
X
Right-justified 16-bit data
For example, SAI = 1110 and SAIFB = 1 specifies right justified 16-bit data, LSB first.
DocID11535 Rev 7
41/78
78
Register descriptions
STA323W
Table 23. Serial input data timing characteristics (fs = 32 to 192 kHz)
parameter
Timing
BICKI frequency (slave mode)
12.5 MHz max.
BICKI pulse width high (T1) (slave mode)
40 ns min.
BICKI active to LRCKI edge delay (T2)
20 ns min.
BICKI active to LRCKI edge delay (T3)
20 ns min.
SDI valid to BICKI active setup (T4)
20 ns min.
BICKI active to SDI hold time (T5)
20 ns min.
Figure 47. Serial input and data timing
T2
T3
LRCKI
T1
T0
BICKI
T4
SDI
T5
7.2.3
Delay serial clock enable
Table 24. Delay serial clock enable
Bit
5
R/W
RW
RST
0
Name
0: no serial clock delay
1: serial clock delay by 1 core clock cycle to tolerate
anomalies in some I²S master devices
DSCKE
g
Description
Table 25. Channel input mapping
Bit
R/W
RST
Name
Description
6
RW
0
C1IM
0: processing channel 1 receives left I²S input
1: processing channel 1 receives right I²S input
7
RW
1
C2IM
0: processing channel 2 receives left I²S input
1: processing channel 2 receives right I²S input
Each channel received from the I²S can be mapped to any internal processing channel via
the channel input mapping registers. This allows processing flexibility. The default settings
of these registers map each I²S input channel to its corresponding processing channel.
42/78
DocID11535 Rev 7
STA323W
7.3
7.3.1
Register descriptions
Configuration register C (address 0x02)
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
CSZ4
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
0
1
0
0
0
0
1
0
DDX® power-output mode
Table 26. DDX® power-output mode
Bit
1:0
R/W
RW
RST
10
Name
Description
Selects configuration of DDX® output.
OM[1:0]
The DDX® power output mode selects how the DDX® output timing is configured. Different
power devices can use different output modes. The recommended use is OM = 10. When
OM = 11 the CSZ bits determine the size of the DDX® compensating pulse.
Table 27. DDX® output modes
OM[1,0]
7.3.2
Output stage - mode
00
Not used
01
Not used
10
Recommended
11
Variable compensation
DDX® variable compensating pulse size
The DDX® variable compensating pulse size is intended to adapt to different power stage
ICs. Contact ST for support when using this function.
Table 28. DDX® compensating pulse
CSZ[4:0]
Compensating pulse size
00000
0 clock period compensating pulse size
00001
1 clock period compensating pulse size
…
…
10000
16 clock period compensating pulse size
…
…
11111
31 clock period compensating pulse size
DocID11535 Rev 7
43/78
78
Register descriptions
7.4
7.4.1
STA323W
Configuration register D (address 0x03)
D7
D6
D5
D4
D3
D2
D1
D0
MME
ZDE
DRC
BQL
PSL
DSPB
DEMP
HPB
0
1
0
0
0
0
0
0
High-pass filter bypass
Table 29. High-pass filter bypass
Bit
0
R/W
RW
RST
0
Name
Description
0: AC coupling high pass filter enabled
1: AC coupling high pass filter enabled
HPB
The STA323W features an internal digital high-pass filter for DC blocking. The purpose of
this filter is to prevent DC signals from passing through a DDX® amplifier. DC signals can
cause speaker damage.
7.4.2
De-emphasis
Table 30. De-emphasis
Bit
1
R/W
RW
RST
0
Name
Description
0: no de-emphasis
1: de-emphasis
DEMP
By setting this bit to 1, de-emphasis is implemented on all channels. DSPB (DSP Bypass,
Bit D2, CFA) bit must be set to 0 for de-emphasis to function.
7.4.3
DSP bypass
Table 31. DSP bypass
Bit
2
R/W
RW
RST
0
Name
DSPB
Description
0: normal operation
1: bypass of EQ and mixing functionality
Setting the DSPB bit bypasses all the EQ and mixing functions of the STA323W core.
44/78
DocID11535 Rev 7
STA323W
7.4.4
Register descriptions
Post-scale link
Table 32. Post-scale link
Bit
3
R/W
RW
RST
0
Name
Description
0: each channel uses individual post-scale value
1: each channel uses channel 1 post-scale value
PSL
Post-scale functionality is an attenuation placed after the volume control and directly before
the conversion to PWM. Post-scale can also be used to limit the maximum modulation index
and therefore the peak current. Setting 1, in the PSL register, causes the value stored in
Channel 1 post-scale to be used for all three internal channels.
7.4.5
Biquad coefficient link
Table 33. Biquad coefficient link
Bit
4
R/W
RW
RST
0
Name
Description
0: each channel uses coefficient values
1: each channel uses channel 1 coefficient values
BQL
For ease of use, all channels can use the biquad coefficients loaded into the channel 1
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to
be performed once.
7.4.6
Dynamic range compression/anti-clipping bit
Table 34. Dynamic range compression/anti-clipping bit
Bit
5
R/W
RW
RST
0
Name
Description
0: limiters act in anti-clipping mode
1: limiters act in dynamic range compression mode
DRC
Both limiters can be used in one of two ways: anti-clipping or dynamic range compression.
When used in anti-clipping mode the limiter threshold values are constant and dependent
on the limiter settings. In dynamic range compression mode the limiter threshold values vary
with the volume settings allowing a nighttime listening mode that provides a reduction in the
dynamic range regardless of the volume level.
7.4.7
Zero-detect mute enable
Table 35. Zero-detect mute enable
Bit
6
R/W
RW
RST
1
Name
ZDE
Description
Setting of 1 enables the automatic zero-detect mute
Setting the ZDE bit enables the zero-detect automatic mute. When ZDE = 1, the zero-detect
circuit looks at the input data to each processing channel after the channel-mapping block. If
any channel receives 2048 consecutive zero value samples (regardless of fs) then that
individual channel is muted if this function is enabled.
DocID11535 Rev 7
45/78
78
Register descriptions
7.5
7.5.1
STA323W
Configuration register E (address 0x04)
D7
D6
D5
D4
D3
D2
D1
D0
SVE
ZCE
Reserved
PWMS
AME
Reserved
MPC
MPCV
1
1
0
0
0
0
1
0
Max power correction variable
Table 36. Max power correction variable
Bit
0
R/W
RW
RST
0
Name
Description
0: use standard MPC coefficient
1: use MPCC bits for MPC coefficient
MPCV
By enabling MPC and setting MPCV = 1, the max power correction becomes variable. By
adjusting the MPCC registers (address 0x27-0x28) it is possible to adjust the THD at
maximum unclipped power to a lower value for a particular application.
7.5.2
Max power correction
Table 37. Max power correction
Bit
1
R/W
RW
RST
1
Name
Description
0: MPC disabled
1: MPC enabled
MPC
Setting the MPC bit corrects the power device at high power. This mode lowers the THD+N
of the full DDX® system at, and slightly below, maximum power output.
7.5.3
AM mode enable
Table 38. AM mode enable
Bit
3
R/W
RW
RST
0
Name
Description
0: normal DDX® operation
1: AM reduction mode DDX® operation
AME
The STA323W features a DDX® processing mode that minimizes the amount of noise
generated in the frequency range of AM radio. This mode is intended for use when DDX® is
operating in a device with an active AM tuner. The SNR of the DDX® processing is reduced
to ~83 dB in this mode, which is still greater than the SNR of AM radio.
7.5.4
PWM speed mode
Table 39. PWM speed mode
Bit
4
46/78
R/W
RW
RST
0
Name
PWMS
Description
Normal or odd
DocID11535 Rev 7
STA323W
Register descriptions
Table 40. PWM output speed selections
PWMS[1:0]
7.5.5
PWM output speed
0
Normal speed (384kHz) all channels
1
Odd speed (341.3kHz) all channels
Zero-crossing volume enable
Table 41. Zero-crossing volume enable
Bit
6
R/W
RW
RST
1
Name
Description
1: volume adjustments will only occur at digital zerocrossings
0: volume adjustments will occur immediately
ZCE
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital
zero-crossings no clicks are audible.
7.5.6
Soft volume update enable
Table 42. Soft volume update enable
Bit
7
R/W
RW
RST
1
Name
SVE
Description
1: volume adjustments will use soft volume
0: volume adjustments will occur immediately
The STA323W includes a soft volume algorithm that steps through the intermediate volume
values at a predetermined rate when a volume change occurs. By setting SVE = 0 this can
be bypassed and volume changes will jump from the old to the new value directly. This
feature is available only if individual channel volume bypass bit is set to 0.
DocID11535 Rev 7
47/78
78
Register descriptions
7.6
7.6.1
STA323W
Configuration register F (address 0x05)
D7
D6
D5
D4
D3
D2
D1
D0
EAPD
PWDN
ECLE
Reserved
BCLE
IDE
OCFG1
OCFG0
0
1
0
1
1
1
0
0
Output configuration selection
Table 43. Output configuration selection
Bit
1:0
R/W
RW
RST
00
Name
OCFG[1:0]
Description
00: 2-channel (full-bridge) power, 1-channel DDX is default
Table 44. Output configuration selections
OCFG[1:0]
Output power configuration
00
2 channel (full-bridge) power, 1 channel DDX:
1A/1B  1A/1B
2A/2B  2A/2B
01
2(half-bridge).1(full-bridge) on-board power:
1A  1A
Binary
2A  1B
Binary
3A/3B  2A/2B Binary
10
Reserved
11
1 channel mono-parallel:
3A  1A/1B
3B  2A/2B
Table 45. Invalid input detect mute enable
Bit
2
R/W
RW
RST
1
Name
Description
0: disabled
1: enabled
IDE
Setting the IDE bit enables this function, which looks at the input I²S data and clocking and
automatically mutes all outputs if the signals are invalid.
Table 46. Binary clock loss detection enable
Bit
3
R/W
RW
RST
1
Name
BCLE
Description
0: disabled
1: enabled
Detects loss of input MCLK in binary mode and outputs 50% duty cycle to prevent audible
noise when input clocking is lost.
48/78
DocID11535 Rev 7
STA323W
Register descriptions
Table 47. Auto-EAPD on clock loss enable
Bit
5
R/W
RW
RST
0
Name
Description
0: disabled
1: enabled
ECLE
When ECLE is active, it issues a power device power down signal (EAPD) on clock loss
detection.
Table 48. Software power down
Bit
6
R/W
RW
RST
1
Name
Description
Software power down:
0: power down mode: initiates a power-down sequence
which results in a soft mute of all channels and finally asserts
EAPD circa 260 ms later
1: normal operation
PWDN
Table 49. External amplifier power down
Bit
7
R/W
RW
RST
0
Name
EAPD
Description
0: external power stage power down active
1: normal operation
EAPD is used to actively power down a connected DDX® power device. This register has to
be written to 1 at start-up to enable the DDX® power device for normal operation.
DocID11535 Rev 7
49/78
78
Register descriptions
STA323W
7.7
Volume control
7.7.1
Master controls
Master mute register (address 0x06)
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
MMUTE
0
0
0
0
0
0
0
0
Master volume register (Address 0x07)
D7
D6
D5
D4
D3
D2
D1
D0
MV7
MV6
MV5
MV4
MV3
MV2
MV1
MV0
1
1
1
1
1
1
1
1
Note:
The value of volume derived from MV is dependent on the AMV AutoModes™ volume
settings.
7.7.2
Channel controls
Channel 1 volume (address 0x08)
D7
D6
D5
D4
D3
D2
D1
D0
C1V7
C1V6
C1V5
C1V4
C1V3
C1V2
C1V1
C1V0
0
1
1
0
0
0
0
0
Channel 2 volume (address 0x09)
D7
D6
D5
D4
D3
D2
D1
D0
C2V7
C2V6
C2V5
C2V4
C2V3
C2V2
C2V1
C2V0
0
1
1
0
0
0
0
0
Channel 3 volume (address 0x0A)
7.7.3
D7
D6
D5
D4
D3
D2
D1
D0
C3V7
C3V6
C3V5
C3V4
C3V3
C3V2
C3V1
C3V0
0
1
1
0
0
0
0
0
Volume description
The volume structure of the STA323W consists of individual volume registers for each of the
three channels and a master volume register, and individual channel volume trim registers.
The channel volume settings are normally used to set the maximum allowable digital gain
and to hard-set gain differences between certain channels. These values are normally set at
the initialization of the IC and not changed. The individual channel volumes are adjustable in
0.5-dB steps from +48 dB to -80 dB. The master volume control is normally mapped to the
master volume of the system. The values of these two settings are summed to find the
actual gain or volume value for any given channel.
When set to 1, the Master Mute will mute all channels, whereas the individual channel
mutes (CxM) will mute only that channel. Both the Master Mute and the Channel Mutes
50/78
DocID11535 Rev 7
STA323W
Register descriptions
provide a “soft mute”, that is, a gradual muting with the volume ramping down to mute in
4096 samples from the maximum volume setting at the internal processing rate of circa
96 kHz. A “hard mute” can be obtained by setting a value of 0xFF in any channel volume
register or the master volume register. When volume offsets are provided, via the master
volume register, any channel whose total volume is less than -100 dB is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (configuration register E)
on a per channel basis as this creates the smoothest possible volume transitions. When
ZCE = 0, volume updates occur immediately.
The STA323W also features a soft-volume update function. When SVE = 1 (in configuration
register E) the volume ramps between intermediate values when the value is updated, This
feature can be disabled by setting SVE = 0.
Each channel also contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting does not affect that
channel. Also, master soft-mute does not affect the channel if CxVBP = 1.
Each channel also contains a channel mute. If CxM = 1 a soft mute is performed on that
channel.
Table 50. Master volume offset as a function of MV[7:0]
MV[7:0]
Volume offset from channel value
00000000 (0x00)
0 dB
00000001 (0x01)
-0.5 dB
00000010 (0x02)
-1 dB
…
…
01001100 (0x4C)
-38 dB
…
…
11111110 (0xFE)
-127 dB
11111111 (0xFF)
Hard Master Mute
Table 51. Channel volume as a function of CxV[7:0]
CxV[7:0]
Volume
00000000 (0x00)
+48 dB
00000001 (0x01)
+47.5 dB
00000010 (0x02)
+47 dB
…
…
01100001 (0x5F)
+0.5 dB
01100000 (0x60)
0 dB
01011111 (0x61)
-0.5 dB
…
…
11111110 (0xFE)
-79.5 dB
11111111 (0xFF)
Hard channel mute
DocID11535 Rev 7
51/78
78
Register descriptions
STA323W
7.8
AutoModes™ registers
7.8.1
AutoModes™ EQ, volume, GC (address 0x0B)
D7
D6
D5
D4
D3
D2
D1
D0
AMPS
Reserved
AMGC1
AMGC0
AMV1
AMV0
AMEQ1
AMEQ0
1
0
0
0
0
0
0
0
Table 52. AutoModes™ EQ
AMEQ[1,0]
Mode (Biquad 1-4)
00
User Programmable
01
Preset EQ - PEQ bits
10
Auto Volume Controlled Loudness Curve
11
Not used
Setting AMEQ to any value, other than 00, enables AutoModes™ EQ. When set, biquads 14 are not user programmable. Any coefficient settings for these biquads is ignored. Also
when AutoModes™ EQ is used the pre-scale value for channels 1 and 2 becomes hard-set
to -18 dB.
Table 53. AutoModes™ volume
AMV[1,0]
Mode (MVOL)
00
MVOL 256, 0.5-dB steps (standard)
01
MVOL auto curve 30 steps
10
MVOL auto curve 40 steps
11
MVOL auto curve 50 steps
Table 54. AutoModes™ gain compression/limiters
AMGC[1:0]
Mode
00
User programmable GC
01
AC no clipping
10
AC limited clipping (10%)
11
DRC night time listening mode
Table 55. AMPS - AutoModes™ auto pre scale
Bit
0
52/78
R/W
RW
RST
0
Name
AMPS
Description
AutoMode pre-scale
0: -18 dB used for pre-scale when AMEQ neq 00
1: User defined pre-scale when AMEQ neq 00
DocID11535 Rev 7
STA323W
7.8.2
Register descriptions
AutoModes™ AM/pre-scale/bass management scale (address 0x0C)
D7
D6
D5
D4
D3
D2
D1
D0
XO3
XO2
XO1
XO0
AMAM2
AMAM1
AMAM0
AMAME
0
0
0
0
0
0
0
0
Table 56. AutoModes™ AM switching enable
Bit
R/W
RST
Name
Description
0
RW
0
AMAME
0: switching frequency determined by PWMS setting
1: switching frequency determined by AMAM settings
3:1
RW
000
AMAM[2:0]
Default: 000
Table 57. AutoModes™ AM switching frequency selection
AMAM[2:0]
48 kHz/96 kHz input fs
44.1 kHz/88.2 kHz input fs
000
0.535 MHz - 0.720 MHz
0.535 MHz - 0.670 MHz
001
0.721 MHz - 0.900 MHz
0.671 MHz - 0.800 MHz
010
0.901 MHz - 1.100 MHz
0.801 MHz - 1.000 MHz
011
1.101 MHz - 1.300 MHz
1.001 MHz - 1.180 MHz
100
1.301 MHz - 1.480 MHz
1.181 MHz - 1.340 MHz
101
1.481 MHz - 1.600 MHz
1.341 MHz - 1.500 MHz
110
1.601 MHz - 1.700 MHz
1.501 MHz - 1.700 MHz
When DDX® is used with an AM radio tuner, it is recommended to use the AMAM bits to
automatically adjust the output PWM switching rate so that it depends on the specific radio
frequency that the tuner is receiving. The values used in AMAM are also dependent upon
the sample rate that is determined by the ADC used.
Table 58. AutoModes™ crossover setting
Bit
7:4
R/W
RW
RST
0
Name
Description
000: user defined crossover coefficients are used
Otherwise: preset coefficients are used for the required
crossover setting
XO[3:0]
Table 59. Crossover frequency selection
XO[2:0]
Bass management - crossover frequency
0000
User
0001
80 Hz
0010
100 Hz
0011
120 Hz
0100
140 Hz
DocID11535 Rev 7
53/78
78
Register descriptions
STA323W
Table 59. Crossover frequency selection (continued)
XO[2:0]
7.8.3
Bass management - crossover frequency
0101
160 Hz
0110
180 Hz
0111
200 Hz
1000
220 Hz
1001
240 Hz
1010
260 Hz
1011
280 Hz
1100
300 Hz
1101
320 Hz
1110
340 Hz
1111
360 Hz
Preset EQ settings (address 0x0D)
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
Reserved
PEQ4
PEQ3
PEQ2
PEQ1
PEQ0
0
0
0
0
0
0
0
0
Table 60. Preset EQ selection
PEQ[3:0]
54/78
Setting
00000
Flat
00001
Rock
00010
Soft Rock
00011
Jazz
00100
Classical
00101
Dance
00110
Pop
00111
Soft
01000
Hard
01001
Party
01010
Vocal
01011
Hip-Hop
01100
Dialog
01101
Bass-boost #1
01110
Bass-boost #2
01111
Bass-boost #3
DocID11535 Rev 7
STA323W
Register descriptions
Table 60. Preset EQ selection (continued)
PEQ[3:0]
Setting
10000
Loudness 1 (least boost)
10001
Loudness 2
10010
Loudness 3
10011
Loudness 4
10100
Loudness 5
10101
Loudness 6
10110
Loudness 7
10111
Loudness 8
11000
Loudness 9
11001
Loudness 10
11010
Loudness 11
11011
Loudness 12
11100
Loudness 13
11101
Loudness 14
11110
Loudness 15
11111
Loudness 16 (most boost)
7.9
Channel configuration registers
7.9.1
Channel 1 configuration (address 0x0E)
7.9.2
D7
D6
D5
D4
D3
D2
D1
D0
C1OM1
C1OM0
C1LS1
C1LS0
C1BO
C1VBP
C1EQBP
C1TCB
0
0
0
0
0
0
0
0
Channel 2 configuration (address 0x0F)
D7
D6
D5
D4
D3
D2
D1
D0
C2OM1
C2OM0
C2LS1
C2LS0
C2BO
C2VBP
C2EQBP
C2TCB
0
0
0
0
0
0
0
0
DocID11535 Rev 7
55/78
78
Register descriptions
7.9.3
STA323W
Channel 3 configuration (address 0x10)
D7
D6
D5
D4
D3
D2
D1
D0
C3OM1
C3OM0
C3LS1
C3LS0
C3BO
C3VBP
Reserved
Reserved
0
0
0
0
0
0
0
0
EQ control can be bypassed on a per channel basis. If EQ control is bypassed on a given
channel the prescale and all 9 filters (high-pass, biquads, de-emphasis, bass management
cross-over, bass, treble in any combination) are bypassed for that channel.
CxEQBP:

0: perform EQ on channel X (normal operation)

1: bypass EQ on channel X
Tone control (bass and treble) can be bypassed on a per channel basis. If tone control is
bypassed on a given channel the two filters that tone control utilizes are bypassed.
CxTCB:

0: perform tone control on channel x - (default operation)

1: bypass tone control on channel x
Each channel can be configured to output either the patented DDX PWM data or standard
binary PWM encoded data. By setting the CxBO bit to ‘1’, each channel can be individually
set to binary operation mode.
It is also possible to map each channel independently to either of the two limiters available
within the STA323W. In the default mode the channels are not mapped to a limiter.
Table 61. Channel Limiter Mapping Selection
CxLS[1,0]
Channel limiter mapping
00
Channel has limiting disabled
01
Channel is mapped to limiter #1
10
Channel is mapped to limiter #2
Each PWM output channel can receive data from any channel output of the volume block.
Which channel a particular PWM output receives depends on the CxOM register bits for that
channel.
Table 62. Channel PWM output mapping
CxOM[1:0]
56/78
PWM output from
00
Channel 1
01
Channel 2
10
Channel 3
11
Not used
DocID11535 Rev 7
STA323W
7.10
Register descriptions
Tone control (address 0x11)
D7
D6
D5
D4
D3
D2
D1
D0
TTC3
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
0
1
1
1
0
1
1
1
Table 63. Tone control boost/cut selection
BTC[3:0]/TTC[3:0]
Boost/cut
0000
-12 dB
0001
-12 dB
…
…
0111
-4 dB
0110
-2 dB
0111
0 dB
1000
+2 dB
1001
+4 dB
…
…
1101
+12 dB
1110
+12 dB
1111
+12 dB
7.11
Dynamics control
7.11.1
Limiter 1 attack/release threshold (address 0x12)
7.11.2
7.11.3
D7
D6
D5
D4
D3
D2
D1
D0
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0
1
1
0
1
0
1
0
Limiter 1 attack/release threshold (address 0x13)
D7
D6
D5
D4
D3
D2
D1
D0
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0
1
1
0
1
0
0
1
Limiter 2 attack/release rate (address 0x14)
D7
D6
D5
D4
D3
D2
D1
D0
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
0
1
1
0
1
0
1
0
DocID11535 Rev 7
57/78
78
Register descriptions
7.11.4
7.11.5
STA323W
Limiter 2 attack/release threshold (address 0x15)
D7
D6
D5
D4
D3
D2
D1
D0
L2AT3
L2AT2
L2AT1
L2AT0
L2RT3
L2RT2
L2RT1
L2RT0
0
1
1
0
1
0
0
1
Dynamics control description
The STA323W includes two independent limiter blocks. The purpose of the limiters is to
automatically reduce the dynamic range of a recording to prevent the outputs from clipping
in anti-clipping mode, or to actively reduce the dynamic range for a better listening
environment (such as a night-time listening mode, which is often needed for DVDs.) The two
modes are selected via the DRC bit in Configuration Register D, bit 5 address 0x03. Each
channel can be mapped to Limiter1 or Limiter2, or not mapped.
If a channel is not mapped, that channel will clip normally when 0 dB FS is exceeded. Each
limiter will look at the present value of each channel that is mapped to it, select the
maximum absolute value of all these channels, perform the limiting algorithm on that value,
and then, if needed, adjust the gain of the mapped channels in unison.
The limiter attack thresholds are determined by the LxAT registers. When the Attack
Threshold has been exceeded, the limiter, when active, automatically starts reducing the
gain. The rate at which the gain is reduced when the attack threshold is exceeded is
dependent upon the attack rate register setting for that limiter. A peak-detect algorithms
used to control the gain reduction.
The release of limiter, when the gain is again increased, is dependent on an RMS-detect
algorithm. The output of the volume limiter block is passed through an RMS filter. The output
of this filter is compared with the release threshold, determined by the Release Threshold
register.
When the RMS filter output falls below the release threshold, the gain is increased at a rate
dependent upon the release rate register. The gain can never be increased past its set value
and therefore the release will only occur if the limiter has already reduced the gain. The
release threshold value can be used to set what is effectively a minimum dynamic range.
This is helpful as over-limiting can reduce the dynamic range to virtually zero and cause
program material to sound “lifeless”.
In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the
attack threshold is set relative to the maximum volume setting of the channels mapped to
that limiter and the release threshold is set relative to the maximum volume setting plus the
attack threshold.
Figure 48. Basic limiter and volume flow diagram
Limiter
RMS
Gain/volume
Input
Output
Gain
58/78
Attenuation
DocID11535 Rev 7
Saturation
STA323W
Register descriptions
Table 64. Limiter attack rate selection
LxA[3:0]
Attack rate dB/ms
0000
3.1584
0001
2.7072
0010
2.2560
0011
1.8048
0100
1.3536
0101
0.9024
0110
0.4512
0111
0.2256
1000
0.1504
1001
0.1123
1010
0.0902
1011
0.0752
1100
0.0645
1101
0.0564
1110
0.0501
1111
0.0451
Fast
Slow
Table 65. Limiter release rate selection
LxR[3:0]
Release rate dB/ms
0000
0.5116
0001
0.1370
0010
0.0744
0011
0.0499
0100
0.0360
0101
0.0299
0110
0.0264
0111
0.0208
1000
0.0198
1001
0.0172
1010
0.0147
1011
0.0137
1100
0.0134
1101
0.0117
1110
0.0110
1111
0.0104
DocID11535 Rev 7
Fast
Slow
59/78
78
Register descriptions
7.11.6
STA323W
Anti-clipping mode
Table 66. Limiter attack - threshold selection (AC-mode)
LxAT[3:0]
AC (dB relative to FS)
0000
-12
0001
-10
0010
-8
0011
-6
0100
-4
0101
-2
0110
0
0111
+2
1000
+3
1001
+4
1010
+5
1011
+6
1100
+7
1101
+8
1110
+9
1111
+10
.
Table 67. Limiter release threshold selection (AC-mode)
LxRT[3:0]
60/78
AC (dB relative to FS)
0000
-
0001
-29dB
0010
-20dB
0011
-16dB
0100
-14dB
0101
-12dB
0110
-10dB
0111
-8dB
1000
-7dB
1001
-6dB
1010
-5dB
1011
-4dB
1100
-3dB
1101
-2dB
DocID11535 Rev 7
STA323W
Register descriptions
Table 67. Limiter release threshold selection (AC-mode) (continued)
LxRT[3:0]
7.11.7
AC (dB relative to FS)
1110
-1dB
1111
-0dB
Dynamic range compression mode
Table 68. Limiter attack - threshold selection (DRC-mode)
LxAT[3:0]
DRC (dB relative to volume)
0000
-31
0001
-29
0010
-27
0011
-25
0100
-23
0101
-21
0110
-19
0111
-17
1000
-16
1001
-15
1010
-14
1011
-13
1100
-12
1101
-10
1110
-7
1111
-4
DocID11535 Rev 7
61/78
78
Register descriptions
.(
STA323W
Table 69. Limiter release threshold selection (DRC-mode)
LxRT[3:0]
62/78
DRC (db relative to Volume + LxAT)
0000
-
0001
-38 dB
0010
-36 dB
0011
-33 dB
0100
-31 dB
0101
-30 dB
0110
-28 dB
0111
-26 dB
1000
-24 dB
1001
-22 dB
1010
-20 dB
1011
-18 dB
1100
-15 dB
1101
-12 dB
1110
-9 dB
1111
-6 dB
DocID11535 Rev 7
STA323W
User-programmable settings
8
User-programmable settings
8.1
EQ - biquad equation
The biquads use the equation that follows. This is shown in Figure 49.
Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2]
= b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2]
where Y[n] represents the output and X[n] represents the input. Signed, fractional 28-bit
multipliers are used, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
Coefficients stored in the user defined coefficient RAM are referenced in the following
manner:

CxHy0 = b1/2

CxHy1 = b2

CxHy2 = -a1/2

CxHy3 = -a2

CxHy4 = b0/2
The x represents the channel and the y the biquad number. For example C3H41 is the b0/2
coefficient in the fourth biquad for channel 3.
Figure 49. Biquad filter
b0/2
2
+
Z -1
Z -1
b1/2
2
+
2
-a1/2
Z -1
Z -1
b2
8.2
+
-a2
Pre-scale
The pre-scale block, which precedes the first biquad, is used for attenuation when filters are
designed that boost frequencies above 0 dBFS. The Pre-Scale block is a single 28-bit
signed multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default, all
pre-scale factors are set to 0x7FFFFF.
8.3
Post-scale
The STA323W provides one additional multiplication after the last interpolation stage and
before the distortion compensation on each channel. The post-scale block is a 24-bit signed
fractional multiplier. The scale factor for this multiplier is loaded into RAM using the same
I²C registers as the biquad coefficients and the mix. All channels can use the same settings
as channel 1 by setting the post-scale link bit.
DocID11535 Rev 7
63/78
78
User-programmable settings
8.4
STA323W
Mix/bass management
The STA323W provides one post-EQ mixing block per channel. Each channel has two
mixing coefficients, which are each 24-bit signed fractional multipliers, that correspond to
the two channels of input to the mixing block. These coefficients are accessible via the User
Controlled Coefficient RAM described below. The mix coefficients expressed as 24-bit
signed, fractional numbers in the range +1.0 (8388607) to -1.0 (-8388608), are used to
provide three channels of output from two channels of filtered input.
Figure 50. Mix/bass management block diagram
Channel #1
from EQ
C1MX1
.
Channel #2
from EQ
High pass
XO
filter
Channel #1
to GC/vol
High pass
XO
filter
Channel #2
to GC/vol
Low pass
XO
filter
Channel #3
to GC/vol
C1MX2
C2MX1
.
C2MX2
C3MX1
.
C3MX2
User defined mix coefficients
Crossover frequency determined
by XO setting.
User defined when XO = 000
After mixing, STA323W also permits the implementation of crossover filters on all channels
corresponding to 2.1 bass management operation. Channels 1 and 2 use a 1st order, highpass filter and channel 3 uses a 2nd-order low-pass filter corresponding to the setting of the
XO bits of I²CI²C register 0x0C. If XO = 000, user specified crossover filters are used.
By default these coefficients correspond to pass-through. However, the user can write these
coefficients in a similar way as the EQ biquads. When user-defined setting is selected, the
user can only write 2nd-order crossover filters. This output is then passed on to the Volume
and Limiter block.
64/78
DocID11535 Rev 7
STA323W
8.5
User-programmable settings
Calculating 24-bit signed fractional numbers from a dB value
The pre-scale, mixing, and post-scale functions of the STA323W use 24-bit signed fractional
multipliers to attenuate signals. These attenuations can also invert the phase and therefore
range in value from -1 to +1.
It is possible to calculate the coefficient to use for a given negative dB value (attenuation)
using the equations following.

non-inverting phase numbers 0 to +1:
–

coefficient = round(8388607 * 10(dB/20))
inverting phase numbers 0 to -1:
–
coefficient = 16777216 - round(8388607 * 10(dB/20))
As can be seen by the preceding equations, the value for positive phase 0 dB is 0x7FFFFF
and the value for negative phase 0 dB is 0x800000.
8.6
User defined coefficient RAM
8.6.1
Coefficient address register 1 (address 0x16)
8.6.2
8.6.3
8.6.4
8.6.5
D7
D6
D5
D4
D3
D2
D1
D0
CFA7
CFA6
CFA5
CFA4
CFA3
CFA2
CFA1
CFA0
0
0
0
0
0
0
0
0
Coefficient b1data register bits 23:16 (address 0x17)
D7
D6
D5
D4
D3
D2
D1
D0
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0
0
0
0
0
0
0
0
Coefficient b1data register bits 15:8 (address 0x18)
D7
D6
D5
D4
D3
D2
D1
D0
C1B15
C1B14
C1B13
C1B12
C1B11
C1B10
C1B9
C1B8
0
0
0
0
0
0
0
0
Coefficient b1data register bits 7:0 (address 0x19)
D7
D6
D5
D4
D3
D2
D1
D0
C1B7
C1B6
C1B5
C1B4
C1B3
C1B2
C1B1
C1B0
0
0
0
0
0
0
0
0
Coefficient b2 data register bits 23:16 (address 0x1A)
D7
D6
D5
D4
D3
D2
D1
D0
C2B23
C2B22
C2B21
C2B20
C2B19
C2B18
C2B17
C2B16
0
0
0
0
0
0
0
0
DocID11535 Rev 7
65/78
78
User-programmable settings
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12
66/78
STA323W
Coefficient b2 data register bits 15:8 (address 0x1B)
D7
D6
D5
D4
D3
D2
D1
D0
C2B15
C2B14
C2B13
C2B12
C2B11
C2B10
C2B9
C2B8
0
0
0
0
0
0
0
0
Coefficient b2 data register bits 7:0 (address 0x1C)
D7
D6
D5
D4
D3
D2
D1
D0
C2B7
C2B6
C2B5
C2B4
C2B3
C2B2
C2B1
C2B0
0
0
0
0
0
0
0
0
Coefficient a1 data register bits 23:16 (address 0x1D)
D7
D6
D5
D4
D3
D2
D1
D0
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0
0
0
0
0
0
0
0
Coefficient a1 data register bits 15:8 (address 0x1E)
D7
D6
D5
D4
D3
D2
D1
D0
C3B15
C3B14
C3B13
C3B12
C3B11
C3B10
C3B9
C3B8
0
0
0
0
0
0
0
0
Coefficient a1 data register bits 7:0 (address 0x1F)
D7
D6
D5
D4
D3
D2
D1
D0
C3B7
C3B6
C3B5
C3B4
C3B3
C3B2
C3B1
C3B0
0
0
0
0
0
0
0
0
Coefficient a2 data register bits 23:16 (address 0x20)
D7
D6
D5
D4
D3
D2
D1
D0
C4B23
C4B22
C4B21
C4B20
C4B19
C4B18
C4B17
C4B16
0
0
0
0
0
0
0
0
Coefficient a2 data register bits 15:8 (address 0x21)
D7
D6
D5
D4
D3
D2
D1
D0
C4B15
C4B14
C4B13
C4B12
C4B11
C4B10
C4B9
C4B8
0
0
0
0
0
0
0
0
DocID11535 Rev 7
STA323W
8.6.13
8.6.14
8.6.15
8.6.16
8.6.17
User-programmable settings
Coefficient a2 data register bits 7:0 (address 0x22)
D7
D6
D5
D4
D3
D2
D1
D0
C4B7
C4B6
C4B5
C4B4
C4B3
C4B2
C4B1
C4B0
0
0
0
0
0
0
0
0
Coefficient b0 data register bits 23:16 (address 0x23)
D7
D6
D5
D4
D3
D2
D1
D0
C5B23
C5B22
C5B21
C5B20
C5B19
C5B18
C5B17
C5B16
0
0
0
0
0
0
0
0
Coefficient b0 data register bits 15:8 (address 0x24)
D7
D6
D5
D4
D3
D2
D1
D0
C5B15
C5B14
C5B13
C5B12
C5B11
C5B10
C5B9
C5B8
0
0
0
0
0
0
0
0
Coefficient b0 data register bits 7:0 (address 0x25)
D7
D6
D5
D4
D3
D2
D1
D0
C5B7
C5B6
C5B5
C5B4
C5B3
C5B2
C5B1
C5B0
0
0
0
0
0
0
0
0
Coefficient write control register (address 0x26)
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
Reserved
Reserved
RA
R1
WA
W1
0
0
0
0
0
0
0
0
Coefficients for EQ, Mix and Scaling are handled internally in the STA323W via RAM.
Access to this RAM is available to the user via an I²C register interface. A collection of I²C
registers are dedicated to this function. The first register contains base address of the
coefficient: five sets of three registers store the values of the 24-bit coefficients to be written
or that were read, and one contains bits used to control the reading or writing of the
coefficients to RAM. The following are instructions for reading and writing coefficients.
DocID11535 Rev 7
67/78
78
User-programmable settings
STA323W
8.7
Reading and writing coefficients
8.7.1
Reading a coefficient from RAM
8.7.2
1.
Write 8-bits of address to I²C register 0x16.
2.
Write 1 to bit R1 (D2) of I²C register 0x26.
3.
Read top 8-bits of coefficient in I²C address 0x17.
4.
Read middle 8-bits of coefficient in I²C address 0x18.
5.
Read bottom 8-bits of coefficient in I²C address 0x19.
Reading a set of coefficients from RAM
1.
Write 8-bits of address to I²C register 0x16.
2.
Write 1 to bit RA (D3) of I²C register 0x26.
3.
Read top 8-bits of coefficient in I²C address 0x17.
4.
Read middle 8-bits of coefficient in I²C address 0x18.
5.
Read bottom 8-bits of coefficient in I²C address 0x19.
6.
Read top 8-bits of coefficient b2 in I²C address 0x1A.
7.
Read middle 8-bits of coefficient b2 in I²C address 0x1B.
8.
Read bottom 8-bits of coefficient b2 in I²C address 0x1C.
9.
Read top 8-bits of coefficient a1 in I²C address 0x1D.
10. Read middle 8-bits of coefficient a1 in I²C address 0x1E.
11. Read bottom 8-bits of coefficient a1 in I²C address 0x1F.
12. Read top 8-bits of coefficient a2 in I²C address 0x20.
13. Read middle 8-bits of coefficient a2 in I²C address 0x21.
14. Read bottom 8-bits of coefficient a2 in I²C address 0x22.
15. Read top 8-bits of coefficient b0 in I²C address 0x23.
16. Read middle 8-bits of coefficient b0 in I²C address 0x24.
17. Read bottom 8-bits of coefficient b0 in I²C address 0x25.
8.7.3
68/78
Writing a single coefficient to RAM
1.
Write 8-bits of address to I²C register 0x16.
2.
Write top 8-bits of coefficient in I²C address 0x17.
3.
Write middle 8-bits of coefficient in I²C address 0x18.
4.
Write bottom 8-bits of coefficient in I²C address 0x19.
5.
Write 1 to W1 bit in I²C address 0x26.
DocID11535 Rev 7
STA323W
8.7.4
User-programmable settings
Writing a set of coefficients to RAM
1.
Write 8-bits of starting address to I²C register 0x16.
2.
Write top 8-bits of coefficient b1 in I²C address 0x17.
3.
Write middle 8-bits of coefficient b1 in I²C address 0x18.
4.
Write bottom 8-bits of coefficient b1 in I²C address 0x19.
5.
Write top 8-bits of coefficient b2 in I²C address 0x1A.
6.
Write middle 8-bits of coefficient b2 in I²C address 0x1B.
7.
Write bottom 8-bits of coefficient b2 in I²C address 0x1C.
8.
Write top 8-bits of coefficient a1 in I²C address 0x1D.
9.
Write middle 8-bits of coefficient a1 in I²C address 0x1E.
10. Write bottom 8-bits of coefficient a1 in I²C address 0x1F.
11. Write top 8-bits of coefficient a2 in I²C address 0x20.
12. Write middle 8-bits of coefficient a2 in I²C address 0x21.
13. Write bottom 8-bits of coefficient a2 in I²C address 0x22.
14. Write top 8-bits of coefficient b0 in I²C address 0x23.
15. Write middle 8-bits of coefficient b0 in I²C address 0x24.
16. Write bottom 8-bits of coefficient b0 in I²C address 0x25.
17. Write 1 to WA bit in I²C address 0x26.
The mechanism for writing a set of coefficients to RAM provides a method of simultaneously
updating the five coefficients corresponding to a given biquad (filter) to avoid possible
unpleasant acoustic side-effects. When using this technique, the 8-bit address specifies the
address of the biquad b1 coefficient (for example 0, 5, 10, 15, …, 45 decimal), and the
STA323W generates the RAM addresses as an offsets from this base value to write the
complete set of coefficient data.
Table 70. RAM block for biquads, mixing, and scaling
Index (decimal)
Index (hex)
Coefficient
Default
0
0x00
C1H10 (b1/2)
0x000000
1
0x01
C1H11 (b2)
0x000000
2
0x02
C1H12 (a1/2)
0x000000
3
0x03
C1H13 (a2)
0x000000
4
0x04
C1H14 (b0/2)
0x400000
5
0x05
Channel 1 - biquad 2
C1H20
0x000000
...
...
...
...
...
19
0x13
Channel 1 - biquad 4
C1H44
0x400000
20
0x14
C2H10
0x000000
C2H11
0x000000
Channel 1 - biquad 1
Channel 2 - biquad 1
21
0x15
…
…
…
…
…
39
0x27
Channel 2 - biquad 4
C2H44
0x400000
DocID11535 Rev 7
69/78
78
User-programmable settings
STA323W
Table 70. RAM block for biquads, mixing, and scaling (continued)
Index (decimal)
Index (hex)
40
8.8
Coefficient
0x28
nd
High-pass 2 -order
filter
For XO = 000
Default
C12H0 (b1/2)
0x000000
C12H1 (b2)
0x000000
C12H2 (a1/2)
0x000000
41
0x29
42
0x2A
43
0x2B
C12H3 (a2)
0x000000
44
0x2C
C12H4 (b0/2)
0x400000
45
0x2D
C12L0 (b1/2)
0x000000
46
0x2E
0x000000
47
0x2F
Low-Pass 2nd-order filter C12L1 (b2)
For XO = 000
C12L2 (a1/2)
48
0x30
C12L3 (a2)
0x000000
49
0x31
C12L4 (b0/2)
0x400000
50
0x32
Channel 1 - post scale
C1PreS
0x7FFFFF
51
0x33
Channel 2 - post scale
C2PreS
0x7FFFFF
52
0x34
Channel 1 - post scale
C1PstS
0x7FFFFF
53
0x35
Channel 2 - post scale
C2PstS
0x7FFFFF
54
0x36
Channel 3 - post scale
C3PstS
0x7FFFFF
55
0x37
Thermal warning - post
scale
TWPstS
0x5A9DF7
56
0x38
Channel 1 - mix 1
C1MX1
0x7FFFFF
57
0x39
Channel 1 - mix 2
C1MX2
0x000000
58
0x3A
Channel 2 - mix 1
C2MX1
0x000000
59
0x3B
Channel 2 - mix 2
C2MX2
0x7FFFFF
60
0x3C
Channel 3 - mix 1
C3MX1
0x400000
61
0x3D
Channel 3 - mix 2
C3MX2
0x400000
62
0x3E
Unused
63
0x3F
Unused
0x000000
Variable max power correction (address 0x27-0x28)
The MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This
coefficient is used in place of the default coefficient when MPCV = 1.
70/78
D7
D6
D5
D4
D3
D2
D1
D0
MPCC15
MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0
0
1
0
1
1
0
1
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
1
1
0
0
0
0
0
0
DocID11535 Rev 7
STA323W
8.9
User-programmable settings
Fault detect recovery (address 0x2B - 0x2C)
FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is active, the
TRISTATE output immediately goes low and is held low for the time period specified by this
constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The default
value of 0x000C specifies approximately 0.1 ms.
8.10
D7
D6
D5
D4
D3
D2
D1
D0
FRDC15
FDRC14
FDRC13
FDRC12
FDRC11
FDRC10
FDRC9
FDRC8
0
0
0
0
0
0
0
0
FDRC7
FDRC6
FDRC5
FDRC4
FDRC3
FDRC2
FDRC1
FDRC0
0
0
0
0
1
1
0
0
Status indicator register (address 0x2D)
D7
D6
D5
D4
D3
D2
D1
D0
PLULL
Reserved
Reserved
Reserved
Reserved
Reserved
FAULT
TWARN
0
0
0
0
0
0
1
1
STATUS register bits serve the purpose of communicating the detected error or warning
condition to the user. This is a read-only register and writing to this register would not be of
any consequence.
8.10.1
Thermal warning indicator
Table 71. Thermal warning indicator
Bit
0
R/W
RO
RST
1
Name
Description
0: thermal warning detected
1: normal operation (no thermal warning)
RWRAN
If the power stage thermal operating conditions are exceeded, the thermal warning indicator
transmits a signal to the digital logic block to initiate a corrective procedure. This register bit
is set to 0 to indicate a thermal warning and it reverts back to its default state as soon as the
cause of the thermal warning has been corrected.
8.10.2
Fault detect indicator
Table 72. Fault detect indicator
Bit
1
R/W
RO
RST
1
Name
FAULT
Description
0: fault issued from the power stage
1: normal operation (no fault)
As soon as the power stage issues a Fault error signal, thereby initiating the Fault recovery
procedure described in Section 8.9, this register bit is set to 0 to indicate the error to the
user. As soon as the fault condition (over-current or thermal) is corrected, this bit is reset
back to its default state.
DocID11535 Rev 7
71/78
78
User-programmable settings
8.10.3
STA323W
PLL unlock indicator
Table 73. PLL unlock indicator
Bit
7
R/W
RO
RST
0
Name
PLLUL
Description
0: normal operation (PLL is in a locked state)
1: PLL unlock is detected (due to probable clock loss)
Under normal conditions (with the correct clock) the PLL is locked into an internal clocking
frequency. However, if the clock is insufficient or if it is abruptly lost, the PLL lock state is lost
and this information is relayed to the user via setting the PLLUL bit of the Status register
to 1. As soon as the PLL reverts back to a locked state, this bit is set to 0.
72/78
DocID11535 Rev 7
STA323W
9
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID11535 Rev 7
73/78
78
Package information
STA323W
Figure 51. PowerSO-36 slug down outline drawing
0096119
rev D
URE 1:
74/78
DocID11535 Rev 7
STA323W
Package information
Table 74. PowerSO-36 slug down dimensions
mm
inch
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
3.60
-
-
0.142
a1
0.10
-
0.30
.004
-
.012
a2
-
-
3.30
-
-
0.130
a3
0
-
0.10
0
-
.004
b
0.22
-
0.38
0.009
-
0.015
c
0.23
-
0.32
0.009
-
0.013
D
15.80
-
16.00
0.622
-
0.630
D1
9.40
-
9.80
0.370
-
0.386
E
13.90
-
14.50
0.547
-
0.571
E1
10.90
-
11.10
0.429
-
0.437
E2
-
-
2.90
-
-
0.114
E3
5.80
-
6.20
0.228
-
0.244
e
-
0.65
-
-
0.026
-
e3
-
11.05
-
-
0.435
-
G
0
-
0.10
0
-
0.004
H
15.50
-
15.90
0.610
-
0.626
h
-
-
1.10
-
-
0.043
L
0.80
-
1.10
0.031
-
0.043
M
2.25
-
2.60
0.089
-
0.102
N
-
-
10 degrees
-
-
10 degrees
R
-
0.30
-
-
0.012
-
s
-
-
8 degrees
-
-
8 degrees
DocID11535 Rev 7
75/78
78
Trademarks and other acknowledgements
10
Trademarks and other acknowledgements
DDX is a registered trademark of Apogee Technology Inc.
AutoModes is a trademark of Apogee Technology Inc.
ECOPACK is a registered trademark of STMicroelectronics.
76/78
DocID11535 Rev 7
STA323W
STA323W
11
Revision history
Revision history
Table 75. Document revision history
Date
Revision
Changes
01-Jul-2005
1
Initial release.
02-Jan-2006
2
Modified configuration Register A (addr 0x00).
02-Feb-2006
3
Modified the ordering part numbers.
08-Jun-2006
4
Added new chapters.
Updated Electrical characteristics curves
Modified the minimum value of Vcc parameter.
15-Nov-2006
5
Update into latest template.
22-May-2008
6
Updated pin 1 connection.
General presentation revision.
13-Feb-2014
7
Updated order code Table 1 on page 1.
DocID11535 Rev 7
77/78
78
STA323W
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
78/78
DocID11535 Rev 7