STA323W 2.1 high efficiency digital audio system Features ■ Wide supply voltage range (10-36 V) ■ 3 x power output configurations – 2 x 10 W + 1x 20 W – 2 x 20 W – 1 x 40 W ■ Input and output channel mapping ■ AM noise reduction and PWM frequency shifting modes ■ Soft volume update and muting ■ Auto zero detect and invalid input detect muting selectable DDX® ternary or binary PWM output + variable PWM speeds ■ Thermal protection ■ Selectable de-emphasis ■ Under voltage protection ■ ■ Short circuit protection Post-EQ user programmable mix with default 2.1 bass management settings ■ Power SO-36 Slug Down package ■ ■ 2.1 channels of 24-bit DDX® Variable max power correction for lower fullpower THD ■ 100 dB SNR and dynamic range ■ 4 output routing configurations ■ 32 kHz to 192 kHz input sample rates ■ Selectable clock input ratio ■ Digital gain/attenuation +48 dB to -80 dB in 0.5 dB steps ■ ■ 4 x 28-bit user programmable biquads (EQ) per channel 96 kHz internal processing sample rate, 24 to 28-bit precision – Video application: 576 fs input mode supporting ■ I2C control ■ 2-channel I2S input data interface ■ Individual channel and master gain/attenuation ■ Individual channel and master soft and hard mute ■ Individual channel volume and EQ bypass ■ DDX® POP free operation ■ Bass/treble tone control ■ Dual independent programmable limiters/compressors ■ Automodes™ – 32 preset EQ curves – 15 preset crossover settings – Auto volume controlled loudness – 3 preset volume curves – 2 preset anti-clipping modes – Preset nighttime listening mode – Preset TV AGC December 2006 Order codes Rev 5 Part number Package STA323W PowerSO36 (Slug Down) STA323W13TR PowerSO36 in tape & reel 1/71 www.st.com 1 Contents STA323W Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Block diagram and configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 EQ processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 4 Power supply and control sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Output power against supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.1 Audio performance (operation with Vcc = 26 V, 8 Ohm load, stereo mode) 19 4.1.2 Audio performance - stereo mode (operation with Vcc = 18.5 V) . . . . . 20 4.1.3 Audio performance - half bridge binary mode (operation with Vcc = 18.5 V) 24 5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 STA323W I2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1 6.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.4 2/71 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.4.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.4.2 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.5 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.6 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STA323W 7 Contents Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.1 7.2 Configuration register A (address 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.1.1 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.1.2 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.1.3 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.1.4 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.1.5 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Configuration register B (address 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.2.1 7.3 Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.3.1 7.4 7.5 7.6 7.7 7.9 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Configuration register C (address 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.4.1 DDX® power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.4.2 DDX® variable compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . 40 Configuration register D (address 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.5.1 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.5.2 De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.5.3 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.5.4 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.5.5 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.5.6 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 42 7.5.7 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Configuration register E (address 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.6.1 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.6.2 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.6.3 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.6.4 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.6.5 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.6.6 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Configuration register F (address 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.7.1 7.8 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Output configuration selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Volume control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.8.1 Master controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.8.2 Channel controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.8.3 Volume description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Automode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3/71 Contents STA323W 7.10 8 4/71 7.9.1 . . . . . . . . . . . . Register – automodes EQ, volume, GC (address 0x0B) 48 7.9.2 Register - preset EQ settings (address 0x0D) . . . . . . . . . . . . . . . . . . . . 51 Channel configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.10.1 Channel 1 configuration (address 0x0E) . . . . . . . . . . . . . . . . . . . . . . . . 52 7.10.2 Channel 2 configuration (address 0x0F) . . . . . . . . . . . . . . . . . . . . . . . . 52 7.10.3 Channel 3 configuration (address 0x10) . . . . . . . . . . . . . . . . . . . . . . . . 52 7.11 Tone control (address 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.12 Dynamics control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.12.1 Limiter 1 attack/release threshold (address 0x12) . . . . . . . . . . . . . . . . . 54 7.12.2 Limiter 1 attack/release threshold (address 0x13) . . . . . . . . . . . . . . . . . 54 7.12.3 Limiter 2 attack/release rate (address 0x14) . . . . . . . . . . . . . . . . . . . . . 54 7.12.4 Limiter 2 attack/release threshold (address 0x15) . . . . . . . . . . . . . . . . . 54 7.12.5 Dynamics control description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.12.6 Anti-clipping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.12.7 Dynamic range compression mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 User-programmable settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.1 EQ - biquad equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.3 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.4 Mix/bass management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.5 Calculating 24-bit signed fractional numbers from a dB value . . . . . . . . . 61 8.6 User defined coefficient RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.6.1 Coefficient address register 1 (address 0x16) . . . . . . . . . . . . . . . . . . . . 61 8.6.2 Coefficient b1data register bits 23...16 (address 0x17) . . . . . . . . . . . . . 61 8.6.3 Coefficient b1data register bits 15...8 (address 0x18) . . . . . . . . . . . . . . 61 8.6.4 Coefficient b1data register bits 7...0 (address 0x19) . . . . . . . . . . . . . . . 61 8.6.5 Coefficient b2 data register bits 23...16 (address 0x1A) . . . . . . . . . . . . 62 8.6.6 Coefficient b2 data register bits 15...8 (address 0x1B) . . . . . . . . . . . . . 62 8.6.7 Coefficient b2 data register bits 7...0 (address 0x1C) . . . . . . . . . . . . . . 62 8.6.8 Coefficient a1 data register bits 23...16 (address 0x1D) . . . . . . . . . . . . 62 8.6.9 Coefficient a1 data register bits 15...8 (address 0x1E) . . . . . . . . . . . . . 62 8.6.10 Coefficient a1 data register bits 7...0 (address 0x1F) . . . . . . . . . . . . . . 62 8.6.11 Coefficient a2 data register bits 23...16 (address 0x20) . . . . . . . . . . . . 63 8.6.12 Coefficient a2 data register bits 15...8 (address 0x21) . . . . . . . . . . . . . 63 8.6.13 Coefficient a2 data register bits 7...0 (address 0x22) . . . . . . . . . . . . . . 63 STA323W 9 Contents 8.6.14 Coefficient b0 data register bits 23...16 (address 0x23) . . . . . . . . . . . . 63 8.6.15 Coefficient b0 data register bits 15...8 (address 0x24) . . . . . . . . . . . . . 63 8.6.16 Coefficient b0 data register bits 7...0 (address 0x25) . . . . . . . . . . . . . . 63 8.6.17 Coefficient write control register (address 0x26) . . . . . . . . . . . . . . . . . . 64 8.7 Reading a coefficient from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.8 Reading a set of coefficients from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.9 Writing a single coefficient to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.10 Writing a set of coefficients to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.11 Variable max power correction (address 0x27-0x28) . . . . . . . . . . . . . . . . 67 8.12 Fault detect recovery (address 0x2B - 0x2C) . . . . . . . . . . . . . . . . . . . . . . 67 8.13 Status indicator register (address 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.13.1 Thermal warning indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.13.2 Fault detect indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.13.3 PLL unlock indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5/71 Description 1 STA323W Description The STA323W is a single-chip audio system comprising digital audio processing, digital amplifier control and a DDX-power output stage. The STA323W uses all-digital amplification to provide high-power, high-quality and high-efficiency. The STA323W power section consists of four independent half-bridges. These can be configured, by digital control, to operate in the following modes. ● Two channels, provided by two half-bridges, and a single full-bridge giving up to 2 x 10 W + 1 x 20 W of power output. ● Two channels, provided by two full-bridges, giving up to 2 x 20 W of power. ● A single, parallel, full-bridge channel capable of high-current operation and giving 1 x 40W output. The STA323W also provides a full set of digital processing features. These includes up to four programmable 28-bit biquads (EQ) per channel, and bass and treble tone control. Automodes™ enable a time-to-market advantage by substantially reducing the amount of software development needed for specific functions. These includes auto volume loudness, preset volume curves and preset EQ settings. New advanced AM radio interference reduction modes are also provided. The serial audio data input interface accepts all existing formats, including the I2S. Three channels of DDX® processing are provided. This high quality conversion from PCM audio to DDX's patented tri-state PWM switching waveform provides over 100 dB SNR and dynamic range. 1.1 Block diagram and configurations Figure 1. Block diagram SDA SCL I2C System control LRCKI BICKI SDI_12 Serial data input, channel mapping and resampling Audio EQ, mix, crossover, volume, limiter processing DDX processing OUT1B OUT2A OUT2B System timing Power down CLK 6/71 OUT1A Quad half-bridge power stage TWARN Power down FAULT EAPD STA323W Figure 2. I2S input Description Channel signal flow diagram through the digital core Channel mapping 1.2 Re-sampling ED processing Mix Crossover filter Volume limiter 4x Interp DDX DDX output EQ processing Two channels of input data (re-sampled if necessary) at 96 kHz are provided to the EQ processing block. In these blocks, up to four user-defined Biquads can be applied to each of the two channels. Pre-scaling, DC-blocking high-pass, de-emphasis, bass, and tone control filters can also be implemented by means of configuration parameter settings. The entire EQ block can be bypassed for all channels simultaneously by setting the DSPB bit to '1'. The CxEQBP bits can also be used to bypass the EQ functionality on a per channel basis. Figure 3 shows the internal signal flow through the EQ block. Figure 3. Channel signal flow diagram through the EQ block Re-sampled input pre-scale High pass filter If HPB= 0 BQ#1 BQ#2 BQ#3 BQ#4 4 biquads User defined if AMEQ = 00 Perset EQ if AMEQ = 01 Auto loudness if AMEQ = 10 Deemphasis If DEMP = 1 Bass filter Treble filter To mix If CxTCB = 0 BTC: bass boost/cut TTC: treble boost/cut If DSPB = 0 and CxEQB = 0 7/71 Description Figure 4. STA323W 2-channel (full-bridge) power, OCFG(1…0) = 00 Half bridge OUT1A Channel 1 Half bridge Half bridge OUT1B OUT2A Channel 2 Half bridge Figure 5. OUT2B 2.1 -channel power configuration, OCFG(1…0) = 01 Half bridge Half bridge Half bridge OUT1A OUT1B Channel 1 Channel 2 OUT2A Channel 3 Half bridge Figure 6. 1-channel mono-parallel configuration, OCFG(1…0) = 11 Half bridge Half bridge Half bridge Half bridge 8/71 OUT2B OUT1A OUT1B OUT2A OUT2B Channel 3 STA323W 2 Schematics Schematics Table 1. Table 2. Table 3. Component selection “Table A” - full-bridge operation Load Inductor Capacitor 4Ω 10 µH 1.0 µF 6Ω 15 µH 470 nF 8Ω 22 µH 470 nF Component selection "Table B" - binary half-bridge operation Load Inductor Capacitor 4Ω 22 µH 680 nF 6Ω 33 µH 470 nF 8Ω 47 µH 390 nF Component selection "Table C" - mono operation Load Inductor Capacitor 2Ω 4.7 µH 2.0 µF 3Ω 6.8 µH 1.0 µF 4Ω 10 µH 1.0 µF 9/71 Schematics STA323W Figure 7. Schematic for 2 (half-bridge) channels + 1 (full-bridge)-channel on-board Figure 8. Power schematic for 2 (full-bridge)-channel on-board power 10/71 STA323W Figure 9. Schematics Power schematic for 1 mono parallel channel Figure 10. Pin layout (viewed from top of device) Table 4. N.C. 1 36 N.C. 2 35 VSS OUT2B 3 34 VDD VCC2B 4 33 GND N.C. 5 32 BICKI GND2B 6 31 LRCKI GND2A 7 30 SDI VCC2A 8 29 VDDA OUT2A 9 28 GNDA OUT1B 10 27 XTI VCC1B 11 26 PLL FILTER GND1B 12 25 RES GND1A 13 24 SDA N.C. 14 23 SCL VCC1A 15 22 RESET OUT1A 16 21 CONFIG GNDCLEAN 17 20 VL GNDREG 18 19 VDD REG VCC SIGN Pin description Pin Type Name Description 1 N.C. Not connected 2 N.C. Not connected 3 O OUT2B Output half bridge 2B 4 I/O VCC2B Positive supply 5 N.C. 6 I/O Not connected GND2B Negative supply 11/71 Schematics STA323W Table 4. Pin Type Name 7 I/O GND2A Negative supply 8 I/O VCC2A Positive supply 9 O OUT2A Output half bridge 2A 10 O OUT1B Output half bridge 1B 11 I/O VCC1B Positive supply 12 I/O GND1B Negative supply 13 I/O. GND1A Negative supply 14 N.C. 15 I/O VCC1A Positive supply 16 O OUT1A Output half bridge 1A 17 I/O GNDCLEAN Reference ground 18 I/O GNDREG Substrate ground 19 I/O VDD DIGITAL I/O VL 21 I CONFIG Logic levels 22 I RESET Reset 23 I SCL I²C serial clock 24 I/O SDA I²C serial data 25 RES Reserved 26 I PLL FILTER 27 I XTI PLL input clock 28 I/O Analog ground Analog ground 29 I/O Analog supply Analog supply 3.3 30 I SDI_12 I²S serial data channels 1 and 2 31 I/O LRCKI I²S left/right clock, 32 I BICKI I²S serial clock 33 I/O Digital ground Digital ground 34 I/O Digital supply Digital supply 3.3 V 35 I/O VSS digital 5 V regulator referred to +Vcc 36 I/O VCC digital 5 V regulator referred to ground (signal positive supply) 20 12/71 Pin description (continued) Description Not connected Logic supply Logic supply to power section Test pin to be externally connected to ground Connection to PLL filter STA323W Schematics Table 5. Absolute maximum ratings Symbol Parameter Value Unit VDD_3.3 3.3 V I/O power supply -0.5 to 4 V Vi Voltage on input pins -0.5 to (VDD+0.5) V Vo Voltage on output pins -0.5 to (VDD+0.5) V Tstg Storage temperature -40 to +150 °C Tamb Ambient operating temperature -40 to +85 °C VCC DC supply voltage 40 V VMAX Maximum voltage on pins 20 5.5 V Table 6. Thermal data Symbol Parameter Min Typ Max Unit ° C/W Rthj-case Thermal resistance junction to case (thermal pad) Tj-SD Thermal shut-down junction temperature 150 °C TWARN Thermal warning temperature 130 °C Th-SD Thermal shut-down hysteresis 25 °C Table 7. 2.5 Recommended DC operating conditions Symbol Parameter Value Unit VDD_3.3 I/O power supply 3.0 to 3.6 V Tj Operating junction temperature -40 to +125 °C 13/71 Electrical characteristics STA323W 3 Electrical characteristics Note: VDD3 = 3.3V ± 0.3V; Tamb = 25°C; unless otherwise specified. Table 8. General interface electrical characteristics Symbol Note: Test Condition Min. Typ. Max. Unit Note Iil Low level input no pull-up Vi = 0V 1 µA 1 Iih High level input no pull-down Vi = VDD3 2 µA 1 IOZ Tristate output leakage without pull-up/down Vi = VDD3 2 µA 1 Vesd Electrostatic protection Leakage < 1µA V 2 2000 1 The leakage currents are generally very small < 1na. The values given here are maximum after an electrostatic stress on the pin. 2 Human body model. Table 9. Symbol DC electrical characteristics: 3.3 V buffers Parameter Test condition Min. Typ. Max. Unit VIL Low level Input voltage VIH High level Input voltage 2.0 V Vhyst Schmitt trigger hysteresis 0.4 V Vol Low level output IoI = 2mA Voh High level output Ioh = -2mA Table 10. Symbol 14/71 Parameter 0.8 V 0.15 V VDD -0.15 V Power electrical characteristics (VL = 3.3 V; Vcc = 30 V; Tamb = 25 °C unless otherwise specified) Parameter Test conditions Min. Typ. Max. Unit RdsON Power Pchannel/Nchannel MOSFET RdsON Id=1 A Idss Power Pchannel/Nchannel leakage Idss Vcc=35 V gN Power Pchannel RdsON matching Id=1 A 95 % gP Power Nchannel RdsON matching Id=1 A 95 % Dt_s Low current dead time (static) See test circuit no.1; see Figure 12 td ON Turn-on delay time td OFF 200 10 270 mΩ 50 µA 20 ns Resistive load 100 ns Turn-off delay time Resistive load 100 ns tr Rise time Resistive load 25 ns tf Fall time Resistive load; as Figure 12 25 ns STA323W Electrical characteristics Table 10. Symbol Power electrical characteristics (VL = 3.3 V; Vcc = 30 V; Tamb = 25 °C unless otherwise specified) (continued) Parameter Test conditions Min. Typ. Max. Unit VCC Supply voltage operating voltage VL Low logical state voltage VL VL = 3.3 V VH High logical state voltage VH VL = 3.3 V 1.7 V Supply current from Vcc in PWRDN PWRDN = 0 3 mA IVCC-hiz Supply current from Vcc in Tri-state Vcc=30 V; Tri-state 22 mA IVCC Supply current from Vcc in operation (both channel switching) Input pulse width = 50% Duty; Switching frequency = 384 Khz; No LC filters; 80 mA Iout-sh Overcurrent protection threshold (short circuit current limit) 6 A VUV Under voltage protection threshold 7 V tpw-min Output minimum pulse width No Load Po Output power (refer to test circuit THD = 10% RL = 8 Ω; VS = 18 V 20 W Po Output power (refer to test circuit THD = 1% RL = 8 Ω; VS = 18 V 16 W IVCCPWRDN Table 11. Symbol 8 36 0.8 4 V V 70 150 ns Timing characteristics Parameter Test condition Min. treset Reset hold time (pin 22) Active low rest VCO VCO free run frequency No clock applied 18 to XTI Typ. 100 Max. Unit nSec 28 15/71 Electrical characteristics STA323W Figure 11. Test circuit OUTY Vcc (3/4)Vcc Low current dead time = MAX(DTr,DTf) (1/2)Vcc (1/4)Vcc +Vcc t DTr Duty cycle = 50% DTf M58 OUTY INY R 8Ω M57 + - gnd 3.1 V67 = vdc = Vcc/2 D02AU1448 Power supply and control sequencing Figure 12 shows the recommended power-up and power-down sequencing. The "time zero" reference point is taken where VCC crosses the under voltage lockout threshold. Figure 12. Recommended power up and power down sequence 16/71 STA323W Electrical characteristics curves 4 Electrical characteristics curves 4.1 Output power against supply voltage Figure 13. Stereo mode - output power against supply voltage, THD+N = 10% O u tp u t p o w e r (W ) 80 70 60 50 6ohm 4ohm 40 8ohm 30 20 10 10 12 14 16 18 20 22 24 26 P o w e r S u p p ly V o lta g e (V D C ) Figure 13 shows the full-scale output power (0dB FS digital input with unity amplifier gain) as a function of power supply voltage for 4, 6, and 8 Ω loads in either DDX® mode or binary full bridge mode. Output power is constrained for higher impedance loads by the maximum voltage limit of the STA323W and by the over-current protection limit for lower impedance loads. The minimum threshold for the over-current protection circuit of the STA323W is 4 A (at 25 ºC) but the typical threshold is 6 A for the device. The solid curves shows the typical output power capability of the device. The dotted curves shows the output power capability constrained to the minimum current specification of the STA323W. The output power curves assume proper thermal management of the power device's internal dissipation. Figure 14. Output power vs. supply for stereo bridge (THD+N=1%) o u tp u t p o w e r (W ) - B T L 1 % T H D 60 6 ohm 50 4 ohm 40 8 ohm 30 16ohm 20 10 0 10 15 20 25 30 s u p p ly v o lta g e (V ) 17/71 Electrical characteristics curves STA323W Figure 14 shows the mono mode output power as a function of power supply voltages for loads of 2, 3, and Ω Ohms. The same current limits as those given for Figure 13 apply, except output current is 8 A minimum, with 12 A typical in the mono-bridge configuration. The solid curves show typical performance and dashed curves depict the minimum current limit. The output power curves assume proper thermal management of the power device's internal dissipation. Figure 15. Half-bridge binary mode output power vs. supply (THD+N=10%). Curves taken at f = 1 kHz and using a 330µF blocking capacitor 25 Output power (W ) 20 15 6ohm 4ohm 10 8ohm 5 0 10 12 14 16 18 20 22 2 26 Power Supply Voltage (VDC) Figure 15 shows the output power as a function of power supply voltages for loads of 4, 6, and 8 Ω when the STA323W is operated in a half-bridge binary mode. The solid curves depict typical performance. Minimum current limit is not reached for these combinations of voltage and load impedance. The output power curves assume proper thermal management of the power device's internal dissipation. 18/71 STA323W Electrical characteristics curves Figure 16. Half bridge binary mode output power vs. supply voltage (THD+N=1%). Curves taken at 1 kHz and using a 330µF blocking capacitor o u tp u t p o w e r (W ) 25 3 ohm 2 ohm 20 4 ohm 15 8 ohm 10 5 0 10 15 20 25 30 s u p p ly v o lta g e (V ) 4.1.1 Audio performance (operation with Vcc = 26 V, 8 Ohm load, stereo mode) Figure 17. Typical efficiency 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Total Output Power (Watts) Figure 18. Typical frequency response 19/71 Electrical characteristics curves STA323W Figure 19. FFT -60 dB, 1 kHz output Figure 20. FFT inter-modulation distortion 19 kHz and 20 kHz 4.1.2 Audio performance - stereo mode (operation with Vcc = 18.5 V) Figure 21. Frequency response: 1 W, BTL, 8 ohm dBr A +3 + 2 .5 +2 + 1 .5 +1 + 0 .5 8ohm +0 6ohm -0 .5 4 ohm -1 -1 .5 -2 -2 .5 -3 20 50 100 200 500 Hz 20/71 1k 2k 5k 10k 20k STA323W Electrical characteristics curves Figure 22. Channel separation 1 W, BTL stereo mode dBr A +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 8ohm -7 0 -8 0 4ohm -9 0 -1 0 0 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 23. THD vs. PWR BTL, 1 kHz % 10 5 2 8ohm 6ohm 1 0 .5 0 .2 4ohm 0 .1 0 .0 5 0 .0 2 0 .0 1 100m 200m 500m 1 2 5 10 20 50 W Figure 24. THD vs. freq. 1 W output, stereo mode % 1 0 .5 0 .2 0 .1 0 .0 5 4ohm 6ohm 8ohm 0 .0 2 0 .0 1 20 50 100 200 500 Hz 1k 2k 5k 10k 20k 21/71 Electrical characteristics curves STA323W Figure 25. THD vs. freq. BTL 16 W output % 1 0 .5 0 .2 0 .1 8ohm 0 .0 5 4ohm 6ohm 0 .0 2 0 .0 1 20 50 100 200 500 1k 2k 5k 10k 20k 1k 2k 5k 10k 20k 1k 2k Hz Figure 26. FFT 0 dbfs 1 kHz, 1 kHz, 8 Ω +40 dB r +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 20 50 10 0 200 500 Hz Figure 27. FFT 0 dbfs 1 kHz, 1 kHz 4 Ω dBr +40 +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 20 50 100 200 500 Hz 22/71 5k 10k 20k STA323W Electrical characteristics curves Figure 28. FFT 0 dbfs 1 kHz, 1 kHz 4 Ω dBr +40 +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 20 50 100 200 500 1k 2k 5k 10k 1k 2k 5k 10k 1k 2k 20k Hz Figure 29. FFT -60 dbfs 1 kHz, 8 Ω dBr +40 +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 -1 6 0 20 50 100 200 500 20k Hz Figure 30. FFT -60 dbfs 1 kHz, 6 Ω dBr +40 +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 -1 6 0 20 50 100 200 500 5k 10k 20k Hz 23/71 Electrical characteristics curves STA323W Figure 31. FFT -60 dbfs 1 kHz, 4 Ω dB r +40 +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 -1 6 0 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 32. PSRR BTL: 500 mV ripple dBr +10 T T +0 -1 0 -2 0 -3 0 -4 0 -5 0 8 ohm 6ohm -6 0 4 ohm -7 0 -8 0 -9 0 -1 0 0 20 30 40 50 60 70 80 90 100 200 Hz 4.1.3 Audio performance - half bridge binary mode (operation with Vcc = 18.5 V) Figure 33. Frequency response: 1 W, binary half bridge mode dBr A +3 + 2 .5 +2 + 1 .5 +1 + 0 .5 +0 3ohm -0 .5 -1 -1 .5 4ohm -2 -2 .5 2ohm -3 20 50 100 200 500 1k F re q u e n c y (H z ) 24/71 2k 5k 10k 20k STA323W Electrical characteristics curves Figure 34. Channel separation 1 W, half bridge binary dBr A +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 8ohm -6 0 4 ohm -7 0 -8 0 -9 0 -1 0 0 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 35. THD+N vs. PWR SE, 1 kHz input frequency, half bridge binary % 10 5 2 ohm 2 4ohm 3 ohm 1 0 .5 0 .2 0 .1 0 .0 5 0 .0 2 0 .0 1 100m 200m 500m 1 2 5 10 20 50 W Figure 36. THD+N vs. PWR SE, 1 kHz input frequency, half bridge binary % 10 5 2 ohm 2 4ohm 3 ohm 1 0 .5 0 .2 0 .1 0 .0 5 0 .0 2 0 .0 1 100m 200m 500m 1 2 5 10 20 50 W 25/71 Electrical characteristics curves STA323W Figure 37. THD against freq SE 1 W % 0 .5 0 .4 0 .3 0 .2 2ohm 3ohm 4ohm 0 .1 0 .0 8 0 .0 6 0 .0 5 0 .0 4 0 .0 3 0 .0 2 0 .0 1 20 50 100 200 500 1k 2k 5k 10k 20k 20k Hz Figure 38. THD against freq. SE 8 W, Single end % 5 2 1 2ohm 0 .5 3ohm 4ohm 0 .2 0 .1 0 .0 5 0 .0 2 0 .0 1 20 50 10 0 200 500 1k 2k 5k 10k 1k 2k 5k 10k Hz Figure 39. FFT 0 dB 1 kHz SE, 2 Ω dBr +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 2 0 20 50 100 200 500 Hz 26/71 20k STA323W Electrical characteristics curves Figure 40. FFT 0 dB 1 kHz SE, 3 Ω +10 dBr +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 2 0 20 50 100 200 500 1k 2k 5k 10k 20k 1k 2k 5k 10k 20k 1k 2k 5k 10k 20k Hz Figure 41. FFT 0 dB 1 kHz SE, 4 Ω dBr +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 1 0 20 50 100 200 500 Hz Figure 42. FFT -60 dB SE 1 khz SE, 2 Ω dBr +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 1 0 20 50 100 200 500 Hz 27/71 Electrical characteristics curves STA323W Figure 43. FFT -60 dB SE 1 kHz SE, 4 Ω dBr +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 1 0 -1 2 0 -1 3 0 -1 4 0 20 50 100 200 500 1k 2k 5k 10k 20k 1k 2k 5k 10k 20k Hz Figure 44. FFT -60 dB SE 1 kHz SE, 3 Ω dBr +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 1 0 -1 2 0 -1 3 0 -1 4 0 20 50 100 200 500 Hz Figure 45. PSRR SE: 500 mV ripple dBr A +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 2 ohm -6 0 3 ohm -7 0 4 ohm -8 0 -9 0 -1 0 0 20 30 40 50 60 Hz 28/71 70 80 90 100 200 STA323W 5 Pin descriptions Pin descriptions OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) The half-bridge PWM outputs 1A, 1B, 2A and 2B provide the inputs signals to the speakers. OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) Driving RESET low sets all outputs low and returns all register settings to their defaults. The reset is asynchronous to the internal clock. OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) The SDA (I2C Data) and SCL (I2C Clock) pins operate according to the I2C specification (See Chapter 6 on page 30.) Fast-mode (400 kB/sec.) I2C communication is supported. OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) The phase locked loop power is applied here. This +3.3V supply must be well bypassed and filtered for noise immunity. The audio performance of the device is critically dependent upon the PLL circuit. OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) This is the master clock input required for the operation of the digital core. The master clock must be an integer multiple of the LR clock frequency. Typically, the master clock frequency is 12.288 MHz (256 * Fs) for a 48kHz sample rate, which is the default at power-up. Do not over-clock the device (use a frequency higher than that recommended for the system clock) otherwise it may not operate correctly or be able to communicate. OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) The PLL filter connects to external filter components for PLL loop compensation. Refer to the schematic diagram Figure 9: Power schematic for 1 mono parallel channel on page 11 for the recommended circuit. OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) The serial or bit clock input is for framing each data bit. The bit clock frequency, using I2S serial format, is typically 64 * Fs . OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) PCM audio information enters the device here. Six format choices are available including I2S, left- or right-justified, LSB or MSB first, with word widths of 16, 18, 20 and 24 bits. OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3) The left/right clock input is for data word framing. The clock frequency is at the input sample rate Fs. 29/71 STA323W I2C bus specification 6 STA323W STA323W I2C bus specification The STA323W supports the I2C fast mode (400 Kbit/s) protocol. This protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master always starts the transfer and provides the serial clock for synchronization. The STA323W is always a slave device in all of its communications. 6.1 Communication protocol 6.1.1 Data transition or change Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is high is used to identify a START or STOP condition. 6.1.2 Start condition START is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A START condition must precede any command for data transfer. 6.1.3 Stop condition STOP is identified by a low to high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A STOP condition terminates communication between STA323W and the bus master. 6.1.4 Data input During the data input the STA323W samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low. 6.2 Device addressing To start communication between the master and the STA323W, the master must initiate with a START condition. Following this, the master sends 8 bits (MSB first) on the SDA line corresponding to the device select address and read or write mode. The 7 most significant bits are the device address identifiers, corresponding to the I2C bus definition. In the STA323W the I2C interface uses a device address of 0x34 or 0011010x. The 8th bit (LSB) identifies read or write operation, RW. This bit is set to 1 in read mode and 0 for write mode. After a START condition the STA323W identifies the device address on the bus. If a match is found, it acknowledges the identification on the SDA bus during the 9th bit time. The byte following the device identification byte is the internal space address. 30/71 STA323W 6.3 STA323W I2C bus specification Write operation Following the START condition the master sends a device select code with the RW bit set to 0. The STA323W acknowledges this and then the master writes the internal address byte. After receiving the internal byte address the STA323W again responds with an acknowledgement. 6.3.1 Byte write In the byte write mode the master sends one data byte. This is acknowledged by the STA323W. The master then terminates the transfer by generating a STOP condition. 6.3.2 Multi-byte write The multi-byte write modes can start from any internal address. Sequential data bytes are written to sequential addresses within the STA323W. The master generates a STOP condition to terminate the transfer. 6.4 Read operation 6.4.1 Current address byte read Following the START condition the master sends a device select code with the RW bit set to 1. The STA323W acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition. Current address multi-byte read The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA323W. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer. 6.4.2 Random address byte read Following the START condition the master sends a device select code with the RW bit set to 0. The STA323W acknowledges this and then the master writes the internal address byte. After receiving, the internal byte address the STA323W again responds with an acknowledgement. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA323W acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition. Random address multi-byte read The multi-byte read modes can start from any internal address. Sequential data bytes are then read from sequential addresses within the STA323W. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer. 31/71 STA323W I2C bus specification 6.5 STA323W Write mode sequence Figure 46. I2C write procedure ACK DEV-ADDR BYTE WRITE START ACK DATA IN RW STOP ACK MULTIBYTE WRITE DEV-ADDR START 6.6 ACK SUB-ADDR ACK ACK SUB-ADDR ACK DATA IN DATA IN STOP RW Read mode sequence Figure 47. I2C read procedure ACK CURRENT ADDRESS READ DEV-ADDR START NO ACK DATA RW STOP ACK RANDOM ADDRESS READ DEV-ADDR START ACK DEV-ADDR RW START RW= ACK HIGH SEQUENTIAL CURRENT READ ACK SUB-ADDR DEV-ADDR NO ACK DATA RW ACK STOP ACK DATA DATA NO ACK DATA START STOP ACK SEQUENTIAL RANDOM READ DEV-ADDR START 32/71 ACK ACK SUB-ADDR RW DEV-ADDR START ACK DATA RW ACK DATA NO ACK DATA STOP STA323W Register descriptions 7 Register descriptions Table 12. Register summary Address Name D7 D6 D5 D4 D3 D2 D1 D0 0x00 ConfA FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0 0x01 ConfB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0 0x02 ConfC CSZ4 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0 0x03 ConfD MME ZDE DRC BQL PSL DSPB DEMP HPB 0x04 ConfE SVE ZCE DCCV PWMS AME RES MPC MPCV 0x05 ConfF EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0 0x06 Mmute 0x07 Mvol MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0 0x08 C1Vol C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0 0x09 C2Vol C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0 0x0A C3Vol C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0 0x0B Auto1 AMPS AMGC1 AMGC0 AMV1 AMV0 AMEQ1 AMEQ0 0x0C Auto2 XO3 XO1 XO1 AMAM2 AMAM1 AMAM0 AMAME 0x0D Auto3 PEQ4 PEQ3 PEQ2 PEQ1 PEQ0 0x0E C1Cfg C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB 0x1F C2Cfg C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB 0x10 C3Cfg C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP 0x11 Tone TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 0x12 L1ar L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0x13 L1atrt L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0x14 L2ar L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 0x15 L2atrt L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0 0x16 Cfaddr2 CFA7 CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0 0x17 B1cf1 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0x18 B1cf2 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8 0x19 B1cf3 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0 0x1A B2cf1 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16 0x1B B2cf2 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8 0x1C B2cf3 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0 0x1D A1cf1 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16 0x1E A1cf2 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8 0x1F A1cf3 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0 MMute XO2 33/71 Register descriptions Table 12. Address STA323W Register summary (continued) Name D7 D6 D5 D4 D3 D2 D1 D0 0x20 A2cf1 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16 0x21 A2cf2 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8 0x22 A2cf3 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0 0x23 B0cf1 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16 0x24 B0cf2 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8 0x25 B0cf3 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0 0x26 Cfud WA W1 0x27 MPCC1 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8 0x28 MPCC2 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0 0x29 RES RES RES RES RES RES RES RES RES 0x2A RES RES RES RES RES RES RES RES RES 0x2B FDRC1 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8 0x2C FDRC2 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0 0x2D Status PLLUL FAULT TWARN 7.1 7.1.1 Configuration register A (address 0x00) D7 D6 D5 D4 D3 D2 D1 D0 FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0 0 1 1 0 0 0 1 1 Master clock select Table 13. Bit R/W Master clock select RST Name 0 R/W 1 MCS0 1 R/W 1 MCS1 2 R/W 0 MCS2 Description Master clock select: selects the ratio between the input I2S sample frequency and the input clock. The STA323W supports sample rates of 32 kHz, 44.1 kHz, 48 khz, 88.2 kHz, and 96 kHz. Therefore the internal clock is: 34/71 ● 32.768 MHz for 32 kHz ● 45.1584 MHz for 44.1 khz, 88.2 kHz, and 176.4 kHz ● 49.152 MHz for 48 kHz, 96 kHz, and 192 kHz STA323W Register descriptions The external clock frequency provided to the XTI pin must be a multiple of the input sample frequency (fs). The correlation between the input clock and the input sample rate is determined by the status of the MCSx bits and the IR (Input Rate) register bits. The MCSx bits determine the PLL factor generating the internal clock and the IR bit determines the oversampling ratio used internally. Table 14. IR and MCS settings for input sample rate and clock rate Input sample rate fs (kHz) 7.1.2 MCS(2..0) IR 000 001 010 011 100 101 32, 44.1, 48 00 768fs 512fs 384fs 256fs 128fs 576fs 88.2, 96 01 384fs 256fs 192fs 128fs 64fs x 176.4, 192 1X 384fs 256fs 192fs 128fs 64fs x Interpolation ratio select Table 15. Bit 4...3 Interpolation ratio select R/W R/W RST 00 Name IR (1...0) Description Selects internal interpolation ratio based on input I2S sample frequency The STA323W has variable interpolation (re-sampling) settings such that internal processing and DDX output rates remain consistent. The first processing block interpolates by either 2 times or 1 time (pass-through) or provides a down-sample by a factor of 2. The IR bits determine the re-sampling ratio of this interpolation. Table 16. IR bit settings as a function of input sample rate Input sample rate Fs (kHz) IR (1, 0) 1st stage interpolation ratio 32 00 2 times over-sampling 44.1 00 2 times over-sampling 48 00 2 times over-sampling 88.2 01 Pass-Through 96 01 Pass-Through 176.4 10 Down-sampling by 2 192 10 Down-sampling by 2 35/71 Register descriptions 7.1.3 STA323W Thermal warning recovery bypass Table 17. Bit 5 Thermal warning recovery bypass R/W R/W RST 1 Name Description 0: Thermal warning Recovery enabled 1: Thermal warning Recovery disabled TWRB If the thermal warning adjustment is enabled (TWAB=0), then the thermal warning recovery determines if the adjustment is removed when thermal warning is negative. If TWRB=0 and TWAB=0, then, when a thermal warning disappears, the gain adjustment determined by the thermal warning post-scale (default = -3 dB) is removed and the gain is applied to the system. If TWRB=1 and TWAB=0, then when a thermal warning disappears, the thermal warning post-scale gain adjustment remains until TWRB is changed to zero or the device is reset. 7.1.4 Thermal warning adjustment bypass Table 18. Bit 6 Thermal warning adjustment bypass R/W R/W RST 1 Name Description 0: thermal warning adjustment enabled 1: thermal warning adjustment disabled TWAB The STA323W on-chip power output block provides feedback to the digital controller by the power control block inputs. The TWARN input is used to indicate a thermal warning condition. When TWARN is active (set to 0 for a period greater than 400 ms) the power control block forces an adjustment to the modulation limit in an attempt to eliminate the thermal warning condition. Once the thermal warning volume adjustment is applied, whether the gain is reapplied when TWARN is inactive, depends on the TWRB bit. 7.1.5 Fault detect recovery bypass Table 19. Bit 7 Fault detect recovery bypass R/W R/W RST 0 Name FDRB Description 0: fault detector recovery enabled 1: fault detector recovery disabled The DDX power block provides feedback to the digital controller using inputs to the power control block. The FAULT input is used to indicate a fault condition (either over-current or thermal). When FAULT is active (set to 0), the power control block attempts a recovery from the fault by activating the tri-state output (setting it to 0 which directs the power output block to begin recovery). It holds it at 0 for period of time in the range of 0.1 ms to 1 second as defined by the Fault-Detect Recovery Constant register (FDRC registers 29-2Ah), then toggles it back to 1. This sequence is repeated as long as the fault indication exists. This feature is enabled by default but can be bypassed by setting the FDRB control bit to 1. 36/71 STA323W 7.2 7.2.1 Register descriptions Configuration register B (address 0x01) D7 D6 D5 D4 D3 D2 D1 D0 C1IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0 1 0 0 0 0 0 0 0 Serial audio input interface format Table 20. Bit 3…0 7.3 Serial audio input interface format R/W R/W RST 0000 Name SAI (3...0) Description Determines the interface format of the input serial digital audio interface. Serial data interface The STA323W serial audio input interfaces with standard digital audio components and accepts several different serial data formats. The STA323W always acts as a slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using 3 input pins: left/right clock LRCKI (pin 33), serial clock BICKI (pin 31), and serial data 1 and 2 SDI12 (pin 32). The SAI register (configuration register B - 0x01, bits D3-D0) and the SAIFB register (configuration register B - 0x01, bit D4) are used to specify the serial data format. The default serial data format is I2S, MSB first. The formats available are shown in Figure 48 and in Table 21, Table 22, and Table 22. Figure 48. General serial input and output formats I2S Left LRCLK Right SCLK MSB SDATA LSB MSB LSB MSB Left Justified Left LRCLK Right SCLK SDATA MSB LSB MSB LSB MSB Right Justified Left LRCLK Right SCLK SDATA MSB LSB MSB LSB MSB For example, SAI=1110 and SAIFB=1 specifies right justified 16-bit data, LSB first. 37/71 Register descriptions STA323W Table 22. lists the serial audio input formats supported by STA323W when BICKI = 32 * fs, 48 * fs or 64 * fs, where the sampling rate fs = 32, 44.1, 48, 88.2, 96, 176.4 or 192 kHz. Table 21. Note: SAIFB Format 0 MSB first 1 LSB first Serial input and output formats are specified distinctly. Table 22. Supported serial audio input formats BICKI SAI (3...0) SAIFB Interface format 32fs 1100 X I2S 15-bit data 1110 X Left/right-justified 16-bit data 0100 X I2S 23-bit data 0100 X I2S 20-bit data 1000 X I2S 18-bit data 0100 0 MSB first I2S 16-bit data 1100 1 LSB first I2S 16-bit data 0001 X Left-justified 24-bit data 0101 X Left-justified 20-bit data 1001 X Left-justified 18-bit data 1101 X Left-justified 16-bit data 0010 X Right-justified 24-bit data 0110 X Right-justified 20-bit data 1010 X Right-justified 18-bit data 1110 X Right-justified 16-bit data 0000 X I2S 24-bit data 0100 X I2S 20-bit data 1000 X I2S 18-bit data 0000 0 MSB first I2S 16-bit data 1100 1 LSB first I2S 16-bit data 0001 X Left-justified 24-bit data 0101 X Left-justified 20-bit data 1001 X Left-justified 18-bit data 1101 X Left-justified 16-bit data 0010 X Right-justified 24-bit data 0110 X Right-justified 20-bit data 48fs 64fs 38/71 First bit selection table STA323W Register descriptions Table 22. Supported serial audio input formats (continued) BICKI Table 23. SAI (3...0) SAIFB Interface format 1010 X Right-justified 18-bit data 1110 X Right-justified 16-bit data Serial input data timing characteristics (Fs = 32 to 192 kHz) Signal Frequency BICKI frequency (slave mode) 12.5 MHz max. BICKI pulse width high (T1) (slave mode) 40 ns min. BICKI active to LRCKI edge delay (T2) 20 ns min. BICKI active to LRCKI edge delay (T3) 20 ns min. SDI valid to BICKI active setup (T4) 20 ns min. BICKI active to SDI hold time (T5) 20 ns min. Figure 49. Serial input and data timing T 2 T 3 L R C K I T 1 T 0 B IC K I T 4 S D I T 5 7.3.1 Delay serial clock enable Table 24. Bit 5 R/W R/W g Table 25. Bit R/W Delay serial clock enable RST 0 Name DSCKE Description 0: no serial clock delay 1: serial clock delay by 1 core clock cycle to tolerate anomalies in some I2S master devices Channel input mapping RST Name Description 6 R/W 0 C1IM 0: processing channel 1 receives left I2S input 1: processing channel 1 receives right I2S input 7 R/W 1 C2IM 0: processing channel 2 receives left I2S input 1: processing channel 2 receives right I2S input Each channel received from the I2S can be mapped to any internal processing channel via the channel input mapping registers. This allows processing flexibility. The default settings of these registers map each I2S input channel to its corresponding processing channel. 39/71 Register descriptions 7.4 Configuration register C (address 0x02) D7 7.4.1 STA323W D6 D5 D4 D3 D2 D1 D0 CSZ4 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0 1 0 0 0 0 1 0 DDX® power output mode Table 26. Bit 1...0 DDX® power output mode R/W RST R/W Name 10 OM (1...0) Description Selects configuration of DDX® output. The DDX® power output mode selects how the DDX® output timing is configured. Different power devices can use different output modes. The recommended use is OM = 10. When OM=11 the CSZ bits determine the size of the DDX® compensating pulse. Table 27. DDX® output modes OM (1,0) 7.4.2 Output stage – mode 00 Not used 01 Not used 10 Recommended 11 Variable compensation DDX® variable compensating pulse size The DDX® variable compensating pulse size is intended to adapt to different power stage ICs. Contact ST for support when using this function. Table 28. DDX® compensating pulse CSZ (4…0) 40/71 Compensating pulse size 00000 0 clock period compensating pulse size 00001 1 clock period compensating pulse size … … 10000 16 clock period compensating pulse size … … 11111 31 clock period compensating pulse size STA323W 7.5 7.5.1 Register descriptions Configuration register D (address 0x03) D7 D6 D5 D4 D3 D2 D1 D0 MME ZDE DRC BQL PSL DSPB DEMP HPB 0 0 0 0 0 0 0 0 High-pass filter bypass Table 29. High-pass filter bypass Bit R/W 0 R/W RST 0 Name HPB Description 0: AC coupling high pass filter enabled 1: AC coupling high pass filter enabled The STA323W features an internal digital high-pass filter for DC blocking. The purpose of this filter is to prevent DC signals from passing through a DDX® amplifier. DC signals can cause speaker damage. 7.5.2 De-emphasis Table 30. De-emphasis Bit R/W 1 R/W RST 0 Name DEMP Description 0: no de-emphasis 1: de-emphasis By setting this bit to 1, de-emphasis is implemented on all channels. DSPB (DSP Bypass, Bit D2, CFA) bit must be set to 0 for de-emphasis to function. 7.5.3 DSP bypass Table 31. Bit 2 DSP bypass R/W R/W RST 0 Name DSPB Description 0: normal operation 1: bypass of EQ and mixing functionality Setting the DSPB bit bypasses all the EQ and mixing functionality of the STA323W core. 7.5.4 Post-scale link Table 32. Bit 3 R/W R/W Post-scale link RST 0 Name PSL Description 0: each channel uses individual post-scale value 1: each channel uses channel 1 post-scale value 41/71 Register descriptions STA323W Post-scale functionality is an attenuation placed after the volume control and directly before the conversion to PWM. Post-scale can also be used to limit the maximum modulation index and therefore the peak current. Setting 1, in the PSL register, causes the value stored in Channel 1 post-scale to be used for all three internal channels. 7.5.5 Biquad coefficient link Table 33. Bit 4 Biquad coefficient link R/W R/W RST 0 Name Description 0: each channel uses coefficient values 1: each channel uses channel 1 coefficient values BQL For ease of use, all channels can use the biquad coefficients loaded into the channel 1 coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to be performed once. 7.5.6 Dynamic range compression/anti-clipping bit Table 34. Bit 5 Dynamic range compression/anti-clipping bit R/W R/W RST 0 Name Description 0: limiters act in anti-clipping mode 1: limiters act in dynamic range compression mode DRC Both limiters can be used in one of two ways: anti-clipping or dynamic range compression. When used in anti-clipping mode the limiter threshold values are constant and dependent on the limiter settings. In dynamic range compression mode the limiter threshold values vary with the volume settings allowing a nighttime listening mode that provides a reduction in the dynamic range regardless of the volume level. 7.5.7 Zero-detect mute enable Table 35. Bit 6 Zero-detect mute enable R/W R/W RST 1 Name ZDE Description Setting of 1 enables the automatic zero-detect mute Setting the ZDE bit enables the zero-detect automatic mute. When ZDE=1, the zero-detect circuit looks at the input data to each processing channel after the channel-mapping block. If any channel receives 2048 consecutive zero value samples (regardless of fs) then that individual channel is muted if this function is enabled. 42/71 STA323W 7.6 7.6.1 Register descriptions Configuration register E (address 0x04) D7 D6 D5 D4 D3 D2 D1 D0 SVE ZCE RES PWMS AME RES MPC MPCV 0 0 0 0 0 0 0 0 Max power correction variable Table 36. Bit 0 Max power correction variable R/W R/W RST Name 0 Description 0: use standard MPC coefficient 1: use MPCC bits for MPC coefficient MPCV By enabling MPC and setting MPCV = 1, the max power correction becomes variable. By adjusting the MPCC registers (address 0x27-0x28) it is possible to adjust the THD at maximum unclipped power to a lower value for a particular application. 7.6.2 Max power correction Table 37. Max power correction Bit 7 R/W RST R/W Name 1 MPC Description 0: MPC disabled 1: MPC enabled Setting the MPC bit corrects the power device at high power. This mode lowers the THD+N of the full DDX® system at, and slightly below, maximum power output. 7.6.3 AM mode enable Table 38. Bit 3 AM mode enable R/W R/W RST 0 Name AME Description 0: normal DDX® operation 1: AM reduction mode DDX® operation The STA323W features a DDX® processing mode that minimizes the amount of noise generated in the frequency range of AM radio. This mode is intended for use when DDX® is operating in a device with an active AM tuner. The SNR of the DDX® processing is reduced to ~83 dB in this mode, which is still greater than the SNR of AM radio. 43/71 Register descriptions 7.6.4 STA323W PWM speed mode Table 39. Bit 4 PWM speed mode R/W R/W Table 40. RST Name 0 Description PWMS Normal or odd PWM output speed selections PWMS (1...0) 7.6.5 PWM output speed 0 Normal speed (384kHz) all channels 1 Odd speed (341.3kHz) all channels Zero-crossing volume enable Table 41. Bit 6 Zero-crossing volume enable R/W R/W RST 1 Name ZCE Description 1: volume adjustments will only occur at digital zerocrossings 0: volume adjustments will occur immediately The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-crossings no clicks are audible. 7.6.6 Soft volume update enable Table 42. Bit 7 Soft volume update enable R/W R/W RST 1 Name SVE Description 1: volume adjustments will use soft volume 0: volume adjustments will occur immediately The STA323W includes a soft volume algorithm that steps through the intermediate volume values at a predetermined rate when a volume change occurs. By setting SVE=0 this can be bypassed and volume changes will jump from the old to the new value directly. This feature is available only if individual channel volume bypass bit is set to 0. 44/71 STA323W 7.7 7.7.1 Register descriptions Configuration register F (address 0x05) D7 D6 D5 D4 D3 D2 D1 D0 EAPD PWDN ECLE RES BCLE IDE OCFG1 OCFG0 0 1 0 1 1 1 1 0 Output configuration selection Table 43. Bit 1…0 Output configuration selection R/W R/W Table 44. RST Name OCFG (1…0) 00 Description 00 – 2-channel (full-bridge) power, 1-channel DDX is default Output configuration selections OCFG (1...0) Output power configuration 00 2 channel (full-bridge) power, 1 channel DDX: 1A/1B ◊ 1A/1B 2A/2B ◊ 2A/2B 01 2(half-bridge).1(full-bridge) on-board power: 1A ◊ 1A Binary 2A ◊ 1B Binary 3A/3B ◊ 2A/2B Binary 10 Reserved 11 1 channel mono-parallel: 3A ◊ 1A/1B 3B ◊ 2A/2B Table 45. Bit 2 Invalid input detect mute enable R/W R/W RST 1 Name IDE Description 0: disabled 1: enabled Setting the IDE bit enables this function, which looks at the input I2S data and clocking and automatically mutes all outputs if the signals are invalid. Table 46. Bit 5 Binary clock loss detection enable R/W R/W RST 1 Name BCLE Description 0: disabled 1: enabled Detects loss of input MCLK in binary mode and outputs 50% duty cycle to prevent audible noise when input clocking is lost. 45/71 Register descriptions STA323W Table 47. Bit 7 Auto-EAPD on clock loss enable R/W RST R/W 0 Name ECLE Description 0: disabled 1: enabled When ECLE is active, it issues a power device power down signal (EAPD) on clock loss detection. Table 48. Bit 7 External amplifier power down R/W RST R/W 0 Name EAPD Description 0: external power stage power down active 1: normal operation EAPD is used to actively power down a connected DDX® power device. This register has to be written to 1 at start-up to enable the DDX® power device for normal operation. 7.8 Volume control 7.8.1 Master controls Master mute register (address 0x06) D7 D6 D5 D4 D3 D2 D1 D0 MMUTE 0 Master volume register (Address 0x07) D7 D6 D5 D4 D3 D2 D1 D0 MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0 1 1 1 1 1 1 1 1 Note: The value of volume derived from MVOL is dependent on the AMV Auto Mode Volume settings. 7.8.2 Channel controls Channel 1 volume (address 0x08) 46/71 D7 D6 D5 D4 D3 D2 D1 D0 C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0 0 1 1 0 0 0 0 0 STA323W Register descriptions Channel 2 volume (address 0x09) D7 D6 D5 D4 D3 D2 D1 D0 C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0 0 1 1 0 0 0 0 0 Channel 3 volume (address 0x0A) 7.8.3 D7 D6 D5 D4 D3 D2 D1 D0 C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0 0 1 1 0 0 0 0 0 Volume description The volume structure of the STA323W consists of individual volume registers for each of the three channels and a master volume register, and individual channel volume trim registers. The channel volume settings are normally used to set the maximum allowable digital gain and to hard-set gain differences between certain channels. These values are normally set at the initialization of the IC and not changed. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB to -80 dB. The master volume control is normally mapped to the master volume of the system. The values of these two settings are summed to find the actual gain or volume value for any given channel. When set to 1, the Master Mute will mute all channels, whereas the individual channel mutes (CxM) will mute only that channel. Both the Master Mute and the Channel Mutes provide a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (~96 kHz). A “hard mute” can be obtained by setting a value of all 1’s (FFh) in any channel volume register or the master volume register. When volume offsets are provided, via the master volume register, any channel whose total volume is less than –100dB is muted. All changes in volume take place at zero-crossings when ZCE = 1 (configuration register E) on a per channel basis as this creates the smoothest possible volume transitions. When ZCE=0, volume updates occur immediately. The STA323W also features a soft-volume update function. When SVE = 1 (in configuration register E) the volume ramps between intermediate values when the value is updated, This feature can be disabled by setting SVE = 0. Each channel also contains an individual channel volume bypass. If a particular channel has volume bypassed via the CxVBP = 1 register then only the channel volume setting for that particular channel affects the volume setting, the master volume setting does not affect that channel. Also, master soft-mute does not affect the channel if CxVBP = 1. Each channel also contains a channel mute. If CxM = 1 a soft mute is performed on that channel. 47/71 Register descriptions Table 49. STA323W Master volume offset as a function of MV (7..0) MV (7..0) Volume offset from channel value 00000000 (00h) 0dB 00000001 (01h) -0.5dB 00000010 (02h) -1dB … … 01001100 (4Ch) -38dB … … 11111110 (FEh) -127dB 11111111 (FFh) Hard Master Mute Table 50. Channel volume as a function of CxV (7..0) CxV (7..0) volume 00000000 (0x00) +48dB 00000001 (0x01) +47.5dB 00000010 (0x02) +47dB … … 01100001 (0x5F) +0.5dB 01100000 (0x60) 0dB 01011111 (0x61) -0.5dB … … 11111110 (0xFE) -79.5 dB 11111111 (0xFF) Hard channel mute 7.9 Automode registers 7.9.1 Register – automodes EQ, volume, GC (address 0x0B) D7 D5 D4 D3 D2 D1 D0 AMPS AMGC1 AMGC0 AMV1 AMV0 AMEQ1 AMEQ0 1 0 0 0 0 0 0 Table 51. D6 Automode EQ AMEQ (1,0) 48/71 Mode (Biquad 1-4) 00 User Programmable 01 Preset EQ – PEQ bits 10 Auto Volume Controlled Loudness Curve 11 Not used STA323W Register descriptions Setting AMEQ to any value, other than 00, enables automode EQ. When set, biquads 1-4 are not user programmable. Any coefficient settings for these biquads is ignored. Also when automode EQ is used the pre-scale value for channels 1 and 2 becomes hard-set to –18 dB. Table 52. Automode volume AMV (1,0) Mode (MVOL) 00 MVOL 0.5dB 256 steps (standard) 01 MVOL auto curve 30 steps 10 MVOL auto curve 40 steps 11 MVOL auto curve 50 steps Table 53. Auto mode gain compression/limiters AMGC (1...0) Mode 00 User programmable GC 01 AC no clipping 10 AC limited clipping (10%) 11 DRC night time listening mode Table 54. Bit AMPS – automode auto pre scale R/W 0 RST R/W 0 Name Description Auto Mode Pre-Scale 0 – -18 dB used for pre-scale when AMEQ /= 00 1 – User defined pre-scale when AMEQ /= 00 AMPS Register – automode AM/pre-Scale/bass management scale (address 0x0C) D7 D6 D5 D4 D3 D2 D1 D0 XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME 0 0 0 0 0 0 0 0 Table 55. Bit 0 Automode AM switching enable R/W RST R/W 3…1 R/W Table 56. Name Description 0 AMAME 0: switching frequency determined by PWMS setting 1: switching frequency determined by AMAM settings 000 AMAM (2…0) Default: 000 Auto mode AM switching frequency selection AMAM (2..0) 48 kHz/96 kHz input Fs 44.1 kHz/88.2 kHz input Fs 000 0.535 MHz – 0.720 MHz 0.535 MHz – 0.670 MHz 001 0.721 MHz – 0.900 MHz 0.671 MHz – 0.800 MHz 010 0.901 MHz – 1.100 MHz 0.801 MHz – 1.000 MHz 011 1.101 MHz – 1.300 MHz 1.001 MHz – 1.180 MHz 49/71 Register descriptions STA323W Table 56. Auto mode AM switching frequency selection (continued) AMAM (2..0) 48 kHz/96 kHz input Fs 44.1 kHz/88.2 kHz input Fs 100 1.301 MHz – 1.480 MHz 1.181 MHz – 1.340 MHz 101 1.481 MHz – 1.600 MHz 1.341 MHz – 1.500 MHz 110 1.601 MHz – 1.700 MHz 1.501 MHz – 1.700 MHz When DDX® is used with an AM radio tuner, it is recommended to use the AMAM bits to automatically adjust the output PWM switching rate so that it depends on the specific radio frequency that the tuner is receiving. The values used in AMAM are also dependent upon the sample rate that is determined by the ADC used. Table 57. Bit R/W 7…4 R/W Table 58. 50/71 Automode crossover setting RST 0 Name XO (3…0) Description 000: user defined crossover coefficients are used Otherwise: preset coefficients are used for the required crossover setting Crossover frequency selection XO (2..0) Bass management - crossover frequency 0000 User 0001 80 Hz 0010 100 Hz 0011 120 Hz 0100 140 Hz 0101 160 Hz 0110 180 Hz 0111 200 Hz 1000 220 Hz 1001 240 Hz 1010 260 Hz 1011 280 Hz 1100 300 Hz 1101 320 Hz 1110 340 Hz 1111 360 Hz STA323W 7.9.2 Register descriptions Register - preset EQ settings (address 0x0D) D7 D6 Table 59. D5 D4 D3 D2 D1 D0 PEQ4 PEQ3 PEQ2 PEQ1 PEQ0 0 0 0 0 0 Preset EQ selection PEQ (3..0) Setting 00000 Flat 00001 Rock 00010 Soft Rock 00011 Jazz 00100 Classical 00101 Dance 00110 Pop 00111 Soft 01000 Hard 01001 Party 01010 Vocal 01011 Hip-Hop 01100 Dialog 01101 Bass-boost #1 01110 Bass-boost #2 01111 Bass-boost #3 10000 Loudness 1 (least boost) 10001 Loudness 2 10010 Loudness 3 10011 Loudness 4 10100 Loudness 5 10101 Loudness 6 10110 Loudness 7 10111 Loudness 8 11000 Loudness 9 11001 Loudness 10 11010 Loudness 11 11011 Loudness 12 11100 Loudness 13 51/71 Register descriptions Table 59. STA323W Preset EQ selection (continued) PEQ (3..0) Setting 11101 Loudness 14 11110 Loudness 15 11111 Loudness 16 (most boost) 7.10 Channel configuration registers 7.10.1 Channel 1 configuration (address 0x0E) 7.10.2 7.10.3 D7 D6 D5 D4 D3 D2 D1 D0 C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB 0 0 0 0 0 0 0 0 Channel 2 configuration (address 0x0F) D7 D6 D5 D4 D3 D2 D1 D0 C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB 0 0 0 0 0 0 0 0 D1 D0 Channel 3 configuration (address 0x10) D7 D6 D5 D4 D3 D2 C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP 0 0 0 0 0 0 EQ control can be bypassed on a per channel basis. If EQ control is bypassed on a given channel the prescale and all 9 filters (high-pass, biquads, de-emphasis, bass management cross-over, bass, treble in any combination) are bypassed for that channel. CxEQBP: ● 0: perform EQ on channel X (normal operation) ● 1: bypass EQ on channel X Tone control (bass and treble) can be bypassed on a per channel basis. If tone control is bypassed on a given channel the two filters that tone control utilizes are bypassed. CxTCB: ● 0: perform tone control on channel x – (default operation) ● 1: bypass tone control on channel x Each channel can be configured to output either the patented DDX PWM data or standard binary PWM encoded data. By setting the CxBO bit to ‘1’, each channel can be individually set to binary operation mode. 52/71 STA323W Register descriptions It is also possible to map each channel independently to either of the two limiters available within the STA323W. In the default mode the channels are not mapped to a limiter. Table 60. Channel Limiter Mapping Selection CxLS (1,0) Channel limiter mapping 00 Channel has limiting disabled 01 Channel is mapped to limiter #1 10 Channel is mapped to limiter #2 Each PWM output channel can receive data from any channel output of the volume block. Which channel a particular PWM output receives depends on the CxOM register bits for that channel. Table 61. 7.11 Channel PWM output mapping CxOM (1...0) PWM output from 00 Channel 1 01 Channel 2 10 Channel 3 11 Not used Tone control (address 0x11) D7 D6 D5 D4 D3 D2 D1 D0 TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 0 1 1 1 0 1 1 1 Table 62. Tone control boost/cut selection BTC (3...0)/TTC (3...0) Boost/cut 0000 -12 dB 0001 -12 dB … … 0111 -4 dB 0110 -2 dB 0111 0 dB 1000 +2 dB 1001 +4 dB … … 1101 +12 dB 1110 +12 dB 1111 +12 dB 53/71 Register descriptions STA323W 7.12 Dynamics control 7.12.1 Limiter 1 attack/release threshold (address 0x12) 7.12.2 7.12.3 7.12.4 7.12.5 D7 D6 D5 D4 D3 D2 D1 D0 L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0 1 1 0 1 0 1 0 Limiter 1 attack/release threshold (address 0x13) D7 D6 D5 D4 D3 D2 D1 D0 L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0 1 1 0 1 0 0 1 Limiter 2 attack/release rate (address 0x14) D7 D6 D5 D4 D3 D2 D1 D0 L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 0 1 1 0 1 0 1 0 Limiter 2 attack/release threshold (address 0x15) D7 D6 D5 D4 D3 D2 D1 D0 L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0 0 1 1 0 1 0 0 1 Dynamics control description The STA323W includes two independent limiter blocks. The purpose of the limiters is to automatically reduce the dynamic range of a recording to prevent the outputs from clipping in anti-clipping mode, or to actively reduce the dynamic range for a better listening environment (such as a night-time listening mode, which is often needed for DVDs.) The two modes are selected via the DRC bit in Configuration Register D, bit 5 address 0x03. Each channel can be mapped to Limiter1 or Limiter2, or not mapped. If a channel is not mapped, that channel will clip normally when 0 dB FS is exceeded. Each limiter will look at the present value of each channel that is mapped to it, select the maximum absolute value of all these channels, perform the limiting algorithm on that value, and then, if needed, adjust the gain of the mapped channels in unison. The limiter attack thresholds are determined by the LxAT registers. When the Attack Threshold has been exceeded, the limiter, when active, automatically starts reducing the gain. The rate at which the gain is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. A peak-detect algorithms used to control the gain reduction. 54/71 STA323W Register descriptions The release of limiter, when the gain is again increased, is dependent on an RMS-detect algorithm. The output of the volume limiter block is passed through an RMS filter. The output of this filter is compared with the release threshold, determined by the Release Threshold register. When the RMS filter output falls below the release threshold, the gain is increased at a rate dependent upon the release rate register. The gain can never be increased past its set value and therefore the release will only occur if the limiter has already reduced the gain. The release threshold value can be used to set what is effectively a minimum dynamic range. This is helpful as over-limiting can reduce the dynamic range to virtually zero and cause program material to sound “lifeless”. In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the attack threshold is set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is set relative to the maximum volume setting plus the attack threshold. Figure 50. Basic limiter and volume flow diagram Limiter RMS Gain/volume Input Gain Table 63. Attenuation Saturation Output Limiter attack rate selection LxA (3...0) Attack rate dB/ms 0000 3.1584 0001 2.7072 0010 2.2560 0011 1.8048 0100 1.3536 0101 0.9024 0110 0.4512 0111 0.2256 1000 0.1504 1001 0.1123 1010 0.0902 1011 0.0752 1100 0.0645 1101 0.0564 Fast 55/71 Register descriptions Table 63. Table 64. 7.12.6 Limiter attack rate selection LxA (3...0) Attack rate dB/ms 1110 0.0501 1111 0.0451 Slow Limiter release rate selection LxR (3...0) Release rate dB/ms 0000 0.5116 0001 0.1370 0010 0.0744 0011 0.0499 0100 0.0360 0101 0.0299 0110 0.0264 0111 0.0208 1000 0.0198 1001 0.0172 1010 0.0147 1011 0.0137 1100 0.0134 1101 0.0117 1110 0.0110 1111 0.0104 Fast Slow Anti-clipping mode Table 65. 56/71 STA323W Limiter attack - threshold selection (AC-mode) LxAT (3...0) AC (dB relative to FS) 0000 -12 0001 -10 0010 -8 0011 -6 0100 -4 0101 -2 0110 0 0111 +2 1000 +3 1001 +4 STA323W Register descriptions Table 65. . Table 66. 7.12.7 Limiter attack - threshold selection (AC-mode) (continued) LxAT (3...0) AC (dB relative to FS) 1010 +5 1011 +6 1100 +7 1101 +8 1110 +9 1111 +10 Limiter release threshold selection (AC-mode) LxRT (3...0) AC (dB relative to FS) 0000 -∞ 0001 -29dB 0010 -20dB 0011 -16dB 0100 -14dB 0101 -12dB 0110 -10dB 0111 -8dB 1000 -7dB 1001 -6dB 1010 -5dB 1011 -4dB 1100 -3dB 1101 -2dB 1110 -1dB 1111 -0dB Dynamic range compression mode Table 67. Limiter attack - threshold selection (DRC-mode) LxAT (3...0) DRC (dB relative to volume) 0000 -31 0001 -29 0010 -27 0011 -25 0100 -23 0101 -21 57/71 Register descriptions Table 67. .( Table 68. 58/71 STA323W Limiter attack - threshold selection (DRC-mode) (continued) LxAT (3...0) DRC (dB relative to volume) 0110 -19 0111 -17 1000 -16 1001 -15 1010 -14 1011 -13 1100 -12 1101 -10 1110 -7 1111 -4 Limiter release threshold selection (DRC-mode) LxRT (3...0) DRC (db relative to Volume + LxAT) 0000 -∞ 0001 -38 dB 0010 -36 dB 0011 -33 dB 0100 -31 dB 0101 -30 dB 0110 -28 dB 0111 -26 dB 1000 -24 dB 1001 -22 dB 1010 -20 dB 1011 -18 dB 1100 -15 dB 1101 -12 dB 1110 -9 dB 1111 -6 dB STA323W User-programmable settings 8 User-programmable settings 8.1 EQ - biquad equation The biquads use the equation that follows. This is shown in Figure 51. Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2] = b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2] where Y[n] represents the output and X[n] represents the input. Signed, fractional 28-bit multipliers are used, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF (0.9999998808). Coefficients stored in the user defined coefficient RAM are referenced in the following manner: ● CxHy0 = b1/2 ● CxHy1 = b2 ● CxHy2 = -a1/2 ● CxHy3 = -a2 ● CxHy4 = b0/2 The x represents the channel and the y the biquad number. For example C3H41 is the b0/2 coefficient in the fourth biquad for channel 3. Figure 51. Biquad filter b0/2 2 + Z -1 Z -1 b1/2 2 + 2 -a1/2 Z -1 Z -1 b2 8.2 + -a2 Pre-scale The pre-scale block, which precedes the first biquad, is used for attenuation when filters are designed that boost frequencies above 0 dBFS. The Pre-Scale block is a single 28-bit signed multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default, all pre-scale factors are set to 0x7FFFFF. 8.3 Post-scale The STA323W provides one additional multiplication after the last interpolation stage and before the distortion compensation on each channel. The post-scale block is a 24-bit signed fractional multiplier. The scale factor for this multiplier is loaded into RAM using the same I2C registers as the biquad coefficients and the mix. All channels can use the same settings as channel 1 by setting the post-scale link bit. 59/71 User-programmable settings 8.4 STA323W Mix/bass management The STA323W provides one post-EQ mixing block per channel. Each channel has two mixing coefficients, which are each 24-bit signed fractional multipliers, that correspond to the two channels of input to the mixing block. These coefficients are accessible via the User Controlled Coefficient RAM described below. The mix coefficients expressed as 24-bit signed, fractional numbers in the range +1.0 (8388607) to -1.0 (-8388608), are used to provide three channels of output from two channels of filtered input. Figure 52. Mix/bass management block diagram Channel #1 from EQ C1MX1 . Channel #2 from EQ High pass XO filter Channel #1 to GC/vol High pass XO filter Channel #2 to GC/vol Low pass XO filter Channel #3 to GC/vol C1MX2 C2MX1 . C2MX2 C3MX1 . C3MX2 User defined mix coefficients Crossover frequency determined by XO setting. User defined when XO = 000 After mixing, STA323W also permits the implementation of crossover filters on all channels corresponding to 2.1 bass management operation. Channels 1 and 2 use a 1st order, highpass filter and channel 3 uses a 2nd order low-pass filter corresponding to the setting of the XO bits of I2C register 0Ch. If XO = 000, user specified crossover filters are used. By default these coefficients correspond to pass-through. However, the user can write these coefficients in a similar way as the EQ biquads. When user-defined setting is selected, the user can only write 2nd order crossover filters. This output is then passed on to the Volume and Limiter block. 60/71 STA323W 8.5 User-programmable settings Calculating 24-bit signed fractional numbers from a dB value The pre-scale, mixing, and post-scale functions of the STA323W use 24-bit signed fractional multipliers to attenuate signals. These attenuations can also invert the phase and therefore range in value from -1 to +1. It is possible to calculate the coefficient to use for a given negative dB value (attenuation) using the equations following. ● non-inverting phase numbers 0 to +1: – ● coefficient = round(8388607 * 10 ^ (dB/20)) inverting phase numbers 0 to -1: – coefficient = 16777216 - round(8388607 * 10^(dB/20)) As can be seen by the preceding equations, the value for positive phase 0dB is 0x7FFFFF and the value for negative phase 0dB is 0x800000. 8.6 User defined coefficient RAM 8.6.1 Coefficient address register 1 (address 0x16) 8.6.2 8.6.3 8.6.4 D7 D6 D5 D4 D3 D2 D1 D0 CFA7 CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0 0 0 0 0 0 0 0 0 Coefficient b1data register bits 23...16 (address 0x17) D7 D6 D5 D4 D3 D2 D1 D0 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0 0 0 0 0 0 0 0 Coefficient b1data register bits 15...8 (address 0x18) D7 D6 D5 D4 D3 D2 D1 D0 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8 0 0 0 0 0 0 0 0 Coefficient b1data register bits 7...0 (address 0x19) D7 D6 D5 D4 D3 D2 D1 D0 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0 0 0 0 0 0 0 0 0 61/71 User-programmable settings 8.6.5 8.6.6 8.6.7 8.6.8 8.6.9 8.6.10 62/71 STA323W Coefficient b2 data register bits 23...16 (address 0x1A) D7 D6 D5 D4 D3 D2 D1 D0 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16 0 0 0 0 0 0 0 0 Coefficient b2 data register bits 15...8 (address 0x1B) D7 D6 D5 D4 D3 D2 D1 D0 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8 0 0 0 0 0 0 0 0 Coefficient b2 data register bits 7...0 (address 0x1C) D7 D6 D5 D4 D3 D2 D1 D0 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0 0 0 0 0 0 0 0 0 Coefficient a1 data register bits 23...16 (address 0x1D) D7 D6 D5 D4 D3 D2 D1 D0 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0 0 0 0 0 0 0 0 Coefficient a1 data register bits 15...8 (address 0x1E) D7 D6 D5 D4 D3 D2 D1 D0 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8 0 0 0 0 0 0 0 0 Coefficient a1 data register bits 7...0 (address 0x1F) D7 D6 D5 D4 D3 D2 D1 D0 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0 0 0 0 0 0 0 0 0 STA323W 8.6.11 8.6.12 8.6.13 8.6.14 8.6.15 8.6.16 User-programmable settings Coefficient a2 data register bits 23...16 (address 0x20) D7 D6 D5 D4 D3 D2 D1 D0 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16 0 0 0 0 0 0 0 0 Coefficient a2 data register bits 15...8 (address 0x21) D7 D6 D5 D4 D3 D2 D1 D0 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8 0 0 0 0 0 0 0 0 Coefficient a2 data register bits 7...0 (address 0x22) D7 D6 D5 D4 D3 D2 D1 D0 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0 0 0 0 0 0 0 0 0 Coefficient b0 data register bits 23...16 (address 0x23) D7 D6 D5 D4 D3 D2 D1 D0 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16 0 0 0 0 0 0 0 0 Coefficient b0 data register bits 15...8 (address 0x24) D7 D6 D5 D4 D3 D2 D1 D0 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8 0 0 0 0 0 0 0 0 Coefficient b0 data register bits 7...0 (address 0x25) D7 D6 D5 D4 D3 D2 D1 D0 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0 0 0 0 0 0 0 0 0 63/71 User-programmable settings 8.6.17 STA323W Coefficient write control register (address 0x26) D7 D6 D5 D4 D3 D2 D1 D0 RA R1 WA W1 0 0 0 0 Coefficients for EQ, Mix and Scaling are handled internally in the STA323W via RAM. Access to this RAM is available to the user via an I2C register interface. A collection of I2C registers are dedicated to this function. The first register contains base address of the coefficient: five sets of three registers store the values of the 24-bit coefficients to be written or that were read, and one contains bits used to control the reading or writing of the coefficients to RAM. The following are instructions for reading and writing coefficients. 8.7 8.8 Reading a coefficient from RAM 1. Write 8-bits of address to I2C register 0x16. 2. Write ‘1’ to bit R1 (D2) of I2C register 0x26. 3. Read top 8-bits of coefficient in I2C address 0x17. 4. Read middle 8-bits of coefficient in I2C address 0x18. 5. Read bottom 8-bits of coefficient in I2C address 0x19. Reading a set of coefficients from RAM 1. Write 8-bits of address to I2C register 0x16. 2. Write ‘1’ to bit RA (D3) of I2C register 0x26. 3. Read top 8-bits of coefficient in I2C address 0x17. 4. Read middle 8-bits of coefficient in I2C address 0x18. 5. Read bottom 8-bits of coefficient in I2C address 0x19. 6. Read top 8-bits of coefficient b2 in I2C address 0x1A. 7. Read middle 8-bits of coefficient b2 in I2C address 0x1B. 8. Read bottom 8-bits of coefficient b2 in I2C address 0x1C. 9. Read top 8-bits of coefficient a1 in I2C address 0x1D. 10. Read middle 8-bits of coefficient a1 in I2C address 0x1E. 11. Read bottom 8-bits of coefficient a1 in I2C address 0x1F. 12. Read top 8-bits of coefficient a2 in I2C address 0x20. 13. Read middle 8-bits of coefficient a2 in I2C address 0x21. 14. Read bottom 8-bits of coefficient a2 in I2C address 0x22. 15. Read top 8-bits of coefficient b0 in I2C address 0x23. 16. Read middle 8-bits of coefficient b0 in I2C address 0x24. 17. Read bottom 8-bits of coefficient b0 in I2C address 0x25. 64/71 STA323W 8.9 8.10 User-programmable settings Writing a single coefficient to RAM 1. Write 8-bits of address to I2C register 0x16. 2. Write top 8-bits of coefficient in I2C address 0x17. 3. Write middle 8-bits of coefficient in I2C address 0x18. 4. Write bottom 8-bits of coefficient in I2C address 0x19. 5. Write 1 to W1 bit in I2C address 0x26. Writing a set of coefficients to RAM 1. Write 8-bits of starting address to I2C register 0x16. 2. Write top 8-bits of coefficient b1 in I2C address 0x17. 3. Write middle 8-bits of coefficient b1 in I2C address 0x18. 4. Write bottom 8-bits of coefficient b1 in I2C address 0x19. 5. Write top 8-bits of coefficient b2 in I2C address 0x1A. 6. Write middle 8-bits of coefficient b2 in I2C address 0x1B. 7. Write bottom 8-bits of coefficient b2 in I2C address 0x1C. 8. Write top 8-bits of coefficient a1 in I2C address 0x1D. 9. Write middle 8-bits of coefficient a1 in I2C address 0x1E. 10. Write bottom 8-bits of coefficient a1 in I2C address 0x1F. 11. Write top 8-bits of coefficient a2 in I2C address 0x20. 12. Write middle 8-bits of coefficient a2 in I2C address 0x21. 13. Write bottom 8-bits of coefficient a2 in I2C address 0x22. 14. Write top 8-bits of coefficient b0 in I2C address 0x23. 15. Write middle 8-bits of coefficient b0 in I2C address 0x24. 16. Write bottom 8-bits of coefficient b0 in I2C address 0x25. 17. Write 1 to WA bit in I2C address 0x26. The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side-effects. When using this technique, the 8-bit address specifies the address of the biquad b1 coefficient (for example 0, 5, 10, 15, …, 45 decimal), and the STA323W generates the RAM addresses as an offsets from this base value to write the complete set of coefficient data. Table 69. RAM block for biquads, mixing, and scaling Index (decimal) Index (hex) Coefficient Default 0 0x00 C1H10 (b1/2) 0x000000 1 0x01 C1H11 (b2) 0x000000 2 0x02 C1H12 (a1/2) 0x000000 3 0x03 C1H13 (a2) 0x000000 4 0x04 C1H14 (b0/2) 0x400000 5 0x05 C1H20 0x000000 Channel 1 – biquad 1 Channel 1 – biquad 2 65/71 User-programmable settings Table 69. STA323W RAM block for biquads, mixing, and scaling Index (decimal) Index (hex) ... ... 19 0x13 20 0x14 Coefficient Default ... ... ... Channel 1 – biquad 4 C1H44 0x400000 C2H10 0x000000 C2H11 0x000000 Channel 2 – biquad 1 66/71 21 0x15 … … … … … 39 0x27 Channel 2 – biquad 4 C2H44 0x400000 40 0x28 C12H0 (b1/2) 0x000000 41 0x29 C12H1 (b2) 0x000000 42 0x2A C12H2 (a1/2) 0x000000 43 0x2B C12H3 (a2) 0x000000 44 0x2C C12H4 (b0/2) 0x400000 45 0x2D C12L0 (b1/2) 0x000000 46 0x2E C12L1 (b2) 0x000000 47 0x2F C12L2 (a1/2) 0x000000 48 0x30 C12L3 (a2) 0x000000 49 0x31 C12L4 (b0/2) 0x400000 50 0x32 Channel 1 – post scale C1PreS 0x7FFFFF 51 0x33 Channel 2 – post scale C2PreS 0x7FFFFF 52 0x34 Channel 1 – post scale C1PstS 0x7FFFFF 53 0x35 Channel 2 – post scale C2PstS 0x7FFFFF 54 0x36 Channel 3 – post scale C3PstS 0x7FFFFFh 55 0x37 Thermal warning – post scale TWPstS 0x5A9DF7 56 0x38 Channel 1 – mix 1 C1MX1 0x7FFFFF 57 0x39 Channel 1 – mix 2 C1MX2 0x000000 58 0x3A Channel 2 – mix 1 C2MX1 0x000000 59 0x3B Channel 2 – mix 2 C2MX2 0x7FFFFF 60 0x3C Channel 3 – mix 1 C3MX1 0x400000 61 0x3D Channel 3 – mix 2 C3MX2 0x400000 62 0x3E Unused 63 0x3F Unused High-pass 2nd order filter For XO = 000 Low-Pass 2nd order filter For XO = 000 STA323W 8.11 User-programmable settings Variable max power correction (address 0x27-0x28) The MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1. 8.12 D7 D6 D5 D4 D3 D2 D1 D0 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8 0 0 1 0 1 1 0 1 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0 1 1 0 0 0 0 0 0 Fault detect recovery (address 0x2B - 0x2C) FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is active, the TRISTATE output immediately goes low and is held low for the time period specified by this constant. A constant value of 0x0001 in this register is ~.083 ms. The default value of 0x000C specifies ~.1 mSec. 8.13 D7 D6 D5 D4 D3 D2 D1 D0 FRDC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0 0 0 0 0 1 1 0 0 D2 D1 D0 PLULL FAULT TWARN 0 1 1 Status indicator register (address 0x2D) D7 D6 D5 D4 D3 STATUS register bits serve the purpose of communicating the detected error or warning condition to the user. This is a read-only register and writing to this register would not be of any consequence. 67/71 User-programmable settings 8.13.1 STA323W Thermal warning indicator Table 70. Thermal warning indicator Bit 0 R/W RST R 1 Name RWRAN Description 0: thermal warning detected 1: normal operation (no thermal warning) If the power stage thermal operating conditions are exceeded, the thermal warning indicator transmits a signal to the digital logic block to initiate a corrective procedure. This register bit is set to '0' to indicate a thermal warning and it reverts back to its default state as soon as the cause of the thermal warning has been corrected. 8.13.2 Fault detect indicator Table 71. Fault detect indicator Bit 1 R/W RST R 1 Name FAULT Description 0: fault issued from the power stage 1: normal operation (no fault) As soon as the power stage issues a Fault error signal, thereby initiating the Fault recovery procedure described in Section 8.12, this register bit is set to '0' to indicate the error to the user. As soon as the fault condition (over-current or thermal) is corrected, this bit is reset back to its default state. 8.13.3 PLL unlock indicator Table 72. PLL unlock indicator Bit 7 R/W R RST 0 Name PLLUL Description 0: normal operation (PLL is in a locked state) 1: PLL unlock is detected (due to probable clock loss) Under normal conditions (with the correct clock) the PLL is locked into an internal clocking frequency. However, if the clock is insufficient or if it is abruptly lost, the PLL lock state is lost and this information is relayed to the user via setting the PLLUL bit of the Status register to '1'. As soon as the PLL reverts back to a locked state, this bit is set to '0'. 68/71 STA323W User-programmable settings Figure 53. PowerSO-36 slug down mechanical data and package dimensions DIM. mm MIN. TYP. A a1 inch MAX. MIN. TYP. 3.60 0.10 0.30 a2 MAX. 0.1417 0.0039 0.0118 3.30 0.1299 a3 0 0.10 b 0.22 0.38 0.0087 0.0150 c 0.23 0.32 0.0091 0.0126 D 15.80 16.00 0.6220 0.6299 D1 9.40 9.80 0.3701 0.3858 E 13.90 14.5 0.5472 0.5709 E1 10.90 11.10 0.4291 0.4370 2.90 0.1142 E2 E3 5.80 e 0.0039 0.2283 0.65 e3 0 H 15.50 h 0.8 0.2441 0.0256 11.05 G L 6.20 OUTLINE AND MECHANICAL DATA 0.4350 0.10 0.0039 15.90 0.6102 0.6260 1.10 0.0433 1.10 0.0315 N 10˚ (max) s 8˚ (max) 0.0433 PowerSO-36 Note: “D and E1” do not include mold flash or protusions. - Mold flash or protusions shall not exceed 0.15mm (0.006”) - Critical dimensions are "a3", "E" and "G". 0096119 C In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 69/71 Revision history 9 STA323W Revision history Table 73. Date 70/71 Document revision history Revision Changes 15-Nov-2006 5.0 Update into latest template. 08-Jun-2006 4.0 Added new chapters. Updated 4: Electrical characteristics curves. Modified the minimum value of Vcc paramter. 02-Feb-2006 3.0 Modified the ordering part numbers. 02-Jan-2006 2.0 Modified page 12/41: Configuration Register A (Address 00h) 01-Jul-2005 1.0 Initial release STA323W Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 71/71