STMICROELECTRONICS TSC102

TSC102
High-side current sense amplifier plus signal conditioning amplifier
Features
■
Independent supply and input common-mode
voltages
■
Wide common-mode operating range:
2.8 to 30 V
■
Wide common-mode surviving range:
-16 to 60 V (reversed battery and load-dump
conditions)
■
■
Low current consumption: ICC max = 420 µA
Output amplifier for tailor-made signal
conditioning
■
-40 to 125° C operating temperature range
■
4 kV ESD protection
P
TSSOP8
(Plastic package)
D
SO-8
(Plastic package)
Applications
■
Battery chargers
■
Automotive current monitoring
■
Notebook computers
■
DC motor control
■
Photovoltaic systems
■
Precision current sources
■
Uninterruptible power supplies
■
High-end power supplies
8 Vp
Gnd 2
7 A3
A1 3
6 Vcc
A2 4
5 Out
Pin connections
(top view)
Description
The TSC102 measures a small differential voltage
on a high-side shunt resistor and translates it into
a ground-referenced output voltage.
The device’s wide input common-mode voltage
range, low quiescent current and tiny TSSOP8
packaging enable use in a wide variety of
applications (also available in SO-8 package).
The input common-mode and power supply
voltages are independent. The common-mode
voltage can range from 2.8 to 30 V in operating
conditions.
March 2011
Vm 1
The TSC102 is rugged against abnormal
conditions on the input pins: Vp and Vm can
withstand up to 60 V in case of voltage spikes, as
little as -16 V in case of reversed battery, and up
to 4 kV in case of electrostatic discharge.
In addition to the current sensing amplifier, the
TSC102 offers a fully accessible amplifier for
output signal conditioning.
The device’s overall current consumption is lower
than 420 µA.
Doc ID 16754 Rev 2
1/24
www.st.com
24
Contents
TSC102
Contents
1
Application schematic and pin description . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Electrical characteristics curves: current sense amplifier . . . . . . . . . . 8
5
Electrical characteristics curves: signal conditioning amplifier . . . . 11
6
Parameter definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1
Common-mode rejection ratio (CMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2
Supply voltage rejection ratio (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3
Gain (Av) and input offset voltage (Vos) . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4
Output voltage drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5
Output voltage accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.2
TSSOP-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
Doc ID 16754 Rev 2
TSC102
1
Application schematic and pin description
Application schematic and pin description
The TSC102 high-side current sense amplifier features a 2.8 to 30 V input common-mode
range that is independent of the supply voltage. The main advantage of this feature is that it
allows high-side current sensing at voltages much greater than the supply voltage (VCC).
Figure 1.
Application schematics
Signal
conditioning
amplifier
Current
sense
amplifier
5V
TSC102
Vcc
6
Vp
Iload
Out
8
Vsense
5
Av=20 V/V
Rsense Vm
1
Gnd
2
A1
3
A2
4
7
A3
Vout
AM04508
Table 1 describes the function of each pin. Their position is shown in the illustration on the
cover page and in Figure 1 above.
A1
Table 1.
Pin description
Symbol
Type
Function
Out
Analog output
Out voltage is proportional to the magnitude of the sense voltage
Vp-Vm.
Gnd
Power supply
Ground line.
VCC
Power supply
Positive power supply line.
Vp
Analog input
Connection for the external sense resistor. The measured current
enters the shunt on the Vp side.
Vm
Analog input
Connection for the external sense resistor. The measured current
exits the shunt on the Vm side.
A1
Analog input
Connection to current sensing amplifier output.
A2
Analog input
Connection to signal conditioning amplifier non-inverting input.
A3
Analog input
Connection to signal conditioning amplifier inverting input.
Doc ID 16754 Rev 2
3/24
Absolute maximum ratings and operating conditions
2
TSC102
Absolute maximum ratings and operating conditions
Table 2.
Absolute maximum ratings
Symbol
Vid
Vi
Parameter
Value
Unit
±20
V
-16 to 60
V
-0.3 to 7
V
-55 to 150
°C
Maximum junction temperature
150
°C
TSSOP8 thermal resistance junction to ambient
120
°C/W
SO-8 thermal resistance junction to ambient
125
°C/W
4
kV
2.5
kV
200
V
1.5
kV
Input pins differential voltage (Vp-Vm)
(1)
Current sensing input pin voltages (Vp and Vm)
(1)
V1
Voltage for pins A1, A2, A3, Out, Vcc
Tstg
Storage temperature
Tj
Rthja
HBM: human body model for Vm and Vp pins(2)
HBM: human body model
ESD
MM: machine
(3)
model(4)
(5)
CDM: charged device model
1. These voltage values are measured with respect to the GND pin.
2. Human body model for Vm and Vp: a 100 pF capacitor is charged to the specified voltage, then discharged
through a 1.5 kΩ resistor between the Vp or Vm pin and Gnd while the other pins are floating.
3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
5. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to ground.
Table 3.
Symbol
4/24
Operating conditions
Parameter
Value
Unit
VCC
DC supply voltage from Tmin to Tmax
3.5 to 5.5
V
Toper
Operational temperature range (Tmin to Tmax)
-40 to 125
°C
Vicm
Common mode voltage range (Vm pin voltage)
2.8 to 30
V
Doc ID 16754 Rev 2
TSC102
3
Electrical characteristics
Electrical characteristics
Unless otherwise specified, the electrical characteristics given in the following tables have
been measured under the following test conditions.
Table 4.
Symbol
●
Tamb = 25° C, VCC = 5 V, Vsense = Vp-Vm = 50 mV, Vm = 12 V.
●
No load on Out pin.
●
Signal conditioning amplifier used as a buffer (pin A3 connected to pin Out and pin A1
connected to pin A2).
Supply
Parameter
Test conditions
Min.
Typ.
Max.
Unit
ICC
Total supply current
Vsense = 0 V, pin A1 open, pin
A2 shorted to Gnd
Tmin < Tamb < Tmax
240
420
µA
ICC1
Total supply current
Vsense = 50 mV, pin A1
connected to pin A2
Tmin < Tamb < Tmax
420
700
µA
Min.
Typ.
Max.
Unit
90
100
dB
2.8 V< Vm < 30 V
1 kHz sine wave
75
dB
2.8 V < Vm < 30 V
10 kHz sine wave
60
dB
90
dB
Table 5.
Symbol
DC
CMR1
Current sensing amplifier input stage
Parameter
DC common mode rejection
Variation of Va1 versus Vicm
referred to input(1)
AC common mode rejection
AC CMR1 Variation of Va1 versus Vicm
referred to input (peak-to-peak
voltage variation)
Test conditions
2.8 V < Vm < 30 V
-40° C < Tamb < 150° C
Supply voltage rejection
Variation of Va1 versus VCC(2)
3.5 V< VCC < 5.5 V
-40° C < Tamb < 125° C
Input offset voltage(3)
Tamb = 25° C
-40° C < Tamb < 125° C
Input offset drift versus T
-40° C < Tamb < 125° C
Ilk
Input leakage current
VCC = 0 V
Tmin < Tamb < Tmax
Iib
Input bias current
Vsense = 0 V
Tmin < Tamb < Tmax
SVR1
Vos
dVos/dT
85
±3
5
±1.5
±2.3
mV
±8
µV/°C
1
µA
7
µA
1. See Chapter 6: Parameter definitions on page 12 for the definition of CMR.
2. See Chapter 6 for the definition of SVR.
3. See Chapter 6 for the definition of Vos.
Doc ID 16754 Rev 2
5/24
Electrical characteristics
Table 6.
Current sensing amplifier output stage
Symbol
Av
TSC102
Parameter
Test conditions
Min.
Gain
(variation of Va1 versus Vsense)
Typ.
Max.
20
Unit
V/V
Voh1
A1 node high-level saturation
voltage
Voh1 = Vcc-Va1
Vsense = 1 V
Ia1 = 1 mA
-40° C< Tamb < 125° C
85
185
mV
Vol1
A1 node low-level saturation
voltage
Vsense =-1 V
Ia1 = 1 mA
-40° C< Tamb < 125° C
75
165
mV
Isc1
Short-circuit current
A1 connected to VCC or Gnd
T(1)
ΔVa1/ΔT
Output voltage drift versus
ΔVa1/ΔIa1
Output stage load regulation
-5 mA < Ia1< +5 mA
Ia1 sink or source current
ΔVa1
Total output voltage accuracy(2)
ΔVa1
10
30
Tmin < Tamb < Tmax
mA
±400
ppm/°C
±2
mV/mA
Vsense = 50 mV
Tamb = 25° C
Tmin < Tamb < Tmax
±2.5
±4
%
Total output voltage accuracy(2)
Vsense = 100 mV
Tamb = 25° C
Tmin < Tamb < Tmax
±2.5
±4
%
ΔVa1
Total output voltage accuracy(2)
Vsense = 20 mV
Tamb = 25° C
Tmin < Tamb < Tmax
±8
±10
%
ΔVa1
Total output voltage accuracy(2)
Vsense = 10 mV
Tamb = 25° C
Tmin < Tamb < Tmax
±13
±16
%
0.4
1. See Chapter 6: Parameter definitions on page 12 for the definition of output voltage drift versus temperature.
2. Output voltage accuracy is the difference with the expected theoretical output voltage Va1-th = Av * Vsense. See Chapter 6 for
a more detailed definition.
Table 7.
Current sensing amplifier frequency response
Symbol
Parameter
Test conditions
Va1 settling to 1% final value
Vsense = 10 mV to 100 mV,
Cload = 47 pF
SR
Slew rate
Vsense = 10 mV to 100 mV
BW
3 dB bandwidth
Cload = 47 pF
ts
Table 8.
Symbol
eN
6/24
Min.
0.2
Typ.
Max.
Unit
7
µs
0.4
V/µs
800
kHz
Current sensing amplifier noise
Parameter
Equivalent input noise voltage
Test conditions
f = 1 kHz
Doc ID 16754 Rev 2
Min.
Typ.
50
Max.
Unit
nV/√ Hz
TSC102
Table 9.
Electrical characteristics
Signal conditioning amplifier
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Vicm
Common mode voltage range
Tmin < Tamb < Tmax
VIO
Input offset voltage
Va2 = 1 V
Tamb = 25° C
-40° C < Tamb < 150° C
ΔVIO
Input offset voltage drift
Tmin < Tamb < Tmax
5
µV/°C
Input bias current
Va2 = Va3 = VCC/2
10
pA
Voh2
Output high-level saturation
voltage (Voh2 = VCC-Vout)
Va2 = 1 V Va3 = 0 V Iout = 1 mA
-40° C< Tamb < 125° C
85
185
mV
Vol2
Va2 = 0 V Va3 = 1 V
Output low-level saturation voltage Iout = 1 mA
-40° C< Tamb < 125° C
75
165
mV
Isc2
Short-circuit current
Iib
ΔVout/ΔIout Output stage load regulation
Out connected to VCC or Gnd
DC common mode rejection
Variation of VIO versus Vicm
Tmin < Tamb < Tmax
0 V<Va2<3 V
0 V<Va2<5 V
SVR2
Supply voltage rejection
Variation of VIO versus VCC
3.5 V<VCC<5.5 V
Va2 = 1 V
-40° C < Tamb < 125° C
GBP
Gain bandwidth product
SR
Vcc
±3.5
±4.5
12
30
-10 mA < Iout < +10 mA
Va2 = 1 V
Iout sink or source current
CMR2
PM
0
mV
mA
300
µV/mA
70
60
95
80
dB
85
105
dB
RL = 10 kΩ, Cload = 100 pF,
f = 100 kHz
1
MHz
Phase margin
RL = 10 kΩ, Cload = 100 pF
65
deg
Slew rate
RL = 10 kΩ, Cload = 100 pF
Va2 = 0.5 V to 4.5 V
A3 connected to OUT (follower
configuration)
Slew rate measured from 10%
to 90% of Vout step
0.4
V/µs
Doc ID 16754 Rev 2
0.2
7/24
Electrical characteristics curves: current sense amplifier
4
TSC102
Electrical characteristics curves: current sense
amplifier
Unless otherwise specified, the test conditions for the following curves are:
Figure 2.
●
Tamb = 25° C, VCC = 5 V, Vsense =Vp-Vm = 50 mV, Vm = 12 V.
●
no load on Out pin.
●
signal conditioning amplifier used as a buffer (pin A3 connected to pin Out and pin A1
connected to pin A2).
Output voltage vs. Vsense
Figure 3.
6
A1 pin voltage accuracy vs. Vsense
20%
typical accuracy
15%
5
guaranteed
accuracy vs. T
10%
Vout (V)
4
5%
0%
3
-5%
2
guaranteed
accuracy @25°C
-10%
1
-15%
-20%
0
-50
50
Figure 4.
150
Vsense (mV)
0
250
Supply current vs. supply voltage
Figure 5.
50
150
200
Supply current vs. Vsense
700
500
450
600
400
T=-40°C
500
350
T=125°C
300
Icc (µA)
Icc (µA)
100
Vsense (mV)
250
200
150
400
T=25°C
300
100
T=125°C
200
T=-40°C
100
T=25°C
50
0
0
0
8/24
2
Vcc (V)
4
6
-250
Doc ID 16754 Rev 2
-150
-50
50
Vsense (mV)
150
250
TSC102
Electrical characteristics curves: current sense amplifier
Figure 6.
Vp pin input bias current vs.
Vsense
Figure 7.
Vm pin input bias current vs.
Vsense
80
T=-40°C
8
70
60
6
T=25°C
T=25°C
Iib (µA)
Iib (µA)
7
T=-40°C
50
40
30
5
4
T=125°C
3
20
2
10
1
T=125°C
0
0
-250
-150
Figure 8.
9
-50
50
Vsense (mV)
150
250
Output stage low-state saturation
voltage versus output current
(Vsense = -1 V)
-250
-150
Figure 9.
-50
50
Vsense (mV)
150
250
Output stage high-state saturation
voltage versus output current
(Vsense = +1 V)
1200
1400
output stage
sinking current
1000
800
T=25°C
1200
output stage
sourcing current
1000
Voh1 (mV)
Vol1 (mV)
T=125°C
T=25°C
T=125°C
600
400
800
600
400
T=-40°C
200
T=-40°C
200
0
0
0
2
4
6
8
10
-10
ia1 (mA)
Figure 10. Output stage load regulation
-8
-6
-4
ia1 (mA)
-2
0
Figure 11. Step response
7
output stage
sourcing current
output stage
sinking current
6
Va1-Va1@ia1=0 (mV)
5
T=125°C
4
3
T=25°C
2
1
T=-40°C
0
-10
-5
-1 0
5
10
-2
ia1(mA)
Doc ID 16754 Rev 2
9/24
Electrical characteristics curves: current sense amplifier
Figure 12. Bode diagram
Figure 13. Power supply rejection ratio
30
100
90
80
70
60
50
40
30
20
10
0
20
PSRR(dB)
Gain (dB)
10
0
-10
-20
-30
100,000 Hz
10,000 Hz
1,000 Hz
Doc ID 16754 Rev 2
100 Hz
10 Hz
10,000,000 Hz
1,000,000 Hz
100,000 Hz
10,000 Hz
1,000 Hz
100 Hz
10 Hz
10/24
TSC102
TSC102
Electrical characteristics curves: signal conditioning amplifier
5
Electrical characteristics curves: signal conditioning
amplifier
Unless otherwise specified, the test conditions for the following curves are:
●
Tamb = 25° C, VCC = 5 V
●
no load on Out.
●
signal conditioning amplifier tested as standalone amplifier.
Figure 14. Input offset voltage versus input
common-mode voltage
Figure 15. Input offset voltage versus supply
voltage (Vicm = Vcc/2)
0.4
0.4
0.2
0.2
0.0
T=25°C
T=25°C
0
T=-40°C
Vio (mV)
Vio (mV)
-0.2
-0.4
-0.6
-0.8
T=-40°C
-0.2
-0.4
T=125°C
-0.6
-1.0
T=125°C
-0.8
-1.2
Vicm (V)
T=25°C
Gain (dB)
20
T=125°C
T=-40°C
-10
-20
-30
source
-40
5.0
4.5
4.0
3.5
3.0
2.5
5.50
5.30
5.10
120
10
90
0
60
-10
30
-20
0
-30
-30
Vout (V)
Doc ID 16754 Rev 2
10,000 kHz
2.0
150
20
1,000 kHz
1.5
30
100 kHz
1.0
180
10 kHz
0.5
210
40
1 kHz
-50
0.0
Output current (mA)
30
50
Phase (deg)
sink
0
4.90
Figure 17. Bode diagram (Vout = Vcc/2,
RL = 10 kΩ, Cload = 100 pF)
50
10
4.70
Vcc (V)
Figure 16. Output current versus output
voltage
40
4.50
4.30
4.10
3.90
3.50
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
3.70
-1
-1.4
11/24
Parameter definitions
TSC102
6
Parameter definitions
6.1
Common-mode rejection ratio (CMR)
The common-mode rejection ratio (CMR) measures the ability of the current sensing
amplifier to reject any DC voltage applied on both inputs Vp and Vm. The CMR is referred
back to the input so that its effect can be compared with the applied differential signal. The
CMR is defined by the formula:
ΔV a1
CMR = – 20 ⋅ log -----------------------------ΔV icm ⋅ Av
6.2
Supply voltage rejection ratio (SVR)
The supply voltage rejection ratio (SVR) measures the ability of the current sensing amplifier
to reject any variation of the supply voltage VCC. The SVR is referred back to the input so
that its effect can be compared with the applied differential signal. The SVR is defined by the
formula:
ΔV a1
SVR = – 20 ⋅ log --------------------------ΔV cc ⋅ Av
6.3
Gain (Av) and input offset voltage (Vos)
The input offset voltage is defined as the intersection between the linear regression of the
Va1 versus Vsense curve with the X-axis (see Figure 18). If Va11 is the output voltage with
Vsense = Vsense1 = 50 mV and Va12 is the output voltage with Vsense = Vsense2 = 5 mV, then
Vos can be calculated with the formula:
V sense1 – V sense2
V os = V sense1 – ⎛ ------------------------------------------------ ⋅ V out1⎞
⎝
⎠
V a11 – V a12
The amplification gain Av is defined as the ratio between the output voltage and the input
differential voltage.
V out
Av = ----------------V sense
12/24
Doc ID 16754 Rev 2
TSC102
Parameter definitions
Figure 18. Va1 versus Vsense characteristics: detail for low Vsense values
Va1
Va1_1
Va1_2
Vsense
Vos
Vsense2
Vsense1
AM04509
6.4
Output voltage drift versus temperature
The output voltage drift versus temperature is defined as the maximum variation of Va1 with
respect to its value at 25° C, over the temperature range. It is calculated as follows:
ΔV a1
V a1 ( T amb ) – V a1 ( 25° C )
--------------- = max ---------------------------------------------------------------------ΔT
T amb – 25° C
with Tmin < Tamb < Tmax.
Figure 19 on page 14 provides a graphical definition of the output voltage drift versus
temperature. On this chart Va1 is always within the area defined by the maximum and
minimum variation of Va1 versus T, and T = 25° C is considered to be the reference.
Doc ID 16754 Rev 2
13/24
Parameter definitions
TSC102
Figure 19. Output voltage drift versus temperature
50
40
Va1-Va1@25°C (mV)
30
20
10
0
-10
-20
-30
-40
-50
-60
6.5
-40
-20
0
20
40 60
T (°C)
80
100 120 140
Output voltage accuracy
The output voltage accuracy is the difference between the actual output voltage and the
theoretical output voltage. Ideally, the current sensing output voltage should be equal to the
input differential voltage multiplied by the theoretical gain, as in the following formula.
Va1-th = Av. Vsense
The actual value is very slightly different, mainly due to the effects of the input offset voltage
Vos and the non-linearity.
14/24
Doc ID 16754 Rev 2
TSC102
Parameter definitions
Figure 20. Va1 vs. Vsense theoretical and actual characteristics
Va1
Actual
Ideal
Va1 accuracy for Vsense = 5 mV
Vsense
5 mV
AM04510
The output voltage accuracy, expressed as a percentage, can be calculated with the
following formula:
abs ( V a1 – ( Av ⋅ V sense ) )
ΔV a1 = -----------------------------------------------------------------------Av ⋅ V sense
with Av = 20 V/V.
Doc ID 16754 Rev 2
15/24
Application information
7
TSC102
Application information
The TSC102 can be used to measure current and feed back the information to a
microcontroller, as shown in Figure 21.
Figure 21. Typical application schematic
5V
Vreg
Iload
6
Vcc
TSC102
Vp
VCC Microcontroller
Out
8
ADC
5
Rsense Vm
1
Vsense
GND
Gnd
load
2
A1
3
A2
4
7
A3
Vout
AM04511
This fully-accessible output amplifier offers wide schematic possibilities, as shown in the
following examples.
Figure 22. Gain higher than 20
5V
TSC102
Vcc
6
Vp
Out
8
5
Vm
1
Vsense
R1
Gnd
2
A1
3
A2
4
7
A3
R2
Vout = Av.(1+R1/R2).Vsense
AM04512
16/24
Doc ID 16754 Rev 2
TSC102
Application information
Figure 23. Gain lower than 20
5V
Vcc
TSC102
6
Vp
8
Out
5
Vm
1
Vsense
Gnd
A1
2
3
A2
4
A3
7
R1
R2
Vout = Av.R2.Vsense/(R1+R2)
AM04513
Figure 24. Overcurrent protection
5V
TSC102
Vcc
6
Vp
Out
8
Vsense
5
Vm
1
Gnd
2
A1
3
A2
4
7
A3
R1
R2
R3
R4
AM04514
Doc ID 16754 Rev 2
17/24
Application information
TSC102
Figure 25. First-order low-pass filter
5V
6
Vcc
TSC102
Vp
Out
8
5
Vm
Vsense
1
Gnd
A1
2
3
A2
4
R1
7
A3
C1
AM04515
Figure 26. Second-order low-pass filter
5V
Vcc
TSC102
6
Vp
Out
8
5
Vm
1
Vsense
Gnd
2
A1
3
A2
R1
4
7
A3
R4
C1
C2
R3
R2
AM04516
18/24
Doc ID 16754 Rev 2
TSC102
8
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 16754 Rev 2
19/24
Package information
8.1
TSC102
SO-8 package information
Figure 27. SO-8 package mechanical drawing
Table 10.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
20/24
Inches
1.04
0
0.040
8°
0.10
Doc ID 16754 Rev 2
1°
8°
0.004
TSC102
8.2
Package information
TSSOP-8 package information
Figure 28. TSSOP8 package mechanical drawing
Table 11.
TSSOP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0.65
k
0°
L
0.45
L1
aaa
1.00
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
1
8°
0.024
0.030
0.039
0.10
Doc ID 16754 Rev 2
0.004
21/24
Ordering information
9
TSC102
Ordering information
Table 12.
Order codes
Part number
Temperature range
TSC102IPT
Package
Packing
Marking
TSSOP8
Tape & reel
102I
SO-8
Tape & reel
TSC102I
TSSOP8(1)
Tape & reel
102Y
Tape & reel
TSC102IY
-40° C, +125° C
TSC102IDT
TSC102IYPT
TSC102IYDT
-40° C, +125° C
Automotive grade
(2)
SO-8
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are on-going.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent.
22/24
Doc ID 16754 Rev 2
TSC102
10
Revision history
Revision history
Table 13.
Document revision history
Date
Revision
Changes
09-Nov-2009
1
Initial release.
03-Mar-2011
2
Added automotive grade qualification for SO-8 package
(note 2. under Table 12).
Doc ID 16754 Rev 2
23/24
TSC102
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
24/24
Doc ID 16754 Rev 2