TSC102 High-side current sense amplifier plus signal conditioning amplifier Features ■ Independent supply and input common-mode voltages ■ Wide common-mode operating range: 2.8 to 30 V ■ Wide common-mode surviving range: -16 to 60 V (reversed battery and load-dump conditions) ■ ■ Low current consumption: ICC max = 420 µA Output amplifier for tailor-made signal conditioning ■ -40 to 125° C operating temperature range ■ 4 kV ESD protection P TSSOP8 (Plastic package) D SO-8 (Plastic package) Applications ■ Battery chargers ■ Automotive current monitoring ■ Notebook computers ■ DC motor control ■ Photovoltaic systems ■ Precision current sources ■ Uninterruptible power supplies ■ High-end power supplies 8 Vp Gnd 2 7 A3 A1 3 6 Vcc A2 4 5 Out Pin connections (top view) Description The TSC102 measures a small differential voltage on a high-side shunt resistor and translates it into a ground-referenced output voltage. The device’s wide input common-mode voltage range, low quiescent current and tiny TSSOP8 packaging enable use in a wide variety of applications (also available in SO-8 package). The input common-mode and power supply voltages are independent. The common-mode voltage can range from 2.8 to 30 V in operating conditions. March 2011 Vm 1 The TSC102 is rugged against abnormal conditions on the input pins: Vp and Vm can withstand up to 60 V in case of voltage spikes, as little as -16 V in case of reversed battery, and up to 4 kV in case of electrostatic discharge. In addition to the current sensing amplifier, the TSC102 offers a fully accessible amplifier for output signal conditioning. The device’s overall current consumption is lower than 420 µA. Doc ID 16754 Rev 2 1/24 www.st.com 24 Contents TSC102 Contents 1 Application schematic and pin description . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Electrical characteristics curves: current sense amplifier . . . . . . . . . . 8 5 Electrical characteristics curves: signal conditioning amplifier . . . . 11 6 Parameter definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.1 Common-mode rejection ratio (CMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.2 Supply voltage rejection ratio (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.3 Gain (Av) and input offset voltage (Vos) . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.4 Output voltage drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.5 Output voltage accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.1 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8.2 TSSOP-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2/24 Doc ID 16754 Rev 2 TSC102 1 Application schematic and pin description Application schematic and pin description The TSC102 high-side current sense amplifier features a 2.8 to 30 V input common-mode range that is independent of the supply voltage. The main advantage of this feature is that it allows high-side current sensing at voltages much greater than the supply voltage (VCC). Figure 1. Application schematics Signal conditioning amplifier Current sense amplifier 5V TSC102 Vcc 6 Vp Iload Out 8 Vsense 5 Av=20 V/V Rsense Vm 1 Gnd 2 A1 3 A2 4 7 A3 Vout AM04508 Table 1 describes the function of each pin. Their position is shown in the illustration on the cover page and in Figure 1 above. A1 Table 1. Pin description Symbol Type Function Out Analog output Out voltage is proportional to the magnitude of the sense voltage Vp-Vm. Gnd Power supply Ground line. VCC Power supply Positive power supply line. Vp Analog input Connection for the external sense resistor. The measured current enters the shunt on the Vp side. Vm Analog input Connection for the external sense resistor. The measured current exits the shunt on the Vm side. A1 Analog input Connection to current sensing amplifier output. A2 Analog input Connection to signal conditioning amplifier non-inverting input. A3 Analog input Connection to signal conditioning amplifier inverting input. Doc ID 16754 Rev 2 3/24 Absolute maximum ratings and operating conditions 2 TSC102 Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings Symbol Vid Vi Parameter Value Unit ±20 V -16 to 60 V -0.3 to 7 V -55 to 150 °C Maximum junction temperature 150 °C TSSOP8 thermal resistance junction to ambient 120 °C/W SO-8 thermal resistance junction to ambient 125 °C/W 4 kV 2.5 kV 200 V 1.5 kV Input pins differential voltage (Vp-Vm) (1) Current sensing input pin voltages (Vp and Vm) (1) V1 Voltage for pins A1, A2, A3, Out, Vcc Tstg Storage temperature Tj Rthja HBM: human body model for Vm and Vp pins(2) HBM: human body model ESD MM: machine (3) model(4) (5) CDM: charged device model 1. These voltage values are measured with respect to the GND pin. 2. Human body model for Vm and Vp: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between the Vp or Vm pin and Gnd while the other pins are floating. 3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 5. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground. Table 3. Symbol 4/24 Operating conditions Parameter Value Unit VCC DC supply voltage from Tmin to Tmax 3.5 to 5.5 V Toper Operational temperature range (Tmin to Tmax) -40 to 125 °C Vicm Common mode voltage range (Vm pin voltage) 2.8 to 30 V Doc ID 16754 Rev 2 TSC102 3 Electrical characteristics Electrical characteristics Unless otherwise specified, the electrical characteristics given in the following tables have been measured under the following test conditions. Table 4. Symbol ● Tamb = 25° C, VCC = 5 V, Vsense = Vp-Vm = 50 mV, Vm = 12 V. ● No load on Out pin. ● Signal conditioning amplifier used as a buffer (pin A3 connected to pin Out and pin A1 connected to pin A2). Supply Parameter Test conditions Min. Typ. Max. Unit ICC Total supply current Vsense = 0 V, pin A1 open, pin A2 shorted to Gnd Tmin < Tamb < Tmax 240 420 µA ICC1 Total supply current Vsense = 50 mV, pin A1 connected to pin A2 Tmin < Tamb < Tmax 420 700 µA Min. Typ. Max. Unit 90 100 dB 2.8 V< Vm < 30 V 1 kHz sine wave 75 dB 2.8 V < Vm < 30 V 10 kHz sine wave 60 dB 90 dB Table 5. Symbol DC CMR1 Current sensing amplifier input stage Parameter DC common mode rejection Variation of Va1 versus Vicm referred to input(1) AC common mode rejection AC CMR1 Variation of Va1 versus Vicm referred to input (peak-to-peak voltage variation) Test conditions 2.8 V < Vm < 30 V -40° C < Tamb < 150° C Supply voltage rejection Variation of Va1 versus VCC(2) 3.5 V< VCC < 5.5 V -40° C < Tamb < 125° C Input offset voltage(3) Tamb = 25° C -40° C < Tamb < 125° C Input offset drift versus T -40° C < Tamb < 125° C Ilk Input leakage current VCC = 0 V Tmin < Tamb < Tmax Iib Input bias current Vsense = 0 V Tmin < Tamb < Tmax SVR1 Vos dVos/dT 85 ±3 5 ±1.5 ±2.3 mV ±8 µV/°C 1 µA 7 µA 1. See Chapter 6: Parameter definitions on page 12 for the definition of CMR. 2. See Chapter 6 for the definition of SVR. 3. See Chapter 6 for the definition of Vos. Doc ID 16754 Rev 2 5/24 Electrical characteristics Table 6. Current sensing amplifier output stage Symbol Av TSC102 Parameter Test conditions Min. Gain (variation of Va1 versus Vsense) Typ. Max. 20 Unit V/V Voh1 A1 node high-level saturation voltage Voh1 = Vcc-Va1 Vsense = 1 V Ia1 = 1 mA -40° C< Tamb < 125° C 85 185 mV Vol1 A1 node low-level saturation voltage Vsense =-1 V Ia1 = 1 mA -40° C< Tamb < 125° C 75 165 mV Isc1 Short-circuit current A1 connected to VCC or Gnd T(1) ΔVa1/ΔT Output voltage drift versus ΔVa1/ΔIa1 Output stage load regulation -5 mA < Ia1< +5 mA Ia1 sink or source current ΔVa1 Total output voltage accuracy(2) ΔVa1 10 30 Tmin < Tamb < Tmax mA ±400 ppm/°C ±2 mV/mA Vsense = 50 mV Tamb = 25° C Tmin < Tamb < Tmax ±2.5 ±4 % Total output voltage accuracy(2) Vsense = 100 mV Tamb = 25° C Tmin < Tamb < Tmax ±2.5 ±4 % ΔVa1 Total output voltage accuracy(2) Vsense = 20 mV Tamb = 25° C Tmin < Tamb < Tmax ±8 ±10 % ΔVa1 Total output voltage accuracy(2) Vsense = 10 mV Tamb = 25° C Tmin < Tamb < Tmax ±13 ±16 % 0.4 1. See Chapter 6: Parameter definitions on page 12 for the definition of output voltage drift versus temperature. 2. Output voltage accuracy is the difference with the expected theoretical output voltage Va1-th = Av * Vsense. See Chapter 6 for a more detailed definition. Table 7. Current sensing amplifier frequency response Symbol Parameter Test conditions Va1 settling to 1% final value Vsense = 10 mV to 100 mV, Cload = 47 pF SR Slew rate Vsense = 10 mV to 100 mV BW 3 dB bandwidth Cload = 47 pF ts Table 8. Symbol eN 6/24 Min. 0.2 Typ. Max. Unit 7 µs 0.4 V/µs 800 kHz Current sensing amplifier noise Parameter Equivalent input noise voltage Test conditions f = 1 kHz Doc ID 16754 Rev 2 Min. Typ. 50 Max. Unit nV/√ Hz TSC102 Table 9. Electrical characteristics Signal conditioning amplifier Symbol Parameter Test conditions Min. Typ. Max. Unit Vicm Common mode voltage range Tmin < Tamb < Tmax VIO Input offset voltage Va2 = 1 V Tamb = 25° C -40° C < Tamb < 150° C ΔVIO Input offset voltage drift Tmin < Tamb < Tmax 5 µV/°C Input bias current Va2 = Va3 = VCC/2 10 pA Voh2 Output high-level saturation voltage (Voh2 = VCC-Vout) Va2 = 1 V Va3 = 0 V Iout = 1 mA -40° C< Tamb < 125° C 85 185 mV Vol2 Va2 = 0 V Va3 = 1 V Output low-level saturation voltage Iout = 1 mA -40° C< Tamb < 125° C 75 165 mV Isc2 Short-circuit current Iib ΔVout/ΔIout Output stage load regulation Out connected to VCC or Gnd DC common mode rejection Variation of VIO versus Vicm Tmin < Tamb < Tmax 0 V<Va2<3 V 0 V<Va2<5 V SVR2 Supply voltage rejection Variation of VIO versus VCC 3.5 V<VCC<5.5 V Va2 = 1 V -40° C < Tamb < 125° C GBP Gain bandwidth product SR Vcc ±3.5 ±4.5 12 30 -10 mA < Iout < +10 mA Va2 = 1 V Iout sink or source current CMR2 PM 0 mV mA 300 µV/mA 70 60 95 80 dB 85 105 dB RL = 10 kΩ, Cload = 100 pF, f = 100 kHz 1 MHz Phase margin RL = 10 kΩ, Cload = 100 pF 65 deg Slew rate RL = 10 kΩ, Cload = 100 pF Va2 = 0.5 V to 4.5 V A3 connected to OUT (follower configuration) Slew rate measured from 10% to 90% of Vout step 0.4 V/µs Doc ID 16754 Rev 2 0.2 7/24 Electrical characteristics curves: current sense amplifier 4 TSC102 Electrical characteristics curves: current sense amplifier Unless otherwise specified, the test conditions for the following curves are: Figure 2. ● Tamb = 25° C, VCC = 5 V, Vsense =Vp-Vm = 50 mV, Vm = 12 V. ● no load on Out pin. ● signal conditioning amplifier used as a buffer (pin A3 connected to pin Out and pin A1 connected to pin A2). Output voltage vs. Vsense Figure 3. 6 A1 pin voltage accuracy vs. Vsense 20% typical accuracy 15% 5 guaranteed accuracy vs. T 10% Vout (V) 4 5% 0% 3 -5% 2 guaranteed accuracy @25°C -10% 1 -15% -20% 0 -50 50 Figure 4. 150 Vsense (mV) 0 250 Supply current vs. supply voltage Figure 5. 50 150 200 Supply current vs. Vsense 700 500 450 600 400 T=-40°C 500 350 T=125°C 300 Icc (µA) Icc (µA) 100 Vsense (mV) 250 200 150 400 T=25°C 300 100 T=125°C 200 T=-40°C 100 T=25°C 50 0 0 0 8/24 2 Vcc (V) 4 6 -250 Doc ID 16754 Rev 2 -150 -50 50 Vsense (mV) 150 250 TSC102 Electrical characteristics curves: current sense amplifier Figure 6. Vp pin input bias current vs. Vsense Figure 7. Vm pin input bias current vs. Vsense 80 T=-40°C 8 70 60 6 T=25°C T=25°C Iib (µA) Iib (µA) 7 T=-40°C 50 40 30 5 4 T=125°C 3 20 2 10 1 T=125°C 0 0 -250 -150 Figure 8. 9 -50 50 Vsense (mV) 150 250 Output stage low-state saturation voltage versus output current (Vsense = -1 V) -250 -150 Figure 9. -50 50 Vsense (mV) 150 250 Output stage high-state saturation voltage versus output current (Vsense = +1 V) 1200 1400 output stage sinking current 1000 800 T=25°C 1200 output stage sourcing current 1000 Voh1 (mV) Vol1 (mV) T=125°C T=25°C T=125°C 600 400 800 600 400 T=-40°C 200 T=-40°C 200 0 0 0 2 4 6 8 10 -10 ia1 (mA) Figure 10. Output stage load regulation -8 -6 -4 ia1 (mA) -2 0 Figure 11. Step response 7 output stage sourcing current output stage sinking current 6 Va1-Va1@ia1=0 (mV) 5 T=125°C 4 3 T=25°C 2 1 T=-40°C 0 -10 -5 -1 0 5 10 -2 ia1(mA) Doc ID 16754 Rev 2 9/24 Electrical characteristics curves: current sense amplifier Figure 12. Bode diagram Figure 13. Power supply rejection ratio 30 100 90 80 70 60 50 40 30 20 10 0 20 PSRR(dB) Gain (dB) 10 0 -10 -20 -30 100,000 Hz 10,000 Hz 1,000 Hz Doc ID 16754 Rev 2 100 Hz 10 Hz 10,000,000 Hz 1,000,000 Hz 100,000 Hz 10,000 Hz 1,000 Hz 100 Hz 10 Hz 10/24 TSC102 TSC102 Electrical characteristics curves: signal conditioning amplifier 5 Electrical characteristics curves: signal conditioning amplifier Unless otherwise specified, the test conditions for the following curves are: ● Tamb = 25° C, VCC = 5 V ● no load on Out. ● signal conditioning amplifier tested as standalone amplifier. Figure 14. Input offset voltage versus input common-mode voltage Figure 15. Input offset voltage versus supply voltage (Vicm = Vcc/2) 0.4 0.4 0.2 0.2 0.0 T=25°C T=25°C 0 T=-40°C Vio (mV) Vio (mV) -0.2 -0.4 -0.6 -0.8 T=-40°C -0.2 -0.4 T=125°C -0.6 -1.0 T=125°C -0.8 -1.2 Vicm (V) T=25°C Gain (dB) 20 T=125°C T=-40°C -10 -20 -30 source -40 5.0 4.5 4.0 3.5 3.0 2.5 5.50 5.30 5.10 120 10 90 0 60 -10 30 -20 0 -30 -30 Vout (V) Doc ID 16754 Rev 2 10,000 kHz 2.0 150 20 1,000 kHz 1.5 30 100 kHz 1.0 180 10 kHz 0.5 210 40 1 kHz -50 0.0 Output current (mA) 30 50 Phase (deg) sink 0 4.90 Figure 17. Bode diagram (Vout = Vcc/2, RL = 10 kΩ, Cload = 100 pF) 50 10 4.70 Vcc (V) Figure 16. Output current versus output voltage 40 4.50 4.30 4.10 3.90 3.50 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 3.70 -1 -1.4 11/24 Parameter definitions TSC102 6 Parameter definitions 6.1 Common-mode rejection ratio (CMR) The common-mode rejection ratio (CMR) measures the ability of the current sensing amplifier to reject any DC voltage applied on both inputs Vp and Vm. The CMR is referred back to the input so that its effect can be compared with the applied differential signal. The CMR is defined by the formula: ΔV a1 CMR = – 20 ⋅ log -----------------------------ΔV icm ⋅ Av 6.2 Supply voltage rejection ratio (SVR) The supply voltage rejection ratio (SVR) measures the ability of the current sensing amplifier to reject any variation of the supply voltage VCC. The SVR is referred back to the input so that its effect can be compared with the applied differential signal. The SVR is defined by the formula: ΔV a1 SVR = – 20 ⋅ log --------------------------ΔV cc ⋅ Av 6.3 Gain (Av) and input offset voltage (Vos) The input offset voltage is defined as the intersection between the linear regression of the Va1 versus Vsense curve with the X-axis (see Figure 18). If Va11 is the output voltage with Vsense = Vsense1 = 50 mV and Va12 is the output voltage with Vsense = Vsense2 = 5 mV, then Vos can be calculated with the formula: V sense1 – V sense2 V os = V sense1 – ⎛ ------------------------------------------------ ⋅ V out1⎞ ⎝ ⎠ V a11 – V a12 The amplification gain Av is defined as the ratio between the output voltage and the input differential voltage. V out Av = ----------------V sense 12/24 Doc ID 16754 Rev 2 TSC102 Parameter definitions Figure 18. Va1 versus Vsense characteristics: detail for low Vsense values Va1 Va1_1 Va1_2 Vsense Vos Vsense2 Vsense1 AM04509 6.4 Output voltage drift versus temperature The output voltage drift versus temperature is defined as the maximum variation of Va1 with respect to its value at 25° C, over the temperature range. It is calculated as follows: ΔV a1 V a1 ( T amb ) – V a1 ( 25° C ) --------------- = max ---------------------------------------------------------------------ΔT T amb – 25° C with Tmin < Tamb < Tmax. Figure 19 on page 14 provides a graphical definition of the output voltage drift versus temperature. On this chart Va1 is always within the area defined by the maximum and minimum variation of Va1 versus T, and T = 25° C is considered to be the reference. Doc ID 16754 Rev 2 13/24 Parameter definitions TSC102 Figure 19. Output voltage drift versus temperature 50 40 Va1-Va1@25°C (mV) 30 20 10 0 -10 -20 -30 -40 -50 -60 6.5 -40 -20 0 20 40 60 T (°C) 80 100 120 140 Output voltage accuracy The output voltage accuracy is the difference between the actual output voltage and the theoretical output voltage. Ideally, the current sensing output voltage should be equal to the input differential voltage multiplied by the theoretical gain, as in the following formula. Va1-th = Av. Vsense The actual value is very slightly different, mainly due to the effects of the input offset voltage Vos and the non-linearity. 14/24 Doc ID 16754 Rev 2 TSC102 Parameter definitions Figure 20. Va1 vs. Vsense theoretical and actual characteristics Va1 Actual Ideal Va1 accuracy for Vsense = 5 mV Vsense 5 mV AM04510 The output voltage accuracy, expressed as a percentage, can be calculated with the following formula: abs ( V a1 – ( Av ⋅ V sense ) ) ΔV a1 = -----------------------------------------------------------------------Av ⋅ V sense with Av = 20 V/V. Doc ID 16754 Rev 2 15/24 Application information 7 TSC102 Application information The TSC102 can be used to measure current and feed back the information to a microcontroller, as shown in Figure 21. Figure 21. Typical application schematic 5V Vreg Iload 6 Vcc TSC102 Vp VCC Microcontroller Out 8 ADC 5 Rsense Vm 1 Vsense GND Gnd load 2 A1 3 A2 4 7 A3 Vout AM04511 This fully-accessible output amplifier offers wide schematic possibilities, as shown in the following examples. Figure 22. Gain higher than 20 5V TSC102 Vcc 6 Vp Out 8 5 Vm 1 Vsense R1 Gnd 2 A1 3 A2 4 7 A3 R2 Vout = Av.(1+R1/R2).Vsense AM04512 16/24 Doc ID 16754 Rev 2 TSC102 Application information Figure 23. Gain lower than 20 5V Vcc TSC102 6 Vp 8 Out 5 Vm 1 Vsense Gnd A1 2 3 A2 4 A3 7 R1 R2 Vout = Av.R2.Vsense/(R1+R2) AM04513 Figure 24. Overcurrent protection 5V TSC102 Vcc 6 Vp Out 8 Vsense 5 Vm 1 Gnd 2 A1 3 A2 4 7 A3 R1 R2 R3 R4 AM04514 Doc ID 16754 Rev 2 17/24 Application information TSC102 Figure 25. First-order low-pass filter 5V 6 Vcc TSC102 Vp Out 8 5 Vm Vsense 1 Gnd A1 2 3 A2 4 R1 7 A3 C1 AM04515 Figure 26. Second-order low-pass filter 5V Vcc TSC102 6 Vp Out 8 5 Vm 1 Vsense Gnd 2 A1 3 A2 R1 4 7 A3 R4 C1 C2 R3 R2 AM04516 18/24 Doc ID 16754 Rev 2 TSC102 8 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Doc ID 16754 Rev 2 19/24 Package information 8.1 TSC102 SO-8 package information Figure 27. SO-8 package mechanical drawing Table 10. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc 20/24 Inches 1.04 0 0.040 8° 0.10 Doc ID 16754 Rev 2 1° 8° 0.004 TSC102 8.2 Package information TSSOP-8 package information Figure 28. TSSOP8 package mechanical drawing Table 11. TSSOP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 k 0° L 0.45 L1 aaa 1.00 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 1 8° 0.024 0.030 0.039 0.10 Doc ID 16754 Rev 2 0.004 21/24 Ordering information 9 TSC102 Ordering information Table 12. Order codes Part number Temperature range TSC102IPT Package Packing Marking TSSOP8 Tape & reel 102I SO-8 Tape & reel TSC102I TSSOP8(1) Tape & reel 102Y Tape & reel TSC102IY -40° C, +125° C TSC102IDT TSC102IYPT TSC102IYDT -40° C, +125° C Automotive grade (2) SO-8 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 22/24 Doc ID 16754 Rev 2 TSC102 10 Revision history Revision history Table 13. Document revision history Date Revision Changes 09-Nov-2009 1 Initial release. 03-Mar-2011 2 Added automotive grade qualification for SO-8 package (note 2. under Table 12). Doc ID 16754 Rev 2 23/24 TSC102 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 24/24 Doc ID 16754 Rev 2