SLAS383 − OCTOBER 2003 D Low Supply-Voltage Range, 1.8 V . . . 3.6 V D Ultralow-Power Consumption: D D D D D D D D D D Serial Onboard Programming, − Active Mode: 200 µA at 1 MHz, 2.2 V − Standby Mode: 0.7 µA − Off Mode (RAM Retention): 0.1 µA Five Power-Saving Modes Wake-Up From Standby Mode in less than 6 µs Frequency-Locked Loop, FLL+ 16-Bit RISC Architecture, 125-ns Instruction Cycle Time Scan IF for Background Water, Heat, and Gas Volume Measurement 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_A With Five Capture/Compare Registers Integrated LCD Driver for 96 Segments On-Chip Comparator D D D D D D No External Programming Voltage Needed Programmable Code Protection by Security Fuse Brownout Detector Supply Voltage Supervisor/Monitor With Programmable Level Detection Bootstrap Loader in Flash Devices Family Members Include: − MSP430FW423: 8KB + 256B Flash Memory, 256B RAM − MSP430FW425: 16KB + 256B Flash Memory, 512B RAM − MSP430FW427: 32KB + 256B Flash Memory, 1KB RAM Available in 64-Pin Quad Flat Pack (QFP) For Complete Module Descriptions, Refer to the MSP430x4xx Family User’s Guide, Literature Number SLAU056 description The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs. The MSP430xW42x series are microcontroller configurations with two built-in 16-bit timers, a comparator, 96 LCD segment drive capability, a scan interface, and 48 I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and process the data and transmit them to a host system. The comparator and timers make the configurations ideal for gas, heat, and water meters, industrial meters, counter applications, handheld meters, etc. AVAILABLE OPTIONS PACKAGED DEVICES TA −40°C to 85°C PLASTIC 64-PIN QFP (PM) MSP430FW423IPM MSP430FW425IPM MSP430FW427IPM Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2003, Texas Instruments Incorporated !"# $"%&! '#( '"! ! $#!! $# )# # # "# '' *+( '"! $!#, '# #!#&+ !&"'# #, && $##( POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLAS383 − OCTOBER 2003 AVCC DVSS AVSS P6.2/SIFCH2 P6.1/SIFCH1 P6.0/SIFCH0 RST/NMI TCK TMS TDI/TCLK TDO/TDI P1.0/TA0.0 P1.1/TA0.0/MCLK P1.2/TA0.1 P1.3/TA1.0/SVSOUT P1.4/TA1.0 pin designation, MSP430xW42x 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 8 MSP430xW42x 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P4.4/S5 P4.3/S6 P4.2/S7 P4.1/S8 P4.0/S9 P3.7/S10 P3.6/S11 P3.5/S12 P3.4/S13 P3.3/S14 P3.2/S15 P3.1/S16 P3.0/S17 P2.7/SIFCLKG/S18 P2.6/CAOUT/S19 P2.5/TA1CLK/S20 DVCC P6.3/SIFCH3/SIFCAOUT P6.4/SIFCI0 P6.5/SIFCI1 P6.6/SIFCI2/SIFDACOUT P6.7/SIFCI3/SVSIN SIFCI XIN XOUT SIFVSS SIFCOM P5.1/S0 P5.0/S1 P4.7/S2 P4.6/S3 P4.5/S4 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P1.5/TA0CLK/ACLK P1.6/CA0 P1.7/CA1 P2.0/TA0.2 P2.1/TA1.1 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P2.2/TA1.2/S23 P2.3/TA1.3/S22 P2.4/TA1.4/S21 SLAS383 − OCTOBER 2003 functional block diagram XIN XOUT Oscillator FLL+ DVCC DVSS AVCC AVSS RST/NMI P5 P6 P3 P4 ACLK 8 KB Flash 256 B RAM Scan IF I/O Port 5/6 I/O Port 3/4 SMCLK 16 KB Flash 512 B RAM 16 I/Os 16 I/Os 32 KB Flash 1 KB RAM Up to 4 sensors System Clock P1 P2 I/O Port 1/2 16 I/Os, With Interrupt Capability MCLK Test MAB, 4 Bit MAB, 16 Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16 Bit MDB, 8 Bit 4 TMS TCK Watchdog Timer TDI/TCLK TDO/TDI 15 / 16 Bit Timer0_A 3 CC−Reg Timer1_A 5 CC−Reg POR SVS Brownout Comparator A Basic Timer1 1 Interrupt Vector LCD 96 Segments 1,2,3,4 MUX fLCD POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SLAS383 − OCTOBER 2003 Terminal Functions MSP430xW42x TERMINAL NAME NO. I/O DESCRIPTION AVCC 64 Positive terminal that supplies SVS, brownout, oscillator, FLL+, comparator_A, scan IF AFE, port 6, and LCD resistive divider circuitry; must not power up prior to DVCC. AVSS 62 Negative terminal that supplies SVS, brownout, oscillator, FLL+, comparator_A, scan IF AFE. and port 6. Must be externally connected to DVSS. Internally connected to DVSS. DVCC 1 Digital supply voltage, positive terminal. Supplies all parts, except those which are supplied via AVCC. DVSS 63 SIFVSS P1.0/TA0.0 10 Digital supply voltage, negative terminal. Supplies all digital parts, except those which are supplied via AVCC/AVSS. Scan IF AFE reference supply voltage. 53 I/O General-purpose digital I/O/Timer0_A. Capture: CCI0A input, compare: Out0 output/BSL Transmit P1.1/TA0.0/MCLK 52 I/O General-purpose digital I/O/Timer0_A. Capture: CCI0B input/MCLK output/BSL Receive. Note: TA0.0 is only an input on this pin. P1.2/TA0.1 51 I/O General-purpose digital I/O/Timer0_A, capture: CCI1A input, compare: Out1 output P1.3/TA1.0/ SVSOUT 50 I/O General-purpose digital I/O/Timer1_A, capture: CCI0B input/SVS: output of SVS comparator. Note: TA1.0 is only an input on this pin. P1.4/TA1.0 49 I/O General-purpose digital I/O/Timer1_A, capture: CCI0A input, compare: Out0 output P1.5/TA0CLK/ ACLK 48 I/O General-purpose digital I/O/input of Timer0_A clock/output of ACLK P1.6/CA0 47 I/O General-purpose digital I/O/Comparator_A input P1.7/CA1 46 I/O General-purpose digital I/O/Comparator_A input P2.0/TA0.2 45 I/O General-purpose digital I/O/Timer0_A, capture: CCI2A input, compare: Out2 output P2.1/TA1.1 44 I/O General-purpose digital I/O/Timer0_A, capture: CCI1A input, compare: Out1 output P2.2/TA1.2/S23 35 I/O General-purpose digital I/O/Timer1_A, capture: CCI2A input, compare: Out2 output/LCD segment output 23 (see Note) P2.3/TA1.3/S22 34 I/O General-purpose digital I/O/Timer1_A, capture: CCI3A input, compare: Out3 output/LCD segment output 22 (see Note) P2.4/TA1.4/S21 33 I/O General-purpose digital I/O/Timer1_A, capture: CCI4A input, compare: Out4 output/LCD segment output 21 (see Note) P2.5/TA1CLK/S20 32 I/O General-purpose digital I/O/input of Timer1_A clock/LCD segment output 20 (see Note) P2.6/CAOUT/S19 31 I/O General-purpose digital I/O/Comparator_A output/LCD segment output 19 (see Note) P2.7/SIFCLKG/ S18 30 I/O General-purpose digital I/O/Scan IF, signal SIFCLKG from internal clock generator/LCD segment output 18 (see Note) P3.0/S17 29 I/O General-purpose digital I/O/ LCD segment output 17 (see Note) P3.1/S16 28 I/O General-purpose digital I/O/ LCD segment output 16 (see Note) P3.2/S15 27 I/O General-purpose digital I/O/ LCD segment output 15 (see Note) P3.3/S14 26 I/O General-purpose digital I/O/ LCD segment output 14 (see Note) P3.4/S13 25 I/O General-purpose digital I/O/LCD segment output 13 (see Note) P3.5/S12 24 I/O General-purpose digital I/O/LCD segment output 12 (see Note) P3.6/S11 23 I/O General-purpose digital I/O/LCD segment output 11 (see Note) P3.7/S10 22 I/O General-purpose digital I/O/LCD segment output 10 (see Note) NOTE 1: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 Terminal Functions (Continued) MSP430xW42x TERMINAL NAME NO. I/O DESCRIPTION P4.0/S9 21 I/O General-purpose digital I/O/LCD segment output 9 (see Note) P4.1/S8 20 I/O General-purpose digital I/O/LCD segment output 8 (see Note) P4.2/S7 19 I/O General-purpose digital I/O/LCD segment output 7 (see Note) P4.3/S6 18 I/O General-purpose digital I/O/LCD segment output 6 (see Note) P4.4/S5 17 I/O General-purpose digital I/O/LCD segment output 5 (see Note) P4.5/S4 16 I/O General-purpose digital I/O/LCD segment output 4 (see Note) P4.6/S3 15 I/O General-purpose digital I/O/LCD segment output 3 (see Note) P4.7/S2 14 I/O General-purpose digital I/O/LCD segment output 2 (see Note) P5.0/S1 13 I/O General-purpose digital I/O/LCD segment output 1 (see Note) P5.1/S0 12 I/O General-purpose digital I/O/LCD segment output 0 (see Note) COM0 36 O Common output. COM0−3 are used for LCD backplanes P5.2/COM1 37 I/O General-purpose digital I/O/common output. COM0−3 are used for LCD backplanes P5.3/COM2 38 I/O General-purpose digital I/O/common output. COM0−3 are used for LCD backplanes P5.4/COM3 39 I/O General-purpose digital I/O/common output. COM0−3 are used for LCD backplanes R03 40 I P5.5/R13 41 I/O General-purpose digital I/O/input port of third most positive analog LCD level (V4 or V3) P5.6/R23 42 I/O General-purpose digital I/O/input port of second most positive analog LCD level (V2) P5.7/R33 43 I/O General-purpose digital I/O/output port of most positive analog LCD level (V1) P6.0/SIFCH0 59 I/O General-purpose digital I/O/Scan IF, channel 0 sensor excitation output and signal input P6.1/SIFCH1 60 I/O General-purpose digital I/O/Scan IF, channel 1 sensor excitation output and signal input P6.2/SIFCH2 61 I/O General-purpose digital I/O/Scan IF, channel 2 sensor excitation output and signal input P6.3/SIFCH3/ SIFCAOUT 2 I/O General-purpose digital I/O/Scan IF, channel 3 sensor excitation output and signal input/Scan IF comparator output P6.4/SIFCI0 3 I/O General-purpose digital I/O/Scan IF, channel 0 signal input to comparator P6.5/SIFCI1 4 I/O General-purpose digital I/O/Scan IF, channel 1 signal input to comparator P6.6/SIFCI2/ SIFDACOUT 5 I/O General-purpose digital I/O/Scan IF, channel 2 signal input to comparator/10-bit DAC output P6.7/ SIFCI3/SVSIN 6 I/O General-purpose digital I/O/Scan IF, channel 3 signal input to comparator/SVS, analog input Input port of fourth positive (lowest) analog LCD level (V5) SIFCI 7 I Scan IF input to Comparator. SIFCOM 11 O Common termination for Scan IF sensors. RST/NMI 58 I Reset input or nonmaskable interrupt input port. TCK 57 I Test clock. TCK is the clock input port for device programming and test. TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TDO/TDI 54 I/O TMS 56 I Test mode select. TMS is used as an input port for device programming and test. XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output terminal of crystal oscillator XT1. Test data output port. TDO/TDI data output or programming data input terminal. NOTE 1: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLAS383 − OCTOBER 2003 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g. CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE SYNTAX EXAMPLE OPERATION Register D D MOV Rs,Rd MOV R10,R11 Indexed D D MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) D D MOV EDE,TONI M(EDE) −−> M(TONI) Absolute D D MOV &MEM,&TCDAT M(MEM) −−> M(TCDAT) Indirect D MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6) Indirect autoincrement D MOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11 R10 + 2−−> R10 D MOV #X,TONI MOV #45,TONI Immediate NOTE: S = source 6 S D D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 R10 −−> R11 M(2+R5)−−> M(6+R6) #45 −−> M(TONI) SLAS383 − OCTOBER 2003 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM; − All clocks are active D Low-power mode 0 (LPM0); − CPU is disabled ACLK and SMCLK remain active, MCLK is available to modules FLL+ Loop control remains active D Low-power mode 1 (LPM1); − CPU is disabled ACLK and SMCLK remain active, MCLK is available to modules FLL+ Loop control is disabled D Low-power mode 2 (LPM2); − CPU is disabled MCLK and FLL+ loop control and DCOCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3); − CPU is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4); − CPU is disabled ACLK is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLAS383 − OCTOBER 2003 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the ROM with an address range 0FFFFh − 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External Reset Watchdog Flash memory WDTIFG KEYV (see Note 1) Reset 0FFFEh 15, highest NMI Oscillator Fault Flash memory access violation NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 14 Timer1_A5 TA1CCR0 CCIFG (see Note 2) Maskable 0FFFAh 13 Timer1_A5 TA1CCR1 to TA1CCR4 CCIFGs TA1CTL TAIFG Maskable 0FFF8h 12 Comparator_A CMPAIFG Maskable 0FFF6h 11 Watchdog Timer WDTIFG Maskable 0FFF4h 10 Scan IF SIFIFG0 to SIFIFG6 (See Note 1) Maskable 0FFF2h 9 0FFF0h 8 0FFEEh 7 Timer0_A3 TA0CCR0 CCIFG (see Note 2) Maskable 0FFECh 6 Timer0_A3 TA0CCR1 and TA0CCR2 CCIFGs, and TA0CTL TAIFG (see Notes 1 and 2) Maskable 0FFEAh 5 I/O port P1 (eight flags) P1IFG.0 (see Notes 1 and 2) To P1IFG.7 (see Notes 1 and 2) Maskable 0FFE8h 4 0FFE6h 3 0FFE4h 2 I/O port P2 (eight flags) P2IFG.0 (see Notes 1 and 2) To P2IFG.7 (see Notes 1 and 2) Maskable 0FFE2h 1 Basic Timer1 BTIFG Maskable 0FFE0h 0, lowest NOTES: 1. Multiple source flags 2. Interrupt flags are located in the module. 3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt-enable cannot. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 special function registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits that are not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. interrupt enable 1 and 2 7 Address 6 0h 5 4 ACCVIE NMIIE rw-0 7 Address 1h 6 3 2 rw-0 5 1 0 OFIE WDTIE rw-0 4 3 2 rw-0 1 0 BTIE rw-0 WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable ACCVIE: Flash access violation interrupt enable BTIE: Basic Timer1 interrupt enable interrupt flag register 1 and 2 7 Address 6 5 02h 4 3 2 NMIIFG rw-0 7 Address 3h 6 5 1 0 OFIFG WDTIFG rw-1 4 3 2 rw-0 1 0 BTIFG rw-0 WDTIFG: Set on watchdog-timer overflow (in watchdog mode) or security key violation. Reset with VCC power-up, or a reset condition at the RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin BTIFG: Basic Timer1 interrupt flag module enable registers 1 and 2 Address 7 6 5 4 3 2 1 0 04h/05h Legend: rw: rw-0: Bit Can Be Read and Written Bit Can Be Read and Written. It Is Reset by PUC. SFR Bit Not Present in Device POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLAS383 − OCTOBER 2003 memory organization MSP430FW423 MSP430FW425 MSP430FW427 Size Flash Flash 8KB 0FFFFh − 0FFE0h 0FFFFh − 0E000h 16KB 0FFFFh − 0FFE0h 0FFFFh − 0C000h 32KB 0FFFFh − 0FFE0h 0FFFFh − 08000h Information memory Size 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h Boot memory Size 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h Size 256 Byte 02FFh − 0200h 512 Byte 03FFh − 0200h 1KB 05FFh − 0200h 16-bit 8-bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h Memory Interrupt vector Code memory RAM Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089. BSL Function PM Package Pins Data Transmit 53 - P1.0 Data Receive 52 - P1.1 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0−n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 flash memory (continued) 8KB 16KB 0FFFFh 0FFFFh 32KB 0FFFFh 0FE00h 0FE00h 0FE00h 0FDFFh 0FDFFh 0FDFFh Segment 0 With Interrupt Vectors Segment 1 0FC00h 0FC00h 0FC00h 0FBFFh 0FBFFh 0FBFFh Segment 2 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh Main Memory 0E400h 0C400h 0E3FFh 0C3FFh 083FFh 0E200h 0C200h 0E1FFh 0C1FFh 08200h 081FFh 0E000h 010FFh 0C000h 010FFh 08000h 010FFh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 08400h Segment n−1 Segment n Segment A Information Memory Segment B 01000h 01000h 01000h peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x4xx Family User’s Guide, literature number SLAU056. oscillator and system clock The clock system in the MSP430xW42x family of devices is supported by the FLL+ module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low-power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware which in conjunction with a digital modulator stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal. Main clock (MCLK), the system clock used by the CPU. Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLAS383 − OCTOBER 2003 brownout, supply voltage supervisor The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are six 8-bit I/O ports implemented—ports P1 through P6: D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. Basic Timer1 The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and clock for the LCD module. LCD drive The LCD driver generates the segment and common signals required to drive an LCD display. The LCD controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. watchdog timer The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. comparator_A The primary function of the comparator_A module is to support precision slope analog−to−digital conversions, battery−voltage supervision, and monitoring of external analog signals. scan IF The scan interface is used to measure linear or rotational motion and supports LC and resistive sensors such as GMR sensors. The scan IF incorporates a VCC/2 generator, a comparator, and a 10-bit DAC and supports up to four sensors. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 timer0_A3 Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer0_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer0_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer0_A3 Signal Connections Input Pin Number Device Input Signal Module Input Name 48 - P1.5 TA0CLK TACLK ACLK ACLK SMCLK SMCLK 48 - P1.5 TA0CLK INCLK 53 - P1.0 TA0.0 CCI0A 52 - P1.1 TA0.0 CCI0B DVSS DVCC GND 51 - P1.2 45 - P2.0 TA0.1 VCC CCI1A CAOUT (internal) CCI1B DVSS DVCC GND TA0.2 VCC CCI2A ACLK (internal) CCI2B DVSS DVCC GND Module Block Module Output Signal Timer NA Output Pin Number 53 - P1.0 CCR0 TA0.0 51 - P1.2 CCR1 TA0.1 45 - P2.0 CCR2 TA0.2 VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SLAS383 − OCTOBER 2003 timer1_A5 Timer1_A5 is a 16-bit timer/counter with five capture/compare registers. Timer1_A5 can support multiple capture/compares, PWM outputs, and interval timing. Timer1_A5 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer1_A5 Signal Connections Input Pin Number Device Input Signal Module Input Name 32 - P2.5 TA1CLK TACLK ACLK ACLK SMCLK SMCLK 32 - P2.5 TA1CLK INCLK 49 - P1.4 TA1.0 CCI0A 50 - P1.3 TA1.0 CCI0B DVSS DVCC GND 44 - P2.1 35 - P2.2 34 - P2.3 33 - P2.4 14 TA1.1 VCC CCI1A CAOUT (internal) CCI1B DVSS DVCC GND TA1.2 VCC CCI2A SIFO0sig (internal) CCI2B DVSS DVCC GND TA1.3 VCC CCI3A SIFO1sig (internal) CCI3B DVSS DVCC GND TA1.4 VCC CCI4A SIFO2sig (internal) CCI4B DVSS DVCC GND Module Block Module Output Signal Timer NA 49 - P1.4 CCR0 TA1.0 44 - P2.1 CCR1 TA1.1 35 - P2.2 CCR2 TA1.2 34 - P2.3 CCR3 TA1.3 33 - P2.4 CCR4 VCC POST OFFICE BOX 655303 Output Pin Number • DALLAS, TEXAS 75265 TA1.4 SLAS383 − OCTOBER 2003 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog Timer control WDTCTL 0120h Timer1_A5 Timer1_A interrupt vector TA1IV 011Eh Timer1_A control TA1CTL 0180h Capture/compare control 0 TA1CCTL0 0182h Capture/compare control 1 TA1CCTL1 0184h Capture/compare control 2 TA1CCTL2 0186h Capture/compare control 3 TA1CCTL3 0188h Capture/compare control 4 TA1CCTL4 018Ah Reserved 018Ch Reserved 018Eh Timer1_A register TA1R 0190h Capture/compare register 0 TA1CCR0 0192h Capture/compare register 1 TA1CCR1 0194h Capture/compare register 2 TA1CCR2 0196h Capture/compare register 3 TA1CCR3 0198h Capture/compare register 4 TA1CCR4 019Ah Reserved 019Ch Reserved Timer0_A3 019Eh Timer0_A interrupt vector TA0IV 012Eh Timer0_A control TA0CTL0 0160h Capture/compare control 0 TA0CCTL0 0162h Capture/compare control 1 TA0CCTL1 0164h Capture/compare control 2 TA0CCTL2 0166h Reserved 0168h Reserved 016Ah Reserved 016Ch Reserved 016Eh Timer0_A register TA0R 0170h Capture/compare register 0 TA0CCR0 0172h Capture/compare register 1 TA0CCR1 0174h Capture/compare register 2 TA0CCR2 0176h Reserved 0178h Reserved 017Ah Reserved 017Ch Reserved Flash 017Eh Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SLAS383 − OCTOBER 2003 PERIPHERALS WITH WORD ACCESS (CONTINUED) Scan IF SIF timing state machine 23 SIFTSM23 01FEh : : : SIF timing state machine 0 SIFTSM0 01D0h SIF DAC register 7 SIFDACR7 01CEh : : : SIF DAC register 0 SIFDACR0 01C0h SIF control register 5 SIFCTL5 01BEh SIF control register 4 SIFCTL4 01BCh SIF control register 3 SIFCTL3 01BAh SIF control register 2 SIFCTL2 01B8h SIF control register 1 SIFCTL1 01B6h SIF processing state machine SIFTPSMV 01B4h SIF counter CNT1/2 SIFCNT 01B2h Reserved SIFDEBUG 01B0h LCD memory 20 LCDM20 0A4h : : : LCD memory 16 LCDM16 0A0h LCD memory 15 LCDM15 09Fh : : : LCD memory 1 LCDM1 091h LCD control and mode LCDCTL 090h Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah PERIPHERALS WITH BYTE ACCESS LCD Comparator_A Comparator_A control1 CACTL1 059h Brownout, SVS SVS control register SVSCTL 056h FLL+ Clock FLL+ Control1 FLL_CTL1 054h FLL+ Control0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h BT counter2 BTCNT2 047h BT counter1 BTCNT1 046h BT control BTCTL 040h Basic Timer1 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P6 Port P5 Port P4 Port P3 Port P2 Port P1 Special Functions Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag2 IFG2 003h SFR interrupt flag1 IFG1 002h SFR interrupt enable2 IE2 001h SFR interrupt enable1 IE1 000h absolute maximum ratings† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Storage temperature (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SLAS383 − OCTOBER 2003 recommended operating conditions PARAMETER MIN NOM MAX UNITS Supply voltage during program execution, SVS disabled VCC (AVCC = DVCC = VCC) MSP430xW42x 1.8 3.6 V Supply voltage during program execution, SVS enabled (see Note 1), VCC (AVCC = DVCC = VCC) MSP430xW42x 2.2 3.6 V Supply voltage during programming flash memory, VCC (AVCC = DVCC = VCC) MSP430FW42x 2.7 3.6 V 0 0 V MSP430xW42x −40 85 °C Supply voltage, VSS (AVSS = DVSS = VSS) Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Note 2) LF selected, XTS_FLL=0 Watch crystal 32768 XT1 selected, XTS_FLL=1 Ceramic resonator XT1 selected, XTS_FLL=1 Crystal Hz 450 8000 kHz 1000 8000 kHz DC 4.15 DC 8 Processor frequency (signal MCLK), f(System) VCC = 1.8 V VCC = 3.6 V Low-level input voltage (TCK, TMS, TDI/TCLK, RST/NMI), VIL (excluding XIN) VCC = 2.2 V/3 V VSS VSS+0.6 V High-level input voltage (TCK, TMS, TDI/TCLK, RST/NMI), VIH (excluding XIN) VCC = 2.2 V/3 V 0.8×VCC VCC V MHz f(System) − Maximum Processor Frequency − MHz NOTES: 1. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage. POR is going inactive when the supply voltage is raised above minimum supply voltage plus the hysteresis of the SVS circuitry. 2. The LFXT1 oscillator in LF-mode requires a watch crystal. Supply Voltage Range During Programming of the Flash Memory f (MHz) ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 8 MHz Supply Voltage Range, xW42x During Program Execution 4.15 MHz 1.8 V 2.7 V 3V 3.6 V VCC − Supply Voltage − V Figure 1. Maximum Frequency vs Supply Voltage 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current, (see Note 1) PARAMETER TEST CONDITIONS Active mode, f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz, XTS_FLL = 0 (FW42x: Program executes in flash) I(AM) I(LPM0) I(LPM2) I(LPM3) MIN NOM MAX VCC = 2.2 V 200 250 VCC = 3 V 300 350 VCC = 2.2 V 57 70 VCC = 3 V 92 100 VCC = 2.2 V VCC = 3 V 11 14 17 22 TA = −40°C TA = −10°C 0.95 1.4 0.8 1.3 TA = 25°C TA = 60°C 0.7 1.2 A µA TA = −40°C to 85°C Low-power mode, (LPM0) f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz, XTS_FLL = 0 FN_8=FN_4=FN_3=FN_2=0 TA = −40°C to 85°C Low-power mode, (LPM2) TA = −40°C to 85°C Low-power mode, (LPM3) (see Note 2) UNIT A µA VCC = 2.2 V 0.95 1.4 TA = 85°C TA = −40°C 1.6 2.3 1.1 1.7 TA = −10°C TA = 25°C 1.0 1.6 0.9 1.5 TA = 60°C TA = 85°C 1.1 1.7 2.0 2.6 TA = −40°C TA = 25°C 0.1 0.5 VCC = 3 V µA A µA A 0.1 0.5 VCC = 2.2 V/3 V µA TA = 85°C 0.8 2.5 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The current consumption is measured with active Basic Timer1 and LCD (ACLK selected). The current consumption of the Comparator_A and the SVS module are specified in the respective sections. 2. The LPM3 currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal. I(LPM4) Low-power mode, (LPM4) current consumption of active mode versus system frequency, F version I(AM) = I(AM) [1 MHz] × f(System) [MHz] current consumption of active mode versus supply voltage, F version I(AM) = I(AM) [3 V] + 140 µA/V × (VCC – 3 V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs − Ports P1, P2, P3, P4, P5, and P6; RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT− Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ − VIT−) MIN TYP MAX VCC = 2.2 V VCC = 3 V VCC = 2.2 V 1.1 1.5 1.5 1.9 0.4 0.9 VCC = 3 V VCC = 2.2 V 0.9 1.3 0.3 1.1 0.45 1 VCC = 3 V UNIT V V V inputs Px.x, TAx.x PARAMETER t(int) TEST CONDITIONS VCC 2.2 V/3 V Port P1, P2: P1.x to P2.x, External trigger signal for the interrupt flag, (see Note 1) External interrupt timing t(cap) Timer_A, capture timing TAx.x f(TAext) Timer_A clock frequency externally applied to pin TAxCLK, INCLK t(H) = t(L) f(TAint) Timer_A clock frequency SMCLK or ACLK signal selected MIN TYP MAX 1.5 2.2 V 62 3V 50 2.2 V 62 3V 50 UNIT cycle ns ns 2.2 V 8 3V 10 2.2 V 8 3V 10 MHz MHz NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles. leakage current (see Note 1) PARAMETER Ilkg(P1.x) Ilkg(P6.x) TEST CONDITIONS Leakage current Port P1 Port 1: V(P1.x) (see Note 2) Leakage current Port P6 Port 6: V(P6.x) (see Note 2) MIN NOM VCC = 2.2 V/3 V VCC = 2.2 V/3 V MAX UNIT ±50 nA ±50 nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as an input. outputs − Ports P1, P2, P3, P4, P5, and P6 PARAMETER VOH VOL High-level output voltage Low-level output voltage TEST CONDITIONS MIN IOH(max) = −1.5 mA, IOH(max) = −6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOH(max) = −1.5 mA, IOH(max) = −6 mA, VCC = 3 V, VCC = 3 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 3 V, VCC = 3 V, See Note 1 See Note 2 See Note 2 See Note 2 See Note 2 TYP MAX VCC−0.25 VCC−0.6 VCC VCC VCC−0.25 VCC−0.6 VCC VCC VSS VSS VSS+0.25 VSS+0.6 VSS VSS VSS+0.25 VSS+0.6 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±24 mA to satisfy the maximum specified voltage drop. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 outputs − Ports P1, P2, P3, P4, P5, and P6 (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 40 20 TA = 85°C 15 10 5 0 0.0 d TA = 25°C VCC = 2.2 V P2.4 IOL − Typical Low-Level Output Current − mA IOL − Typical Low-Level Output Current − mA 25 0.5 1.0 1.5 2.0 VCC = 3 V P2.4 35 TA = 85°C 30 25 20 15 10 5 0 0.0 2.5 TA = 25°C 0.5 VOL − Low-Level Output Voltage − V 1.0 Figure 2 3.0 3.5 0 VCC = 2.2 V P2.4 IOH − Typical High-Level Output Current − mA IOH − Typical High-Level Output Current − mA 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 −5 −10 −15 −25 0.0 2.0 Figure 3 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE −20 1.5 VOL − Low-Level Output Voltage − V TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 VOH − High-Level Output Voltage − V −5 VCC = 3 V P2.4 −10 −15 −20 −25 −30 −35 TA = 85°C −40 −45 TA = 25°C −50 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH − High-Level Output Voltage − V Figure 4 Figure 5 NOTE A: One output loaded at a time POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) output frequency PARAMETER TEST CONDITIONS fPx.y (1 ≤ x ≤ 6, 0 ≤ y ≤ 7) CL = 20 pF, IL = ± 1.5mA fACLK, fMCLK, fSMCLK P1.1/TA0.0/MCLK, P1.5/TA0CLK/ACLK CL = 20 pF tXdc MIN VCC = 2.2 V VCC = 3 V TYP MAX DC 10 DC 12 VCC = 2.2 V UNIT MHz 8 MHz VCC = 3 V 12 P1.5/TA0CLK/ACLK, CL = 20 pF VCC = 2.2 V / 3 V fACLK = fLFXT1 = fXT1 fACLK = fLFXT1 = fLF P1.1/TA0.0/MCLK, CL = 20 pF, VCC = 2.2 V / 3 V fMCLK = fLFXT1/n 50%− 15 ns 50% 50%+ 15 ns fMCLK = fDCOCLK 50%− 15 ns 50% 50%+ 15 ns Duty cycle of output frequency 40% 60% 30% fACLK = fLFXT1/n 70% 50% wake-up LPM3 (see Note 1) PARAMETER TEST CONDITIONS MIN NOM MAX t(LPM3) Delay time VCC = 2.2 V/3 V NOTES: 1. The delay time t(LPM3) is independent of the system frequency and VCC. 6 UNIT µs RAM (see Note 1) PARAMETER TEST CONDITIONS VRAMh MIN CPU halted (see Note 1) TYP MAX 1.6 UNIT V NOTES: 1. This parameter defines the minimum supply voltage when the data in the program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. LCD PARAMETER V(33) V(23) V(13) V(33) − V(03) 2.5 Voltage at P5.6/R23 Analog voltage Voltage at P5.5/R13 VCC = 3 V Voltage at R33/R03 R03 = VSS Input leakage P5.5/R13 = VCC/3 P5.6/R23 = 2 × VCC/3 I(R23) V(Sxx0) V(Sxx1) V(Sxx2) Segment line voltage I(Sxx) = −3 µA, A, 2.5 No load at all segment and common lines, VCC = 3 V VCC = 3 V V(Sxx3) 22 MIN Voltage at P5.7/R33 I(R03) I(R13) TEST CONDITIONS POST OFFICE BOX 655303 TYP MAX VCC +0.2 (V33−V03) × 2/3 + V03 (V(33)−V(03)) × 1/3 + V(03) UNIT V VCC +0.2 ±20 ±20 nA ±20 V(03) V(13) V(03) − 0.1 V(13) − 0.1 V(23) V(33) V(23) − 0.1 V(33) + 0.1 • DALLAS, TEXAS 75265 V SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A (see Note 1) PARAMETER TEST CONDITIONS I(CC) CAON = 1, CARSEL = 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3, No load at P1.6/CA0/TA1 and P1.7/ CA1/TA2 MIN TYP MAX VCC = 2.2 V VCC = 3 V 25 40 45 60 VCC = 2.2 V 30 50 VCC = 3 V 45 71 Voltage @ 0.25 V CC node PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1 V CC VCC = 2.2 V / 3 V 0.23 0.24 0.25 V(Ref050) Voltage @ 0.5 V CC node PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1 VCC = 2.2V / 3 V 0.47 0.48 0.50 (See Figure 6 and Figure 7) PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P1.6/CA0 and P1.7/CA1; TA = 85°C VCC = 2.2 V 390 480 540 V(RefVT) VCC = 3.0 V 400 490 550 V(IC) Common-mode input voltage range CAON = 1 VCC = 2. 2V/3 V 0 Offset voltage See Note 2 VCC = 2.2 V/3 V −30 Input hysteresis CAON = 1 VCC = 2.2 V / 3 V VCC = 2.2 V V(offset) Vhys TA = 25 25°C, C, Overdrive 10 mV, without filter: CAF = 0 t(response LH) TA = 25 25°C C Overdrive 10 mV, with filter: CAF = 1 TA = 25 25°C C Overdrive 10 mV, without filter: CAF = 0 t(response HL) µA A A µA V(Ref025) V CC UNIT mV VCC = 3 V VCC = 2.2 V VCC = 3 V VCC = 2.2 V VCC = 3 V VCC = 2.2 V VCC−1.0 V 30 mV 0 0.7 1.4 mV 130 210 300 80 150 240 1.4 1.9 3.4 0.9 1.5 2.6 130 210 300 80 150 240 ns µss ns 1.4 1.9 3.4 µss VCC = 3.0 V 0.9 1.5 2.6 NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. 25°C, TA = 25 C, Overdrive 10 mV, with filter: CAF = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 VCC = 2.2 V V(RefVT) − Reference Voltage − mV V(RefVT) − Reference Voltage − mV VCC = 3 V 600 Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 −5 35 Figure 7 Figure 6 0 V VCC 0 15 CAF 1 CAON Low Pass Filter V+ V− + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2 µs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V− 400 mV V+ t(response) Figure 9. Overdrive Definition 24 55 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 95 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) POR brownout, reset (see Notes 1 and 2) PARAMETER TEST CONDITIONS td(BOR) VCC(start) MIN dVCC/dt ≤ 3 V/s (see Figure 10) V(B_IT−) Vhys(B_IT−) MAX UNIT 2000 µs 0.7 × V(B_IT−) dVCC/dt ≤ 3 V/s (see Figure 10, Figure 11, Figure 12) dVCC/dt ≤ 3 V/s (see Figure 10) Brownout TYP 70 130 V 1.71 V 180 mV Pulse length needed at RST/NMI pin to accepted reset internally, 2 µs VCC = 2.2 V/3 V NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT−) + Vhys(B_IT−) is ≤ 1.8 V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default FLL+ settings must not be changed until VCC ≥ VCC(min). See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit. t(reset) VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 td(BOR) Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage VCC 2 VCC (min) − V tpw 3V V cc = 3 V Typical Conditions 1.5 1 VCC(min) 0.5 0 0.001 1 1000 1 ns tpw − Pulse Width − µs 1 ns tpw − Pulse Width − µs Figure 11. VCC(min) Level With a Square Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) VCC VCC (min) − V 2 1.5 tpw 3V V cc = 3 V Typical Conditions 1 VCC(min) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw − Pulse Width − µs tpw − Pulse Width − µs Figure 12. VCC(min) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal SVS (supply voltage supervisor/monitor) (See Notes 1 and 2) PARAMETER TEST CONDITIONS MIN t(SVSR) dVCC/dt > 30 V/ms (see Figure 13) dVCC/dt ≤ 30 V/ms 5 td(SVSon) tsettle SVSon, switch from VLD=0 to VLD ≠ 0, VCC = 3 V VLD ≠ 0‡ 20 V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 13) VLD = 1 VCC/dt ≤ 3 V/s (see Figure 13) VLD = 2 .. 14 Vhys(B_IT−) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on SVSIN VCC/dt ≤ 3 V/s (see Figure 13) V(SVS_IT−) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on SVSIN VLD = 15 70 NOM MAX UNIT 150 µs 2000 µs 150 µs 12 µs 1.55 1.7 V 120 155 mV V(SVS_IT−) x 0.004 V(SVS_IT−) x 0.008 4.4 10.4 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 VLD = 12 3.11 3.35 VLD = 13 3.24 VLD = 14 3.43 3.5 3.7† 3.42 3.61† 3.76† VLD = 15 1.1 1.2 mV V 3.99† 1.3 ICC(SVS) VLD ≠ 0, VCC = 2.2 V/3 V 10 15 µA (see Note 1) † The recommended operating voltage range is limited to 3.6 V. ‡ tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTES: 1. The current consumption of the SVS module is not included in the ICC current consumption data. 2. The SVS is not active at power up. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Software Sets VLD>0:SVS is Active VCC V (SVS_IT−) V(SVSstart) Vhys(SVS_IT−) Vhys(B_IT−) V(B_IT−) VCC(start) Brownout Brownout Region Brownout Region 1 0 td(BOR) SVS out td(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT−) 1 0 td(SVSon) Set POR 1 td(SVSR) Undefined 0 Figure 13. SVS Reset (SVSR) vs Supply Voltage VCC 3V tpw 2 Rectangular Drop VCC(min) − V 1.5 VCC(min) Triangular Drop 1 1 ns 0.5 1 ns VCC 3V tpw 0 1 10 100 1000 tpw − Pulse Width − µs VCC(min) tf = tr tf tr t − Pulse Width − µs Figure 14. VCC(min) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) DCO PARAMETER f(DCOCLK) TEST CONDITIONS VCC 2.2 V/3 V MIN TYP 2.2 V 0.3 0.65 1.25 3V 0.3 0.7 1.3 2.2 V 2.5 5.6 10.5 3V 2.7 6.1 11.3 2.2 V 0.7 1.3 2.3 3V 0.8 1.5 2.5 2.2 V 5.7 10.8 18 3V 6.5 12.1 20 2.2 V 1.2 2 3 3V 1.3 2.2 3.5 2.2 V 9 15.5 25 3V 10.3 17.9 28.5 2.2 V 1.8 2.8 4.2 3V 2.1 3.4 5.2 2.2 V 13.5 21.5 33 3V 16 26.6 41 2.2 V 2.8 4.2 6.2 3V 4.2 6.3 9.2 2.2 V 21 32 46 3V 30 46 70 1 < TAP ≤ 20 1.06 TAP = 27 1.07 2.2 V –0.2 –0.3 –0.4 3V –0.2 –0.3 –0.4 0 5 15 N(DCO)=01E0h, FN_8=FN_4=FN_3=FN_2=0, D = 2, DCOPLUS= 0 f(DCO2) FN_8=FN_4=FN_3=FN_2=0 , DCOPLUS = 1 f(DCO27) FN_8=FN_4=FN_3=FN_2=0, DCOPLUS = 1, (see Note 1) f(DCO2) FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1 f(DCO27) FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1, (see Note 1) f(DCO2) FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1 f(DCO27) FN_8=FN_4=0, FN_3= 1, FN_2=x;, DCOPLUS = 1, (see Note 1) f(DCO2) FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1 f(DCO27) FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1, (see Note 1) f(DCO2) FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1 f(DCO27) FN_8=1,FN_4=FN_3=FN_2=x,DCOPLUS = 1, (see Note 1) Sn Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n), (see Figure 16 for taps 21 to 27) Dt Temperature drift, N(DCO) = 01E0h, FN_8=FN_4=FN_3=FN_2=0 D = 2, DCOPLUS = 0, (see Note 2) DV Drift with VCC variation, N(DCO) = 01E0h, FN_8=FN_4=FN_3=FN_2=0 D = 2, DCOPLUS = 0 (see Note 2) MAX 1 UNIT MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz 1.11 1.17 %/_C %/V NOTES: 1. Do not exceed the maximum system frequency. 2. This parameter is not production tested. f f f (DCO) f (DCO3V) (DCO) (DCO205C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC − V −40 −20 0 20 40 60 Figure 15. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 85 TA − °C SLAS383 − OCTOBER 2003 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 1.17 ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 16. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 25 in SCFI1 {N{DCO}} Tolerance at Tap 2 Overlapping DCO Ranges: Uninterrupted Frequency Range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 SLAS383 − OCTOBER 2003 crystal oscillator, LFXT1 oscillator (see Notes 1 and 2) PARAMETER CXIN CXOUT VIL VIH Integrated load capacitance Integrated load capacitance Input levels at XIN TEST CONDITIONS OSCCAPx = 0h VCC 2.2 V/3 V OSCCAPx = 1h 2.2 V/3 V 10 OSCCAPx = 2h 2.2 V/3 V 14 OSCCAPx = 3h 2.2 V/3 V 18 OSCCAPx = 0h 2.2 V/3 V 0 OSCCAPx = 1h 2.2 V/3 V 10 OSCCAPx = 2h 2.2 V/3 V 14 OSCCAPx = 3h 2.2 V/3 V see Note 3 2.2 V/3 V MIN TYP MAX UNIT 0 pF pF 18 VSS 0.8×VCC 0.2×VCC VCC V NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2pF. The effective load capacitor for the crystal is (CXIN x CXOUT) / (CXIN + CXOUT). It is independent of XTS_FLL. 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines must be observe: • Keep as short a trace as possible between the ’xW42x and the crystal. • Design a good ground plane around oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to XIN an XOUT pins. • Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. • Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator. 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Scan IF, port drive, port timing PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VOL(SIFCHx) Voltage drop due to excitation transistor’s on−resistance. (see Figure 18) I(SIFCHx) = 2.0 mA, SIFTEN = 1 3V 0.3 V VOH(SIFCHx) (see Note 1) Voltage drop due to damping transistor’s on−resistance. (see Figure 18) I(SIFCHx) = −200 µA, SIFTEN = 1 3V 0.1 V 0 0.1 V 3V −50 50 nA 2.2 V/3 V −20 20 ns VOL(SIFCOM) I(SIFCOM) = 3 mA, SIFSH = 1 V(SIFCHx) = 0 V to AVCC, port function disabled, SIFSH = 1 ISIFCHx(tri-state) ∆tdSIFCH : twEx(tsm)−twSIFCH (see Note 2 and Figure 18) Change of pulse width of internal signal SIFEX(tsm) to pulse width at pin SIFCHx I(SIFCHx) = 3 mA, tEx(SIFCHx) = 500 ns ±20% 2.2 V/3 V NOTES: 4. SIFCOM=1.5V , supplied externally. (See Figure 19). 5. Not production tested. tEx(SIFCHx) SIFEX(tsm) P6.x/SIFCH.x tSIFCH(x) Figure 18. P6.x/SIFCHx timing, SIFCHx function selected SIFCOM VOH(SIFCHx) Damping Transistor I(SIFCHx) P6.x/SIFCH.x VOL(SIFCHx) Excitation Transistor Figure 19. Voltage drop due to on-resistance POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Scan IF, sample capacitor/Ri timing (See Note 1) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT CSHC(SIFCHx) Sample capacitance at SIFCHx pin SIFEx(tsm) = 1, SIFSH = 1 2.2 V/3 V 5 7 pF Ri(SIFCHx) Serial input resistance at the SIFCHx pin SIFEx(tsm) = 1, SIFSH = 1 2.2 V/3 V 1.5 3 kΩ tHold (See Notes 6 and 2) Maximum hold time ∆Vsample < 3 mV µs 62 NOTES: 6. Values are not production tested. 7. The sampled voltage at the sample capacitance varies less than 3 mV (∆Vsample) during the hold time tHold. If the voltage is sampled after tHold, the sampled voltage may be any other value. 8. The minimum sampling time (7.6 x tau for 1/2 LSB accuracy) with maximum CSHC(SIFCHx) and Ri(SIFCHx) and Ri(source) is tsample(min) ~ 7.6 x CSHC(SIFCHx) x (Ri(SIFCHx) + Ri(source)) with Ri(source) estimated at 3 kΩ, tsample(min) = 319 ns. Scan IF, VCC/2 generator PARAMETER TEST CONDITIONS VCC MIN TYP AVCC Analog supply voltage AVCC = DVCC (connected together) AVSS = DVSS (connected together) AICC Scan IF VCC/2 generator operating supply current into AVCC terminal CL at SIFCOM pin = 470 nF ±20%, frefresh(SIFCOM) =32768 Hz frefresh(SIFCOM) VCC/2 refresh frequency Source clock = ACLK V(SIFCOM) Output voltage at pin SIFCOM CL at SIFCOM pin = 470 nF ±20%, I_Load = 1µA SIFCOM source current (see Note 2 and Figure 20) 2.2 V −500 Isource(SIFCOM) 3V −900 SIFCOM sink current (see Note 2 and Figure 20) 2.2 V 150 Isink(SIFCOM) 3V 180 trecovery(SIFCOM) Time to recover from Voltage Drop on Load ILoad1 = ILOAD3 = 0 mA ILoad2 = 3 mA, tload(on) = 500nS, CL at SIFCOM pin = 470 nF ±20% ton(SIFCOM) Time to reach 98% after VCC/2 is switched on CL at SIFCOM pin = 470 nF ±20% frefresh(SIFCOM) = 32768 Hz tVccSettle(SIFCOM) (See Note 1) Settling time to ±VCC/512 (2 LSB) after AVCC voltage change MAX 2.2 UNIT 3.6 2.2 V 250 350 3V 370 450 V nA 2.2 V/3 V 30 32.768 AVCC/2 − .05 AVCC/2 kHz AVCC/2 + .05 V µA A nA 2.2 V/3 V 30 µss 6 ms 2.2 V/3 V 1.7 SIFEN =1, SIFVCC2 =1, SIFSH =0, AVCC = AVCC −100 mV frefresh(SIFCOM) = 32768 Hz 2.2 V/3 V AVCC = AVCC + 100mV frefresh(SIFCOM) = 32768 Hz 2.2 V/3 V 80 ms 3 NOTES: 9. The settling time after an AVCC voltage change is the time to for the voltage at pin SIFCOM to settle to AVCC/2 ± 2LSB. 10. The sink and source currents are a function of the voltage at the pin SIFCOM. The maximum currents are reached if SIFCOM is shorted to GND or VCC. Due to the topology of the output section (refer to Figure 20) the VCC/2 generator can source relatively large currents but can sink only small currents. 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) VCC VCC/2 ISource(SIFCOM) SIFCOM ISink(SIFCOM) Figure 20. P6.x/SIFCHx timing, SIFCHx function selected Scan IF, 10-bit DAC (See Note 11) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC = DVCC (connected together) AVSS = DVSS (connected together) AICC Scan IF 10-bit DAC operating supply current into AVCC terminal CL at SIFCOM pin = 470 nF ±20%, frefresh(SIFCOM) = 32768 Hz VCC MIN 2.2 MAX 3.6 2.2 V 23 45 3V 33 60 UNIT V A µA Resolution 10 INL RL = 1000 MΩ, CL = 20 pF 2.2 V/3 V DNL RL = 1000 MΩ, CL = 20 pF EZS EG RO Output resistance ton(SIFDAC) On time after AVCC of SIFDAC is switched on tSettle(SIFDAC) TYP ±5 LSB 2.2 V/3 V ±1 LSB Zero Scale Error 2.2 V/3 V ±10 mV Gain Error 2.2 V/3 V Settling time ±2 bit 25 0.6 % 50 kΩ V+SIFCA − VSIFDAC = ±6 mV 2.2 V/3 V 2.0 µs SIFDAC code = 1C0h → 240h VSIFDAC(240h) − V+SIFCA = +6 mV 2.2 V/3 V 2.0 µs 2.0 µs SIFDAC code = 240h → 1C0h, 2.2 V/3 V VSIFDAC(1C0h) − V+SIFCA = −6 mV NOTES: 11. The SIFDAC operates from AVCC and SIFVSS. All parameters are based on these references. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Scan IF, Comparator PARAMETER AVCC Analog supply voltage TEST CONDITIONS VCC AVCC = DVCC (connected together) AVSS = DVSS (connected together) MIN TYP 2.2 MAX UNIT 3.6 V VIC Scan IF comparator operating supply current into AVCC terminal Common Mode Input Voltage Range VOffset Input Offset Voltage 2.2 V/3 V dVOffset/dT Temperature coefficient of VOffset 2.2 V/3 V 10 µV/_C dVOffset/dVCC VOffset supply voltage (VCC) sensitivity 2.2 V/3 V 0.3 mV/V Vhys Input Voltage Hysteresis V+terminal = V−terminal = 0.5 x VCC ton(SIFCA) On time after SIFCA is switched on V+SIFCA − VSIFDAC = +6 mV V+SIFCA = 0.5 x AVCC 2.2 V/3 V 2.0 us tSettle(SIFCA) Settle time V+SIFCA − VSIFDAC= −12 mV → 6 mV V+SIFCA = 0.5 x AVCC 2.2 V/3 V 2.0 us AICC (see Note 1) 2.2 V 25 35 3V 35 50 2.2 V/3 V µA A AVCC − 0.5 0.9 ±30 2.2V 0 5.0 3.0V 0 6.0 V mV mV NOTES: 12. The comparator output is reliable when at least one of the input signals is within the common mode input voltage range. Scan IF, SIFCLK Oscillator PARAMETER TEST CONDITIONS AVCC Analog supply voltage AICC Scan IF oscillator operating supply current into AVCC terminal fSIFCLKG = 0 Scan IF oscillator at minimum setting TA=25ºC, SIFCLKFQ=0000 fSIFCLKG = 8 Scan IF oscillator at nominal setting TA=25ºC, SIFCLKFQ=0000 fSIFCLKG = 15 Scan IF oscillator at maximum setting TA=25ºC, SIFCLKFQ=0000 ton(SIFCLKG) Settling time to full operation after VCC is switched on S(SIFCLK) Frequency Change per ±1 SIFCLKFQ(SIFCTL5) step Dt DV 34 VCC AVCC = DVCC (connected together) AVSS = DVSS (connected together) MIN TYP 2.2 MAX 3.6 2.2 V 75 3V 90 SIFNOM = 0 1.8 3.2 SIFNOM = 1 0.45 0.8 SIFNOM = 0 4 SIFNOM = 1 1 UNIT V µA A MHz SIFNOM = 0 4.48 6.8 SIFNOM = 1 1.12 1.7 2.2 V/3 V 150 500 ns S(SIFCLK) = f(SIFCLKFQ + 1) / f(SIFCLKFQ) 2.2 V/3 V 1.01 1.18 Hz/Hz Temperature Coefficient SIFCLKFQ(SIFCTL5) = 8 2.2 V/3 V 0.35 %/_C Frequency vs. supply voltage VCC variation SIFCLKFQ(SIFCTL5) = 8 2.2 V/3 V 2 %/V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1.05 SLAS383 − OCTOBER 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Flash Memory TEST CONDITIONS PARAMETER VCC(PGM/ ERASE) VCC MIN NOM MAX UNIT Program and Erase supply voltage 2.7 3.6 V fFTG IPGM Flash Timing Generator frequency 257 476 kHz Supply current from DVCC during program 2.7 V/ 3.6 V 3 5 mA IERASE tCPT Supply current from DVCC during erase 2.7 V/ 3.6 V 3 5 mA Cumulative program time see Note 1 2.7 V/ 3.6 V 4 ms tCMErase Cumulative mass erase time see Note 2 2.7 V/ 3.6 V Program/Erase endurance TJ = 25°C 200 104 ms 105 tRetention Data retention duration tWord tBlock, 0 Word or byte program time Block program time for 1st byte or word tBlock, 1-63 tBlock, End Block program time for each additional byte or word tMass Erase tSeg Erase Mass erase time 5297 Segment erase time 4819 Block program end-sequence wait time cycles 100 years 35 30 21 see Note 3 tFTG 6 NOTES: 13. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write feature is used. 14. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/fFTG,max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required). 15. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). JTAG Interface, F-Device TEST CONDITIONS PARAMETER fTCK TCK input frequency see Note 1 RInternal Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2 VCC MIN 2.2 V 0 NOM MAX UNIT 5 MHz 3V 0 10 MHz 2.2 V/ 3 V 25 60 90 kΩ MIN NOM MAX NOTES: 16. fTCK may be restricted to meet the timing requirements of the module selected. 17. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG Fuse, F-Device (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) VFB Supply voltage during fuse-blow condition IFB tFB Supply current into TDI/TCLK during fuse blow TA = 25°C Voltage level on TDI/TCLK for fuse-blow VCC 2.5 6 Time to blow fuse UNIT V 7 V 100 mA 1 ms NOTES: 18. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION Port P1, P1.0 to P1.5, input/output with Schmitt-trigger Pad Logic CAPD.x P1SEL.x 0: Input 1: Output 0 P1DIR.x Direction Control From Module P1OUT.x 1 0 1 Module X OUT Bus keeper P1.0/TA0.0 P1.1/TA0.0/MCLK P1.2/TA0.1 P1.3/TA1.0/SVSOUT P1.4/TA1.0 P1.5/TA0CLK/ACLK P1IN.x EN D Module X IN P1IE.x P1IRQ.x P1IFG.x Q EN Interrupt Edge Select Set P1IES.x P1SEL.x NOTE: 0 ≤ x ≤ 5. Port Function is Active if CAPD.x = 0 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x P1SEL.0 P1DIR.0 P1DIR.0 P1OUT.0 Out0 Sig.† P1IN.0 CCI0A† P1IE.0 P1IFG.0 P1IES.0 P1SEL.1 P1DIR.1 P1DIR.1 P1OUT.1 MCLK P1IN.1 CCI0B† P1IE.1 P1IFG.1 P1IES.1 P1SEL.2 P1DIR.2 P1DIR.2 P1OUT.2 Out1 Sig.† P1IN.2 CCI1A† P1IE.2 P1IFG.2 P1IES.2 P1SEL.3 P1DIR.3 P1DIR.3 P1OUT.3 SVSOUT P1IN.3 CCI0B‡ P1IE.3 P1IFG.3 P1IES.3 P1SEL.4 P1DIR.4 P1DIR.4 P1OUT.4 Out0 Sig.‡ P1IN.4 CCI0A‡ P1IE.4 P1IFG.4 P1IES.4 P1SEL.5 P1DIR.5 P1DIR.5 P1OUT.5 ACLK P1IN.5 T0ACLK† P1IE.5 P1IFG.5 P1IES.5 † Timer0_A ‡ Timer1_A 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION Port P1, P1.6, P1.7 input/output with Schmitt-trigger Pad Logic Note: Port Function Is Active if CAPD.6 = 0 CAPD.6 P1SEL.6 0: Input 1: Output 0 P1DIR.6 1 P1DIR.6 P1.6/ CA0 0 P1OUT.6 1 DVSS Bus Keeper P1IN.6 EN D unused P1IE.7 P1IRQ.07 EN Interrupt Edge Select Q P1IFG.7 Set P1IES.x P1SEL.x Comparator_A P2CA AVcc CAREF CAEX CA0 CAF CCI1B + to Timer_Ax − CA1 2 Reference Block CAREF Pad Logic Note: Port Function Is Active if CAPD.7 = 0 CAPD.7 P1SEL.7 0: Input 1: Output 0 P1DIR.7 1 P1.7/ CA1 P1DIR.7 0 P1OUT.7 1 DVSS Bus Keeper P1IN.7 EN unused D P1IE.7 P1IRQ.07 EN Q P1IFG.7 Set Interrupt Edge Select P1IES.7 P1SEL.7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P2, P2.0 to P2.7, input/output with Schmitt-trigger P2.0, P2.1 LCDM.5 LCDM.6 P2.2 to P2.5 LCDM.7 P2.6, P2.7 0: Port Active 1: Segment xx Function Active Pad Logic Segment xx P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module P2OUT.x 1 0 P2.x 1 Module X OUT Bus keeper P2.0/TA0.2 P2.1/TA1.1 P2.2/TA1.2/S23 P2.3/TA1.3/S22 P2.4/TA1.4/S21 P2.5/TA1CLK/S20 P2.6/CAOUT/S19 P2.7/SIFCLKG/S18 P2IN.x EN Module X IN D P2IE.x P2IRQ.x P2IFG.x Q EN Set NOTE: 0 ≤ x ≤ 7 Interrupt Edge Select P2IES.x P2SEL.x PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x P2SEL.0 P2DIR.0 P2DIR.0 P2OUT.0 Out2 Sig.† P2IN.0 CCI2A† P2IE.0 P2IFG.0 P2IES.0 P2SEL.1 P2DIR.1 P2DIR.1 P2OUT.1 Out1 Sig.‡ P2IN.1 CCI1A‡ P2IE.1 P2IFG.1 P2IES.1 P2SEL.2 P2DIR.2 P2DIR.2 P2OUT.2 Out2 Sig.‡ P2IN.2 CCI2A‡ P2IE.2 P2IFG.2 P2IES.2 P2SEL.3 P2DIR.3 P2DIR.3 P2OUT.3 Out3 Sig.‡ P2IN.3 CCI3A‡ P2IE.3 P2IFG.3 P2IES.3 P2SEL.4 P2DIR.4 P2DIR.4 P2OUT.4 Out4 Sig.‡ P2IN.4 CCI4A‡ P2IE.4 P2IFG.4 P2IES.4 P2SEL.5 P2DIR.5 P2DIR.5 P2OUT.5 DVSS P2IN.5 TA1CLK1‡ P2IE.5 P2IFG.5 P2IES.5 P2SEL.6 P2DIR.6 P2DIR.6 P2OUT.6 CAOUT P2IN.6 Unused P2IE.6 P2IFG.6 P2IES.6 P2SEL.7 P2DIR.7 P2DIR.7 P2OUT.7 SIFCLKG§ P2IN.7 Unused P2IE.7 P2IFG.7 P2IES.7 †Timer0_A ‡Timer1_A §Scan IF 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P3, P3.0, P3.7, input/output with Schmitt-trigger LCDM.5 LCDM.6 LCDM.7 P3.2 to P3.7 P3.0, P3.1 0: Port Active 1: Segment xx Function Active Pad Logic Segment xx P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module P3OUT.x 1 0 1 Module X OUT P3.x Bus keeper P3.0/S17 P3.1/S16 P3.2/S15 P3.3/S14 P3.4/S13 P3.5/S12 P3.6/S11 P3.7/S10 P3IN.x EN D Module X IN NOTE: 0 ≤ x ≤ 7 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P3SEL.0 P3DIR.0 P3DIR.0 P3OUT.0 DVSS P3IN.0 Unused P3SEL.1 P3DIR.1 P3DIR.1 P3OUT.1 DVSS P3IN.1 Unused P3SEL.2 P3DIR.2 P3DIR.2 P3OUT.2 DVSS P3IN.2 Unused P3SEL.3 P3DIR.3 P3DIR.3 P3OUT.3 DVSS P3IN.3 Unused P3SEL.4 P3DIR.4 P3DIR.4 P3OUT.4 DVSS P3IN.4 Unused P3SEL.5 P3DIR.5 P3DIR.5 P3OUT.5 DVSS P3IN.5 Unused P3SEL.6 P3DIR.6 P3DIR.6 P3OUT.6 DVSS P3IN.6 Unused P3SEL.7 P3DIR.7 P3DIR.7 P3OUT.7 DVSS P3IN.7 Unused POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P4, P4.0 to P4.7, input/output with Schmitt-trigger LCDM.5 LCDM.6 LCDM.7 0: Port Active 1: Segment xx Function Active Pad Logic Segment xx P4SEL.x 0: Input 1: Output 0 P4DIR.x Direction Control From Module P4OUT.x 1 0 1 Module X OUT P4.x Bus keeper P4.0/S9 P4.1/S8 P4.2/S7 P4.3/S6 P4.4/S5 P4.5/S4 P4.6/S3 P4.7/S2 P4IN.x EN D Module X IN NOTE: 0 ≤ x ≤ 7 40 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P4SEL.0 P4DIR.0 P4DIR.0 P4OUT.0 DVSS P4IN.0 Unused P4SEL.1 P4DIR.1 P4DIR.1 P4OUT.1 DVSS P4IN.1 Unused P4SEL.2 P4DIR.2 P4DIR.2 P4OUT.2 DVSS P4IN.2 Unused P4SEL.3 P4DIR.3 P4DIR.3 P4OUT.3 DVSS P4IN.3 Unused P4SEL.4 P4DIR.4 P4DIR.4 P4OUT.4 DVSS P4IN.4 Unused P4SEL.5 P4DIR.5 P4DIR.5 P4OUT.5 DVSS P4IN.5 Unused P4SEL.6 P4DIR.6 P4DIR.6 P4OUT.6 DVSS P4IN.6 Unused P4SEL.7 P4DIR.7 P4DIR.7 P4OUT.7 DVSS P4IN.7 Unused POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P5, P5.0, P5.1, input/output with Schmitt-trigger LCDM.5 LCDM.6 LCDM.7 0: Port Active 1: Segment Function Active Pad Logic Segment xx or COMx or Rxx P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module P5OUT.x 1 0 1 Module X OUT P5.x Bus keeper P5.0/S1 P5.1/S0 P5IN.x EN D Module X IN NOTE: x = 0, 1 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN Segment P5SEL.0 P5DIR.0 P5DIR.0 P5OUT.0 DVSS P5IN.0 Unused S1 P5SEL.1 P5DIR.1 P5DIR.1 P5OUT.1 DVSS P5IN.1 Unused S0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P5, P5.2, P5.4, input/output with Schmitt-trigger 0: Port Active 1: COMx Function Active Pad Logic COMx P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module P5OUT.x 1 0 1 Module X OUT P5.x Bus keeper P5.2/COM1 P5.3/COM2 P5.4/COM3 P5IN.x EN D Module X IN NOTE: 2 ≤ x ≤ 4 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN COMx P5SEL.2 P5DIR.2 P5DIR.2 P5OUT.2 DVSS P5IN.2 Unused COM1 P5SEL.3 P5DIR.3 P5DIR.3 P5OUT.3 DVSS P5IN.3 Unused COM2 P5SEL.4 P5DIR.4 P5DIR.4 P5OUT.4 DVSS P5IN.4 Unused COM3 NOTE: The direction control bits P5SEL.2, P5SEL.3, and P5SEL.4 are used to distinguish between port and common functions. Note that a 4MUX LCD requires all common signals COM3 to COM0, a 3MUX LCD requires COM2 to COM0, 2MUX LCD requires COM1 to COM0, and a static LCD requires only COM0. 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P5, P5.5 to P5.7, input/output with Schmitt-trigger 0: Port Active 1: Rxx Function Active Pad Logic Rxx P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module P5OUT.x 1 0 1 Module X OUT P5.x Bus keeper P5.5/R13 P5.6/R23 P5.7/R33 P5IN.x EN D Module X IN NOTE: 5 ≤ x ≤ 7 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN Rxx P5SEL.5 P5DIR.5 P5DIR.5 P5OUT.5 DVSS P5IN.5 Unused R13 P5SEL.6 P5DIR.6 P5DIR.6 P5OUT.6 DVSS P5IN.6 Unused R23 P5SEL.7 P5DIR.7 P5DIR.7 P5OUT.7 DVSS P5IN.7 Unused R33 NOTE: The direction control bits P5SEL.5, P5SEL.6, and P5SEL.7 are used to distinguish between port and LCD analog level functions. Note that 4MUX and 3MUX LCDs require all Rxx signals R33 to R03, a 2MUX LCD requires R33, R13, and R03, and a static LCD requires only R33 and R03. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P6, P6.0, P6.1, P6.2, P6.4, P6.5, input/output with Schmitt-trigger P6SEL.x 0 P6DIR.x Direction Control From Module 1 0: Input 1: Output Pad Logic 0 P6OUT.x Module X OUT P6.X 1 P6.0/SIFCH0 P6.1/SIFCH1 P6.2/SIFCH2 P6.4/SIFCI0 P6.5/SIFCI1 Bus Keeper P6IN.x EN Module X IN D To/From Scan I/F P6SEL.x must be set if the corresponding pins are used by the Scan IF. x: Bit Identifier = 0, 1, 2, 4, or 5 NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin. PnSEL.x PnDIR.x Dir. Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused NOTE: The signal at pins P6.x/SIFCHx and P6.x/SIFCIx are shared by Port P6 and the San IF module. P6SEL.x must be set if the corresponding pins are used by the Scan IF. 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P6, P6.3 input/output with Schmitt-trigger P6SEL.3 0 P6DIR.3 0: Input 1: Output 1 Pad Logic 0 P6OUT.x SIFCAOUT P6.3/SIFCH3/SIFCAOUT 1 Bus Keeper P6IN.3 EN Module X IN D To/From Scan I/F P6SEL.x must be set if the corresponding pins are used by the Scan IF. NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin. P6SEL.3 P6DIR.3 Port Function 0 0 P6.3 Input 0 1 P6.3 Output 1 0 SIFCH3 (Scan IF channel 3 excitation output and comparator input) 1 1 SIFCAOUT (Comparator output) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P6, P6.6 input/output with Schmitt-trigger P6SEL.6 0 P6DIR.6 0: Input 1: Output 1 Pad Logic 0 P6OUT.6 DVss P6.6/SIFCI2/DACOUT 1 Bus Keeper P6IN.6 EN Module X IN D 1 From Scan I/F DAC To Scan I/F comparator input mux P6SEL.x must be set if the corresponding pins are used by the Scan IF. NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin. 46 P6SEL.6 P6DIR.6 0 0 P6.6 Input 0 1 P6.6 Output 1 0 SIFCI2 (Scan IF channel 2 comparator input) 1 1 SIFDAOUT (Scan IF DAC output) Port Function POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION port P6, P6.7 input/output with Schmitt-trigger SVS VLDx=15 P6SEL.7 P6DIR.7 0 1 0: Input 1: Output Pad Logic 0 P6OUT.7 DVss P6.6/SIFCI3/SVSIN 1 Bus Keeper P6IN.7 EN Module X IN D SVS VLDx=15 1 To SVS To Scan I/F comparator (+) terminal P6SEL.x must be set if the corresponding pins are used by the Scan IF. NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin. SVS VLDx = 15 P6SEL.7 P6DIR.7 0 0 0 P6.7 Input 0 0 1 P6.7 Output 0 1 X SIFCI3 (Scan IF channel 3 comparator input) 1 X X SVSIN POST OFFICE BOX 655303 Port Function • DALLAS, TEXAS 75265 47 SLAS383 − OCTOBER 2003 APPLICATION INFORMATION JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output TDO Controlled by JTAG Controlled by JTAG TDO/TDI JTAG Controlled by JTAG DVCC TDI Burn and Test Fuse TDI/TCLK Test and Emulation DVCC TMS Module TMS DVCC TCK TCK RST/NMI Tau ~ 50 ns Brownout TCK 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G D U S G D U S SLAS383 − OCTOBER 2003 APPLICATION INFORMATION JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1.8 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 21). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally, and therefore do not require external termination. Time TMS Goes Low After POR TMS ITDI/TCLK ITF Figure 21. Fuse Check Mode Current, MSP430FW42x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Applications amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2003, Texas Instruments Incorporated