MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultralow-Power Consumption: D D D D D D D D D − Active Mode: 200 μA at 1 MHz, 2.2 V − Standby Mode: 0.7 μA − Off Mode (RAM Retention): 0.1 μA Five Power-Saving Modes Wake-Up From Standby Mode in Less Than 6 μs Frequency-Locked Loop, FLL+ 16-Bit RISC Architecture, 125-ns Instruction Cycle Time Scan IF for Background Water, Heat, and Gas Volume Measurement 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_A With Five Capture/Compare Registers Integrated LCD Driver for Up to 96 Segments On-Chip Comparator D Serial Onboard Programming, D D D D D D No External Programming Voltage Needed Programmable Code Protection by Security Fuse Brownout Detector Supply Voltage Supervisor/Monitor With Programmable Level Detection Bootstrap Loader in Flash Devices Family Members Include: − MSP430FW423: 8KB + 256B Flash Memory, 256B RAM − MSP430FW425: 16KB + 256B Flash Memory, 512B RAM − MSP430FW427: 32KB + 256B Flash Memory, 1KB RAM Available in 64-Pin Quad Flat Pack (QFP) For Complete Module Descriptions, Refer to the MSP430x4xx Family User’s Guide, Literature Number SLAU056 description The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 μs. The MSP430xW42x series are microcontroller configurations with two built-in 16-bit timers, a comparator, 96 LCD segment drive capability, a scan interface, and 48 I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and process the data and transmit them to a host system. The comparator and timers make the configurations ideal for gas, heat, and water meters, industrial meters, counter applications, handheld meters, etc. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright © 2007, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 AVAILABLE OPTIONS PACKAGED DEVICES TA PLASTIC 64-PIN QFP (PM) MSP430FW423IPM MSP430FW425IPM MSP430FW427IPM −40°C to 85°C AVCC DVSS AVSS P6.2/SIFCH2 P6.1/SIFCH1 P6.0/SIFCH0 RST/NMI TCK TMS TDI/TCLK TDO/TDI P1.0/TA0.0 P1.1/TA0.0/MCLK P1.2/TA0.1 P1.3/TA1.0/SVSOUT P1.4/TA1.0 pin designation, MSP430xW42x 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 8 MSP430xW42x 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P4.4/S5 P4.3/S6 P4.2/S7 P4.1/S8 P4.0/S9 P3.7/S10 P3.6/S11 P3.5/S12 P3.4/S13 P3.3/S14 P3.2/S15 P3.1/S16 P3.0/S17 P2.7/SIFCLKG/S18 P2.6/CAOUT/S19 P2.5/TA1CLK/S20 DVCC P6.3/SIFCH3/SIFCAOUT P6.4/SIFCI0 P6.5/SIFCI1 P6.6/SIFCI2/SIFDACOUT P6.7/SIFCI3/SVSIN SIFCI XIN XOUT SIFVSS SIFCOM P5.1/S0 P5.0/S1 P4.7/S2 P4.6/S3 P4.5/S4 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P1.5/TA0CLK/ACLK P1.6/CA0 P1.7/CA1 P2.0/TA0.2 P2.1/TA1.1 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P2.2/TA1.2/S23 P2.3/TA1.3/S22 P2.4/TA1.4/S21 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 functional block diagram XIN DVCC XOUT DVSS AVCC AVSS P1 P2 P4 P3 8 8 Port 1 Port 2 8 I/O Interrupt Capability 8 I/O Interrupt Capability P6 P5 8 8 8 8 Port 3 Port 4 Port 5 Port 6 8 I/O 8 I/O 8 I/O 8 I/O ACLK Oscillator FLL+ SMCLK MCLK 8 MHz CPU incl. 16 Registers Emulation Module JTAG Interface Flash RAM 32KB 16KB 8KB 1KB 512B 256B Scan IF MAB MDB POR/ Multilevel SVS/ Brownout Watchdog Timer WDT Timer0_A3 Timer1_A5 3 CC Reg 5 CC Reg Comparator_ A 15/16-Bit Basic Timer 1 1 Interrupt Vector LCD 96 Segments 1,2,3,4 MUX fLCD RST/NMI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION AVCC 64 Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, scan IF AFE, port 6, and LCD resistive divider circuitry; must not power up prior to DVCC. AVSS 62 Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, scan IF AFE. and port 6. Must be externally connected to DVSS. Internally connected to DVSS. DVCC 1 Digital supply voltage, positive terminal. DVSS 63 Digital supply voltage, negative terminal. SIFVSS 10 P1.0/TA0.0 53 I/O General-purpose digital I/O/Timer0_A. Capture: CCI0A input, compare: Out0 output/BSL transmit P1.1/TA0.0/MCLK 52 I/O General-purpose digital I/O/Timer0_A. Capture: CCI0B input/MCLK output/BSL receive Note: TA0.0 is only an input on this pin. P1.2/TA0.1 51 I/O General-purpose digital I/O/Timer0_A, capture: CCI1A input, compare: Out1 output P1.3/TA1.0/ SVSOUT 50 I/O General-purpose digital I/O/Timer1_A, capture: CCI0B input/SVS: output of SVS comparator Note: TA1.0 is only an input on this pin. P1.4/TA1.0 49 I/O General-purpose digital I/O/Timer1_A, capture: CCI0A input, compare: Out0 output P1.5/TA0CLK/ ACLK 48 I/O General-purpose digital I/O/input of Timer0_A clock/output of ACLK P1.6/CA0 47 I/O General-purpose digital I/O/Comparator_A input P1.7/CA1 46 I/O General-purpose digital I/O/Comparator_A input P2.0/TA0.2 45 I/O General-purpose digital I/O/Timer0_A, capture: CCI2A input, compare: Out2 output P2.1/TA1.1 44 I/O General-purpose digital I/O/Timer0_A, capture: CCI1A input, compare: Out1 output P2.2/TA1.2/S23 35 I/O General-purpose digital I/O/Timer1_A, capture: CCI2A input, compare: Out2 output/LCD segment output 23 (see Note) P2.3/TA1.3/S22 34 I/O General-purpose digital I/O/Timer1_A, capture: CCI3A input, compare: Out3 output/LCD segment output 22 (see Note) P2.4/TA1.4/S21 33 I/O General-purpose digital I/O/Timer1_A, capture: CCI4A input, compare: Out4 output/LCD segment output 21 (see Note) P2.5/TA1CLK/S20 32 I/O General-purpose digital I/O/input of Timer1_A clock/LCD segment output 20 (see Note) P2.6/CAOUT/S19 31 I/O General-purpose digital I/O/Comparator_A output/LCD segment output 19 (see Note) P2.7/SIFCLKG/ S18 30 I/O General-purpose digital I/O/Scan IF, signal SIFCLKG from internal clock generator/LCD segment output 18 (see Note) P3.0/S17 29 I/O General-purpose digital I/O/ LCD segment output 17 (see Note) P3.1/S16 28 I/O General-purpose digital I/O/ LCD segment output 16 (see Note) P3.2/S15 27 I/O General-purpose digital I/O/ LCD segment output 15 (see Note) P3.3/S14 26 I/O General-purpose digital I/O/ LCD segment output 14 (see Note) P3.4/S13 25 I/O General-purpose digital I/O/LCD segment output 13 (see Note) P3.5/S12 24 I/O General-purpose digital I/O/LCD segment output 12 (see Note) P3.6/S11 23 I/O General-purpose digital I/O/LCD segment output 11 (see Note) P3.7/S10 22 I/O General-purpose digital I/O/LCD segment output 10 (see Note) NOTE: 4 Scan IF AFE reference supply voltage. LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 Terminal Functions (Continued) TERMINAL NAME NO. I/O DESCRIPTION P4.0/S9 21 I/O General-purpose digital I/O/LCD segment output 9 (see Note) P4.1/S8 20 I/O General-purpose digital I/O/LCD segment output 8 (see Note) P4.2/S7 19 I/O General-purpose digital I/O/LCD segment output 7 (see Note) P4.3/S6 18 I/O General-purpose digital I/O/LCD segment output 6 (see Note) P4.4/S5 17 I/O General-purpose digital I/O/LCD segment output 5 (see Note) P4.5/S4 16 I/O General-purpose digital I/O/LCD segment output 4 (see Note) P4.6/S3 15 I/O General-purpose digital I/O/LCD segment output 3 (see Note) P4.7/S2 14 I/O General-purpose digital I/O/LCD segment output 2 (see Note) P5.0/S1 13 I/O General-purpose digital I/O/LCD segment output 1 (see Note) P5.1/S0 12 I/O General-purpose digital I/O/LCD segment output 0 (see Note) COM0 36 O Common output. COM0−3 are used for LCD backplanes P5.2/COM1 37 I/O General-purpose digital I/O/common output. COM0−3 are used for LCD backplanes P5.3/COM2 38 I/O General-purpose digital I/O/common output. COM0−3 are used for LCD backplanes P5.4/COM3 39 I/O General-purpose digital I/O/common output. COM0−3 are used for LCD backplanes R03 40 I P5.5/R13 41 I/O General-purpose digital I/O/input port of third most positive analog LCD level (V4 or V3) P5.6/R23 42 I/O General-purpose digital I/O/input port of second most positive analog LCD level (V2) P5.7/R33 43 I/O General-purpose digital I/O/output port of most positive analog LCD level (V1) P6.0/SIFCH0 59 I/O General-purpose digital I/O/Scan IF, channel 0 sensor excitation output and signal input P6.1/SIFCH1 60 I/O General-purpose digital I/O/Scan IF, channel 1 sensor excitation output and signal input P6.2/SIFCH2 61 I/O General-purpose digital I/O/Scan IF, channel 2 sensor excitation output and signal input P6.3/SIFCH3/ SIFCAOUT 2 I/O General-purpose digital I/O/Scan IF, channel 3 sensor excitation output and signal input/Scan IF comparator output P6.4/SIFCI0 3 I/O General-purpose digital I/O/Scan IF, channel 0 signal input to comparator P6.5/SIFCI1 4 I/O General-purpose digital I/O/Scan IF, channel 1 signal input to comparator P6.6/SIFCI2/ SIFDACOUT 5 I/O General-purpose digital I/O/Scan IF, channel 2 signal input to comparator/10-bit DAC output P6.7/ SIFCI3/SVSIN 6 I/O General-purpose digital I/O/Scan IF, channel 3 signal input to comparator/SVS, analog input Input port of fourth positive (lowest) analog LCD level (V5) SIFCI 7 I Scan IF input to Comparator. SIFCOM 11 O Common termination for Scan IF sensors. RST/NMI 58 I Reset input or nonmaskable interrupt input port. TCK 57 I Test clock. TCK is the clock input port for device programming and test. TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TDO/TDI 54 I/O TMS 56 I Test mode select. TMS is used as an input port for device programming and test. XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output terminal of crystal oscillator XT1. NOTE: Test data output port. TDO/TDI data output or programming data input terminal. LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g. CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE SYNTAX EXAMPLE OPERATION Register D D MOV Rs,Rd MOV R10,R11 Indexed D D MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) D D MOV EDE,TONI Absolute D D MOV &MEM,&TCDAT Indirect D MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6) Indirect autoincrement D MOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11 R10 + 2−−> R10 D MOV #X,TONI MOV #45,TONI Immediate NOTE: S = source 6 S D −−> R11 M(EDE) −−> M(TONI) M(MEM) −−> M(TCDAT) D = destination POST OFFICE BOX 655303 R10 M(2+R5)−−> M(6+R6) • DALLAS, TEXAS 75265 #45 −−> M(TONI) MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) − All clocks are active D Low-power mode 0 (LPM0) − CPU is disabled ACLK and SMCLK remain active, MCLK is available to modules FLL+ loop control remains active D Low-power mode 1 (LPM1) − CPU is disabled ACLK and SMCLK remain active, MCLK is available to modules FLL+ loop control is disabled D Low-power mode 2 (LPM2) − CPU is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3) − CPU is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4) − CPU is disabled ACLK is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0FFFFh − 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External Reset Watchdog Flash memory WDTIFG KEYV (see Note 1) Reset 0FFFEh 15, highest NMI Oscillator Fault Flash memory access violation NMIIFG OFIFG ACCVIFG (see Notes 1 & 3) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 14 Timer1_A5 TA1CCR0 CCIFG (see Note 2) Maskable 0FFFAh 13 Timer1_A5 TA1CCR1 CCIFG to TA1CCR4 CCIFG, TA1CTL TAIFG (see Notes 1 & 2) Maskable 0FFF8h 12 Comparator_A CMPAIFG Maskable 0FFF6h 11 Watchdog Timer WDTIFG Maskable 0FFF4h 10 Scan IF SIFIFG0 to SIFIFG6 (See Note 1) Maskable 0FFF2h 9 0FFF0h 8 0FFEEh 7 Timer0_A3 TA0CCR0 CCIFG (see Note 2) Maskable 0FFECh 6 Timer0_A3 TA0CCR1 CCIFG, TA0CCR2 CCIFG, TA0CTL TAIFG (see Notes 1 & 2) Maskable 0FFEAh 5 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (see Notes 1 & 2) Maskable 0FFE8h 4 0FFE6h 3 0FFE4h 2 I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 (see Notes 1 & 2) Maskable 0FFE2h 1 Basic Timer1 BTIFG Maskable 0FFE0h 0, lowest NOTES: 1. Multiple source flags 2. Interrupt flags are located in the module. 3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt-enable cannot. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 special function registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits that are not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. interrupt enable 1 and 2 7 Address 6 00h 5 4 ACCVIE NMIIE rw-0 7 Address 01h 6 3 2 rw-0 5 1 0 OFIE WDTIE rw-0 4 3 2 rw-0 1 0 BTIE rw-0 WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable ACCVIE: Flash access violation interrupt enable BTIE: Basic Timer1 interrupt enable interrupt flag register 1 and 2 7 Address 6 5 02h 4 3 2 NMIIFG OFIFG rw-0 7 Address 03h 6 5 1 rw-1 4 3 2 0 WDTIFG rw-(0) 1 0 BTIFG rw-0 WDTIFG: Set on watchdog-timer overflow (in watchdog mode) or security key violation. Reset with VCC power-up, or a reset condition at the RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin BTIFG: Basic Timer1 interrupt flag module enable registers 1 and 2 Address 7 6 5 4 3 2 1 0 04h/05h Legend: rw: rw-0,1: rw-(0,1): Bit Can Be Read and Written Bit Can Be Read and Written. It Is Reset or Set by PUC. Bit Can Be Read and Written. It Is Reset or Set by POR. SFR Bit Not Present in Device POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 memory organization MSP430FW423 MSP430FW425 MSP430FW427 Size Flash Flash 8KB 0FFFFh − 0FFE0h 0FFFFh − 0E000h 16KB 0FFFFh − 0FFE0h 0FFFFh − 0C000h 32KB 0FFFFh − 0FFE0h 0FFFFh − 08000h Information memory Size 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h Boot memory Size 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h Size 256 Byte 02FFh − 0200h 512 Byte 03FFh − 0200h 1KB 05FFh − 0200h 16-bit 8-bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h Memory Interrupt vector Code memory RAM Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089. BSL Function PM Package Pins Data Transmit 53 - P1.0 Data Receive 52 - P1.1 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0−n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 flash memory (continued) 8KB 16KB 0FFFFh 0FFFFh 32KB 0FFFFh 0FE00h 0FE00h 0FE00h 0FDFFh 0FDFFh 0FDFFh Segment 0 With Interrupt Vectors Segment 1 0FC00h 0FC00h 0FC00h 0FBFFh 0FBFFh 0FBFFh Segment 2 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh Main Memory 08400h 0E400h 0C400h 0E3FFh 0C3FFh 083FFh 0E200h 0C200h 0E1FFh 0C1FFh 08200h 081FFh 0E000h 010FFh 0C000h 010FFh 08000h 010FFh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh Segment n−1 Segment n Segment A Information Memory Segment B 01000h 01000h 01000h peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x4xx Family User’s Guide, literature number SLAU056. oscillator and system clock The clock system in the MSP430xW42x family of devices is supported by the FLL+ module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low-power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware which in conjunction with a digital modulator stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal. Main clock (MCLK), the system clock used by the CPU. Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 brownout, supply voltage supervisor The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are six 8-bit I/O ports implemented—ports P1 through P6: D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. Basic Timer1 The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and clock for the LCD module. LCD drive The LCD driver generates the segment and common signals required to drive an LCD display. The LCD controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. watchdog timer The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. comparator_A The primary function of the comparator_A module is to support precision slope analog−to−digital conversions, battery−voltage supervision, and monitoring of external analog signals. scan IF The scan interface is used to measure linear or rotational motion and supports LC and resistive sensors such as GMR sensors. The scan IF incorporates a VCC/2 generator, a comparator, and a 10-bit DAC and supports up to four sensors. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 timer0_A3 Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer0_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer0_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer0_A3 Signal Connections Input Pin Number Device Input Signal Module Input Name 48 - P1.5 TA0CLK TACLK ACLK ACLK SMCLK SMCLK 48 - P1.5 TA0CLK INCLK 53 - P1.0 TA0.0 CCI0A 52 - P1.1 TA0.0 CCI0B DVSS GND 51 - P1.2 45 - P2.0 DVCC VCC TA0.1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC TA0.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC Module Block Module Output Signal Timer NA POST OFFICE BOX 655303 Output Pin Number 53 - P1.0 CCR0 TA0 0 TA0.0 51 - P1.2 CCR1 TA0 1 TA0.1 45 - P2.0 CCR2 • DALLAS, TEXAS 75265 TA0 2 TA0.2 13 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 timer1_A5 Timer1_A5 is a 16-bit timer/counter with five capture/compare registers. Timer1_A5 can support multiple capture/compares, PWM outputs, and interval timing. Timer1_A5 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer1_A5 Signal Connections Input Pin Number Device Input Signal Module Input Name 32 - P2.5 TA1CLK TACLK ACLK ACLK SMCLK SMCLK 32 - P2.5 TA1CLK INCLK 49 - P1.4 TA1.0 CCI0A 50 - P1.3 TA1.0 CCI0B DVSS GND 44 - P2.1 35 - P2.2 34 - P2.3 33 - P2.4 14 DVCC VCC TA1.1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC TA1.2 CCI2A SIFO0sig (internal) CCI2B DVSS GND DVCC VCC TA1.3 CCI3A SIFO1sig (internal) CCI3B DVSS GND DVCC VCC TA1.4 CCI4A SIFO2sig (internal) CCI4B DVSS GND DVCC VCC POST OFFICE BOX 655303 Module Block Module Output Signal Timer NA Output Pin Number 49 - P1.4 CCR0 TA1 0 TA1.0 44 - P2.1 CCR1 TA1 1 TA1.1 35 - P2.2 CCR2 TA1 2 TA1.2 34 - P2.3 CCR3 TA1 3 TA1.3 33 - P2.4 CCR4 • DALLAS, TEXAS 75265 TA1 4 TA1.4 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog Timer control WDTCTL 0120h Timer1_A5 _ Timer1_A interrupt vector TA1IV 011Eh Timer1_A control TA1CTL 0180h Capture/compare control 0 TA1CCTL0 0182h Capture/compare control 1 TA1CCTL1 0184h Capture/compare control 2 TA1CCTL2 0186h Capture/compare control 3 TA1CCTL3 0188h Capture/compare control 4 TA1CCTL4 018Ah Reserved 018Ch Reserved 018Eh Timer1_A register TA1R 0190h Capture/compare register 0 TA1CCR0 0192h Capture/compare register 1 TA1CCR1 0194h Capture/compare register 2 TA1CCR2 0196h Capture/compare register 3 TA1CCR3 0198h Capture/compare register 4 TA1CCR4 019Ah Reserved 019Ch Reserved Timer0_A3 _ 019Eh Timer0_A interrupt vector TA0IV 012Eh Timer0_A control TA0CTL0 0160h Capture/compare control 0 TA0CCTL0 0162h Capture/compare control 1 TA0CCTL1 0164h Capture/compare control 2 TA0CCTL2 0166h Reserved 0168h Reserved 016Ah Reserved 016Ch Reserved 016Eh Timer0_A register TA0R 0170h Capture/compare register 0 TA0CCR0 0172h Capture/compare register 1 TA0CCR1 0174h Capture/compare register 2 TA0CCR2 0176h Reserved 0178h Reserved 017Ah Reserved 017Ch Reserved Flash 017Eh Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 PERIPHERALS WITH WORD ACCESS (CONTINUED) Scan IF SIF timing state machine 23 SIFTSM23 01FEh : : : SIF timing state machine 0 SIFTSM0 01D0h SIF DAC register 7 SIFDACR7 01CEh : : : SIF DAC register 0 SIFDACR0 01C0h SIF control register 5 SIFCTL5 01BEh SIF control register 4 SIFCTL4 01BCh SIF control register 3 SIFCTL3 01BAh SIF control register 2 SIFCTL2 01B8h SIF control register 1 SIFCTL1 01B6h SIF processing state machine vector SIFPSMV 01B4h SIF counter CNT1/2 SIFCNT 01B2h Reserved SIFDEBUG 01B0h LCD memory 20 LCDM20 0A4h : : : LCD memory 16 LCDM16 0A0h LCD memory 15 LCDM15 09Fh : : : LCD memory 1 LCDM1 091h LCD control and mode LCDCTL 090h Comparator_A port disable CAPD 05Bh Comparator_A control 2 CACTL2 05Ah PERIPHERALS WITH BYTE ACCESS LCD Comparator_A p _ Comparator_A control 1 CACTL1 059h Brownout, SVS SVS control register SVSCTL 056h FLL+ Clock FLL+ Control 1 FLL_CTL1 054h FLL+ Control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h BT counter 2 BTCNT2 047h BT counter 1 BTCNT1 046h BT control BTCTL 040h Basic Timer1 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P6 Port P5 Port P4 Port P3 Port P2 Port P1 Special p Functions Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h absolute maximum ratings† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Storage temperature (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 recommended operating conditions PARAMETER MIN NOM MAX UNITS Supply voltage during program execution (see Note 1), VCC (AVCC = DVCC = VCC) MSP430xW42x 1.8 3.6 V Supply voltage during program execution, SVS enabled, PORON = 1 (see Note 1 and Note 2), VCC (AVCC = DVCC = VCC) MSP430xW42x 2.0 3.6 V Supply voltage during programming flash memory (see Note 1), VCC (AVCC = DVCC = VCC) MSP430FW42x 2.7 3.6 V 0 0 V MSP430xW42x −40 85 °C Supply voltage, VSS (AVSS = DVSS = VSS) Operating free-air temperature range, TA LFXT1 crystal t l frequency, f f(LFXT1) (see Note 3) LF selected, XTS_FLL=0 Watch crystal XT1 selected, XTS_FLL=1 Ceramic resonator XT1 selected, XTS_FLL=1 Crystal Processor frequency (signal MCLK), MCLK) f(System) 32768 Hz 450 8000 kHz 1000 8000 kHz VCC = 1.8 V DC 4.15 VCC = 3.6 V DC 8 MHz f(System) − Maximum Processor Frequency − MHz NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V betweeen AVCC and DVCC can be tolerated during power up and operation. 2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage. POR is going inactive when the supply voltage is raised above minimum supply voltage plus the hysteresis of the SVS circuitry. 3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. Supply Voltage Range During Programming of the Flash Memory f (MHz) ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 8 MHz Supply Voltage Range During Program Execution 4.15 MHz 2.7 V 1.8 V 3V 3.6 V VCC − Supply Voltage − V Figure 1. Maximum Frequency vs Supply Voltage 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current, (see Note 1) PARAMETER TEST CONDITIONS Active mode, f(MCLK) = f(SMCLK) = f(DCO) = 1 MHz, f(ACLK) = 32,768 Hz, XTS_FLL = 0 (FW42x: Program executes in flash) I(AM) I(LPM0) I(LPM2) I(LPM3) I(LPM4) MIN NOM MAX VCC = 2.2 V 200 250 VCC = 3 V 300 350 VCC = 2.2 V 57 70 VCC = 3 V 92 100 VCC = 2.2 V 11 14 VCC = 3 V 17 22 TA = −40°C 0.95 1.4 TA = −10°C 0.8 1.3 TA = 25°C 0.7 1.2 A μA 40°C to 85°C TA = −40°C Low-power mode, (LPM0) f(MCLK) = f(SMCLK) = f(DCO) = 1 MHz, f(ACLK) = 32,768 Hz, XTS_FLL = 0 FN_8=FN_4=FN_3=FN_2=0 (see Note 3) 40°C to 85°C TA = −40°C Low power mode Low-power mode, (LPM2) (see Note 3) TA = −40°C 40°C to 85°C Low power mode, (LPM3) Low-power ((see Note 2 and Note 3)) Low-power Low power mode, (LPM4) (see Note 3) A μA VCC = 2.2 V TA = 60°C 0.95 1.4 TA = 85°C 1.6 2.3 TA = −40°C 1.1 1.7 TA = −10°C 1.0 1.6 TA = 25°C 0.9 1.5 TA = 60°C 1.1 1.7 TA = 85°C 2.0 2.6 TA = −40°C 0.1 0.5 0.1 0.5 0.8 2.5 TA = 25°C UNIT VCC = 3 V VCC = 2.2 V/3 V TA = 85°C μA A μA A μA NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The current consumption is measured with active Basic Timer1 and LCD (ACLK selected). The current consumption of the Comparator_A and the SVS module are specified in the respective sections. 2. The LPM3 currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal. 3. Current for brownout included. current consumption of active mode versus system frequency I(AM) = I(AM) [1 MHz] × f(System) [MHz] current consumption of active mode versus supply voltage I(AM) = I(AM) [3 V] + 140 μA/V × (VCC – 3 V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs − Ports P1, P2, P3, P4, P5, and P6; RST/NMI; JTAG: TCK, TMS, TDI/TCLK PARAMETER TEST CONDITIONS VIT+ Positive going input threshold voltage Positive-going VIT− Negative going input threshold voltage Negative-going Vhys Input voltage hysteresis (VIT+ − VIT−) MIN TYP MAX VCC = 2.2 V 1.1 1.5 VCC = 3 V 1.5 1.9 VCC = 2.2 V 0.4 0.9 VCC = 3 V 0.9 1.3 VCC = 2.2 V 0.3 1.1 0.45 1 VCC = 3 V UNIT V V V inputs Px.x, TAx.x PARAMETER t(int) TEST CONDITIONS Port signal P t P1, P1 P2: P2 P1.x P1 to t P2.x, P2 External E t l trigger ti i l for the interrupt flag, (see Note 1) External interrupt p timing g t(cap) Timer A capture timing Timer_A, TAx TAx.x x f(TAext) ( ) Timer_A clock frequency externally applied to pin TAxCLK INCLK t(H) TAxCLK, ( ) = t(L) ( ) f(TAint) Timer A clock frequency Timer_A SMCLK or ACLK signal selected VCC MIN 2.2 V/3 V 1.5 2.2 V 62 3V 50 2.2 V 62 3V 50 TYP MAX UNIT cycle ns ns 2.2 V 8 3V 10 2.2 V 8 3V 10 MHz MHz NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles. leakage current − Ports P1, P2, P3, P4, P5, and P6 (see Note 1) PARAMETER Ilkg(Px.x) Leakage current TEST CONDITIONS Port Px Port x: V(Px.x) (see Note 2) MIN NOM VCC = 2.2 V/3 V NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as an input. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT ±50 nA MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1, P2, P3, P4, P5, and P6 PARAMETER VOH VOL High level output voltage High-level Low level output voltage Low-level TEST CONDITIONS MIN TYP MAX IOH(max) = −1.5 mA, VCC = 2.2 V, See Note 1 VCC−0.25 VCC IOH(max) = −6 mA, VCC = 2.2 V, See Note 2 VCC−0.6 VCC IOH(max) = −1.5 mA, VCC = 3 V, See Note 1 VCC−0.25 VCC IOH(max) = −6 mA, VCC = 3 V, See Note 2 VCC−0.6 VCC IOL(max) = 1.5 mA, VCC = 2.2 V, See Note 1 VSS VSS+0.25 IOL(max) = 6 mA, VCC = 2.2 V, See Note 2 VSS VSS+0.6 IOL(max) = 1.5 mA, VCC = 3 V, See Note 1 VSS VSS+0.25 IOL(max) = 6 mA, VCC = 3 V, See Note 2 VSS VSS+0.6 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±24 mA to satisfy the maximum specified voltage drop. output frequency PARAMETER TEST CONDITIONS fPx.y 6 0 ≤ y ≤ 7) (1 ≤ x ≤ 6, CL = 20 pF, IL = ± 1.5mA fACLK, fMCLK, fSMCLK P1.1/TA0.0/MCLK, P1.5/TA0CLK/ACLK CL = 20 pF TYP 10 VCC = 3 V DC 12 UNIT MHz 8 MHz VCC = 3 V Duty cycle of output frequency P1.1/TA0.0/MCLK, CL = 20 pF, pF VCC = 2.2 V / 3 V POST OFFICE BOX 655303 MAX DC VCC = 2.2 V P1.5/TA0CLK/ACLK, CL = 20 pF VCC = 2.2 V / 3 V tXdc MIN VCC = 2.2 V 12 fACLK = fLFXT1 = fXT1 40% 60% fACLK = fLFXT1 = fLF 30% 70% fACLK = fLFXT1/n 50% fMCLK = fLFXT1/n 50%− 15 ns 50% 50%+ 15 ns fMCLK = fDCOCLK 50%− 15 ns 50% 50%+ 15 ns • DALLAS, TEXAS 75265 21 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1, P2, P3, P4, P5, and P6 (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 25 40 IOL − Typical Low-Level Output Current − mA IOL − Typical Low-Level Output Current − mA TA = 25°C VCC = 2.2 V P2.4 20 TA = 85°C 15 10 5 0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.4 35 TA = 85°C 30 25 20 15 10 5 0 0.0 2.5 TA = 25°C 0.5 VOL − Low-Level Output Voltage − V 1.0 Figure 2 3.0 3.5 0 VCC = 2.2 V P2.4 IOH − Typical High-Level Output Current − mA IOH − Typical High-Level Output Current − mA 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 −5 −10 −15 TA = 85°C −20 −25 0.0 TA = 25°C 0.5 1.0 1.5 2.0 2.5 −5 VCC = 3 V P2.4 −10 −15 −20 −25 −30 −35 TA = 85°C −40 −45 TA = 25°C −50 0.0 VOH − High-Level Output Voltage − V 0.5 1.0 1.5 2.0 Figure 5 One output loaded at a time POST OFFICE BOX 655303 2.5 3.0 VOH − High-Level Output Voltage − V Figure 4 22 2.0 Figure 3 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE NOTE: 1.5 VOL − Low-Level Output Voltage − V • DALLAS, TEXAS 75265 3.5 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) wake-up LPM3 PARAMETER TEST CONDITIONS MIN TYP MAX f = 1 MHz td(LPM3) f = 2 MHz Delay time UNIT 6 6 VCC = 2.2 V/3 V f = 3 MHz μs 6 RAM (see Note 1) PARAMETER TEST CONDITIONS VRAMh MIN CPU halted (see Note 1) TYP MAX 1.6 UNIT V NOTES: 1. This parameter defines the minimum supply voltage when the data in the program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. LCD PARAMETER V(33) V(23) V(13) TEST CONDITIONS Voltage at P5.5/R13 Voltage at R33/R03 I(R03) R03 = VSS Input p leakage g P5.5/R13 = VCC/3 P5.6/R23 = 2 × VCC/3 I(R23) TYP 2.5 MAX VCC = 3 V V (V(33)−V(03)) × 1/3 + V(03) 2.5 VCC +0.2 ±20 No load at all segment and common lines lines, VCC = 3 V ±20 V(03) V(03) − 0.1 V(Sxx1) V(13) V(13) − 0.1 V(23) V(23) − 0.1 V(33) V(33) + 0.1 Segment line voltage I(Sxx) = −3 3 μA, A VCC = 3 V V(Sxx3) POST OFFICE BOX 655303 nA ±20 V(Sxx0) V(Sxx2) UNIT VCC +0.2 (V33−V03) × 2/3 + V03 Voltage at P5.6/R23 Analog voltage V(33) − V(03) I(R13) MIN Voltage at P5.7/R33 • DALLAS, TEXAS 75265 V 23 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A (see Note 1) PARAMETER TEST CONDITIONS I(CC) CAON = 1 1, CARSEL = 0 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3 1/2/3, No load at P1.6/CA0 and P1.7/CA1 MIN TYP MAX VCC = 2.2 V 25 40 VCC = 3 V 45 60 VCC = 2.2 V 30 50 VCC = 3 V 45 71 UNIT μA A μA A V(Ref025) Voltage @ 0.25 V CC node PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1 V CC VCC = 2.2 V / 3 V 0.23 0.24 0.25 V(Ref050) Voltage @ 0.5 V CC node PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1 VCC = 2.2V / 3 V 0.47 0.48 0.50 (See Figure 6 and Figure 7) PCA0 = 1, CARSEL = 1, CAREF = 3, P1 6/CA0 and P1.7/CA1; P1 7/CA1; No load at P1.6/CA0 TA = 85°C VCC = 2.2 V 390 480 540 V(RefVT) VCC = 3.0 V 400 490 550 V(IC) Common-mode input voltage range CAON = 1 VCC = 2. 2V/3 V 0 VCC−1.0 V(offset) Offset voltage See Note 2 VCC = 2.2 V/3 V −30 30 mV Vhys Input hysteresis CAON = 1 VCC = 2.2 V / 3 V mV TA = 25 25°C, C, Overdrive 10 mV, without filter: CAF = 0 VCC = 2.2 V t(response LH) t(response HL) V CC mV 0 0.7 1.4 130 210 300 VCC = 3 V 80 150 240 TA = 25 25°C C Overdrive 10 mV, with filter: CAF = 1 VCC = 2.2 V 1.4 1.9 3.4 VCC = 3 V 0.9 1.5 2.6 TA = 25 25°C C Overdrive 10 mV, without filter: CAF = 0 VCC = 2.2 V 130 210 300 VCC = 3 V 80 150 240 TA = 25 25°C, C, Overdrive 10 mV, with filter: CAF = 1 VCC = 2.2 V 1.4 1.9 3.4 VCC = 3.0 V 0.9 1.5 2.6 V ns μss ns μss NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 VCC = 2.2 V V(RefVT) − Reference Voltage − mV V(RefVT) − Reference Voltage − mV VCC = 3 V 600 Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 −5 0 35 55 75 95 Figure 7 Figure 6 0V 15 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C VCC CAF 1 CAON Low Pass Filter V+ V− + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2 μs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V− 400 mV V+ t(response) Figure 9. Overdrive Definition POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) POR brownout, reset (see Notes 1 and 2) PARAMETER TEST CONDITIONS MIN TYP td(BOR) dVCC/dt ≤ 3 V/s (see Figure 10) VCC(start) V(B_IT−) UNIT 2000 μs 0.7 × V(B_IT−) dVCC/dt ≤ 3 V/s (see Figure 10, Figure 11, Figure 12) Brownout MAX Vhys(B_IT−) dVCC/dt ≤ 3 V/s (see Figure 10) 70 t(reset) Pulse length needed at RST/NMI pin to accepted reset internally, VCC = 2.2 V/3 V 2 130 V 1.71 V 180 mV μs NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT−) + Vhys(B_IT−) is ≤ 1.8 V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default FLL+ settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit. VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 td(BOR) Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage VCC 2 VCC (drop) − V tpw 3V V cc = 3 V Typical Conditions 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw − Pulse Width − μs 1 ns tpw − Pulse Width − μs Figure 11. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) VCC VCC (drop) − V 2 1.5 tpw 3V V cc = 3 V Typical Conditions 1 VCC(drop) 0.5 tf = tr 0 0.001 1 1000 tf tr tpw − Pulse Width − μs tpw − Pulse Width − μs Figure 12. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal SVS (supply voltage supervisor/monitor) (See Notes 1 and 2) PARAMETER td(SVSR) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 13) dVCC/dt ≤ 30 V/ms td(SVSon) SVSon, switch from VLD=0 to VLD ≠ 0, VCC = 3 V tsettle VLD ≠ 0‡ V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 13) 20 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 13) VLD = 2 .. 14 Vhys(SVS_IT−) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on SVSIN VCC/dt ≤ 3 V/s (see Figure 13) V(SVS_IT−) (SVS IT ) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on SVSIN ICC(SVS) (see Note 1) NOM 5 VLD = 15 70 MAX UNIT 150 μs 2000 μs 150 μs 12 μs 1.55 1.7 V 120 155 mV V(SVS_IT−) x 0.004 V(SVS_IT−) x 0.008 4.4 10.4 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61† VLD = 13 3.24 3.5 3.76† VLD = 14 3.43 3.7† 3.99† VLD = 15 1.1 1.2 1.3 10 15 VLD ≠ 0, VCC = 2.2 V/3 V mV V μA † The recommended operating voltage range is limited to 3.6 V. tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTES: 1. The current consumption of the SVS module is not included in the ICC current consumption data. 2. The SVS is not active at power up. ‡ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Software Sets VLD>0:SVS is Active VCC V Vhys(SVS_IT−) (SVS_IT−) V(SVSstart) Vhys(B_IT−) V(B_IT−) VCC(start) Brownout Brownout Region Brownout Region 1 0 td(BOR) SVS out td(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT−) 1 0 td(SVSon) Set POR 1 td(SVSR) Undefined 0 Figure 13. SVS Reset (SVSR) vs Supply Voltage VCC tpw 3V 2 Rectangular Drop VCC(drop) − V 1.5 VCC(drop) Triangular Drop 1 1 ns 0.5 1 ns VCC tpw 3V 0 1 10 100 1000 tpw − Pulse Width − μs VCC(drop) tf = tr tf tr t − Pulse Width − μs Figure 14. VCC(drop) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) DCO PARAMETER VCC f(DCOCLK) N(DCO)=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2, DCOPLUS= 0, fCrystal = 32.738 kHz f(DCO=2) FN 8 FN 4 FN 3 FN 2 0 , DCOPLUS = 1 FN_8=FN_4=FN_3=FN_2=0 f(DCO=27) FN 8 FN 4 FN 3 FN 2 0 DCOPLUS = 1 FN_8=FN_4=FN_3=FN_2=0, f(DCO=2) FN 8 FN 4 FN 3 0 FN FN_8=FN_4=FN_3=0, FN_2=1; 2 1; DCOPLUS = 1 f(DCO=27) FN 8 FN 4 FN 3 0 FN 2 1; DCOPLUS = 1 FN_8=FN_4=FN_3=0, FN_2=1; f(DCO=2) FN 8 FN 4 0 FN FN_8=FN_4=0, FN_3= 3 1 1, FN FN_2=x; 2 x; DCOPLUS = 1 f(DCO=27) FN 8 FN 4 0 FN FN_8=FN_4=0, FN_3= 3 1 1, FN FN_2=x;, 2 x; DCOPLUS = 1 f(DCO=2) FN 8 0 FN FN_8=0, FN_4= 4 1 1, FN FN_3= 3 FN FN_2=x; 2 x; DCOPLUS = 1 f(DCO=27) FN 8 0 FN FN_8=0, FN_4=1, 4 1 FN FN_3= 3 FN FN_2=x; 2 x; DCOPLUS = 1 f(DCO=2) FN 8 1 FN 4 FN 3 FN 2 x; DCOPLUS = 1 FN_8=1, FN_4=FN_3=FN_2=x; f(DCO=27) FN 8 1 FN 4 FN 3 FN 2 x DCOPLUS = 1 FN_8=1,FN_4=FN_3=FN_2=x,DCOPLUS Sn MIN 2.2 V/3 V TYP MAX 1 0.3 0.65 1.25 3V 0.3 0.7 1.3 2.2 V 2.5 5.6 10.5 3V 2.7 6.1 11.3 2.2 V 0.7 1.3 2.3 3V 0.8 1.5 2.5 2.2 V 5.7 10.8 18 3V 6.5 12.1 20 2.2 V 1.2 2 3 3V 1.3 2.2 3.5 2.2 V 9 15.5 25 3V 10.3 17.9 28.5 2.2 V 1.8 2.8 4.2 3V 2.1 3.4 5.2 2.2 V 13.5 21.5 33 3V 16 26.6 41 2.2 V 2.8 4.2 6.2 3V 4.2 6.3 9.2 2.2 V 21 32 46 3V 30 46 70 Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n) (see Figure 16 for taps 21 to 27) 1 < TAP ≤ 20 1.06 1.11 TAP = 27 1.07 1.17 Temperature drift, N(DCO) = 01Eh, FN_8=FN_4=FN_3=FN_2=0 D = 2, DCOPLUS = 0 2.2 V –0.2 –0.3 –0.4 Dt 3V –0.2 –0.3 –0.4 DV Drift with VCC variation, N(DCO) = 01Eh, FN_8=FN_4=FN_3=FN_2=0 D = 2, DCOPLUS = 0 2.2 V/3 V 0 5 15 f (DCO) f (DCO3V) UNIT MHz 2.2 V f f TEST CONDITIONS MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz %/_C %/V (DCO) (DCO205C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC − V −40 −20 0 20 40 60 85 TA − °C Figure 15. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 1.17 ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 16. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 25 in SCFI1 {N{DCO}} Tolerance at Tap 2 Overlapping DCO Ranges: Uninterrupted Frequency Range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 crystal oscillator, LFXT1 oscillator (see Notes 1 and 2) PARAMETER CXIN CXOUT VIL VIH Integrated load capacitance Integrated load capacitance Input levels at XIN TEST CONDITIONS VCC MIN TYP OSCCAPx = 0h 2.2 V/3 V 0 OSCCAPx = 1h 2.2 V/3 V 10 OSCCAPx = 2h 2.2 V/3 V 14 OSCCAPx = 3h 2.2 V/3 V 18 OSCCAPx = 0h 2.2 V/3 V 0 OSCCAPx = 1h 2.2 V/3 V 10 OSCCAPx = 2h 2.2 V/3 V 14 OSCCAPx = 3h 2.2 V/3 V 18 see Note 3 2 2 V/3 V 2.2 VSS 0.8×VCC MAX UNIT pF pF 0.2×VCC VCC V NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2pF. The effective load capacitor for the crystal is (CXIN x CXOUT) / (CXIN + CXOUT). It is independent of XTS_FLL. 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines must be observe: • Keep as short a trace as possible between the ’xW42x and the crystal. • Design a good ground plane around oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to XIN an XOUT pins. • Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. • Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator. 4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Scan IF, port drive, port timing PARAMETER TEST CONDITIONS VCC VOL(SIFCHx) Voltage drop due to excitation transistor’s on−resistance. (see Figure 18) I(SIFCHx) = 2.0 mA, SIFTEN = 1 3V 0.3 V VOH(SIFCHx) (see Note 1) Voltage drop due to damping transistor’s on−resistance. (see Figure 18) I(SIFCHx) = −200 μA, SIFTEN = 1 3V 0.1 V 0 0.1 V 3V −50 50 nA 2.2 V/3 V −20 20 ns VOL(SIFCOM) I(SIFCOM) = 3 mA, SIFSH = 1 ISIFCHx(tri-state) V(SIFCHx) = 0 V to AVCC, port function disabled, SIFSH = 1 ΔtdSIFCH : twEx(tsm)−twSIFCH (see Figure 18) NOTE: Change of pulse width of internal signal SIFEX(tsm) to pulse width at pin SIFCHx MIN 2.2 V/3 V I(SIFCHx) = 3 mA, tEx(SIFCHx) = 500 ns ±20% 1. SIFCOM=1.5V , supplied externally. (See Figure 19). tEx(SIFCHx) SIFEX(tsm) P6.x/SIFCH.x tSIFCH(x) Figure 18. P6.x/SIFCHx timing, SIFCHx function selected SIFCOM VOH(SIFCHx) Damping Transistor I(SIFCHx) P6.x/SIFCH.x VOL(SIFCHx) Excitation Transistor Figure 19. Voltage drop due to on-resistance 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYP MAX UNIT MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Scan IF, sample capacitor/Ri timing PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT CSHC(SIFCHx) Sample capacitance at SIFCHx pin SIFEx(tsm) = 1, SIFSH = 1 2.2 V/3 V 5 7 pF Ri(SIFCHx) Serial input resistance at the SIFCHx pin SIFEx(tsm) = 1, SIFSH = 1 2.2 V/3 V 1.5 3 kΩ tHold (See Note 1) Maximum hold time ΔVsample < 3 mV μs 62 NOTES: 1. The sampled voltage at the sample capacitance varies less than 3 mV (ΔVsample) during the hold time tHold. If the voltage is sampled after tHold, the sampled voltage may be any other value. 2. The minimum sampling time (7.6 x tau for 1/2 LSB accuracy) with maximum CSHC(SIFCHx) and Ri(SIFCHx) and Ri(source) is tsample(min) ~ 7.6 x CSHC(SIFCHx) x (Ri(SIFCHx) + Ri(source)) with Ri(source) estimated at 3 kΩ, tsample(min) = 319 ns. Scan IF, VCC/2 generator PARAMETER TEST CONDITIONS VCC MIN TYP AVCC Analog supply voltage AVCC = DVCC (connected together) AVSS = DVSS (connected together) AICC Scan IF VCC/2 generator operating supply current into AVCC terminal CL at SIFCOM pin = 470 nF ±20%, frefresh(SIFCOM) =32768 Hz frefresh(SIFCOM) VCC/2 refresh frequency Source clock = ACLK V(SIFCOM) Output voltage at pin SIFCOM CL at SIFCOM pin = 470 nF ±20%, I_Load = 1μA SIFCOM source current (see Note 2 and Figure 20) 2.2 V −500 Isource(SIFCOM) 3V −900 SIFCOM sink current (see Note 2 and Figure 20) 2.2 V 150 Isink(SIFCOM) 3V 180 trecovery(SIFCOM) Time to recover from Voltage Drop on Load ILoad1 = ILOAD3 = 0 mA ILoad2 = 3 mA mA, tload(on) = 500nS 500nS, CL at SIFCOM pin = 470 nF ±20% ton(SIFCOM) Time to reach 98% after VCC/2 is switched on CL at SIFCOM pin = 470 nF ±20% frefresh(SIFCOM) = 32768 Hz tVccSettle(SIFCOM) (See Note 1) Settling time to ±VCC/512 (2 LSB) after AVCC voltage change MAX 2.2 UNIT 3.6 2.2 V 250 350 3V 370 450 V nA 2.2 V/3 V 30 32.768 AVCC/2 − .05 AVCC/2 kHz AVCC/2 + .05 V μA A nA 2 2 V/3 V 2.2 30 μss 6 ms 2.2 V/3 V 1.7 SIFEN =1, SIFVCC2 =1, SIFSH =0, AVCC = AVCC −100 mV frefresh(SIFCOM) = 32768 Hz 2.2 V/3 V AVCC = AVCC + 100mV frefresh(SIFCOM) = 32768 Hz 2.2 V/3 V 80 ms 3 NOTES: 1. The settling time after an AVCC voltage change is the time to for the voltage at pin SIFCOM to settle to AVCC/2 ± 2LSB. 2. The sink and source currents are a function of the voltage at the pin SIFCOM. The maximum currents are reached if SIFCOM is shorted to GND or VCC. Due to the topology of the output section (refer to Figure 20) the VCC/2 generator can source relatively large currents but can sink only small currents. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) VCC VCC/2 ISource(SIFCOM) SIFCOM ISink(SIFCOM) Figure 20. P6.x/SIFCHx timing, SIFCHx function selected Scan IF, 10-bit DAC (See Note 1) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC = DVCC (connected together) AVSS = DVSS (connected together) AICC Scan IF 10-bit DAC operating supply current into AVCC terminal CL at SIFCOM pin = 470 nF ±20%, frefresh(SIFCOM) = 32768 Hz VCC MIN TYP 2.2 MAX 3.6 2.2 V 23 45 3V 33 60 UNIT V A μA Resolution 10 INL RL = 1000 MΩ, CL = 20 pF 2.2 V/3 V DNL RL = 1000 MΩ, CL = 20 pF EZS ±5 LSB 2.2 V/3 V ±1 LSB Zero Scale Error 2.2 V/3 V ±10 mV EG Gain Error 2.2 V/3 V RO Output resistance ton(SIFDAC) On time after AVCC of SIFDAC is switched on tSettle(SIFDAC) Settling time 25 0.6 % 50 kΩ V+SIFCA − VSIFDAC = ±6 mV 2.2 V/3 V 2.0 μs SIFDAC code = 1C0h → 240h VSIFDAC(240h) − V+SIFCA = +6 mV 2.2 V/3 V 2.0 μs SIFDAC code = 240h → 1C0h, VSIFDAC(1C0h) − V+SIFCA = −6 mV 2.2 V/3 V 2.0 μs NOTES: 1. The SIFDAC operates from AVCC and SIFVSS. All parameters are based on these references. 34 ±2 bit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Scan IF, Comparator PARAMETER TEST CONDITIONS VCC AVCC = DVCC (connected together) AVSS = DVSS (connected together) MIN TYP UNIT AVCC Analog supply voltage AICC Scan IF comparator operating supply current into AVCC terminal VIC Common Mode Input Voltage Range VOffset Input Offset Voltage 2.2 V/3 V dVOffset/dT Temperature coefficient of VOffset 2.2 V/3 V 10 μV/_C dVOffset/dVCC VOffset supply voltage (VCC) sensitivity 2.2 V/3 V 0.3 mV/V Vhys Input Voltage Hysteresis 5 x VCC V+terminal = V−terminal = 0 0.5 ton(SIFCA) On time after SIFCA is switched on V+SIFCA − VSIFDAC = +6 mV V+SIFCA = 0.5 x AVCC 2.2 V/3 V 2.0 us tSettle(SIFCA) Settle time V+SIFCA − VSIFDAC= −12 mV → 6 mV V+SIFCA = 0.5 x AVCC 2.2 V/3 V 2.0 us (see Note 1) 2.2 MAX 3.6 2.2 V 25 35 3V 35 50 2.2 V/3 V V μA A AVCC − 0.5 0.9 ±30 2.2V 0 5.0 3.0V 0 6.0 V mV mV NOTES: 1. The comparator output is reliable when at least one of the input signals is within the common mode input voltage range. Scan IF, SIFCLK Oscillator PARAMETER TEST CONDITIONS VCC AVCC = DVCC (connected together) AVSS = DVSS (connected together) AVCC Analog supply voltage AICC Scan IF oscillator operating supply current into AVCC terminal fSIFCLKG = 0 Scan IF oscillator at minimum setting TA=25ºC, 25ºC SIFCLKFQ SIFCLKFQ=0000 0000 fSIFCLKG = 8 Scan IF oscillator at nominal setting 25ºC SIFCLKFQ 0000 TA=25ºC, SIFCLKFQ=0000 fSIFCLKG = 15 Scan IF oscillator at maximum setting TA=25ºC, 25ºC SIFCLKFQ SIFCLKFQ=0000 0000 ton(SIFCLKG) Settling time to full operation after VCC is switched on S(SIFCLK) Frequency Change per ±1 SIFCLKFQ(SIFCTL5) step Dt DV MIN TYP 2.2 MAX 3.6 2.2 V 75 3V 90 SIFNOM = 0 1.8 3.2 SIFNOM = 1 0.45 0.8 SIFNOM = 0 4 SIFNOM = 1 1 UNIT V μA A MHz SIFNOM = 0 4.48 6.8 SIFNOM = 1 1.12 1.7 2.2 V/3 V 150 500 ns S(SIFCLK) = f(SIFCLKFQ + 1) / f(SIFCLKFQ) 2.2 V/3 V 1.01 1.18 Hz/Hz Temperature Coefficient SIFCLKFQ(SIFCTL5) = 8 2.2 V/3 V 0.35 %/_C Frequency vs. supply voltage VCC variation SIFCLKFQ(SIFCTL5) = 8 2.2 V/3 V 2 %/V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1.05 35 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Flash Memory TEST CONDITIONS PARAMETER VCC MIN NOM MAX UNIT VCC(PGM/ ERASE) Program and Erase supply voltage 2.7 3.6 V fFTG Flash Timing Generator frequency 257 476 kHz IPGM Supply current from DVCC during program 2.7 V/ 3.6 V 3 5 mA IERASE Supply current from DVCC during erase 2.7 V/ 3.6 V 3 7 mA tCPT Cumulative program time see Note 1 2.7 V/ 3.6 V 10 ms tCMErase Cumulative mass erase time see Note 2 2.7 V/ 3.6 V 200 104 Program/Erase endurance TJ = 25°C ms 105 tRetention Data retention duration tWord Word or byte program time 35 tBlock, 0 Block program time for 1st byte or word 30 tBlock, 1-63 Block program time for each additional byte or word tBlock, End Block program end-sequence wait time tMass Erase Mass erase time 5297 tSeg Erase Segment erase time 4819 cycles 100 years 21 see Note 3 tFTG 6 NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297x1/fFTG,max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required). 3. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). JTAG Interface TEST CONDITIONS PARAMETER fTCK TCK input frequency see Note 1 RInternal Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2 VCC MIN 2.2 V 0 NOM MAX UNIT 5 MHz 3V 0 10 MHz 2.2 V/ 3 V 25 60 90 kΩ MIN NOM MAX NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG Fuse (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse-blow IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse TA = 25°C VCC 2.5 6 UNIT V 7 V 100 mA 1 ms NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic Port P1, P1.0 to P1.5, input/output with Schmitt-trigger Pad Logic CAPD.x P1SEL.x 0: Input 1: Output 0 P1DIR.x Direction Control From Module P1OUT.x 1 0 1 Module X OUT Bus keeper P1.0/TA0.0 P1.1/TA0.0/MCLK P1.2/TA0.1 P1.3/TA1.0/SVSOUT P1.4/TA1.0 P1.5/TA0CLK/ACLK P1IN.x EN D Module X IN P1IE.x P1IRQ.x P1IFG.x Q EN Interrupt Edge Select Set P1IES.x P1SEL.x NOTE: 0 ≤ x ≤ 5. Port Function is Active if CAPD.x = 0 † ‡ PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x P1SEL.0 P1DIR.0 P1DIR.0 P1OUT.0 Out0 Sig.† P1IN.0 CCI0A† P1IE.0 P1IFG.0 P1IES.0 P1SEL.1 P1DIR.1 P1DIR.1 P1OUT.1 MCLK P1IN.1 CCI0B† P1IE.1 P1IFG.1 P1IES.1 P1SEL.2 P1DIR.2 P1DIR.2 P1OUT.2 Out1 Sig.† P1IN.2 CCI1A† P1IE.2 P1IFG.2 P1IES.2 P1SEL.3 P1DIR.3 P1DIR.3 P1OUT.3 SVSOUT P1IN.3 CCI0B‡ P1IE.3 P1IFG.3 P1IES.3 P1SEL.4 P1DIR.4 P1DIR.4 P1OUT.4 Out0 Sig.‡ P1IN.4 CCI0A‡ P1IE.4 P1IFG.4 P1IES.4 P1SEL.5 P1DIR.5 P1DIR.5 P1OUT.5 ACLK P1IN.5 T0ACLK† P1IE.5 P1IFG.5 P1IES.5 Timer0_A Timer1_A POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) Port P1, P1.6, P1.7 input/output with Schmitt-trigger Pad Logic Note: Port Function Is Active if CAPD.6 = 0 CAPD.6 P1SEL.6 0: Input 1: Output 0 P1DIR.6 1 P1DIR.6 P1.6/ CA0 0 P1OUT.6 1 DVSS Bus Keeper P1IN.6 EN D unused P1IE.7 EN P1IRQ.07 Interrupt Edge Select Q P1IFG.7 Set P1IES.x P1SEL.x Comparator_A P2CA AVcc CAREF CAEX CA0 CAF CCI1B + to Timer_Ax − CA1 2 CAREF Reference Block Pad Logic Note: Port Function Is Active if CAPD.7 = 0 CAPD.7 P1SEL.7 0: Input 1: Output 0 P1DIR.7 1 P1.7/ CA1 P1DIR.7 0 P1OUT.7 1 DVSS Bus Keeper P1IN.7 EN unused D P1IE.7 EN P1IRQ.07 Q P1IFG.7 Set Interrupt Edge Select P1IES.7 38 P1SEL.7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P2, P2.0 to P2.7, input/output with Schmitt-trigger P2.0, P2.1 LCDM.5 LCDM.6 P2.2 to P2.5 LCDM.7 P2.6, P2.7 0: Port Active 1: Segment xx Function Active Pad Logic Segment xx P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module P2OUT.x 1 0 P2.x 1 Module X OUT Bus keeper P2.0/TA0.2 P2.1/TA1.1 P2.2/TA1.2/S23 P2.3/TA1.3/S22 P2.4/TA1.4/S21 P2.5/TA1CLK/S20 P2.6/CAOUT/S19 P2.7/SIFCLKG/S18 P2IN.x EN Module X IN D P2IE.x P2IRQ.x P2IFG.x Q EN Set NOTE: 0 ≤ x ≤ 7 Interrupt Edge Select P2IES.x P2SEL.x PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x P2SEL.0 P2DIR.0 P2DIR.0 P2OUT.0 Out2 Sig.† P2IN.0 CCI2A† P2IE.0 P2IFG.0 P2IES.0 P2SEL.1 P2DIR.1 P2DIR.1 P2OUT.1 Out1 Sig.‡ P2IN.1 CCI1A‡ P2IE.1 P2IFG.1 P2IES.1 P2SEL.2 P2DIR.2 P2DIR.2 P2OUT.2 Out2 Sig.‡ P2IN.2 CCI2A‡ P2IE.2 P2IFG.2 P2IES.2 P2SEL.3 P2DIR.3 P2DIR.3 P2OUT.3 Out3 Sig.‡ P2IN.3 CCI3A‡ P2IE.3 P2IFG.3 P2IES.3 P2SEL.4 P2DIR.4 P2DIR.4 P2OUT.4 Out4 Sig.‡ P2IN.4 CCI4A‡ P2IE.4 P2IFG.4 P2IES.4 P2SEL.5 P2DIR.5 P2DIR.5 P2OUT.5 DVSS P2IN.5 TA1CLK1‡ P2IE.5 P2IFG.5 P2IES.5 P2SEL.6 P2DIR.6 P2DIR.6 P2OUT.6 CAOUT P2IN.6 Unused P2IE.6 P2IFG.6 P2IES.6 P2SEL.7 P2DIR.7 P2DIR.7 P2OUT.7 SIFCLKG§ P2IN.7 Unused P2IE.7 P2IFG.7 P2IES.7 †Timer0_A ‡Timer1_A §Scan IF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P3, P3.0 to P3.7, input/output with Schmitt-trigger LCDM.5 LCDM.6 LCDM.7 P3.2 to P3.7 P3.0, P3.1 0: Port Active 1: Segment xx Function Active Pad Logic Segment xx P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module P3OUT.x 1 0 1 Module X OUT P3.x Bus keeper P3.0/S17 P3.1/S16 P3.2/S15 P3.3/S14 P3.4/S13 P3.5/S12 P3.6/S11 P3.7/S10 P3IN.x EN D Module X IN NOTE: 0 ≤ x ≤ 7 40 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P3SEL.0 P3DIR.0 P3DIR.0 P3OUT.0 DVSS P3IN.0 Unused P3SEL.1 P3DIR.1 P3DIR.1 P3OUT.1 DVSS P3IN.1 Unused P3SEL.2 P3DIR.2 P3DIR.2 P3OUT.2 DVSS P3IN.2 Unused P3SEL.3 P3DIR.3 P3DIR.3 P3OUT.3 DVSS P3IN.3 Unused P3SEL.4 P3DIR.4 P3DIR.4 P3OUT.4 DVSS P3IN.4 Unused P3SEL.5 P3DIR.5 P3DIR.5 P3OUT.5 DVSS P3IN.5 Unused P3SEL.6 P3DIR.6 P3DIR.6 P3OUT.6 DVSS P3IN.6 Unused P3SEL.7 P3DIR.7 P3DIR.7 P3OUT.7 DVSS P3IN.7 Unused POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P4, P4.0 to P4.7, input/output with Schmitt-trigger LCDM.5 LCDM.6 LCDM.7 0: Port Active 1: Segment xx Function Active Pad Logic Segment xx P4SEL.x 0: Input 1: Output 0 P4DIR.x Direction Control From Module P4OUT.x 1 0 1 Module X OUT P4.x Bus keeper P4.0/S9 P4.1/S8 P4.2/S7 P4.3/S6 P4.4/S5 P4.5/S4 P4.6/S3 P4.7/S2 P4IN.x EN D Module X IN NOTE: 0 ≤ x ≤ 7 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P4SEL.0 P4DIR.0 P4DIR.0 P4OUT.0 DVSS P4IN.0 Unused P4SEL.1 P4DIR.1 P4DIR.1 P4OUT.1 DVSS P4IN.1 Unused P4SEL.2 P4DIR.2 P4DIR.2 P4OUT.2 DVSS P4IN.2 Unused P4SEL.3 P4DIR.3 P4DIR.3 P4OUT.3 DVSS P4IN.3 Unused P4SEL.4 P4DIR.4 P4DIR.4 P4OUT.4 DVSS P4IN.4 Unused P4SEL.5 P4DIR.5 P4DIR.5 P4OUT.5 DVSS P4IN.5 Unused P4SEL.6 P4DIR.6 P4DIR.6 P4OUT.6 DVSS P4IN.6 Unused P4SEL.7 P4DIR.7 P4DIR.7 P4OUT.7 DVSS P4IN.7 Unused POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P5, P5.0, P5.1, input/output with Schmitt-trigger LCDM.5 LCDM.6 LCDM.7 0: Port Active 1: Segment Function Active Pad Logic Segment xx or COMx or Rxx P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module P5OUT.x 1 0 1 Module X OUT P5.x Bus keeper P5.0/S1 P5.1/S0 P5IN.x EN D Module X IN NOTE: x = 0, 1 42 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN Segment P5SEL.0 P5DIR.0 P5DIR.0 P5OUT.0 DVSS P5IN.0 Unused S1 P5SEL.1 P5DIR.1 P5DIR.1 P5OUT.1 DVSS P5IN.1 Unused S0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P5, P5.2 to P5.4, input/output with Schmitt-trigger 0: Port Active 1: COMx Function Active Pad Logic COMx P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module P5OUT.x 1 0 1 Module X OUT P5.x Bus keeper P5.2/COM1 P5.3/COM2 P5.4/COM3 P5IN.x EN D Module X IN NOTE: 2 ≤ x ≤ 4 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN COMx P5SEL.2 P5DIR.2 P5DIR.2 P5OUT.2 DVSS P5IN.2 Unused COM1 P5SEL.3 P5DIR.3 P5DIR.3 P5OUT.3 DVSS P5IN.3 Unused COM2 P5SEL.4 P5DIR.4 P5DIR.4 P5OUT.4 DVSS P5IN.4 Unused COM3 NOTE: The direction control bits P5SEL.2, P5SEL.3, and P5SEL.4 are used to distinguish between port and common functions. Note that a 4MUX LCD requires all common signals COM3 to COM0, a 3MUX LCD requires COM2 to COM0, 2MUX LCD requires COM1 to COM0, and a static LCD requires only COM0. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P5, P5.5 to P5.7, input/output with Schmitt-trigger 0: Port Active 1: Rxx Function Active Pad Logic Rxx P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module P5OUT.x 1 0 1 Module X OUT P5.x Bus keeper P5.5/R13 P5.6/R23 P5.7/R33 P5IN.x EN D Module X IN NOTE: 5 ≤ x ≤ 7 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN Rxx P5SEL.5 P5DIR.5 P5DIR.5 P5OUT.5 DVSS P5IN.5 Unused R13 P5SEL.6 P5DIR.6 P5DIR.6 P5OUT.6 DVSS P5IN.6 Unused R23 P5SEL.7 P5DIR.7 P5DIR.7 P5OUT.7 DVSS P5IN.7 Unused R33 NOTE: The direction control bits P5SEL.5, P5SEL.6, and P5SEL.7 are used to distinguish between port and LCD analog level functions. Note that 4MUX and 3MUX LCDs require all Rxx signals R33 to R03, a 2MUX LCD requires R33, R13, and R03, and a static LCD requires only R33 and R03. 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P6, P6.0, P6.1, P6.2, P6.4, P6.5, input/output with Schmitt-trigger P6SEL.x 0 P6DIR.x Direction Control From Module 1 0: Input 1: Output Pad Logic 0 P6OUT.x Module X OUT P6.X 1 P6.0/SIFCH0 P6.1/SIFCH1 P6.2/SIFCH2 P6.4/SIFCI0 P6.5/SIFCI1 Bus Keeper P6IN.x EN Module X IN D To/From Scan I/F P6SEL.x must be set if the corresponding pins are used by the Scan IF. x: Bit Identifier = 0, 1, 2, 4, or 5 NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 μA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin. PnSEL.x PnDIR.x Dir. Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused NOTE: The signal at pins P6.x/SIFCHx and P6.x/SIFCIx are shared by Port P6 and the San IF module. P6SEL.x must be set if the corresponding pins are used by the Scan IF. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P6, P6.3 input/output with Schmitt-trigger P6SEL.3 0 P6DIR.3 0: Input 1: Output 1 Pad Logic 0 P6OUT.x SIFCAOUT P6.3/SIFCH3/SIFCAOUT 1 Bus Keeper P6IN.3 EN Module X IN D To/From Scan I/F P6SEL.x must be set if the corresponding pins are used by the Scan IF. NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 μA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin. 46 P6SEL.3 P6DIR.3 0 0 P6.3 Input 0 1 P6.3 Output 1 0 SIFCH3 (Scan IF channel 3 excitation output and comparator input) 1 1 SIFCAOUT (Comparator output) Port Function POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P6, P6.6 input/output with Schmitt-trigger P6SEL.6 0 P6DIR.6 0: Input 1: Output 1 Pad Logic 0 P6OUT.6 DVss P6.6/SIFCI2/DACOUT 1 Bus Keeper P6IN.6 EN Module X IN D 1 From Scan I/F DAC To Scan I/F comparator input mux P6SEL.x must be set if the corresponding pins are used by the Scan IF. NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 μA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin. P6SEL.6 P6DIR.6 Port Function 0 0 P6.6 Input 0 1 P6.6 Output 1 0 SIFCI2 (Scan IF channel 2 comparator input) 1 1 SIFDAOUT (Scan IF DAC output) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION input/output schematic (continued) port P6, P6.7 input/output with Schmitt-trigger SVS VLDx=15 P6SEL.7 P6DIR.7 0 1 0: Input 1: Output Pad Logic 0 P6OUT.7 DVss P6.7/SIFCI3/SVSIN 1 Bus Keeper P6IN.7 EN Module X IN D SVS VLDx=15 1 To SVS To Scan I/F comparator (+) terminal P6SEL.x must be set if the corresponding pins are used by the Scan IF. NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 μA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin. 48 SVS VLDx = 15 P6SEL.7 P6DIR.7 0 0 0 P6.7 Input 0 0 1 P6.7 Output 0 1 X SIFCI3 (Scan IF channel 3 comparator input) 1 X X SVSIN POST OFFICE BOX 655303 Port Function • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output TDO Controlled by JTAG Controlled by JTAG TDO/TDI JTAG Controlled by JTAG DVCC TDI Burn and Test Fuse TDI/TCLK Test and Emulation DVCC TMS Module TMS DVCC TCK TCK RST/NMI Tau ~ 50 ns Brownout TCK POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G D U S G D U S 49 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 APPLICATION INFORMATION JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1.8 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 21). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally, and therefore do not require external termination. Time TMS Goes Low After POR TMS ITDI/TCLK ITF Figure 21. Fuse Check Mode Current, MSP430FW42x 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xW42x MIXED SIGNAL MICROCONTROLLER SLAS383B − OCTOBER 2003 − REVISED JUNE 2007 Data Sheet Revision History Literature Number SLAS383B Summary Updated functional block diagram (page 3) Clarified test conditions in recommended operating conditions table (page 18) Clarified test conditions in electrical characteristics table (page 19) Added Ilkg(Px.x) for all ports in leakage current table (page 20) Clarified test conditions in DCO table (page 29) Changed tCPT maximum value from 4 ms to 10 ms in Flash memory table (page 36) NOTE: Page and figure numbers refer to the respective document revision. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 PACKAGE OPTION ADDENDUM www.ti.com 16-Jan-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty MSP430FW423IPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FW423IPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FW425IPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FW425IPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FW427IPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FW427IPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated