深圳市南天星电子科技有限公司 专业代理飞思卡尔 (Freescale) 飞思卡尔主要产品 8 位微控制器 16 位微控制器 数字信号处理器与控制器 i.MX 应用处理器 基于 ARM®技术的 Kinetis MCU 32/64 位微控制器与处理器 模拟与电源管理器件 射频器件(LDMOS,收发器) 传感器(压力,加速度,磁场, 触摸,电池) 飞思卡尔产品主要应用 汽车电子 数据连接 消费电子 工业控制 医疗保健 电机控制 网络 智能能源 深圳市南天星电子科技有限公司 电话:0755-83040796 传真:0755-83040790 邮箱:[email protected] 网址:www.soustar.com.cn 地址:深圳市福田区福明路雷圳大厦 2306 室 MC68HC908SR12 MC68HC08SR12 Data Sheet M68HC08 Microcontrollers MC68HC908SR12 Rev. 5.0 07/2004 freescale.com 深圳市南天星电子科技有限公司 专业代理 Freescale ON Semi Atmel TI ADI IR Microchip NXP 飞思卡尔 安森美 爱特梅尔 德州仪器 模拟器件 国际整流器 微芯 恩智浦 深圳市南天星电子科技有限公司 电话:0755-83040796 83040795 传真:0755-83040790 邮箱:[email protected] 网址:www.soustar.com.cn 地址:深圳市福田区福明路雷圳大厦 2306 室 MC68HC908SR12 MC68HC08SR12 Data Sheet To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://www.freescale.com The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. This product incorporates SuperFlash® technology licensed from SST. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor © Freescale Semiconductor, Inc., 2004 Data Sheet 3 Revision History Revision History Date July 2004 Revision Level 5 Page Number(s) Description Table 24-2 . Operating Range and Table 24-11 . 3V ADC Electrical Characteristics — changed minimum VDD for ADC operation to 3V. 15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3) — Corrected ADRL–ADRL3 register bits. PTB0/SDA0, PTB1/SCL0, PTB2/SDA1/TxD, and PTB3/SCL1/RxD pins — clarified these open-drain pins throughout this document. February, 2002 Data Sheet 4 4 373, 381 248 323, 254, 293 8.4.6 Programming the PLL — deleted redundant step in programming the PLL. 120 Figure 10-1 . Monitor Mode Circuit — corrected connections for PTA1 and PTA2. 167 Table 10-1 . Monitor Mode Signal Requirements and Options — clarified clock input requirements for monitor mode entry. 169 Section 11. Timer Interface Module (TIM) — timer discrepancies corrected throughout this section. 181 18.5.1 Port C Data Register (PTC) and 18.5.2 Data Direction Register C (DDRC) — added notes for PTC6 and PTC7 on 42-pin package. 327, 329 Figure 19-3 . IRQ2 Block Diagram and 19.5 IRQ1 and IRQ2 Pins — corrected IRQ2 for BIH and BIL instructions. 338, 339 Table 24-4 . 5V DC Electrical Characteristics and Table 24-5 . 3V DC Electrical Characteristics — added additional IDD measurements. 374, 376 Table 24-13 . Current Detection Electrical Characteristics — updated trip point values. 382 Appendix A. MC68HC08SR12 — added appendix for ROM part: MC68HC08SR12. 393 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . . 35 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 61 Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . 63 Section 5. Configuration and Mask Option Registers (CONFIG & MOR) . . . . . . . . . . . . . . . . . . . . . . 73 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 81 Section 7. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . 101 Section 8. Clock Generator Module (CGM) . . . . . . . . . . 111 Section 9. System Integration Module (SIM) . . . . . . . . 141 Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 165 Section 11. Timer Interface Module (TIM) . . . . . . . . . . . 181 Section 12. Timebase Module (TBM) . . . . . . . . . . . . . . . 205 Section 13. Pulse Width Modulator (PWM) . . . . . . . . . . 211 Section 14. Analog Module . . . . . . . . . . . . . . . . . . . . . . 221 Section 15. Analog-to-Digital Converter (ADC) . . . . . . 231 Section 16. Serial Communications Interface (SCI) . . . 251 Section 17. Multi-Master IIC Interface (MMIIC) . . . . . . . 291 Section 18. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 317 Section 19. External Interrupt (IRQ) . . . . . . . . . . . . . . . 335 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet List of Sections 5 List of Sections Section 20. Keyboard Interrupt Module (KBI). . . . . . . . 343 Section 21. Computer Operating Properly (COP) . . . . 351 Section 22. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 357 Section 23. Break Module (BRK) . . . . . . . . . . . . . . . . . . 363 Section 24. Electrical Specifications. . . . . . . . . . . . . . . 371 Section 25. Mechanical Specifications . . . . . . . . . . . . . 387 Section 26. Ordering Information . . . . . . . . . . . . . . . . . 391 Appendix A. MC68HC08SR12 . . . . . . . . . . . . . . . . . . . . 393 Data Sheet 6 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 List of Sections Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Table of Contents Section 1. General Description 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 1.6.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 42 1.6.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 42 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.4 External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .43 1.6.5 Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .43 1.6.6 Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.7 ADC Voltage Low Reference Pin (VREFL) . . . . . . . . . . . . . . 43 1.6.8 ADC Voltage High Reference Pin (VREFH). . . . . . . . . . . . . . 43 1.6.9 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 43 1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, VSSAM) . . . 44 1.6.11 Port A Input/Output (I/O) Pins (PTA7–PTA0) . . . . . . . . . . . . 44 1.6.12 Port B I/O Pins (PTB6–PTB0) . . . . . . . . . . . . . . . . . . . . . . . 44 1.6.13 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 44 1.6.14 Port D I/O Pins (PTD7/KBI7–PTD0/KBI0) . . . . . . . . . . . . . . 44 Section 2. Memory Map 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 45 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 7 Table of Contents 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Section 3. Random-Access Memory (RAM) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Section 4. FLASH Memory 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 4.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.7 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .68 4.8 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 70 Section 5. Configuration and Mask Option Registers (CONFIG & MOR) Data Sheet 8 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 5.4 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 75 5.5 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 77 5.6 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 79 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Table of Contents Section 6. Central Processor Unit (CPU) 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.8 Instruction Set Summary 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Section 7. Oscillator (OSC) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.3 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3.1 CGM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . 104 7.3.2 TBM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . 105 7.4 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.5 RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.6 X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.7.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 108 7.7.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 109 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 9 Table of Contents 7.7.3 7.7.4 7.7.5 7.7.6 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 109 CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . 109 CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 109 Oscillator Clock to Time Base Module (OSCCLK) . . . . . . . 109 7.8 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.9 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110 Section 8. Clock Generator Module (CGM) 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 8.4.1 Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.2 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . 116 8.4.3 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.4 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 118 8.4.5 Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 118 8.4.6 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.4.7 Special Programming Exceptions . . . . . . . . . . . . . . . . . . . 124 8.4.8 Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 124 8.4.9 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5.1 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 126 8.5.2 PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 126 8.5.3 PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 126 8.5.4 Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . 126 8.5.5 CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 126 8.5.6 CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . . 127 8.5.7 CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . 127 8.5.8 CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 127 8.6 CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Data Sheet 10 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Table of Contents 8.6.2 8.6.3 8.6.4 8.6.5 8.7 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .130 PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . 132 PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .133 PLL Reference Divider Select Register . . . . . . . . . . . . . . . 134 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 8.8 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 8.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 8.8.3 CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 136 8.9 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . 137 8.9.1 Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .137 8.9.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . . 137 8.9.3 Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Section 9. System Integration Module (SIM) 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 9.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 144 9.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.3.2 Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . . 145 9.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 146 9.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 146 9.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 147 9.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 9.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 149 9.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 9.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .150 9.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 150 9.4.2.6 Monitor Mode Entry Module Reset. . . . . . . . . . . . . . . . . 150 9.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 151 9.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 151 9.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 151 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 11 Table of Contents 9.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 9.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.6.1.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .155 9.6.1.4 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 155 9.6.1.5 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 157 9.6.1.6 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 157 9.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 158 9.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 9.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 9.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 163 9.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 164 Section 10. Monitor ROM (MON) 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10.5 Data Sheet 12 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Table of Contents Section 11. Timer Interface Module (TIM) 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 188 11.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .189 11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 189 11.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 190 11.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 191 11.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 194 11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 196 11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 199 11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 200 11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Section 12. Timebase Module (TBM) 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 13 Table of Contents 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . . 207 12.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 12.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 12.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 Section 13. Pulse Width Modulator (PWM) 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 13.4 PWM Period and Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . 214 13.5 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 13.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 13.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 13.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.10.1 PWM Control Register (PWMCR) . . . . . . . . . . . . . . . . . . . 217 13.10.2 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . . 218 13.10.3 PWM Data Registers (PWMDR0–PWMDR2) . . . . . . . . . . 219 13.10.4 PWM Phase Control Register . . . . . . . . . . . . . . . . . . . . . . 220 Section 14. Analog Module Data Sheet 14 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Table of Contents 14.4.1 14.4.2 14.4.3 14.4.4 14.4.5 14.5 On-Chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . 223 Two-Stage Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Amplifier Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Current Flow Detection Amplifier . . . . . . . . . . . . . . . . . . . . 225 Current Flow Detect Output . . . . . . . . . . . . . . . . . . . . . . . . 225 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.7 Analog Module I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . 226 14.7.1 Analog Module Control Register (AMCR) . . . . . . . . . . . . . 226 14.7.2 Analog Module Gain Control Register (AMGCR) . . . . . . . . 227 14.7.3 Analog Module Status and Control Register (AMSCR) . . . 228 Section 15. Analog-to-Digital Converter (ADC) 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 15.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 15.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 15.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 15.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 15.4.5 Auto-scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 15.4.6 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 15.4.7 Data Register Interlocking . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.4.8 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.7.1 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 15 Table of Contents 15.7.2 15.7.3 15.7.4 15.7.5 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . 240 ADC Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . 240 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . 241 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . 241 15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 15.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .242 15.8.2 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . 244 15.8.3 ADC Data Register 0 (ADRH0 and ADRL0). . . . . . . . . . . . 246 15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3). . 248 15.8.5 ADC Auto-Scan Control Register (ADASCR). . . . . . . . . . . 248 Section 16. Serial Communications Interface (SCI) 16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 16.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 16.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254 16.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 16.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 16.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 261 16.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .261 16.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 16.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 16.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .266 16.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 16.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 16.5.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Data Sheet 16 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Table of Contents 16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 16.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .272 16.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 16.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 16.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 16.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 16.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 16.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 16.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . .288 Section 17. Multi-Master IIC Interface (MMIIC) 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 17.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 17.5 Multi-Master IIC System Configuration . . . . . . . . . . . . . . . . . . 295 17.6 Multi-Master IIC Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 295 17.6.1 START Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 17.6.2 Slave Address Transmission . . . . . . . . . . . . . . . . . . . . . . .296 17.6.3 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 17.6.4 Repeated START Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.5 STOP Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.6 Arbitration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.7 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 17.6.8 Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 17.6.9 Packet Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 17.7 MMIIC I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 17 Table of Contents 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 17.7.6 17.7.7 17.7.8 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . . 299 MMIIC Control Register 1 (MMCR1) . . . . . . . . . . . . . . . . . 301 MMIIC Control Register 2 (MMCR2) . . . . . . . . . . . . . . . . . 303 MMIIC Status Register (MMSR). . . . . . . . . . . . . . . . . . . . . 305 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . . 307 MMIIC Data Receive Register (MMDRR). . . . . . . . . . . . . . 308 MMIIC CRC Data Register (MMCRCDR). . . . . . . . . . . . . . 309 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . . 310 17.8 Program Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 17.8.1 Data Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312 17.9 SMBus Protocols with PEC and without PEC. . . . . . . . . . . . . 313 17.9.1 Quick Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 17.9.2 Send Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 17.9.3 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 17.9.4 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 17.9.5 Read Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 17.9.6 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 17.9.7 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 17.10 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . 316 Section 18. Input/Output (I/O) Ports 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 320 18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 321 18.3.3 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . 323 18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 324 18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 325 18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . 327 18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . 329 18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . . 330 Data Sheet 18 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Table of Contents 18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 331 18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 332 Section 19. External Interrupt (IRQ) 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 19.5 IRQ1 and IRQ2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 19.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 339 19.7 IRQ Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 19.7.1 IRQ1 Status and Control Register . . . . . . . . . . . . . . . . . . . 340 19.7.2 IRQ2 Status and Control Register . . . . . . . . . . . . . . . . . . . 341 Section 20. Keyboard Interrupt Module (KBI) 20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 20.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 347 20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 348 20.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 349 20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 20.10 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 350 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 19 Table of Contents Section 21. Computer Operating Properly (COP) 21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 21.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352 21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 354 21.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 21.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 21.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 356 Section 22. Low-Voltage Inhibit (LVI) 22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358 22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 22.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .360 22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 360 22.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 22.5 Data Sheet 20 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Table of Contents 22.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 Section 23. Break Module (BRK) 23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 23.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364 23.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 366 23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .366 23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 366 23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 366 23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366 23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367 23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 367 23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 368 23.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 368 23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 370 Section 24. Electrical Specifications 24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 24.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 24.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 372 24.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 373 24.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 24.6 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 374 24.7 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 376 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 21 Table of Contents 24.8 5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 24.9 3.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 24.10 5.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 378 24.11 3.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 379 24.12 5.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .380 24.13 3.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .381 24.14 Analog Module Electrical Characteristics . . . . . . . . . . . . . . . . 382 24.14.1 Temperature Sensor Electrical Characteristics . . . . . . . . . 382 24.14.2 Current Detection Electrical Characteristics. . . . . . . . . . . . 382 24.14.3 Two-Stage Amplifier Electrical Characteristics. . . . . . . . . . 382 24.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 383 24.16 MMIIC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 383 24.17 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 385 24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 386 Section 25. Mechanical Specifications 25.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387 25.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 25.3 48-Pin Plastic Low Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 388 25.4 42-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . 389 Section 26. Ordering Information Data Sheet 22 26.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391 26.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 26.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Table of Contents Appendix A. MC68HC08SR12 A.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393 A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 A.3 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 A.4 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 A.5 Mask Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 A.6 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 A.7 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397 A.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 A.8.1 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 398 A.8.2 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 399 A.8.3 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 A.9 ROM Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 23 Table of Contents Data Sheet 24 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Table of Contents Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 List of Figures Figure Title 1-1 1-2 1-3 1-4 MC68HC908SR12 Block Diagram . . . . . . . . . . . . . . . . . . . . . . 39 48-Pin LQFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 40 42-Pin SDIP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2-1 2-2 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .48 4-1 4-2 4-3 4-4 4-5 FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 64 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 65 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 69 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 70 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . .70 5-1 5-2 5-3 5-4 CONFIG and MOR Register Summary. . . . . . . . . . . . . . . . . . . 74 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 75 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 77 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6-1 6-2 6-3 6-4 6-5 6-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 86 7-1 7-2 7-3 7-4 Oscillator Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . 103 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . 104 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . 105 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Page Data Sheet List of Figures 25 List of Figures Figure Title 7-5 7-6 RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-9 8-10 CGM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 CGM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 115 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 125 PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 128 PLL Bandwidth Control Register (PBWCR) . . . . . . . . . . . . . . 131 PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . . . 132 PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . . . 132 PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . . . . 133 PLL Reference Divider Select Register (PMDS) . . . . . . . . . . 134 PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 9-17 9-18 9-19 9-20 9-21 9-22 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .144 CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 154 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . 155 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . 157 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . 157 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 160 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 160 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 161 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 162 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 163 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 164 Data Sheet 26 Page MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 List of Figures Freescale Semiconductor List of Figures Figure Title Page 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . . 171 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 178 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .179 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-12 11-13 11-14 11-15 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .185 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 190 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 196 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . . 198 TIM Counter Registers Low (TCNTL) . . . . . . . . . . . . . . . . . . . 198 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . . 199 TIM Counter Modulo Register Low (TMODL) . . . . . . . . . . . . . 199 TIM Channel 0 Status and Control Register (TSC0) . . . . . . . 200 TIM Channel 1 Status and Control Register (TSC1) . . . . . . . 200 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . . 204 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . . 204 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . . 204 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . . 204 12-1 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 12-2 Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . . . . 207 13-1 13-2 13-3 13-4 13-5 13-6 13-7 13-8 PWM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 212 PWM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 PWM Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215 PWM Control Register (PWMCR). . . . . . . . . . . . . . . . . . . . . . 217 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . . . . 218 PWM Data Register 0 (PWMDR0) . . . . . . . . . . . . . . . . . . . . . 219 PWM Data Register 1 (PWMDR1) . . . . . . . . . . . . . . . . . . . . . 219 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet List of Figures 27 List of Figures Figure Title Page 13-9 PWM Data Register 2 (PWMDR2) . . . . . . . . . . . . . . . . . . . . . 219 13-10 PWM Phase Control Register (PWMPCR) . . . . . . . . . . . . . . . 220 14-1 14-2 14-3 14-4 14-5 Analog Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 222 Analog Module I/O Register Summary . . . . . . . . . . . . . . . . . . 223 Analog Module Control Register (AMCR). . . . . . . . . . . . . . . . 226 Analog Module Gain Control Register (AMGCR) . . . . . . . . . . 227 Analog Module Status and Control Register (AMSCR) . . . . . 229 15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 15-9 15-10 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 233 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 242 ADC Clock Control Register (ADICLK). . . . . . . . . . . . . . . . . . 244 ADRH0 and ADRL0 in 8-Bit Truncated Mode. . . . . . . . . . . . . 246 ADRH0 and ADRL0 in Right Justified Mode. . . . . . . . . . . . . . 246 ADRH0 and ADRL0 in Left Justified Mode . . . . . . . . . . . . . . . 247 ADRH0 and ADRL0 in Left Justified Sign Data Mode . . . . . . 247 ADC Data Register Low 1 to 3 (ADRL1–ADRL3) . . . . . . . . . . 248 ADC Scan Control Register (ADASCR) . . . . . . . . . . . . . . . . . 248 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 16-9 16-10 16-11 16-12 16-13 16-14 16-15 16-16 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .255 SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .256 SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 263 Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 274 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 277 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 279 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 282 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 286 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .287 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 288 Data Sheet 28 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 List of Figures Freescale Semiconductor List of Figures Figure 17-1 17-2 17-3 17-4 17-5 17-6 17-7 17-8 17-9 17-10 17-11 17-12 Title 17-13 17-14 17-15 17-16 17-17 17-18 17-19 17-20 MMIIC I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . 294 Multi-Master IIC Bus Transmission Signal Diagram . . . . . . . . 295 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . . . . 299 MMIIC Control Register 1 (MMCR1). . . . . . . . . . . . . . . . . . . .301 MMIIC Control Register 2 (MMCR2). . . . . . . . . . . . . . . . . . . .303 MMIIC Status Register (MMSR) . . . . . . . . . . . . . . . . . . . . . . . 305 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . . . . 307 MMIIC Data Receive Register (MMDRR) . . . . . . . . . . . . . . . . 308 MMIIC CRC Data Register (MMCRCDR) . . . . . . . . . . . . . . . . 309 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . . . . 310 Data Transfer Sequences for Master/Slave Transmit/Receive Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Quick Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Read Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . 316 18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 18-10 18-11 18-12 18-13 18-14 18-15 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .318 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 321 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . . . 323 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 325 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 329 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . . . 330 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . 331 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 332 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Page Data Sheet List of Figures 29 List of Figures Figure Title Page 19-1 19-2 19-3 19-4 19-5 External Interrupt I/O Register Summary . . . . . . . . . . . . . . . . 336 IRQ1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 IRQ2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 IRQ1 Status and Control Register (INTSCR1) . . . . . . . . . . . . 340 IRQ2 Status and Control Register (INTSCR2) . . . . . . . . . . . . 341 20-1 20-2 20-3 20-4 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .344 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 345 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 348 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 349 21-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 21-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . 354 21-3 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 355 22-1 LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 22-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .358 22-3 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 23-1 23-2 23-3 23-4 23-5 23-6 23-7 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 365 Break Module I/O Register Summary . . . . . . . . . . . . . . . . . . . 365 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 367 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 368 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 368 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 369 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 370 24-1 RC vs. Bus Frequency (5V @25°C) . . . . . . . . . . . . . . . . . . . .378 24-2 RC vs. Bus Frequency (3V @25°C) . . . . . . . . . . . . . . . . . . . .379 24-3 MMIIC Signal Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 25-1 48-Pin LQFP (Case #932-02) . . . . . . . . . . . . . . . . . . . . . . . . . 388 25-2 42-Pin SDIP (Case #858-01) . . . . . . . . . . . . . . . . . . . . . . . . . 389 A-1 A-2 MC68HC08SR12 Block Diagram . . . . . . . . . . . . . . . . . . . . . 395 MC68HC08SR12 Memory Map . . . . . . . . . . . . . . . . . . . . . . 396 Data Sheet 30 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 List of Figures Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 List of Tables Table Title Page 2-1 Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 5-1 CGMXCLK Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6-1 6-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7-1 7-2 CGMXCLK Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Timebase Module Reference Clock Selection . . . . . . . . . . . . 105 8-1 8-3 8-2 Numeric Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . .130 PRE1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . .130 9-1 9-2 9-3 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10-1 10-2 10-3 10-4 10-5 10-7 10-6 10-8 10-9 Monitor Mode Signal Requirements and Options . . . . . . . . . . 169 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 173 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 175 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 175 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 176 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 176 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 177 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 177 11-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 11-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet List of Tables 31 List of Tables Table Title Page 11-3 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 202 12-1 Timebase Rate Selection for OSCCLK = 32.768 kHz . . . . . . 207 13-1 PTC0 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 13-2 PWM Counter Clock Prescaler Selection . . . . . . . . . . . . . . . . 219 14-1 14-2 14-3 14-4 Analog Module Power Control . . . . . . . . . . . . . . . . . . . . . . . . 226 Amplifier Channel Select Control bits . . . . . . . . . . . . . . . . . . . 227 Analog Module Gain Values . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Analog Module Clock Divider Select. . . . . . . . . . . . . . . . . . . .229 15-1 15-2 15-3 15-4 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 ADC Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 Auto-scan Mode Channel Select . . . . . . . . . . . . . . . . . . . . . . 248 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265 Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 276 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . .290 17-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 17-2 MMIIC Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 310 18-1 18-2 18-3 18-4 18-5 18-6 18-7 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .319 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 PTB2 and PTB3 Pin Configurations . . . . . . . . . . . . . . . . . . . .325 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 PTC0 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Data Sheet 32 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 List of Tables Freescale Semiconductor List of Tables Table Title Page 20-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 22-1 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 24-1 24-2 24-3 24-4 24-5 24-6 24-7 24-8 24-9 24-10 24-11 24-12 24-13 24-14 24-15 24-16 24-17 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 374 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 376 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 5V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 378 3V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 379 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 380 3V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 381 Temperature Sensor Electrical Characteristics . . . . . . . . . . . 382 Current Detection Electrical Characteristics . . . . . . . . . . . . . . 382 Two-Stage Amplifier Electrical Characteristics . . . . . . . . . . . . 382 MMIIC DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . .383 MMIIC Interface Input/Output Signal Timing. . . . . . . . . . . . . . 384 FLASH Memory Electrical Characteristics . . . . . . . . . . . . . . . 386 26-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 A-1 A-2 A-3 A-4 Summary of MC68HC08SR12 and MC68HC908SR12 Differences . . . . . . . . . . . . . . . . . . . . . 394 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 398 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 399 MC68HC08SR12 Order Numbers . . . . . . . . . . . . . . . . . . . . . 401 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet List of Tables 33 List of Tables Data Sheet 34 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 List of Tables Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 1. General Description 1.1 Contents 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 1.6.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 42 1.6.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 42 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.4 External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .43 1.6.5 Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .43 1.6.6 Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.7 ADC Voltage Low Reference Pin (VREFL) . . . . . . . . . . . . . . 43 1.6.8 ADC Voltage High Reference Pin (VREFH). . . . . . . . . . . . . . 43 1.6.9 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 43 1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, VSSAM) . . . 44 1.6.11 Port A Input/Output (I/O) Pins (PTA7–PTA0) . . . . . . . . . . . . 44 1.6.12 Port B I/O Pins (PTB6–PTB0) . . . . . . . . . . . . . . . . . . . . . . . 44 1.6.13 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 44 1.6.14 Port D I/O Pins (PTD7/KBI7–PTD0/KBI0) . . . . . . . . . . . . . . 44 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor General Description Data Sheet 35 General Description 1.2 Introduction The MC68HC908SR12 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. 1.3 Features Features of the MC68HC908SR12 include the following: • High-performance M68HC08 architecture • Fully upward-compatible object code with M6805, M146805, and M68HC05 Families • Maximum internal bus frequency: – 8-MHz at 5V operating voltage – 4-MHz at 3V operating voltage • Clock input options: – RC-oscillator – 32kHz crystal-oscillator with 32MHz internal phase-lock-loop • 12k-bytes user program FLASH memory with security1 feature • 512 bytes of on-chip RAM • Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture, output compare, and PWM capability on each channel • Timebase module • 3-channel, 8-bit high speed PWM (125kHz) with independent counters and automatic phase control • Serial communications interface module (SCI) 1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Data Sheet 36 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 General Description Freescale Semiconductor General Description Features • System Management Bus (SMBus), version 1.0/1.1 (Multi-master IIC bus) • 14-channel, 10-bit analog-to-digital converter (ADC), with auto-scan mode for 4 channels • Current sensor with programmable amplifier • Temperature sensor (–20°C to +70°C) • IRQ1 external interrupt pin with integrated pullup • IRQ2 external interrupt pin with programmable pullup • 8-bit keyboard wakeup port with integrated pullup • 31 general-purpose input/output (I/O) pins and 2 dedicated pins: – 31 shared-function I/O pins – Two dedicated analog input pins • Low-power design (fully static with Stop and Wait modes) • Master reset pin (with integrated pullup) and power-on reset • System protection features – Optional computer operating properly (COP) reset – Low-voltage detection with optional reset – Illegal opcode detection with reset – Illegal address detection with reset • 48-pin low quad flat pack (LQFP) and 42-pin shrink dual-in-line package (SDIP) • Specific features of the MC68HC908SR12 in 42-pin SDIP are: – 29 general-purpose l/Os only – 11-channel ADC only Features of the CPU08 include the following: • Enhanced HC05 programming model • Extensive loop control functions • 16 addressing modes (eight more than the HC05) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor General Description Data Sheet 37 General Description • 16-bit Index register and stack pointer • Memory-to-memory data transfers • Fast 8 × 8 multiply instruction • Fast 16/8 divide instruction • Binary-coded decimal (BCD) instructions • Optimization for controller applications • Efficient C language support 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC908SR12. Data Sheet 38 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 General Description Freescale Semiconductor CONTROL AND STATUS REGISTERS — 96 BYTES 2-CHANNEL TIMER INTERFACE MODULE 1 DDRA ARITHMETIC/LOGIC UNIT (ALU) PORTA CPU REGISTERS PTA7/T1CH1 PTA6/T1CH0 PTA5/ATD7 – PTA0/ATD2 ‡ 2-CHANNEL TIMER INTERFACE MODULE 2 PORTB PTB6/IRQ2 PTB5/T2CH1 PTB4/T2CH0 PTB3//SCL1/RxD † PTB2/SDA1/TxD † PTB1/SCL0 † PTB0/SDA0 † DDRC PORTC PTC7/ATD12 ‡ # PTC6/ATD11 ‡ # PTC5/ATD10 ‡ PTC4/ATD9 ‡ PTC3/ATD8 ‡ PTC2/PWM2 PTC1/PWM1 PTC0/PWM0/CD DDRD USER FLASH — 12,288 BYTES PORTD General Description TIMEBASE MODULE USER RAM — 512 BYTES MONITOR ROM — 368 BYTES SERIAL COMMUNICATIONS INTERFACE MODULE DDRB MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor INTERNAL BUS M68HC08 CPU USER FLASH VECTORS — 38 BYTES OSCILLATORS AND CLOCK GENERATOR MODULE MULTI-MASTER IIC (SMBUS) INTERFACE MODULE INTERNAL OSCILLATOR OSC1 OSC2 RC OSCILLATOR PULSE WIDTH MODULATOR MODULE X-TAL OSCILLATOR CGMXFC PHASE-LOCKED LOOP 8-BIT KEYBOARD INTERRUPT MODULE * RST SYSTEM INTEGRATION MODULE COMPUTER OPERATING PROPERLY MODULE * IRQ1 ** IRQ2 EXTERNAL IRQ MODULE OPIN1/ATD0 # OPIN2/ATD1 VSSAM VREFH 39 Data Sheet VDD VSS VDDA VSSA 10-BIT ANALOG-TO-DIGITAL CONVERTER MODULE POWER LOW-VOLTAGE INHIBIT MODULE POWER-ON RESET MODULE * Pin contains integrated pullup device. ** Pin contains configurable pullup device. *** Pin contains integrated pullup device for KBI functions. † Pin is open-drain when configured as output. ‡ High current drive pin (for LED). # Pin not bonded on 42-pin SDIP. Figure 1-1. MC68HC908SR12 Block Diagram General Description MCU Block Diagram VREFL ANALOG MODULE PTD7/KBI7 – PTD0/KBI0 *** General Description PTC4/ATD9 PTC5/ATD10 PTC6/ATD11 VDDA VSSA NC PTA4/ATD6 PTA3/ATD5 PTA2/ATD4 46 45 44 43 42 41 40 39 38 37 PTA1/ATD3 PTA5/ATD7 PTC3/ATD8 1 47 48 CGMXFC 1.5 Pin Assignments 36 VREFH VSS 7 30 OPIN1/ATD0 PTD1/KBI1 8 29 PTB4/T2CH0 IRQ1 9 28 PTB5/T2CH1 PTD2/KBI2 10 27 PTB6/IRQ2 RST 11 26 PTA6/T1CH0 25 PTD7/KBI7 NC 24 PTB0/SDA0 13 PTD3/KBI3 12 23 VSSAM PTA7/T1CH1 31 22 6 PTC2/PWM2 OSC2 21 PTA0/ATD2 PTC1/PWM1 32 20 5 PTC0/PWM0/CD OSC1 19 PTC7/ATD12 PTD6/KBI6 33 18 4 PTD5/KBI5 VDD 17 OPIN2/ATD1 PTD4/KBI4 34 16 3 PTB3/SCL1/RxD PTD0/KBI0 15 VREFL PTB2/SDA1/TxD 35 14 2 PTB1/SCL0 NC NC: No connection Figure 1-2. 48-Pin LQFP Pin Assignments Data Sheet 40 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 General Description Freescale Semiconductor General Description Pin Functions VDDA 1 42 VSSA PTC5/ATD10 2 41 PTA4/ATD6 PTC4/ATD9 3 40 PTA3/ATD5 PTA5/ATD7 4 39 PTA2/ATD4 CGMXFC 5 38 PTA1/ATD3 PTC3/ATD8 6 37 VREFH PTD0/KBI0 7 36 VREFL VDD 8 35 PTA0/ATD2 OSC1 9 34 VSSAM OSC2 10 33 OPIN1/ATD0 VSS 11 32 PTB4/T2CH0 PTD1/KBI1 12 31 PTB5/T2CH1 IRQ1 13 30 PTB6/IRQ2 PTD2/KBI2 14 29 PTA6/T1CH0 RST 15 28 PTD7/KBI7 PTD3/KBI3 16 27 PTA7/T1CH1 PTB0/SDA0 17 26 PTC2/PWM2 PTB1/SCL0 18 25 PTC1/PWM1 PTB2/SDA1/TxD 19 24 PTC0/PWM0/CD PTB3/SCL1/RxD 20 23 PTD6/KBI6 PTD4/KBI4 21 22 PTD5/KBI5 Pins not available on 42-pin package Internal connection OPIN2/ATD1 Unconnected PTC6/ATD11 Unconnected PTC7/ATD12 Unconnected Figure 1-3. 42-Pin SDIP Pin Assignment 1.6 Pin Functions Description of pin functions are provided here. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor General Description Data Sheet 41 General Description 1.6.1 Power Supply Pins (VDD and VSS) VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-4 shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels. MCU VSS VDD C1 0.1 µF + C2 VDD NOTE: Component values shown represent typical applications. Figure 1-4. Power Supply Bypassing VSS must be grounded for proper MCU operation. 1.6.2 Oscillator Pins (OSC1 and OSC2) The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit. See Section 7. Oscillator (OSC) and Section 8. Clock Generator Module (CGM). Data Sheet 42 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 General Description Freescale Semiconductor General Description Pin Functions 1.6.3 External Reset Pin (RST) A logic 0 on the RST pin forces the MCU to a known start-up state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. This pin contains an internal pullup resistor. See Section 9. System Integration Module (SIM). 1.6.4 External Interrupt Pin (IRQ1) IRQ1 is an asynchronous external interrupt pin. This pin contains an internal pullup resistor. See Section 19. External Interrupt (IRQ). 1.6.5 Analog Power Supply Pin (VDDA) VDDA is the power supply pin for the analog circuits of the MCU. 1.6.6 Analog Ground Pin (VSSA) VSSA is the power supply ground pin for the analog circuits of the MCU. It should be decoupled as per the VSS digital ground pin. 1.6.7 ADC Voltage Low Reference Pin (VREFL) VREFL is the voltage input pin for the ADC voltage low reference. See Section 15. Analog-to-Digital Converter (ADC). 1.6.8 ADC Voltage High Reference Pin (VREFH) VREFH is the voltage input pin for the ADC voltage high reference. See Section 15. Analog-to-Digital Converter (ADC). 1.6.9 External Filter Capacitor Pin (CGMXFC) CGMXFC is an external filter capacitor connection for the CGM. See Section 8. Clock Generator Module (CGM). MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor General Description Data Sheet 43 General Description 1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, VSSAM) OPIN1/ATD0 and OPIN2/ATD1 are input pins to the analog module and ADC and VSSAM is the negative reference input. See Section 14. Analog Module and Section 15. Analog-to-Digital Converter (ADC). 1.6.11 Port A Input/Output (I/O) Pins (PTA7–PTA0) PTA7–PTA0 are special function, bidirectional port pins. PTA7/T1CH1–PTA6/T1CH0 are shared with the TIM1, and PTA5/ATD7–PTA0/ATD2 are shared with the ADC. See Section 18. Input/Output (I/O) Ports, Section 11. Timer Interface Module (TIM), and Section 15. Analog-to-Digital Converter (ADC). 1.6.12 Port B I/O Pins (PTB6–PTB0) PTB6–PTB0 are special function, bidirectional port pins. PTB6/IRQ2 is shared with the IRQ2 input, PTB5/T2CH1–PTB4/T2CH0 are shared with the TIM2, PTB3/SCL1/RxD–PTB2/SDA1/TxD are shared with the MMIIC and SCI, and PTB1/SCL0–PTB0/SDA0 are shared with the MMIIC. See Section 18. Input/Output (I/O) Ports, Section 19. External Interrupt (IRQ), Section 11. Timer Interface Module (TIM), Section 16. Serial Communications Interface (SCI), and Section 17. Multi-Master IIC Interface (MMIIC). 1.6.13 Port C I/O Pins (PTC7–PTC0) PTC7–PTC0 are special function, bidirectional port pins. PTC7/ATD12–PTC3/ATD8 are shared with the ADC, PTC2/PWM2–PTC1/PWM1 are shared with the PWM, and PTC0/PWM0/CD is shared with the PWM and analog module. See Section 18. Input/Output (I/O) Ports, Section 15. Analog-to-Digital Converter (ADC), Section 13. Pulse Width Modulator (PWM), and Section 14. Analog Module. 1.6.14 Port D I/O Pins (PTD7/KBI7–PTD0/KBI0) PTD7–PTD0 are general-purpose bidirectional port pins with keyboard wakeup function. See Section 18. Input/Output (I/O) Ports and Section 20. Keyboard Interrupt Module (KBI). Data Sheet 44 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 General Description Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 2. Memory Map 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 45 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2 Introduction The CPU08 can address 64k-bytes of memory space. The memory map, shown in Figure 2-1, includes: • 12,288 bytes of user FLASH memory • 512 bytes of random-access memory (RAM) • 38 bytes of user-defined vectors • 368 bytes of monitor ROM 2.3 Unimplemented Memory Locations Accessing an unimplemented location can cause an illegal address reset. In the memory map (Figure 2-1) and in register figures in this document, unimplemented locations are shaded. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Memory Map 45 Memory Map 2.4 Reserved Memory Locations Accessing a reserved location can have unpredictable effects on MCU operation. In the Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R. 2.5 Input/Output (I/O) Section Most of the control, status, and data registers are in the zero page $0000–$005F. Additional I/O registers have the following addresses: • $FE00; SIM break status register, SBSR • $FE01; SIM reset status register, SRSR • $FE03; SIM break flag control register, SBFCR • $FE04; Interrupt status register 1, INT1 • $FE05; Interrupt status register 2, INT2 • $FE06; Interrupt status register 3, INT3 • $FE07; Reserved • $FE08; FLASH control register, FLCR • $FE09; FLASH block protect register, FLBPR • $FE0A; Reserved • $FE0B; Reserved • $FE0C; break address register high, BRKH • $FE0D; break address register low, BRKL • $FE0E; break status and control register, BRKSCR • $FE0F; LVI status register, LVISR • $FF80; Mask option register, MOR • $FFFF; COP control register, COPCTL Data registers are shown in Figure 2-2, Table 2-1 is a list of vector locations. Data Sheet 46 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section $0000 ↓ $005F I/O Registers 96 Bytes $0060 ↓ $025F RAM 512 Bytes $0260 ↓ $BFFF Unimplemented 48,544 Bytes $C000 ↓ $EFFF FLASH Memory 12,288 Bytes $F000 ↓ $FDFF Unimplemented 3,584 Bytes $FE00 SIM Break Status Register (SBSR) $FE01 SIM Reset Status Register (SRSR) $FE02 Reserved $FE03 SIM Break Flag Control Register (SBFCR) $FE04 Interrupt Status Register 1 (INT1) $FE05 Interrupt Status Register 2 (INT2) $FE06 Interrupt Status Register 3 (INT3) $FE07 Reserved $FE08 FLASH Control Register (FLCR) $FE09 FLASH Block Protect Register (FLBPR) $FE0A Reserved $FE0B Reserved $FE0C Break Address Register High (BRKH) $FE0D Break Address Register Low (BRKL) $FE0E Break Status and Control Register (BRKSCR) $FE0F LVI Status Register (LVISR) $FE10 ↓ $FF7F Monitor ROM 368 Bytes $FF80 Mask Option Register $FF81 ↓ $FFD9 Reserved 89 Bytes $FFDA ↓ $FFFF FLASH Vectors 38 Bytes Figure 2-1. Memory Map MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Memory Map 47 Memory Map Addr. Register Name $0000 Read: Port A Data Register Write: (PTA) Reset: $0001 $0002 $0003 Read: Port B Data Register Write: (PTB) Reset: Read: Port C Data Register Write: (PTC) Reset: Read: Port D Data Register Write: (PTD) Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 U U U U U U U U PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 0 U U U U U U U PTC7 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 U U U U U U U U PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 U U U U U U U U DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 = Unimplemented R 0 Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: Data Direction Register B $0005 Write: (DDRB) Reset: 0 0 Read: DDRC7 Data Direction Register C $0006 Write: (DDRC) Reset: 0 Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 Read: $0008 Unimplemented Write: Reset: Read: $0009 Unimplemented Write: Reset: U = Unaffected X = Indeterminate = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 12) Data Sheet 48 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 0 0 LEDA5 LEDA4 LEDA3 LEDA2 LEDA1 LEDA0 0 0 0 0 0 0 0 0 LEDC7 LEDC6 LEDC5 LEDC4 LEDC3 0 0 0 0 0 0 0 0 0 0 0 PWR1 PWR0 OPCH1 OPCH0 AMIEN DO2 DO1 DO0 0 0 0 0 0 0 0 0 GAINB2 GAINB1 GAINB0 GAINA3 GAINA2 GAINA1 GAINA0 0 0 0 0 0 0 0 0 OPIF 0 DOF 0 CDIF Read: $000A Unimplemented Write: Reset: Read: $000B Unimplemented Write: Reset: $000C $000D $000E $000F Read: Port-A LED Control Register Write: (LEDA) Reset: Read: Port-C LED Control Register Write: (LEDC) Reset: Read: Analog Module Control Register Write: (AMCR) Reset: Read: Analog Module Gain GAINB3 Control Register Write: (AMGCR) Reset: 0 Read: Analog Module Status and AMCDIV1 AMCDIV0 $0010 Control Register Write: (AMSCR) Reset: 0 0 OPIFR CDIFR U 0 0 0 U 0 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 = Unimplemented R Read: $0011 Unimplemented Write: Reset: Read: $0012 Unimplemented Write: Reset: $0013 Read: LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 U = Unaffected X = Indeterminate = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 12) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Memory Map 49 Memory Map Addr. $0014 $0015 $0016 $0017 Register Name Read: SCI Control Register 2 Write: (SCC2) Reset: 4 3 2 1 Bit 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE U U 0 0 0 0 0 0 Read: SCI Status Register 1 Write: (SCS1) Reset: SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 Read: SCI Status Register 2 Write: (SCS2) Reset: 0 0 0 0 0 0 BKF RPF 0 0 0 0 0 0 0 0 Read: SCI Data Register Write: (SCDR) Reset: R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 U U U U U U U U Read: SCI Baud Rate Register Write: (SCBR) Reset: 0 0 SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 0 Keyboard Status and Read: Control Register Write: (KBSCR) Reset: 0 0 0 0 IMASKK MODEK Read: Keyboard Interrupt Enable $001B Register Write: (KBIER) Reset: $001D 5 R8 $001A $001C 6 Read: SCI Control Register 3 Write: (SCC3) Reset: $0018 $0019 Bit 7 Read: IRQ2 Status and Control Register Write: (INTSCR2) Reset: 0 ACKK 0 0 0 0 0 0 0 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 0 0 IRQ2F 0 IMASK2 MODE2 0 0 0 0 Read: STOP_ Configuration Register 2 Write: ICLKEN (CONFIG2)† Reset: 0 U = Unaffected KEYF PTBPUE6 0 STOP_ RCLKEN 0 ACK2 0 0 0 STOP_ OSCCLK1 OSCCLK0 XCLKEN 0 X = Indeterminate 0 0 0 0 0 = Unimplemented R CDOEN SCIBDSRC 0 0 = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 12) Data Sheet 50 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. $001E $001F Register Name Read: IRQ1 Status and Control Register Write: (INTSCR1) Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 IRQ1F 0 IMASK1 MODE1 0 0 0 SSREC STOP COPD 0 0 0 PS2 PS1 PS0 ACK1 0 Read: COPRS Configuration Register 1 Write: † (CONFIG1) Reset: 0 0 0 0 0 LVISTOP LVIRSTD LVIPWRD LVI5OR3 0 0 TOIE TSTOP 0 0 0 0 † One-time writable register after each reset. $0020 $0021 $0022 $0023 $0024 Read: Timer 1 Status and Control Register Write: (T1SC) Reset: TOF 0 0 1 0 0 0 0 0 Read: Timer 1 Counter Register High Write: (T1CNTH) Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Timer 1 Counter Register Low Write: (T1CNTL) Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 X X X X X X X X = Unimplemented R Read: Timer 1 Counter Modulo Register High Write: (T1MODH) Reset: Read: Timer 1 Counter Modulo Register Low Write: (T1MODL) Reset: Read: Timer 1 Channel 0 Status $0025 and Control Register Write: (T1SC0) Reset: $0026 Read: Timer 1 Channel 0 Register High Write: (T1CH0H) Reset: U = Unaffected 0 CH0F 0 X = Indeterminate TRST = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 12) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Memory Map 51 Memory Map Addr. Register Name Read: Timer 1 Channel 0 Register Low Write: (T1CH0L) Reset: $0027 Read: Timer 1 Channel 1 Status $0028 and Control Register Write: (T1SC1) Reset: Read: Timer 1 Channel 1 Register High Write: (T1CH1H) Reset: $0029 Read: Timer 1 Channel 1 Register Low Write: (T1CH1L) Reset: $002A $002B $002C $002D $002E $002F Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 X X X X X X X X MS1A ELS1B ELS1A TOV1 CH1MAX CH1F 0 CH1IE 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 X X X X X X X X Bit 7 6 5 4 3 2 1 Bit 0 X X X X X X X X TOIE TSTOP 0 0 PS2 PS1 PS0 Read: Timer 2 Status and Control Register Write: (T2SC) Reset: TOF 0 0 1 0 0 0 0 0 Read: Timer 2 Counter Register High Write: (T2CNTH) Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Timer 2 Counter Register Low Write: (T2CNTL) Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 = Unimplemented R Read: Timer 2 Counter Modulo Register High Write: (T2MODH) Reset: Read: Timer 2 Counter Modulo Register Low Write: (T2MODL) Reset: Read: Timer 2 Channel 0 Status $0030 and Control Register Write: (T2SC0) Reset: U = Unaffected 0 CH0F 0 0 X = Indeterminate TRST = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 12) Data Sheet 52 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. $0031 $0032 Register Name Read: Timer 2 Channel 0 Register High Write: (T2CH0H) Reset: Read: Timer 2 Channel 0 Register Low Write: (T2CH0L) Reset: Read: Timer 2 Channel 1 Status $0033 and Control Register Write: (T2SC1) Reset: $0034 $0035 $0036 $0037 $0038 $0039 $003A Read: Timer 2 Channel 1 Register High Write: (T2CH1H) Reset: Read: Timer 2 Channel 1 Register Low Write: (T2CH1L) Reset: Read: PLL Control Register Write: (PTCL) Reset: Read: PLL Bandwidth Control Register Write: (PBWC) Reset: Read: PLL Multiplier Select Register High Write: (PMSH) Reset: Read: PLL Multiplier Select Register Low Write: (PMSL) Reset: Read: PLL VCO Range Select Register Write: (PMRS) Reset: U = Unaffected Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 X X X X X X X X Bit 7 6 5 4 3 2 1 Bit 0 X X X X X X X X MS1A ELS1B ELS1A TOV1 CH1MAX CH1F 0 CH1IE 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 X X X X X X X X Bit 7 6 5 4 3 2 1 Bit 0 X X X X X X X X PLLON BCS PRE1 PRE0 VPR1 VPR0 1 0 0 0 0 0 0 0 0 0 0 0 0 MUL11 MUL10 MUL9 MUL8 PLLIE PLLF 0 AUTO 0 LOCK ACQ R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0 0 1 0 0 0 0 0 0 VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0 0 1 0 0 0 0 0 0 = Unimplemented R X = Indeterminate = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 12) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Memory Map 53 Memory Map Addr. $003B Register Name Read: PLL Reference Divider Select Register Write: (PMDS) Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 RDS3 RDS2 RDS1 RDS0 0 0 0 0 0 0 0 1 = Unimplemented R Read: $003C Unimplemented Write: Reset: Read: $003D Unimplemented Write: Reset: Read: $003E Unimplemented Write: Reset: Read: $003F Unimplemented Write: Reset: Read: $0040 Unimplemented Write: Reset: Read: $0041 Unimplemented Write: Reset: Read: $0042 Unimplemented Write: Reset: Read: $0043 Unimplemented Write: Reset: Read: $0044 Unimplemented Write: Reset: U = Unaffected X = Indeterminate = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 12) Data Sheet 54 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. Register Name Bit 7 6 5 4 TBR2 TBR1 TBR0 0 0 0 MMAD6 MMAD5 0 3 2 1 Bit 0 TBIE TBON R 0 0 0 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD 1 0 0 0 0 0 0 0 MMCRCBYTE SDASCL1 0 0 0 0 0 Read: $0045 Unimplemented Write: Reset: $0046 Read: Timebase Control Register Write: (TBCR) Reset: TBIF 0 0 TACK Read: $0047 Unimplemented Write: Reset: $0048 Read: MMAD7 MMIIC Address Register Write: (MMADR) Reset: 1 Read: MMIIC Control Register 1 $0049 Write: (MMCR1) Reset: MMEN MMIEN 0 0 Read: MMALIF MMNAKIF MMIIC Control Register 2 $004A Write: 0 0 (MMCR2) Reset: 0 0 $004B $004C $004D MMTXAK REPSEN MMCLRBB Read: MMRXIF MMIIC Status Register Write: 0 (MMSR) Reset: 0 Read: MMIIC Data Transmit MMTD7 Register Write: (MMDTR) Reset: 0 Read: MMRD7 MMIIC Data Receive Register Write: (MDDRR) Reset: 0 MMTXIF 0 MMBB 0 0 0 MMAST MMRW 0 0 MMCRCEF 0 0 Unaffected MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF 0 0 0 0 1 0 1 0 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0 0 0 0 0 0 0 0 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0 0 0 0 0 0 0 0 Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0 MMIIC CRC Data Register Write: $004E (MMCRDR) Reset: 0 0 0 0 0 0 0 0 U = Unaffected X = Indeterminate = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 12) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Memory Map 55 Memory Map Addr. Register Name Bit 7 6 5 4 3 Read: MMIIC Frequency Divider $004F Register Write: (MMFDR) Reset: 0 0 0 0 0 0 0 0 0 R R R Read: $0050 Reserved Write: 2 1 Bit 0 MMBR2 MMBR1 MMBR0 0 1 0 0 R R R R R 0 0 PCH2 PCH1 PCH0 0 0 0 0 0 PCLK1 PCLK0 0 0 Reset: $0051 Read: PWMEN2 PWMEN1 PWMEN0 PWM Control Register Write: (PWMCR) Reset: 0 0 0 Read: PWM Clock Control PCLKSEL Register Write: (PWMCCR) Reset: 0 $0052 0 0 0 0 0 0 0 0 0 0 $0053 Read: 0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0 PWM Data Register 0 Write: (PWMDR0) Reset: 0 0 0 0 0 0 0 0 $0054 Read: 1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0 PWM Data Register 1 Write: (PWMDR1) Reset: 0 0 0 0 0 0 0 0 $0055 Read: 2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0 PWM Data Register 2 Write: (PWMDR2) Reset: 0 0 0 0 0 0 0 0 Read: PWM Phase Control Register Write: (PWMPCR) Reset: $0056 $0057 Read: ADC Status and Control Register Write: (ADSCR) Reset: $0058 Read: ADC Clock Control Register Write: (ADICLK) Reset: U = Unaffected PHEN PHD6 PHD5 PHD4 PHD3 PHD2 PHD1 PHD0 0 0 0 0 0 0 0 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 ADIV2 ADIV1 ADIV0 ADICLK MODE1 MODE0 0 0 0 0 0 0 0 1 = Unimplemented R COCO X = Indeterminate R 0 0 = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 12) Data Sheet 56 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: ADx ADx ADx ADx ADx ADx ADx ADx R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset: ADx ADx ADx ADx ADx ADx ADx ADx R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 1 $005B Write: (ADRL1) Reset: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 2 $005C Write: (ADRL3) Reset: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 3 $005D Write: (ADRL3) Reset: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 0 0 0 0 0 AUTO1 AUTO0 ASCAN 0 0 0 0 0 0 0 0 R R R R R R $005E Read: ADC Auto-scan Control Register Write: (ADASCR) Reset: Read: $005F Unimplemented Write: Reset: Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: SBSW R Note 0 Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 Write: (SRSR) POR: U = Unaffected POR PIN COP ILOP ILAD 0 LVI 0 1 0 0 0 0 0 0 0 = Unimplemented R X = Indeterminate = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 12) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Memory Map 57 Memory Map Addr. Register Name Read: $FE02 Reserved Write: Bit 7 6 5 4 3 2 1 Bit 0 R R R R R R R R BCFE R R R R R R R Reset: $FE03 Read: SIM Break Flag Control Register Write: (SBFCR) Reset: 0 Read: Interrupt Status Register 1 Write: $FE04 (INT1) Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 $FE06 Write: (INT3) Reset: 0 0 0 0 0 IF17 IF16 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 HVEN MASS ERASE PGM 0 0 0 0 0 0 0 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 0 0 0 0 0 0 0 0 R R R R R R R R R R R R R R R R = Unimplemented R Read: $FE07 Reserved Write: Reset: $FE08 Read: FLASH Control Register Write: (FLCR) Reset: $FE09 Read: FLASH Block Protect Write: Register (FLBPR) Reset: Read: $FE0A Reserved Write: Reset: Read: $FE0B Reserved Write: Reset: U = Unaffected X = Indeterminate = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 11 of 12) Data Sheet 58 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. $FE0C $FE0D Register Name Read: Break Address Register High Write: (BRKH) Reset: Read: Break Address Register Low Write: (BRKL) Reset: Read: Break Status and Control $FE0E Register Write: (BRKSCR) Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R R R R R R Read: LVIOUT Low-Voltage Inhibit Status $FE0F Register Write: (LVISR) Reset: 0 $FF80 Mask Option Register Read: OSCSEL1 OSCSEL0 (MOR)* Write: Erased: 1 1 1 1 1 1 1 1 Reset: U U U U U U U U U U * MOR is a non-volatile FLASH register; write by programming. $FFFF Read: COP Control Register Write: (COPCTL) Reset: U = Unaffected Low byte of reset vector Writing clears COP counter (any value) U U U X = Indeterminate U U U = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 12 of 12) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Memory Map 59 Memory Map . Table 2-1. Vector Addresses Vector Priority Lowest Vector IF17 IF16 IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 — Highest — Address Vector $FFDA Timebase Module Interrupt Vector (High) $FFDB Timebase Module Interrupt Vector (Low) $FFDC Analog Module Interrupt Vector (High) $FFDD Analog Module Interrupt Vector (Low) $FFDE ADC Conversion Complete Vector (High) $FFDF ADC Conversion Complete Vector (Low) $FFE0 Keyboard Vector (High) $FFE1 Keyboard Vector (Low) $FFE2 SCI Transmit Vector (High) $FFE3 SCI Transmit Vector (Low) $FFE4 SCI Receive Vector (High) $FFE5 SCI Receive Vector (Low) $FFE6 SCI Error Vector (High) $FFE7 SCI Error Vector (Low) $FFE8 MMIIC Interrupt Vector (High) $FFE9 MMIIC Interrupt Vector (Low) $FFEA TIM2 Overflow Vector (High) $FFEB TIM2 Overflow Vector (Low) $FFEC TIM2 Channel 1 Vector (High) $FFED TIM2 Channel 1 Vector (Low) $FFEE TIM2 Channel 0 Vector (High) $FFEF TIM2 Channel 0 Vector (Low) $FFF0 TIM1 Overflow Vector (High) $FFF1 TIM1 Overflow Vector (Low) $FFF2 TIM1 Channel 1 Vector (High) $FFF3 TIM1 Channel 1 Vector (Low) $FFF4 TIM1 Channel 0 Vector (High) $FFF5 TIM1 Channel 0 Vector (Low) $FFF6 PLL Vector (High) $FFF7 PLL Vector (Low) $FFF8 IRQ2 Vector (High) $FFF9 IRQ2 Vector (Low) $FFFA IRQ1 Vector (High) $FFFB IRQ1 Vector (Low) $FFFC SWI Vector (High) $FFFD SWI Vector (Low) $FFFE Reset Vector (High) $FFFF Reset Vector (Low) Data Sheet 60 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Memory Map Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 3. Random-Access Memory (RAM) 3.1 Contents 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.2 Introduction This section describes the 512 bytes of RAM (random-access memory). 3.3 Functional Description Addresses $0060 through $025F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64K-byte memory space. NOTE: For correct operation, the stack pointer must point only to RAM locations. Within page zero are 160 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. NOTE: For M6805 compatibility, the H register is not stacked. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Random-Access Memory (RAM) Data Sheet 61 Random-Access Memory (RAM) During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Data Sheet 62 Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Random-Access Memory (RAM) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 4. FLASH Memory 4.1 Contents 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 4.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.7 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .68 4.8 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Introduction This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet FLASH Memory 63 FLASH Memory Addr. $FE08 Register Name Read: FLASH Control Register Write: (FLCR) Reset: $FE09 Read: FLASH Block Protect Write: Register (FLBPR) Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 HVEN MASS ERASE PGM 0 0 0 0 0 0 0 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 0 0 0 0 0 0 0 0 = Unimplemented Figure 4-1. FLASH I/O Register Summary 4.3 Functional Description The FLASH memory consists of an array of 12,288 bytes for user memory plus a block of 38 bytes for user interrupt vectors and one byte for the mask option register. An erased bit reads as logic 1 and a programmed bit reads as a logic 0. The FLASH memory page size is defined as 128 bytes, and is the minimum size that can be erased in a page erase operation. Program and erase operations are facilitated through control bits in FLASH control register (FLCR). The address ranges for the FLASH memory are: • $C000–$EFFF; user memory, 12,288 bytes • $FFDA–$FFFF; user interrupt vectors, 38 bytes • $FF80; mask option register Programming tools are available from Freescale. Contact your local Freescale representative for more information. NOTE: A security feature prevents viewing of the FLASH contents.1 1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Data Sheet 64 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Control Register 4.4 FLASH Control Register The FLASH control register (FLCR) controls FLASH program and erase operations. Address: Read: $FE08 Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 HVEN MASS ERASE PGM 0 0 0 0 Write: Reset: 0 0 0 0 Figure 4-2. FLASH Control Register (FLCR) HVEN — High Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS — Mass Erase Control Bit This read/write bit configures the memory for mass erase operation or block erase operation when the ERASE bit is set. 1 = Mass Erase operation selected 0 = Block Erase operation selected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation not selected PGM — Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation not selected MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet FLASH Memory 65 FLASH Memory 4.5 FLASH Page Erase Operation Use the following procedure to erase a page of FLASH memory. A page consists of 128 consecutive bytes starting from addresses $xx00 or $xx80. The 38-byte user interrupt vectors area also forms a page. The 38-byte user interrupt vectors cannot be erased by the page erase operation because of security reasons. Mass erase is required to erase this page. 1. Set the ERASE bit and clear the MASS bit in the FLASH control register. 2. Write any data to any FLASH address within the page address range desired. 3. Wait for a time, tnvs (10µs). 4. Set the HVEN bit. 5. Wait for a time, tErase (1ms). 6. Clear the ERASE bit. 7. Wait for a time, tnvh (5µs). 8. Clear the HVEN bit. 9. After time, trcv (1µs), the memory can be accessed again in read mode. NOTE: Programming and erasing of FLASH locations cannot be performed by executing code from the FLASH memory; the code must be executed from RAM. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. Data Sheet 66 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Mass Erase Operation 4.6 FLASH Mass Erase Operation Use the following procedure to erase the entire FLASH memory to read as logic 1: 1. Set both the ERASE bit and the MASS bit in the FLASH control register. 2. Write any data to any FLASH address within the FLASH memory address range. 3. Wait for a time, tnvs (10µs). 4. Set the HVEN bit. 5. Wait for a time tMErase (4ms). 6. Clear the ERASE bit. 7. Wait for a time, tnvhl (100µs). 8. Clear the HVEN bit. 9. After time, trcv (1µs), the memory can be accessed again in read mode. NOTE: Programming and erasing of FLASH locations cannot be performed by executing code from the FLASH memory; the code must be executed from RAM. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet FLASH Memory 67 FLASH Memory 4.7 FLASH Program Operation Programming of the FLASH memory is done on a row basis. A row consists of 64 consecutive bytes starting from addresses $xx00, $xx40, $xx80, or $xxC0. The procedure for programming a row of the FLASH memory is outlined below: 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Write any data to any FLASH address within the row address range desired. 3. Wait for a time, tnvs (10µs). 4. Set the HVEN bit. 5. Wait for a time, tpgs (5µs). 6. Write data to the FLASH address to be programmed. 7. Wait for time, tProg (30µs). 8. Repeat step 6 and 7 until all the bytes within the row are programmed. 9. Clear the PGM bit. 10. Wait for time, tnvh (5µs). 11. Clear the HVEN bit. 12. After time, trcv (1µs), the memory can be accessed again in read mode. This program sequence is repeated throughout the memory until all data is programmed. NOTE: Programming and erasing of FLASH locations cannot be performed by executing code from the FLASH memory; the code must be executed from RAM. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. Do not exceed tProg maximum. See 24.18 FLASH Memory Characteristics. Data Sheet 68 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Program Operation Figure 4-3 shows a flowchart representation for programming the FLASH memory. 1 Algorithm for programming a row (64 bytes) of FLASH memory Set PGM bit 2 Write any data to any FLASH address within the row address range desired 3 Wait for a time, tnvs 4 Set HVEN bit 5 Wait for a time, tpgs 6 Write data to the FLASH address to be programmed 7 Wait for a time, tProg Completed programming this row? Y N NOTE: The time between each FLASH address change (step 6 to step 6), or the time between the last FLASH address programmed to clearing PGM bit (step 6 to step 9) must not exceed the maximum programming time, tProg max. 9 Clear PGM bit 10 Wait for a time, tnvh 11 Clear HVEN bit 12 Wait for a time, trcv This row program algorithm assumes the row/s to be programmed are initially erased. End of Programming Figure 4-3. FLASH Programming Flowchart MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet FLASH Memory 69 FLASH Memory 4.8 FLASH Protection Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made to protect pages of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations. NOTE: When the FLBPR is cleared (all 0’s), the entire FLASH memory is protected from being programmed and erased. When all the bits are set, the entire FLASH memory is accessible for program and erase. 4.8.1 FLASH Block Protect Register The FLASH block protect register is implemented as an 8-bit I/O register. The content of this register determine the starting location of the protected range within the FLASH memory. Address: $FE09 Bit 7 6 5 4 3 2 1 Bit 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 4-4. FLASH Block Protect Register (FLBPR) BPR[7:0] — FLASH Block Protect Register Bit7 to Bit 0 BPR[7:1] represent bits [13:7] of a 16-bit memory address. Bits [15:14] are logic 1s and bits [6:0] are logic 0s. 16-bit memory address Start address of FLASH block protect 1 1 0 0 0 0 0 0 0 BPR[7:1] Figure 4-5. FLASH Block Protect Start Address Data Sheet 70 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Protection BPR0 is used only for BPR[7:0] = $FF, for no block protection. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be XX00 or XX80 (at page boundaries) within the FLASH memory. Examples of protect start address: BPR[7:0] Start of Address of Protect Range $00 or $01 $C000 (1100 0000 0000 0000) The entire FLASH memory is protected. $02 or $03 $C080 (1100 0000 1000 0000) $04 or $05 $C100 (1100 0001 0000 0000) $06 or $07 $C180 (1100 0001 1000 0000) $08 or $09 $C200 (1100 0010 0000 0000) and so on... $F8 or $F9 $FE00 (1111 1110 0000 0000) $FA or $FB $FE80 (1111 1110 1000 0000) $FC or $FD $FF00 (1111 1111 0000 0000) $FE $FF80 (1111 1111 1000 0000) $FF The entire FLASH memory is not protected. Note: The end address of the protected range is always $FFFF. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet FLASH Memory 71 FLASH Memory Data Sheet 72 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 FLASH Memory Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 5. Configuration and Mask Option Registers (CONFIG & MOR) 5.1 Contents 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 5.4 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 75 5.5 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 77 5.6 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Introduction This section describes the configuration registers, CONFIG1 and CONFIG2; and the mask option register, MOR. The configuration registers enable or disable these options: • Computer operating properly module (COP) • COP timeout period (218 – 24 or 213 – 24 ICLK cycles) • Low-voltage inhibit (LVI) module power • LVI module reset • LVI module in stop mode • LVI module voltage trip point selection • STOP instruction • Stop mode recovery time (32 ICLK cycles or 4096 ICLK cycles) • Oscillator (internal, RC, and crystal) during stop mode • Serial communications interface clock source (CGMXCLK or fBUS) • Current detect output pin MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR) Data Sheet 73 Configuration and Mask Option The mask option register selects one of the following oscillator options as the MCU reference clock: Addr. $001D $001F $FF80 • Internal oscillator • RC oscillator • Crystal oscillator Register Name Bit 7 Read: STOP_ Configuration Register 2 Write: ICLKEN (CONFIG2)† Reset: 0 Read: COPRS Configuration Register 1 Write: † (CONFIG1) Reset: 0 6 STOP_ RCLKEN 0 4 3 0 2 0 STOP_ OSCCLK1 OSCCLK0 XCLKEN 0 0 0 LVISTOP LVIRSTD LVIPWRD LVI5OR3 Mask Option Register Read: OSCSEL1 OSCSEL0 (MOR)* Write: * FLASH register. 5 1 Bit 0 CDOEN SCIBDSRC 0 0 0 SSREC STOP COPD 0 0 0†† 0 0 0 R R R R R R Erased: 1 1 1 1 1 1 1 1 Reset: U U U U U U U U † One-time writable register after each reset. †† Reset by POR only. = Unimplemented R = Reserved Figure 5-1. CONFIG and MOR Register Summary 5.3 Functional Description The configuration registers and the mask option register are used in the initialization of various options. These two types of registers are configured differently: • Configuration registers — Write-once registers after reset • Mask option register — FLASH register (write by programming) The configuration registers can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the MCU, it is recommended that these registers be written immediately after reset. The configuration registers are located at $001D and $001F. The configurations register may be read at anytime. Data Sheet 74 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR) Configuration Register 1 (CONFIG1) NOTE: The options except LVI5OR3 are one-time writable by the user after each reset. The LVI5OR3 bit is one-time writable by the user only after each POR (power-on reset). The CONFIG registers are not in the FLASH memory but are special registers containing one-time writable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 5-2 and Figure 5-3. The mask option register (MOR) is used for selecting one of the three clock options for the MCU. The MOR is a byte located in FLASH memory, and is written to by a FLASH programming routine. 5.4 Configuration Register 1 (CONFIG1) Address: $001F Bit 7 6 5 4 3 2 1 Bit 0 SSREC STOP COPD 0 0 0 Read: COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 Write: Reset: 0 0 0 0 0* * Reset by POR only. Figure 5-2. Configuration Register 1 (CONFIG1) COPRS — COP Rate Select COPRS selects the COP time-out period. Reset clears COPRS. (See Section 21. Computer Operating Properly (COP).) 1 = COP time out period = 213 – 24 ICLK cycles 0 = COP time out period = 218 – 24 ICLK cycles LVISTOP — LVI Enable in Stop Mode When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. (See Section 22. Low-Voltage Inhibit (LVI).) 1 = LVI enabled during stop mode 0 = LVI disabled during stop mode MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR) Data Sheet 75 Configuration and Mask Option LVIRSTD — LVI Reset Disable LVIRSTD disables the reset signal from the LVI module. (See Section 22. Low-Voltage Inhibit (LVI).) 1 = LVI module resets disabled 0 = LVI module resets enabled LVIPWRD — LVI Power Disable Bit LVIPWRD disables the LVI module. (See Section 22. Low-Voltage Inhibit (LVI).) 1 = LVI module power disabled 0 = LVI module power enabled LVI5OR3 — LVI 5V or 3V Operating Mode LVI5OR3 selects the voltage operating mode of the LVI module. (See Section 22. Low-Voltage Inhibit (LVI).) The voltage mode selected for the LVI should match the operating VDD. See Section 24. Electrical Specifications for the LVI voltage trip points for each of the modes. 1 = LVI operates in 5V mode 0 = LVI operates in 3V mode SSREC — Short Stop Recovery SSREC enables the CPU to exit stop mode with a delay of 32 ICLK cycles instead of a 4096 ICLK cycle delay. 1 = Stop mode recovery after 32 ICLK cycles 0 = Stop mode recovery after 4096 ICLK cycles NOTE: Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal oscillator, and it is disabled during stop mode (STOP_XCLKEN=0), do not set the SSREC bit. NOTE: Data Sheet 76 When the LVI is disabled in stop mode (LVISTOP=0), the system stabilization time for long stop recovery (4096 ICLK cycles) gives a delay longer than the LVI’s turn-on time. There is no period where the MCU is not protected from a low power condition. However, when using the short stop recovery configuration option, the 32 ICLK delay is less than the LVI’s turn-on time and there exists a period in start-up where the LVI is not protecting the MCU. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR) Configuration Register 2 (CONFIG2) STOP — STOP Instruction Enable STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD — COP Disable Bit COPD disables the COP module. (See Section 21. Computer Operating Properly (COP).) 1 = COP module disabled 0 = COP module enabled 5.5 Configuration Register 2 (CONFIG2) Address: $001D Bit 7 Read: STOP_ ICLKEN Write: Reset: 6 STOP_ RCLKEN 0 0 5 4 3 STOP_ OSCCLK1 OSCCLK0 XCLKEN 0 0 0 2 1 Bit 0 0 CDOEN SCIBDSRC 0 0 0 Figure 5-3. Configuration Register 2 (CONFIG2) STOP_ICLKEN — Internal Oscillator Stop Mode Disable STOP_ICLKEN disables the internal oscillator during stop mode. Setting the STOP_ICLKEN bit disables the oscillator during stop mode. (See 7.4 Internal Oscillator). Reset clears this bit. 1 = Internal oscillator disabled during stop mode 0 = Internal oscillator enabled to operate during stop mode STOP_RCLKEN — RC Oscillator Stop Mode Enable STOP_RCLKEN enables the RC oscillator to continue operating during stop mode. Setting the STOP_RCLKEN bit allows the oscillator to operate continuously even during stop mode. This is useful for driving the timebase module to allow it to generate periodic wake up while in stop mode. (See Section 8. Clock Generator Module (CGM) and subsection 8.8.2 Stop Mode.) Reset clears this bit. 1 = RC oscillator enabled to operate during stop mode 0 = RC oscillator disabled during stop mode MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR) Data Sheet 77 Configuration and Mask Option STOP_XCLKEN — Crystal Oscillator Stop Mode Enable STOP_XCLKEN enables the crystal (x-tal) oscillator to continue operating during stop mode. Setting the STOP_XCLKEN bit allows the x-tal oscillator to operate continuously even during stop mode. This is useful for driving the timebase module to allow it to generate periodic wake up while in stop mode. (See Section 8. Clock Generator Module (CGM) and subsection 8.8.2 Stop Mode.) Reset clears this bit. 1 = X-tal oscillator enabled to operate during stop mode 0 = X-tal oscillator disabled during stop mode OSCCLK1, OSCCLK0 — Oscillator Output Control Bits OSCCLK1 and OSCCLK0 select which oscillator output to be driven out as OSCCLK to the timebase module (TBM). Reset clears these two bits. OSCCLK1 OSCCLK0 Timebase Clock Source 0 0 Internal oscillator (ICLK) 0 1 RC oscillator (RCCLK) 1 0 X-tal oscillator (XTAL) 1 1 Not used CDOEN — Current-Flow Detect Output Enable CDOEN enables the port pin PC0/PWM0/CD as the CD output pin for the current detect flag (CDIF) from the analog module. Reset clears the CDOEN bit. 1 = PCO/PWMO/CD pin enabled as CD output pin, PTC0 and PWM0 functions are disabled. 0 = PTC0/PWM/CD pin disabled as CD output pin, PTC0 or PWM0 functions are available; see 18.5.1 Port C Data Register (PTC). Data Sheet 78 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR) Mask Option Register (MOR) SCIBDSRC — SCI Baud Rate Clock Source SCIBDSRC selects the clock source used for the SCI. The setting of this bit affects the frequency at which the SCI operates. 1 = Internal data bus clock, fBUS, is used as clock source for SCI 0 = Oscillator clock, CGMXCLK, is used as clock source for SCI 5.6 Mask Option Register (MOR) The mask option register (MOR) is used for selecting one of the three clock options for the MCU. The MOR is a byte located in FLASH memory, and is written to by a FLASH programming routine. Address: $FF80 Bit 7 6 5 4 3 2 1 Bit 0 R R R R R R Read: OSCSEL1 OSCSEL0 Write: Erased: 1 1 1 1 1 1 1 1 Reset: U U U U U U U U R = Reserved Figure 5-4. Mask Option Register (MOR) OSCSEL1, OSCSEL0 — Oscillator Selection Bits OSCSEL1 and OSCSEL0 select which oscillator is used for the MCU CGMXCLK clock. The erase state of these two bits is logic 1. These bits are unaffected by reset. (See Table 5-1). Bits 5–0 — Should be left as 1’s. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR) Data Sheet 79 Configuration and Mask Option Table 5-1. CGMXCLK Clock Selection OSCSEL1 OSCSEL0 CGMXCLK OSC2 pin 0 0 — — 0 1 ICLK fBUS Internal oscillator generates the CGMXCLK. 1 0 RCCLK fBUS RC oscillator generates the CGMXCLK. Internal oscillator is available after each POR or reset. 1 1 X-TAL Inverting output of XTAL X-tal oscillator generates the CGMXCLK. Internal oscillator is available after each POR or reset. NOTE: Data Sheet 80 Comments Not used The internal oscillator is a free running oscillator and is available after each POR or reset. It is turned-off in stop mode by clearing the STOP_ICLKEN bit in CONFIG2. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 6. Central Processor Unit (CPU) 6.1 Contents 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.8 Instruction Set Summary 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 Introduction The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Freescale document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) Data Sheet 81 Central Processor Unit (CPU) 6.3 Features • Object code fully upward-compatible with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with x-register manipulation instructions • 8-MHz CPU internal bus frequency • 64K-byte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64K-bytes • Low-power stop and wait modes 6.4 CPU Registers Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map. Data Sheet 82 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) CPU Registers 0 7 ACCUMULATOR (A) 0 15 H X INDEX REGISTER (H:X) 15 0 STACK POINTER (SP) 15 0 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG Figure 6-1. CPU Registers 6.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 6-2. Accumulator (A) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) Data Sheet 83 Central Processor Unit (CPU) 6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64K-byte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 6-3. Index Register (H:X) 6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. Data Sheet 84 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) CPU Registers Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 6-4. Stack Pointer (SP) NOTE: The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations. 6.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF Figure 6-5. Program Counter (PC) 6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) Data Sheet 85 Central Processor Unit (CPU) 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X Read: Write: Reset: X = Indeterminate Figure 6-6. Condition Code Register (CCR) V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 Data Sheet 86 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) CPU Registers I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled NOTE: To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N — Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) Data Sheet 87 Central Processor Unit (CPU) C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 6.5 Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Freescale document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU. 6.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. 6.6.1 Wait Mode The WAIT instruction: Data Sheet 88 • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) CPU During Break Interrupts 6.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. 6.7 CPU During Break Interrupts If a break module is present on the MCU, the CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. 6.8 Instruction Set Summary 6.9 Opcode Map See Table 6-2. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) Data Sheet 89 Central Processor Unit (CPU) V H I N Z C ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP A ← (A) + (M) + (C) Add with Carry IMM DIR EXT IX2 R R – R R R IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT IX2 R R – R R R IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ff ee ff A7 ii 2 – – – – – – IMM AF ii 2 IMM DIR EXT IX2 0 – – R R – IX1 IX SP1 SP2 A4 B4 C4 D4 E4 F4 9EE4 9ED4 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 DIR INH INH R – – R R R IX1 IX SP1 38 48 58 68 78 9E68 dd DIR INH INH R – – R R R IX1 IX SP1 37 47 57 67 77 9E67 dd ff 4 1 1 4 3 5 – – – – – – REL 24 rr 3 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – – DIR (b4) DIR (b5) DIR (b6) DIR (b7) 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) A ← (A) & (M) AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP Logical AND Arithmetic Shift Left (Same as LSL) ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP Arithmetic Shift Right BCC rel Branch if Carry Bit Clear BCLR n, opr Data Sheet 90 C 0 b7 b0 C b7 Clear Bit n in M b0 PC ← (PC) + 2 + rel ? (C) = 0 Mn ← 0 2 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP A ← (A) + (M) ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary ff ee ff ff ff ff 4 1 1 4 3 5 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) Opcode Map Effect on CCR V H I N Z C Cycles Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 BGE opr Branch if Greater Than or Equal To (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 – – – – – – REL 90 rr 3 BGT opr Branch if Greater Than (Signed Operands) PC ← (PC) + 2 +rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL 92 rr 3 BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 – – – – – – REL 28 rr 3 BHCS rel Branch if Half Carry Bit Set PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr BHI rel Branch if Higher PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 BHS rel Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 (A) & (M) IMM DIR EXT IX2 0 – – R R – IX1 IX SP1 SP2 A5 B5 C5 D5 E5 F5 9EE5 9ED5 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel PC ← (PC) + 2 +rel ? (Z) | (N ⊕ V) = 1 – – – – – – REL 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) Data Sheet 91 Central Processor Unit (CPU) Table 6-1. Instruction Set Summary (Continued) DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – R DIR (b4) DIR (b5) DIR (b6) DIR (b7) 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 – – – – – – REL 21 rr 3 PC ← (PC) + 3 + rel ? (Mn) = 1 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – R DIR (b4) DIR (b5) DIR (b6) DIR (b7) 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 Mn ← 1 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – – DIR (b4) DIR (b5) DIR (b6) DIR (b7) 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 – – – – – – REL AD rr 4 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 Description V H I N Z C BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel Branch Never BRSET n,opr,rel Branch if Bit n in M Set BSET n,opr BSR rel Set Bit n in M Branch to Subroutine CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel PC ← (PC) + 3 + rel ? (Mn) = 0 PC ← (PC) + 2 PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel DIR PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (X) – (M) = $00 – – – – – – IX1+ PC ← (PC) + 3 + rel ? (A) – (M) = $00 IX+ PC ← (PC) + 2 + rel ? (A) – (M) = $00 SP1 PC ← (PC) + 4 + rel ? (A) – (M) = $00 31 41 51 61 71 9E61 Cycles Operand Effect on CCR Opcode Operation Address Mode Source Form CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 3F 4F 5F 8C 6F 7F 9E6F CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP Data Sheet 92 Clear dd ff ff 3 1 1 1 3 2 4 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) Opcode Map Effect on CCR V H I N Z C CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Compare A with M (A) – (M) COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A (H:X) – (M:M + 1) (X) – (M) (A)10 DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP Decrement DIV Divide M ← (M) = $FF – (M) A ← (A) = $FF – (M) X ← (X) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) A1 B1 C1 D1 E1 F1 9EE1 9ED1 ii dd hh ll ee ff ff DIR INH INH 0 – – R R 1 IX1 IX SP1 33 43 53 63 73 9E63 dd ff 65 75 ii ii+1 dd 3 4 IMM DIR EXT IX2 R – – R R R IX1 IX SP1 SP2 A3 B3 C3 D3 E3 F3 9EE3 9ED3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 U – – R R R INH 72 R – – R R R IMM DIR ff ff ee ff 2 3B 4B 5B 6B 7B 9E6B dd rr rr rr ff rr rr ff rr dd M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 DIR INH INH R – – R R – IX1 IX SP1 3A 4A 5A 6A 7A 9E6A A ← (H:A)/(X) H ← Remainder – – – – R R INH 52 Central Processor Unit (CPU) ff ee ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 A ← (A) –1 or M ← (M) –1 or X← (X) –1 DIR PC ← (PC) + 3 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH PC ← (PC) + 2 + rel ? (result) ≠ 0 IX1 PC ← (PC) + 3 + rel ? (result) ≠ 0 IX PC ← (PC) + 2 + rel ? (result) ≠ 0 SP1 PC ← (PC) + 4 + rel ? (result) ≠ 0 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor IMM DIR EXT IX2 R – – R R R IX1 IX SP1 SP2 Cycles Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) ff ff 5 3 3 5 4 6 4 1 1 4 3 5 7 Data Sheet 93 Central Processor Unit (CPU) V H I N Z C EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDHX #opr LDHX opr Load H:X from M LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Data Sheet 94 ii dd hh ll ee ff ff M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 DIR INH INH R – – R R – IX1 IX SP1 3C 4C 5C 6C 7C 9E6C dd PC ← Jump Address DIR EXT – – – – – – IX2 IX1 IX BC CC DC EC FC dd hh ll ee ff ff 2 3 4 3 2 PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address DIR EXT – – – – – – IX2 IX1 IX BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 A ← (M) IMM DIR EXT IX2 0 – – R R – IX1 IX SP1 SP2 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 ii jj dd 3 4 2 3 4 4 3 2 4 5 A ← (A ⊕ M) Jump Load A from M LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP A8 B8 C8 D8 E8 F8 9EE8 9ED8 Increment LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP H:X ← (M:M + 1) 0 – – R R – X ← (M) Load X from M Logical Shift Left (Same as ASL) 2 3 4 4 3 2 4 5 IMM DIR EXT IX2 0 – – R R – IX1 IX SP1 SP2 Exclusive OR M with A Jump to Subroutine Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) C 0 b7 b0 IMM DIR 45 55 ff ee ff ff ff IMM DIR EXT IX2 0 – – R R – IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE ii dd hh ll ee ff ff DIR INH INH R – – R R R IX1 IX SP1 38 48 58 68 78 9E68 dd ff ee ff ff ff 4 1 1 4 3 5 4 1 1 4 3 5 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) Opcode Map V H I N Z C LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP Logical Shift Right DIR INH INH R – – 0 R R IX1 IX SP1 34 44 54 64 74 9E64 DD DIX+ 0 – – R R – IMD IX+D 4E 5E 6E 7E X:A ← (X) × (A) – 0 – – – 0 INH 42 M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) DIR INH INH R – – R R R IX1 IX SP1 30 40 50 60 70 9E60 0 C b7 MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr Move MUL Unsigned multiply b0 (M)Destination ← (M)Source H:X ← (H:X) + 1 (IX+D, DIX+) dd Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) ff 4 1 1 4 3 5 dd dd dd ii dd dd 5 4 4 4 ff 5 dd 4 1 1 4 3 5 NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP Negate (Two’s Complement) NOP No Operation None – – – – – – INH 9D 1 NSA Nibble Swap A A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 A ← (A) | (M) IMM DIR EXT IX2 0 – – R R – IX1 IX SP1 SP2 AA BA CA DA EA FA 9EEA 9EDA ff ff ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 C DIR INH INH R – – R R R IX1 IX SP1 39 49 59 69 79 9E69 ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Rotate Left through Carry b7 b0 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) ii dd hh ll ee ff ff ff ee ff dd ff ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 Data Sheet 95 Central Processor Unit (CPU) V H I N Z C ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP Rotate Right through Carry RSP Reset Stack Pointer RTI Return from Interrupt RTS Return from Subroutine dd Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 4 1 1 4 3 5 DIR INH INH R – – R R R IX1 IX SP1 36 46 56 66 76 9E66 SP ← $FF – – – – – – INH 9C 1 SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) R R R R R R INH 80 7 SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) – – – – – – INH 81 4 A ← (A) – (M) – (C) IMM DIR EXT IX2 R – – R R R IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 C b7 b0 ff ff SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP Subtract with Carry SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 M ← (A) DIR EXT IX2 0 – – R R – IX1 IX SP1 SP2 B7 C7 D7 E7 F7 9EE7 9ED7 (M:M + 1) ← (H:X) 0 – – R R – DIR 35 I ← 0; Stop Oscillator – – 0 – – – INH 8E M ← (X) DIR EXT IX2 0 – – R R – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP Data Sheet 96 Store X in M ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 ff ee ff 3 4 4 3 2 4 5 dd 4 dd hh ll ee ff ff 1 dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) Opcode Map Effect on CCR V H I N Z C SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP A ← (A) – (M) Subtract ii dd hh ll ee ff ff Cycles Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 2 3 4 4 3 2 4 5 IMM DIR EXT IX2 R – – R R R IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 – – 1 – – – INH 83 9 ff ee ff SWI Software Interrupt PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TAP Transfer A to CCR CCR ← (A) R R R R R R INH 84 2 TAX Transfer A to X X ← (A) – – – – – – INH 97 1 TPA Transfer CCR to A A ← (CCR) – – – – – – INH 85 1 (A) – $00 or (X) – $00 or (M) – $00 DIR INH INH 0 – – R R – IX1 IX SP1 3D 4D 5D 6D 7D 9E6D H:X ← (SP) + 1 – – – – – – INH 95 2 A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP Test for Negative or Zero TSX Transfer SP to H:X TXA Transfer X to A TXS Transfer H:X to SP MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) dd ff ff 3 1 1 3 2 4 Data Sheet 97 Central Processor Unit (CPU) V H I N Z C A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit Data Sheet 98 n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : R — Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table 6-2. Opcode Map Bit Manipulation DIR DIR MSB Branch REL DIR INH 3 4 0 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL Read-Modify-Write INH IX1 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 9 Register/Memory IX2 SP2 IMM DIR EXT A B C D 9ED 4 SUB 3 EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT 4 SUB 3 IX2 4 CMP 3 IX2 4 SBC 3 IX2 4 CPX 3 IX2 4 AND 3 IX2 4 BIT 3 IX2 4 LDA 3 IX2 4 STA 3 IX2 4 EOR 3 IX2 4 ADC 3 IX2 4 ORA 3 IX2 4 ADD 3 IX2 4 JMP 3 IX2 6 JSR 3 IX2 4 LDX 3 IX2 4 STX 3 IX2 5 SUB 4 SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2 IX1 SP1 IX E 9EE F LSB 0 1 2 3 4 5 6 7 8 9 A B C E F Data Sheet 99 INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 5 3 NEG NEG 3 SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment 7 3 RTI BGE 1 INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 BSR JSR 2 REL 2 DIR 2 3 LDX LDX 2 IMM 2 DIR 2 3 AIX STX 2 IMM 2 DIR MSB 0 3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 5 3 LDX LDX 4 SP2 2 IX1 5 3 STX STX 4 SP2 2 IX1 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 2 SUB 1 IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 4 2 LDX LDX 3 SP1 1 IX 4 2 STX STX 3 SP1 1 IX High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 0 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode Central Processor Unit (CPU) Opcode Map D 4 1 NEG NEGA 2 DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH Central Processor Unit (CPU) Data Sheet 100 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 7. Oscillator (OSC) 7.1 Contents 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.3 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3.1 CGM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . 104 7.3.2 TBM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . 105 7.4 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.5 RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.6 X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.7.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 108 7.7.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 109 7.7.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 109 7.7.4 CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . 109 7.7.5 CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 109 7.7.6 Oscillator Clock to Time Base Module (OSCCLK) . . . . . . . 109 7.8 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.9 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Oscillator (OSC) 101 Oscillator (OSC) 7.2 Introduction The oscillator module provides the reference clock for the clock generator module (CGM), the timebase module (TBM), and other MCU sub-systems. The oscillator module consist of three types of oscillator circuits: • Internal oscillator • RC oscillator • Crystal (x-tal) oscillator The reference clock for the CGM and other MCU sub-systems is selected by: • MC68HC908SR12 — FLASH device — oscillator selected by programming the mask option register located at $FF80. • MC68HC08SR12 — ROM device — oscillator selected by ROMmask layer at factory. The reference clock for the timebase module (TBM) is selected by the two bits, OSCCLK1 and OSCCLK0, in the CONFIG2 register. The internal oscillator runs continuously after a POR or reset, and is always available. The RC and crystal oscillator cannot run concurrently; one is disabled while the other is selected; because the RC and x-tal circuits share the same OSC1 pin. Figure 7-1. shows the block diagram of the oscillator module. Data Sheet 102 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Oscillator (OSC) Freescale Semiconductor Oscillator (OSC) Clock Selection To CGM and others To CGM PLL CGMXCLK To TBM CGMRCLK OSCCLK MOR CONFIG2 OSCSEL1 OSCCLK1 MUX MUX OSCSEL0 OSCCLK0 X RC I X RC I To SIM (and COP) XCLK ICLK RCCLK X-TAL OSCILLATOR RC OSCILLATOR INTERNAL OSCILLATOR BUS CLOCK OSC1 From SIM OSC2 Figure 7-1. Oscillator Module Block Diagram 7.3 Clock Selection Reference clocks are selectable for the following sub-systems: • CGMXCLK and CGMRCLK — Reference clock for clock generator module (CGM) and other MCU sub-systems other than TBM and COP. This is the main reference clock for the MCU. • OSCCLK — Reference clock for timebase module (TBM). MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Oscillator (OSC) 103 Oscillator (OSC) 7.3.1 CGM Reference Clock Selection The clock generator module (CGM) reference clock (CGMXCLK) is the reference clock input to the MCU. It is selected by programming two bits in a FLASH memory location; the mask option register (MOR), at $FF80. See 5.6 Mask Option Register (MOR). NOTE: On the ROM device, the oscillator is selected by a ROM-mask layer at factory. Address: $FF80 Bit 7 6 5 4 3 2 1 Bit 0 R R R R R R Read: OSCSEL1 OSCSEL0 Write: Erased: 1 1 1 1 1 1 1 1 Reset: U U U U U U U U R = Reserved Figure 7-2. Mask Option Register (MOR) Table 7-1. CGMXCLK Clock Selection OSCSEL1 OSCSEL0 CGMXCLK OSC2 Pin 0 0 — — 0 1 ICLK fBUS Internal oscillator generates the CGMXCLK. 1 0 RCCLK fBUS RC oscillator generates the CGMXCLK. Internal oscillator is available after each POR or reset. 1 1 XCLK Inverting output of X-TAL X-tal oscillator generates the CGMXCLK. Internal oscillator is available after each POR or reset. NOTE: Not used The internal oscillator is a free running oscillator and is available after each POR or reset. It is turned-off in stop mode by clearing the STOP_ICLKEN bit in CONFIG2. Data Sheet 104 Comments MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Oscillator (OSC) Freescale Semiconductor Oscillator (OSC) Internal Oscillator 7.3.2 TBM Reference Clock Selection The timebase module reference clock (OSCCLK) is selected by configuring two bits in the CONFIG2 register, at $001D. See 5.5 Configuration Register 2 (CONFIG2). Address: $001D Bit 7 Read: STOP_ ICLKEN Write: Reset: 6 STOP_ RCLKEN 0 0 5 4 3 2 STOP_ OSCCLK1 OSCCLK0 XCLKEN 0 0 0 1 Bit 0 0 CDOEN SCIBDSRC 0 0 0 Figure 7-3. Configuration Register 2 (CONFIG2) Table 7-2. Timebase Module Reference Clock Selection NOTE: OSCCLK1 OSCCLK0 Timebase Clock Source 0 0 Internal oscillator (ICLK) 0 1 RC oscillator (RCCLK) 1 0 X-tal oscillator (XCLK) 1 1 Not used The RCCLK or XCLK is only available if that clock is selected as the CGM reference clock, whereas the ICLK is always available. 7.4 Internal Oscillator The internal oscillator clock (ICLK) is a free running 24kHz clock that requires no external components. It can be selected as the CGMXCLK for the CGM and MCU sub-systems; and the OSCCLK clock for the TBM. The ICLK is also the reference clock input to the computer operating properly (COP) module. Due to the simplicity of the internal oscillator, it does not have the accuracy and stability of the RC oscillator or the x-tal oscillator. Therefore, the ICLK is not suitable where an accurate bus clock is required and it should not be used as the CGMRCLK to the CGM PLL. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Oscillator (OSC) 105 Oscillator (OSC) The internal oscillator by default is always available and is free running after POR or reset. It can be stopped in Stop mode by setting the STOP_ICLKEN bit before executing the STOP instruction. Figure 7-4 shows the logical representation of components of the internal oscillator circuitry. From SIM To Clock Selection MUX and COP SIMOSCEN From SIM BUS CLOCK ICLK CONFIG2 EN STOP_ICLKEN INTERNAL OSCILLATOR MCU OSC2 Figure 7-4. Internal Oscillator 7.5 RC Oscillator The RC oscillator circuit is designed for use with external R and C to provide a clock source with tolerance less than 10%. In its typical configuration, the RC oscillator requires two external components, one R and one C. Component values should have a tolerance of 1% or less, to obtain a clock source with less than 10% tolerance. The oscillator configuration uses two components: • CEXT • REXT Data Sheet 106 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Oscillator (OSC) Freescale Semiconductor Oscillator (OSC) X-tal Oscillator To Clock Selection MUX From SIM SIMOSCEN RCCLK From SIM BUS CLOCK CONFIG2 EN STOP_RCLKEN RC OSCILLATOR MCU OSC1 OSC2 See Section 24. for component value requirements. VDD REXT CEXT Figure 7-5. RC Oscillator 7.6 X-tal Oscillator The X-tal oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an accurate clock source. In its typical configuration, the X-tal oscillator is connected in a Pierce oscillator configuration, as shown in Figure 7-6. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: • Crystal, X1 • Fixed capacitor, C1 • Tuning capacitor, C2 (can also be a fixed capacitor) • Feedback resistor, RB • Series resistor, RS (optional) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Oscillator (OSC) 107 Oscillator (OSC) From SIM To Clock Selection MUX SIMOSCEN XCLK CONFIG2 STOP_XCLKEN MCU OSC1 OSC2 RB RS* *RS can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data. X1 See Section 24. for component value requirements. C1 C2 Figure 7-6. Crystal Oscillator The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information. 7.7 I/O Signals The following paragraphs describe the oscillator I/O signals. 7.7.1 Crystal Amplifier Input Pin (OSC1) OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit. Data Sheet 108 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Oscillator (OSC) Freescale Semiconductor Oscillator (OSC) Low Power Modes 7.7.2 Crystal Amplifier Output Pin (OSC2) When the x-tal oscillator is selected, OSC2 pin is the output of the crystal oscillator inverting amplifier. When the RC oscillator or internal oscillator is selected, OSC2 pin is the output of the internal bus clock. 7.7.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal from the system integration module (SIM) enables/disables the x-tal oscillator, the RC-oscillator, or the internal oscillator circuit. 7.7.4 CGM Oscillator Clock (CGMXCLK) The CGMXCLK clock is output from the x-tal oscillator, RC oscillator or the internal oscillator. This clock drives to CGM and other MCU subsystems. 7.7.5 CGM Reference Clock (CGMRCLK) This is buffered signal of CGMXCLK, it is used by the CGM as the phase-locked-loop (PLL) reference clock. 7.7.6 Oscillator Clock to Time Base Module (OSCCLK) The OSCCLK is the reference clock that drives the timebase module. See Section 12. Timebase Module (TBM). 7.8 Low Power Modes The WAIT and STOP instructions put the MCU in low-power consumption standby modes. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Oscillator (OSC) 109 Oscillator (OSC) 7.8.1 Wait Mode The WAIT instruction has no effect on the oscillator module. CGMXCLK continues to drive to the clock generator module, and OSCCLK continues to drive the timebase module. 7.8.2 Stop Mode The STOP instruction disables the x-tal or the RC oscillator circuit, and hence the CGMXCLK clock stops running. For continuous x-tal or RC oscillator operation in stop mode, set the STOP_XCLKEN (for x-tal) or STOP_RCLKEN (for RC) bit to logic 1 before entering stop mode. The internal oscillator clock continues operation in stop mode. It can be disabled by setting the STOP_ICLKEN bit to logic 1 before entering stop mode. 7.9 Oscillator During Break Mode The oscillator continues to drive CGMXCLK when the device enters the break state. Data Sheet 110 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Oscillator (OSC) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 8. Clock Generator Module (CGM) 8.1 Contents 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 8.4.1 Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.2 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . 116 8.4.3 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.4 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 118 8.4.5 Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 118 8.4.6 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.4.7 Special Programming Exceptions . . . . . . . . . . . . . . . . . . . 124 8.4.8 Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 124 8.4.9 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5.1 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 126 8.5.2 PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 126 8.5.3 PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 126 8.5.4 Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . 126 8.5.5 CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 126 8.5.6 CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . . 127 8.5.7 CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . 127 8.5.8 CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 127 8.6 CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.6.2 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .130 8.6.3 PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . 132 8.6.4 PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .133 8.6.5 PLL Reference Divider Select Register . . . . . . . . . . . . . . . 134 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 111 Clock Generator Module (CGM) 8.7 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 8.8 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 8.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 8.8.3 CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 136 8.9 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . 137 8.9.1 Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .137 8.9.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . . 137 8.9.3 Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.2 Introduction This section describes the clock generator module (CGM). The CGM generates the base clock signal, CGMOUT, which is based on either the oscillator clock divided by two or the divided phase-locked loop (PLL) clock, CGMPCLK, divided by two. CGMOUT is the clock from which the SIM derives the system clocks, including the bus clock, which is at a frequency of CGMOUT÷2. The PLL clock, CGMVCLK (an integer multiple of CGMPCLK) provides clock reference for the PWM and analog modules. The PLL is a frequency generator designed for use with a low frequency crystal (typically 32.768kHz) to generate a base frequency and dividing to a maximum bus frequency of 8MHz. Data Sheet 112 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Features 8.3 Features Features of the CGM include: • Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal reference • Low-frequency crystal operation with low-power operation and high-output frequency resolution • Programmable prescaler for power-of-two increases in frequency • Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation • Automatic bandwidth control mode for low-jitter operation • Automatic frequency lock detector • CPU interrupt on entry or exit from locked condition • Configuration register bit to allow oscillator operation during stop mode 8.4 Functional Description The CGM consists of three major sub-modules: • Oscillator module — The oscillator module generates the constant reference frequency clock, CGMRCLK (buffered CGMXCLK). • Phase-locked loop (PLL) — The PLL generates the programmable VCO frequency clock, CGMVCLK, and the divided, CGMPCLK. The CGMVCLK provides the input reference clock to the PWM and analog modules. • Base clock selector circuit — This software-controlled circuit selects either CGMXCLK divided by two or the divided VCO clock, CGMPCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from either CGMOUT or CGMXCLK. Figure 8-1 shows the structure of the CGM. Figure 8-2 is a summary of the CGM registers. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 113 Clock Generator Module (CGM) OSC2 OSC1 OSCILLATOR (OSC) MODULE See Section 7. Oscillator (OSC). ICLK INTERNAL OSCILLATOR OSCCLK RC OSCILLATOR OSCSEL[1:0] To Timebase Module (TBM) CGMXCLK MUX T0 ADC, Analog Module CGMRCLK CRYSTAL OSCILLATOR OSCCLK[1:0] To SIM (and COP) SIMOSCEN From SIM PHASE-LOCKED LOOP (PLL) CGMRDV REFERENCE DIVIDER CGMRCLK CLOCK SELECT CIRCUIT BCS R RDS[3:0] VDDA CGMXFC CGMOUT A ÷2 1 B S* *WHEN S = 1, CGMOUT = B VSSA To SIM SIMDIV2 From SIM VPR[1:0] VRS[7:0] L PHASE DETECTOR 2E CGMPCLK VOLTAGE CONTROLLED OSCILLATOR LOOP FILTER PLL ANALOG AUTOMATIC MODE CONTROL LOCK DETECTOR LOCK AUTO MUL[11:0] N CGMVDV FREQUENCY DIVIDER ACQ INTERRUPT CONTROL PLLIE CGMVCLK To PWM, Analog Module CGMINT To SIM PLLF PRE[1:0] 2P FREQUENCY DIVIDER Figure 8-1. CGM Block Diagram Data Sheet 114 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Functional Description Addr. Register Name Bit 7 Read: $0036 $0037 $0038 $0039 $003A $003B PLL Control Register Write: (PTCL) Reset: Read: PLL Bandwidth Control Register Write: (PBWC) Reset: Read: PLL Multiplier Select Register High Write: (PMSH) Reset: Read: PLL Multiplier Select Register Low Write: (PMSL) Reset: Read: PLL VCO Range Select Register Write: (PMRS) Reset: Read: PLL Reference Divider Select Register Write: (PMDS) Reset: 6 5 4 3 2 1 Bit 0 PLLON BCS PRE1 PRE0 VPR1 VPR0 1 0 0 0 0 0 0 0 0 0 PLLF PLLIE 0 0 LOCK AUTO ACQ R 0 0 0 0 0 0 0 0 0 0 0 MUL11 MUL10 MUL9 MUL8 0 0 0 0 0 0 0 0 MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0 0 1 0 0 0 0 0 0 VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0 0 1 0 0 0 0 0 0 0 0 0 0 RDS3 RDS2 RDS1 RDS0 0 0 0 1 0 0 0 0 = Unimplemented R = Reserved NOTES: 1. When AUTO = 0, PLLIE is forced clear and is read-only. 2. When AUTO = 0, PLLF and LOCK read as clear. 3. When AUTO = 1, ACQ is read-only. 4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only. 5. When PLLON = 1, the PLL programming register is read-only. 6. When BCS = 1, PLLON is forced set and is read-only. Figure 8-2. CGM I/O Register Summary MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 115 Clock Generator Module (CGM) 8.4.1 Oscillator Module The oscillator module provides two clock outputs CGMXCLK and CGMRCLK to the CGM module. CGMXCLK when selected, is driven to SIM module to generate the system bus clock. CGMRCLK is used by the phase-lock-loop to provide a higher frequency system bus clock and the reference clock for the PWM and analog modules. The oscillator module also provides the reference clock for the timebase module (TBM). See Section 7. Oscillator (OSC) for detailed oscillator circuit description. See Section 12. Timebase Module (TBM) for detailed description on TBM. See Section 13. Pulse Width Modulator (PWM) for detailed description on PWM module. 8.4.2 Phase-Locked Loop Circuit (PLL) The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes either automatically or manually. 8.4.3 PLL Circuits The PLL consists of these circuits: Data Sheet 116 • Voltage-controlled oscillator (VCO) • Reference divider • Frequency pre-scaler • Modulo VCO frequency divider • Phase detector • Loop filter • Lock detector MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Functional Description The operating range of the VCO is programmable for a wide range of frequencies and for maximum immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range from roughly one-half to twice the center-of-range frequency, fVRS. Modulating the voltage on the CGMXFC pin changes the frequency within this range. By design, fVRS is equal to the nominal center-of-range frequency, fNOM, (38.4 kHz) times a linear factor, L, and a power-of-two factor, E, or (L × 2E)fNOM. CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency, fRCLK, and is fed to the PLL through a programmable modulo reference divider, which divides fRCLK by a factor, R. The divider’s output is the final reference clock, CGMRDV, running at a frequency, fRDV = fRCLK/R. With an external crystal (30kHz–100kHz), always set R = 1 for specified performance. With an external high-frequency clock source, use R to divide the external frequency to between 30kHz and 100kHz. The VCO’s output clock, CGMVCLK, running at a frequency, fVCLK, is fed back through a programmable pre-scaler divider and a programmable modulo divider. The pre-scaler divides the VCO clock by a power-of-two factor P (the CGMPCLK) and the modulo divider reduces the VCO clock by a factor, N. The dividers’ output is the VCO feedback clock, CGMVDV, running at a frequency, fVDV = fVCLK/(N × 2P). (See 8.4.6 Programming the PLL for more information.) The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock, CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The loop filter then slightly alters the DC voltage on the external capacitor connected to CGMXFC based on the width and direction of the correction pulse. The filter can make fast or slow corrections depending on its mode, described in 8.4.4 Acquisition and Tracking Modes. The value of the external capacitor and the reference frequency determines the speed of the corrections and the stability of the PLL. The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final reference frequency, fRDV. The circuit determines the mode of the PLL and the lock condition based on this comparison. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 117 Clock Generator Module (CGM) 8.4.4 Acquisition and Tracking Modes The PLL filter is manually or automatically configurable into one of two operating modes: • Acquisition mode — In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used at PLL start up or when the PLL has suffered a severe noise hit and the VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control register. (See 8.6.2 PLL Bandwidth Control Register.) • Tracking mode — In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected as the base clock source. (See 8.4.8 Base Clock Selector Circuit.) The PLL is automatically in tracking mode when not in acquisition mode or when the ACQ bit is set. 8.4.5 Manual and Automatic PLL Bandwidth Modes The PLL can change the bandwidth or operational mode of the loop filter manually or automatically. Automatic mode is recommended for most users. In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 8.6.2 PLL Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit continuously (during PLL start-up, usually) or at periodic intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as the source for the base clock. (See 8.4.8 Base Clock Selector Circuit.) If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appropriate action, depending on the application. (See 8.7 Interrupts for information and precautions on using interrupts.) Data Sheet 118 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Functional Description The following conditions apply when the PLL is in automatic bandwidth control mode: • The ACQ bit (See 8.6.2 PLL Bandwidth Control Register.) is a read-only indicator of the mode of the filter. (See 8.4.4 Acquisition and Tracking Modes.) • The ACQ bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 8.9 Acquisition/Lock Time Specifications for more information.) • The LOCK bit is a read-only indicator of the locked state of the PLL. • The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 8.9 Acquisition/Lock Time Specifications for more information.) • CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock condition changes, toggling the LOCK bit. (See 8.6.1 PLL Control Register.) The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not require an indicator of the lock condition for proper operation. Such systems typically operate well below fBUSMAX. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 119 Clock Generator Module (CGM) The following conditions apply when in manual mode: • ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual mode, the ACQ bit must be clear. • Before entering tracking mode (ACQ = 1), software must wait a given time, tACQ (See 8.9 Acquisition/Lock Time Specifications.), after turning on the PLL by setting PLLON in the PLL control register (PCTL). • Software must wait a given time, tAL, after entering tracking mode before selecting the PLL as the clock source to CGMOUT (BCS = 1). • The LOCK bit is disabled. • CPU interrupts from the CGM are disabled. 8.4.6 Programming the PLL The following procedure shows how to program the PLL. NOTE: The round function in the following equations means that the real number should be rounded to the nearest integer number. 1. Choose the desired bus frequency, fBUSDES, or the desired VCO frequency, fVCLKDES; and then solve for the other. The relationship between fBUS and fVCLK is governed by the equation: P P f VCLK = 2 × f CGMPCLK = 2 × 4 × fBUS where P is the power of two multiplier, and can be 0, 1, 2, or 3 2. Choose a practical PLL reference frequency, fRCLK, and the reference clock divider, R. Typically, the reference is 32.768kHz and R = 1. Frequency errors to the PLL are corrected at a rate of fRCLK/R. For stability and lock time reduction, this rate must be as fast as possible. The VCO frequency must be an integer multiple of this rate. Data Sheet 120 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Functional Description The relationship between the VCO frequency, fVCLK, and the reference frequency, fRCLK, is P 2 N f VCLK = ----------- ( f RCLK ) R where N is the integer range multiplier, between 1 and 4095. In cases where desired bus frequency has some tolerance, choose fRCLK to a value determined either by other module requirements (such as modules which are clocked by CGMXCLK), cost requirements, or ideally, as high as the specified range allows. See Section 24. Electrical Specifications. Choose the reference divider, R = 1. When the tolerance on the bus frequency is tight, choose fRCLK to an integer divisor of fBUSDES, and R = 1. If fRCLK cannot meet this requirement, use the following equation to solve for R with practical choices of fRCLK, and choose the fRCLK that gives the lowest R. ⎛ f VCLKDES⎞ ⎫ ⎧ ⎛ f VCLKDES⎞ R = round R MAX × ⎨ ⎜ --------------------------⎟ – integer ⎜ --------------------------⎟ ⎬ ⎝ f RCLK ⎠ ⎭ ⎩ ⎝ f RCLK ⎠ 3. Calculate N: ⎛ R × f VCLKDES⎞ N = round ⎜ -------------------------------------⎟ P ⎝ f ⎠ RCLK × 2 4. Calculate and verify the adequacy of the VCO and bus frequencies fVCLK and fBUS. P 2 N f VCLK = ----------- ( f RCLK ) R f BUS = f VCLK ---------P 2 ×4 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 121 Clock Generator Module (CGM) 5. Select the VCO’s power-of-two range multiplier E, according to this table: Frequency Range E 0 < fVCLK < 9,830,400 0 9,830,400 ≤ fVCLK < 19,660,800 1 19,660,800 ≤ fVCLK < 39,321,600 2 NOTE: Do not program E to a value of 3. 6. Select a VCO linear range multiplier, L, where fNOM = 38.4kHz ⎛ f VCLK ⎞ L = round ⎜ --------------------------⎟ ⎝ 2E × f ⎠ NOM 7. Calculate and verify the adequacy of the VCO programmed center-of-range frequency, fVRS. The center-of-range frequency is the midpoint between the minimum and maximum frequencies attainable by the PLL. E f VRS = ( L × 2 )f NOM For proper operation, E f NOM × 2 f VRS – f VCLK ≤ -------------------------2 8. Verify the choice of P, R, N, E, and L by comparing fVCLK to fVRS and fVCLKDES. For proper operation, fVCLK must be within the application’s tolerance of fVCLKDES, and fVRS must be as close as possible to fVCLK. NOTE: Data Sheet 122 Exceeding the recommended maximum bus frequency or VCO frequency can crash the MCU. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Functional Description 9. Program the PLL registers accordingly: a. In the PRE bits of the PLL control register (PCTL), program the binary equivalent of P. b. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E. c. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high (PMSH), program the binary equivalent of N. d. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L. e. In the PLL reference divider select register (PMDS), program the binary coded equivalent of R. NOTE: The values for P, E, N, L, and R can only be programmed when the PLL is off (PLLON = 0). Table 8-1 provides numeric examples (numbers are in hexadecimal notation): Table 8-1. Numeric Examples CGMVCLK CGMPCLK fBUS fRCLK R N P E L 8.0 MHz 8.0 MHz 2.0 MHz 32.768 kHz 1 F5 0 0 D1 9.8304 MHz 9.8304 MHz 2.4576 MHz 32.768 kHz 1 12C 0 1 80 10.0 MHz 10.0 MHz 2.5 MHz 32.768 kHz 1 132 0 1 83 16 MHz 16 MHz 4.0 MHz 32.768 kHz 1 1E9 0 1 D1 19.6608 MHz 19.6608 MHz 4.9152 MHz 32.768 kHz 1 258 0 2 80 20 MHz 20 MHz 5.0 MHz 32.768 kHz 1 263 0 2 82 29.4912 MHz 29.4912 MHz 7.3728 MHz 32.768 kHz 1 384 0 2 C0 32 MHz 32 MHz 8.0 MHz 32.768 kHz 1 3D1 0 2 D0 32 MHz 16 MHz 4.0 MHz 32.768 kHz 1 1E9 1 2 D0 32 MHz 8 MHz 2.0 MHz 32.768 kHz 1 F5 2 2 D0 32 MHz 4 MHz 1.0 MHz 32.768 kHz 1 7B 3 2 D0 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 123 Clock Generator Module (CGM) 8.4.7 Special Programming Exceptions The programming method described in 8.4.6 Programming the PLL does not account for three possible exceptions. A value of 0 for R, N, or L is meaningless when used in the equations given. To account for these exceptions: • A 0 value for R or N is interpreted exactly the same as a value of 1. • A 0 value for L disables the PLL and prevents its selection as the source for the base clock. (See 8.4.8 Base Clock Selector Circuit.) 8.4.8 Base Clock Selector Circuit This circuit is used to select either the oscillator clock, CGMXCLK, or the divided VCO clock, CGMPCLK, as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and three CGMPCLK cycles to change from one clock source to the other. During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMPCLK). The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The divided VCO clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if the divided VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or deselection of the divided VCO clock. The divided VCO clock also cannot be selected as the base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the PLL, so that the PLL would be disabled and the oscillator clock would be forced as the source of the base clock. Data Sheet 124 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) I/O Signals 8.4.9 CGM External Connections In its typical configuration, the CGM requires up to four external components. Figure 8-3 shows the external components for the PLL: • Bypass capacitor, CBYP • Filter network Care should be taken with PCB routing in order to minimize signal cross talk and noise. (See 8.9 Acquisition/Lock Time Specifications for routing information, filter network and its effects on PLL performance.) MCU VSSA CGMXFC VDDA VDD 10 kΩ 0.01 µF CBYP 0.1 µF 0.033 µF Note: Filter network in box can be replaced with a 0.47µF capacitor, but will degrade stability. Figure 8-3. CGM External Connections 8.5 I/O Signals The following paragraphs describe the CGM I/O signals. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 125 Clock Generator Module (CGM) 8.5.1 External Filter Capacitor Pin (CGMXFC) The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is connected to this pin. (See Figure 8-3.) NOTE: To prevent noise problems, the filter network should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the network. 8.5.2 PLL Analog Power Pin (VDDA) VDDA is a power pin used by the analog portions of the PLL. Connect the VDDA pin to the same voltage potential as the VDD pin. NOTE: Route VDDA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. 8.5.3 PLL Analog Ground Pin (VSSA) VSSA is a ground pin used by the analog portions of the PLL. Connect the VSSA pin to the same voltage potential as the VSS pin. NOTE: Route VSSA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. 8.5.4 Oscillator Output Frequency Signal (CGMXCLK) CGMXCLK is the oscillator output signal. It runs at the full speed of the oscillator, and is generated directly from the crystal oscillator circuit, the RC oscillator circuit, or the internal oscillator circuit. 8.5.5 CGM Reference Clock (CGMRCLK) CGMRCLK is a buffered version of CGMXCLK, this clock is the reference clock for the phase-locked-loop circuit. Data Sheet 126 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) CGM Registers 8.5.6 CGM VCO Clock Output (CGMVCLK) CGMVCLK is the clock output from the VCO. This clock can be used by the pulse width modulator (PWM) module to generate high frequency PWM signals. This clock is also used by the analog module as a reference for signal sampling. 8.5.7 CGM Base Clock Output (CGMOUT) CGMOUT is the clock output of the CGM. This signal goes to the SIM, which generates the MCU clocks. CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software programmable to be either the oscillator output, CGMXCLK, divided by two or the divided VCO clock, CGMPCLK, divided by two. 8.5.8 CGM CPU Interrupt (CGMINT) CGMINT is the interrupt signal generated by the PLL lock detector. 8.6 CGM Registers The following registers control and monitor operation of the CGM: • PLL control register (PCTL) (See 8.6.1 PLL Control Register.) • PLL bandwidth control register (PBWC) (See 8.6.2 PLL Bandwidth Control Register.) • PLL multiplier select registers (PMSH and PMSL) (See 8.6.3 PLL Multiplier Select Registers.) • PLL VCO range select register (PMRS) (See 8.6.4 PLL VCO Range Select Register.) • PLL reference divider select register (PMDS) (See 8.6.5 PLL Reference Divider Select Register.) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 127 Clock Generator Module (CGM) 8.6.1 PLL Control Register The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base clock selector bit, the prescaler bits, and the VCO power-of-two range selector bits. Address: $0036 Bit 7 Read: 6 5 4 3 2 1 Bit 0 PLLON BCS PRE1 PRE0 VPR1 VPR0 1 0 0 0 0 0 PLLF PLLIE Write: Reset: 0 0 = Unimplemented Figure 8-4. PLL Control Register (PCTL) PLLIE — PLL Interrupt Enable Bit This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE bit. 1 = PLL interrupts enabled 0 = PLL interrupts disabled PLLF — PLL Interrupt Flag Bit This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the PLLIE bit also is set. PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit. 1 = Change in lock condition 0 = No change in lock condition NOTE: Data Sheet 128 Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on the PLL control register clears the PLLF bit. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) CGM Registers PLLON — PLL On Bit This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 8.4.8 Base Clock Selector Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up. 1 = PLL on 0 = PLL off BCS — Base Clock Select Bit This read/write bit selects either the oscillator output, CGMXCLK, or the divided VCO clock, CGMPCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS, it may take up to three CGMXCLK and three CGMPCLK cycles to complete the transition from one source clock to the other. During the transition, CGMOUT is held in stasis. (See 8.4.8 Base Clock Selector Circuit.) Reset clears the BCS bit. 1 = CGMPCLK divided by two drives CGMOUT 0 = CGMXCLK divided by two drives CGMOUT NOTE: PLLON and BCS have built-in protection that prevents the base clock selector circuit from selecting the VCO clock as the source of the base clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMPCLK requires two writes to the PLL control register. (See 8.4.8 Base Clock Selector Circuit.) PRE1 and PRE0 — Prescaler Program Bits These read/write bits control a prescaler that selects the prescaler power-of-two multiplier, P. (See 8.4.3 PLL Circuits and 8.4.6 Programming the PLL.) PRE1 and PRE0 cannot be written when the PLLON bit is set. Reset clears these bits. These prescaler bits affects the relationship between the VCO clock and the final system bus clock. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 129 Clock Generator Module (CGM) Table 8-2. PRE1 and PRE0 Programming PRE1 and PRE0 P Prescaler Multiplier 00 0 1 01 1 2 10 2 4 11 3 8 VPR1 and VPR0 — VCO Power-of-Two Range Select Bits These read/write bits control the VCO’s hardware power-of-two range multiplier E that, in conjunction with L (See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.4 PLL VCO Range Select Register.) controls the hardware center-of-range frequency, fVRS. VPR1:VPR0 cannot be written when the PLLON bit is set. Reset clears these bits. Table 8-3. VPR1 and VPR0 Programming VPR1 and VPR0 E VCO Power-of-Two Range Multiplier 00 0 1 01 1 2 10 2 4 NOTE: Do not program E to a value of 3. 8.6.2 PLL Bandwidth Control Register The PLL bandwidth control register (PBWC): Data Sheet 130 • Selects automatic or manual (software-controlled) bandwidth control mode • Indicates when the PLL is locked • In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode • In manual operation, forces the PLL into acquisition or tracking mode MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) CGM Registers Address: $0037 Bit 7 Read: 6 5 LOCK AUTO 4 3 2 1 0 0 0 0 Bit 0 ACQ R Write: Reset: 0 0 0 0 = Unimplemented 0 R 0 0 = Reserved Figure 8-5. PLL Bandwidth Control Register (PBWCR) AUTO — Automatic Bandwidth Control Bit This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), clear the ACQ bit before turning on the PLL. Reset clears the AUTO bit. 1 = Automatic bandwidth control 0 = Manual bandwidth control LOCK — Lock Indicator Bit When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as logic 0 and has no meaning. The write one function of this bit is reserved for test, so this bit must always be written a 0. Reset clears the LOCK bit. 1 = VCO frequency correct or locked 0 = VCO frequency incorrect or unlocked ACQ — Acquisition Mode Bit When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is in acquisition or tracking mode. In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode. 1 = Tracking mode 0 = Acquisition mode MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 131 Clock Generator Module (CGM) 8.6.3 PLL Multiplier Select Registers The PLL multiplier select registers (PMSH and PMSL) contain the programming information for the modulo feedback divider. Address: Read: $0038 Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 MUL11 MUL10 MUL9 MUL8 0 0 0 0 Write: Reset: 0 0 0 0 = Unimplemented Figure 8-6. PLL Multiplier Select Register High (PMSH) Address: $0039 Bit 7 6 5 4 3 2 1 Bit 0 MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0 0 1 0 0 0 0 0 0 Read: Write: Reset: Figure 8-7. PLL Multiplier Select Register Low (PMSL) MUL[11:0] — Multiplier Select Bits These read/write bits control the modulo feedback divider that selects the VCO frequency multiplier N. (See 8.4.3 PLL Circuits and 8.4.6 Programming the PLL.) A value of $0000 in the multiplier select registers configure the modulo feedback divider the same as a value of $0001. Reset initializes the registers to $0040 for a default multiply value of 64. NOTE: Data Sheet 132 The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) CGM Registers 8.6.4 PLL VCO Range Select Register The PLL VCO range select register (PMRS) contains the programming information required for the hardware configuration of the VCO. Address: $003A Bit 7 6 5 4 3 2 1 Bit 0 VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0 0 1 0 0 0 0 0 0 Read: Write: Reset: Figure 8-8. PLL VCO Range Select Register (PMRS) VRS[7:0] — VCO Range Select Bits These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with E (See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.1 PLL Control Register.), controls the hardware center-of-range frequency, fVRS. VRS[7:0] cannot be written when the PLLON bit in the PCTL is set. (See 8.4.7 Special Programming Exceptions.) A value of $00 in the VCO range select register disables the PLL and clears the BCS bit in the PLL control register (PCTL). (See 8.4.8 Base Clock Selector Circuit and 8.4.7 Special Programming Exceptions.). Reset initializes the register to $40 for a default range multiply value of 64. NOTE: The VCO range select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1) and such that the VCO clock cannot be selected as the source of the base clock (BCS = 1) if the VCO range select bits are all clear. The PLL VCO range select register must be programmed correctly. Incorrect programming can result in failure of the PLL to achieve lock. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 133 Clock Generator Module (CGM) 8.6.5 PLL Reference Divider Select Register The PLL reference divider select register (PMDS) contains the programming information for the modulo reference divider. Address: Read: $003B Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 RDS3 RDS2 RDS1 RDS0 0 0 0 1 Write: Reset: 0 0 0 0 = Unimplemented Figure 8-9. PLL Reference Divider Select Register (PMDS) RDS[3:0] — Reference Divider Select Bits These read/write bits control the modulo reference divider that selects the reference division factor, R. (See 8.4.3 PLL Circuits and 8.4.6 Programming the PLL.) RDS[3:0] cannot be written when the PLLON bit in the PCTL is set. A value of $00 in the reference divider select register configures the reference divider the same as a value of $01. (See 8.4.7 Special Programming Exceptions.) Reset initializes the register to $01 for a default divide value of 1. Data Sheet 134 NOTE: The reference divider select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). NOTE: The default divide value of 1 is recommended for all applications. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Interrupts 8.7 Interrupts When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and PLLF reads as logic 0. Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry into lock or an exit from lock. When the PLL enters lock, the divided VCO clock, CGMPCLK, divided by two can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software performance or from exceeding stack limitations. NOTE: Software can select the CGMPCLK divided by two as the CGMOUT source even if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL is locked before setting the BCS bit. 8.8 Special Modes The WAIT instruction puts the MCU in low power-consumption standby modes. 8.8.1 Wait Mode The WAIT instruction does not affect the CGM. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL) to save power. Less power-sensitive applications can disengage the PLL without turning it off, so that the PLL clock is immediately available at WAIT exit. This would be the case also when the PLL is to wake the MCU from wait mode, such as when the PLL is first enabled and waiting for LOCK or LOCK is lost. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 135 Clock Generator Module (CGM) 8.8.2 Stop Mode If the oscillator stop mode enable bit (STOP_ICLKEN, STOP_RCLKEN, or STOP_XCLKEN in CONFIG2 register) for the selected oscillator is configured to disabled the oscillator in stop mode, then the STOP instruction disables the CGM (oscillator and phase locked loop) and holds low all CGM outputs (CGMOUT, CGMVCLK, CGMPCLK, and CGMINT). If the STOP instruction is executed with the divided VCO clock, CGMPCLK, divided by two driving CGMOUT, the PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the oscillator clock, CGMXCLK, divided by two as the source of CGMOUT. When the MCU recovers from STOP, the crystal clock divided by two drives CGMOUT and BCS remains clear. If the oscillator stop mode enable bit is configured for continuous oscillator operation in stop mode, then the phase locked loop is shut off but the CGMXCLK will continue to drive the SIM and other MCU subsystems. 8.8.3 CGM During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 9.8.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit. Data Sheet 136 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Acquisition/Lock Time Specifications 8.9 Acquisition/Lock Time Specifications The acquisition and lock times of the PLL are, in many applications, the most critical PLL design parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock times. 8.9.1 Acquisition/Lock Time Definitions Typical control systems refer to the acquisition time or lock time as the reaction time, within specified tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the output settles to the desired value plus or minus a percent of the frequency change. Therefore, the reaction time is constant in this definition, regardless of the size of the step input. For example, consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from 0Hz to 1MHz, the acquisition time is the time taken for the frequency to reach 1MHz ±50kHz. 50kHz = 5% of the 1MHz step input. If the system is operating at 1MHz and suffers a –100kHz noise hit, the acquisition time is the time taken to return from 900kHz to 1MHz ±5kHz. 5kHz = 5% of the 100kHz step input. Other systems refer to acquisition and lock times as the time the system takes to reduce the error between the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock time varies according to the original error in the output. Minor errors may not even be registered. Typical PLL applications prefer to use this definition because the system requires the output frequency to be within a certain tolerance of the desired frequency regardless of the size of the initial error. 8.9.2 Parametric Influences on Reaction Time Acquisition and lock times are designed to be as short as possible while still providing the highest possible stability. These reaction times are not constant, however. Many factors directly and indirectly affect the acquisition time. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 137 Clock Generator Module (CGM) The most critical parameter which affects the reaction times of the PLL is the reference frequency, fRDV. This frequency is the input to the phase detector and controls how often the PLL makes corrections. For stability, the corrections must be small compared to the desired frequency, so several corrections are required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make these corrections. This parameter is under user control via the choice of crystal frequency fXCLK and the R value programmed in the reference divider. (See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.5 PLL Reference Divider Select Register.) Another critical parameter is the external filter network. The PLL modifies the voltage on the VCO by adding or subtracting charge from capacitors in this network. Therefore, the rate at which the voltage changes for a given frequency error (thus change in charge) is proportional to the capacitance. The size of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in a reasonable time. (See 8.9.3 Choosing a Filter.) Also important is the operating voltage potential applied to VDDA. The power supply potential alters the characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if they vary within a known range at very slow speeds. Noise on the power supply is not acceptable, because it causes small frequency errors which continually change the acquisition time of the PLL. Temperature and processing also can affect acquisition time because the electrical characteristics of the PLL change. The part operates as specified as long as these influences stay within the specified limits. External factors, however, can cause drastic changes in the operation of the PLL. These factors include noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the circuit board, and even humidity or circuit board contamination. Data Sheet 138 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Acquisition/Lock Time Specifications 8.9.3 Choosing a Filter As described in 8.9.2 Parametric Influences on Reaction Time, the external filter network is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage. Either of the filter networks in Figure 8-10 is recommended when using a 32.768kHz reference clock (CGMRCLK). Figure 8-10 (a) is used for applications requiring better stability. Figure 8-10 (b) is used in low-cost applications where stability is not critical. CGMXFC 10 kΩ CGMXFC 0.01 µF 0.47 µF 0.033 µF VSSA VSSA (a) (b) Figure 8-10. PLL Filter MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 139 Clock Generator Module (CGM) Data Sheet 140 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 9. System Integration Module (SIM) 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 9.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 144 9.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.3.2 Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . . 145 9.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 146 9.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 146 9.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 147 9.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 9.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 149 9.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 9.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .150 9.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 150 9.4.2.6 Monitor Mode Entry Module Reset. . . . . . . . . . . . . . . . . 150 9.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 151 9.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 151 9.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 151 9.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 9.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.6.1.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .155 9.6.1.4 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 155 9.6.1.5 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 157 9.6.1.6 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 157 9.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 141 System Integration Module (SIM) 9.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 158 9.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 9.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 9.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 163 9.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 164 9.2 Introduction This section describes the system integration module (SIM). Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 9-1. Table 9-1 is a summary of the SIM input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals: – Stop/wait/reset/break entry and recovery – Internal clock control • Master reset control, including power-on reset (POR) and COP timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation • CPU enable/disable timing • Modular architecture expandable to 128 interrupt sources Table 9-1 shows the internal signal names used in this section. Data Sheet 142 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Introduction MODULE STOP MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO CGM, OSC) SIM COUNTER COP CLOCK ICLK (FROM OSC) CGMOUT (FROM CGM) ÷2 CLOCK CONTROL VDD CLOCK GENERATORS INTERNAL CLOCKS INTERNAL PULLUP DEVICE RESET PIN LOGIC LVI (FROM LVI MODULE) POR CONTROL MASTER RESET CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE) RESET INTERRUPT SOURCES INTERRUPT CONTROL AND PRIORITY DECODE CPU INTERFACE Figure 9-1. SIM Block Diagram Table 9-1. Signal Name Conventions Signal Name ICLK CGMXCLK CGMVCLK, CGMPCLK CGMOUT Description Internal oscillator clock Selected oscillator clock from oscillator module PLL output and the divided PLL output CGMPCLK-based or oscillator-based clock output from CGM module (Bus clock = CGMOUT ÷ 2) IAB Internal address bus IDB Internal data bus PORRST Signal from the power-on reset module to the SIM IRST Internal reset signal R/W Read/write signal MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 143 System Integration Module (SIM) Addr. Register Name Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: Bit 7 6 5 4 3 2 R R R R R R 1 SBSW Note Bit 0 R 0 Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 Write: (SRSR) POR: $FE03 Read: SIM Break Flag Control Register Write: (SBFCR) Reset: POR PIN COP ILOP ILAD 0 LVI 0 1 0 0 0 0 0 0 0 BCFE R R R R R R R 0 Read: Interrupt Status Register 1 Write: $FE04 (INT1) Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 $FE06 Write: (INT3) Reset: 0 0 0 0 0 IF17 IF16 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved Figure 9-2. SIM I/O Register Summary 9.3 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 9-3. This clock can come from either the oscillator module or from the on-chip PLL. (See Section 8. Clock Generator Module (CGM).) Data Sheet 144 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) SIM Bus Clock Control and Generation OSC2 OSCCLK TO TBM OSCILLATOR (OSC) MODULE CGMXCLK OSC1 ICLK STOP MODE CLOCK ENABLE SIGNALS FROM CONFIG2 TO TIM, ADC SIM COUNTER SIMOSCEN SYSTEM INTEGRATION MODULE CGMRCLK CGMOUT ÷2 PHASE-LOCKED LOOP (PLL) BUS CLOCK GENERATORS IT12 TO REST OF MCU IT23 TO REST OF MCU PTC1 SIMDIV2 MONITOR MODE USER MODE CGMVCLK TO PWM Figure 9-3. CGM Clock Signals 9.3.1 Bus Timing In user mode, the internal bus frequency is either the oscillator output (CGMXCLK) divided by four or the divided PLL output (CGMPCLK) divided by four. 9.3.2 Clock Start-up from POR or LVI Reset When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 ICLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 145 System Integration Module (SIM) 9.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows ICLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 ICLK cycles. (See 9.7.2 Stop Mode.) In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. 9.4 Reset and System Initialization The MCU has these reset sources: • Power-on reset module (POR) • External reset pin (RST) • Computer operating properly module (COP) • Low-voltage inhibit module (LVI) • Illegal opcode • Illegal address All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 9.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). (See 9.8 SIM Registers.) Data Sheet 146 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Reset and System Initialization 9.4.1 External Pin Reset The RST pin circuit includes an internal pull-up device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 ICLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 9-2 for details. Figure 9-4 shows the relative timing. Table 9-2. PIN Bit Set Timing Reset Type Number of Cycles Required to Set PIN POR/LVI 4163 (4096 + 64 + 3) All others 67 (64 + 3) ICLK RST IAB VECT H VECT L PC Figure 9-4. External Reset Timing 9.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 ICLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (see Figure 9-5). An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or POR (see Figure 9-6). NOTE: For LVI or POR resets, the SIM cycles through 4096 + 32 ICLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 9-5. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 147 System Integration Module (SIM) IRST RST RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES ICLK IAB VECTOR HIGH Figure 9-5. Internal Reset Timing The COP reset is asynchronous to the bus clock. ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST LVI POR INTERNAL RESET Figure 9-6. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. 9.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, these events occur: Data Sheet 148 • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables CGMOUT. • Internal clocks to the CPU and modules are held inactive for 4096 ICLK cycles to allow stabilization of the oscillator. • The RST pin is driven low during the oscillator stabilization time. • The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Reset and System Initialization OSC1 PORRST 4096 CYCLES 32 CYCLES 32 CYCLES ICLK CGMOUT RST IRST $FFFE IAB $FFFF Figure 9-7. POR Recovery 9.4.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and bits 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every 213 – 24 ICLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout. The COP module is disabled if the RST pin or the IRQ1 pin is held at VTST while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ1 pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VTST on the RST pin disables the COP module. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 149 System Integration Module (SIM) 9.4.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 9.4.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. 9.4.2.5 Low-Voltage Inhibit (LVI) Reset The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVITRIPF voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources. 9.4.2.6 Monitor Mode Entry Module Reset The monitor mode entry module reset asserts its output to the SIM when monitor mode is entered in the condition where the reset vectors are blank ($FF). (See Section 10. Monitor ROM (MON).) When MODRST gets asserted, an internal reset occurs. The SIM actively pulls down the RST pin for all internal reset sources. Data Sheet 150 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) SIM Counter 9.5 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 12 bits long and is clocked by the falling edge of ICLK. 9.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to drive the bus clock state machine. 9.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32 ICLK cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared. 9.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. (See 9.7.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 9.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 151 System Integration Module (SIM) 9.6 Exception Control Normal, sequential program execution can be changed in three different ways: • Interrupts: – Maskable hardware CPU interrupts – Non-maskable software interrupt instruction (SWI) • Reset • Break interrupts 9.6.1 Interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 9-8 shows interrupt entry timing, and Figure 9-9 shows interrupt recovery timing. MODULE INTERRUPT I-BIT IAB IDB SP DUMMY DUMMY SP – 1 SP – 2 PC – 1[7:0] PC – 1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L V DATA H START ADDR V DATA L OPCODE R/W Figure 9-8. Interrupt Entry Timing MODULE INTERRUPT I-BIT IAB IDB SP – 4 SP – 3 CCR SP – 2 A SP – 1 X SP PC PC – 1[15:8] PC – 1[7:0] PC + 1 OPCODE OPERAND R/W Figure 9-9. Interrupt Recovery Timing Data Sheet 152 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Exception Control Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). (See Figure 9-10.) FROM RESET BREAK I BIT SET? INTERRUPT? YES NO YES I-BIT SET? NO IRQ1 INTERRUPT? YES NO STACK CPU REGISTERS SET I-BIT LOAD PC WITH INTERRUPT VECTOR AS MANY INTERRUPTS AS EXIST ON CHIP FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 9-10. Interrupt Processing MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 153 System Integration Module (SIM) 9.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register) and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 9-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. CLI BACKGROUND ROUTINE LDA #$FF INT1 PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 9-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. NOTE: Data Sheet 154 To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Exception Control 9.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. 9.6.1.3 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 9-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. 9.6.1.4 Interrupt Status Register 1 Address: $FE04 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF6 IF5 IF4 IF3 IF2 IF1 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 9-12. Interrupt Status Register 1 (INT1) IF6–IF1 — Interrupt Flags 6–1 These flags indicate the presence of interrupt requests from the sources shown in Table 9-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0 and Bit 1 — Always read 0 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 155 System Integration Module (SIM) Table 9-3. Interrupt Sources Priority Lowest INT Flag IF17 IF16 IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 Highest Data Sheet 156 Vector Address $FFDA $FFDB $FFDC $FFDD $FFDE $FFDF $FFE0 $FFE1 $FFE2 $FFE3 $FFE4 $FFE5 $FFE6 $FFE7 $FFE8 $FFE9 $FFEA $FFEB $FFEC $FFED $FFEE $FFEF $FFF0 $FFF1 $FFF2 $FFF3 $FFF4 $FFF5 $FFF6 $FFF7 $FFF8 $FFF9 $FFFA $FFFB $FFFC $FFFD $FFFE $FFFF Interrupt Source Timebase Module Analog Module ADC Conversion Complete Keyboard SCI Transmit SCI Receive SCI Error MMIIC TIM2 Overflow TIM2 Channel 1 TIM2 Channel 0 TIM1 Overflow TIM1 Channel 1 TIM1 Channel 0 PLL IRQ2 IRQ1 SWI Reset MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Exception Control 9.6.1.5 Interrupt Status Register 2 Address: $FE05 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 9-13. Interrupt Status Register 2 (INT2) IF14–IF7 — Interrupt Flags 14–7 These flags indicate the presence of interrupt requests from the sources shown in Table 9-3. 1 = Interrupt request present 0 = No interrupt request present 9.6.1.6 Interrupt Status Register 3 Address: $FE06 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 0 0 0 0 IF17 IF16 IF15 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 9-14. Interrupt Status Register 3 (INT3) IF17–IF15 — Interrupt Flags 17–15 These flags indicate the presence of an interrupt request from the source shown in Table 9-3. 1 = Interrupt request present 0 = No interrupt request present MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 157 System Integration Module (SIM) 9.6.2 Reset All reset sources always have equal and highest priority and cannot be arbitrated. 9.6.3 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See Section 23. Break Module (BRK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. 9.6.4 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. Data Sheet 158 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Low-Power Modes 9.7 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 9.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 9-15 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode also can be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. IAB IDB WAIT ADDR WAIT ADDR + 1 PREVIOUS DATA SAME NEXT OPCODE SAME SAME SAME R/W NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 9-15. Wait Mode Entry Timing Figure 9-16 and Figure 9-17 show the timing for WAIT recovery. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 159 System Integration Module (SIM) IAB $6E0B IDB $A6 $6E0C $A6 $A6 $00FF $01 $0B $00FE $00FD $00FC $6E EXITSTOPWAIT NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt Figure 9-16. Wait Recovery from Interrupt or Break 32 CYCLES IAB IDB 32 CYCLES $6E0B $A6 $A6 RST VCT H RST VCT L $A6 RST ICLK Figure 9-17. Wait Recovery from Internal Reset 9.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the clock generator module output (CGMOUT) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. NOTE: Data Sheet 160 External crystal applications should use the full stop recovery time by clearing the SSREC bit. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) SIM Registers A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the SIM break status register (SBSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 9-18 shows stop mode entry timing. NOTE: To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0. CPUSTOP IAB STOP ADDR IDB STOP ADDR + 1 PREVIOUS DATA SAME NEXT OPCODE SAME SAME SAME R/W NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 9-18. Stop Mode Entry Timing STOP RECOVERY PERIOD ICLK INT/BREAK IAB STOP + 2 STOP +1 STOP + 2 SP SP – 1 SP – 2 SP – 3 Figure 9-19. Stop Mode Recovery from Interrupt or Break 9.8 SIM Registers The SIM has three memory-mapped registers: • SIM Break Status Register (SBSR) — $FE00 • SIM Reset Status Register (SRSR) — $FE01 • SIM Break Flag Control Register (SBFCR) — $FE03 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 161 System Integration Module (SIM) 9.8.1 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop mode or wait mode. Address: $FE00 Bit 7 6 5 4 3 2 R R R R R R Read: 1 Bit 0 SBSW R Write: Note Reset: 0 Note: Writing a logic 0 clears SBSW. R = Reserved Figure 9-20. SIM Break Status Register (SBSR) SBSW — Break Wait Bit This status bit is set when a break interrupt causes an exit from wait mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The following code is an example. This code works if the H register has been pushed onto the stack in the break service routine software. This code should be executed at the end of the break service routine software. HIBYTE EQU LOBYTE EQU If not SBSW, do RTI BRCLR SBSW,SBSR, RETURN ; See if wait mode or stop mode was exited by ; break. TST LOBYTE,SP ;If RETURNLO is not zero, BNE DOLO ;then just decrement low byte. DEC HIBYTE,SP ;Else deal with high byte, too. DOLO DEC LOBYTE,SP ;Point to WAIT/STOP opcode. RETURN PULH RTI Data Sheet 162 ;Restore H register. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) SIM Registers 9.8.2 SIM Reset Status Register This register contains six flags that show the source of the last reset provided all previous reset status bits have been cleared. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register. Address: Read: $FE01 Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD 0 LVI 0 1 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 9-21. SIM Reset Status Register (SRSR) POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR PIN — External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR LVI — Low-Voltage Inhibit Reset Bit 1 = Last reset caused by the LVI circuit 0 = POR or read of SRSR MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 163 System Integration Module (SIM) 9.8.3 SIM Break Flag Control Register The SIM break control register contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: Reset: 0 R = Reserved Figure 9-22. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Data Sheet 164 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 10. Monitor ROM (MON) 10.1 Contents 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 10.2 Introduction This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Monitor ROM (MON) Data Sheet 165 Monitor ROM (MON) 10.3 Features Features of the monitor ROM include: • Normal user-mode pin functionality • One pin dedicated to serial communication between monitor ROM and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • Execution of code in RAM or FLASH • FLASH memory security feature1 • FLASH memory programming interface • Enhanced PLL (phase-locked loop) option to allow use of external 32.768-kHz crystal to generate internal frequency of 2.4576 MHz • 368 bytes monitor ROM code size ($FE10 to $FF7F) • Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) • Standard monitor mode entry if high voltage, VTST, is applied to IRQ1 10.4 Functional Description The monitor ROM receives and executes commands from a host computer. Figure 10-1 shows an example circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor. 1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Data Sheet 166 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description 68HC908SR12 RST 0.1 µF VTST (SEE NOTE 3) RESET VECTORS $FFFE 10 kΩ (SEE NOTES 2 AND 3) C SW2 $FFFF IRQ1 D 0.01 µF CGMXFC 4.9152MHz/9.8304MHz 10 kΩ 0.033 µF SW3 (SEE NOTE 2) C 10 µF + MC145407 3 20 + D 10 MΩ 1 6–30 pF 10 µF 18 C 32.768 kHz XTAL 4 10 µF 17 330 kΩ + + 2 19 DB-25 2 5 16 3 6 15 10 µF VDD OSC1 OSC2 SW4 (SEE NOTE 2) VSS VSSA D VSSAM 6–30 pF VREFL VDD VDD VDDA VREFH 0.1 µF 7 VDD 1 MC74HC125 2 3 6 5 4 VDD 14 10 kΩ PTA0 PTC1 VDD VDD 7 A (SEE NOTE 1) SW1 B PTA1 PTA2 Notes: 1. For monitor mode entry when SW2 at position C (IRQ1 = VTST): SW1: Position A — Bus clock = CGMXCLK ÷ 4 SW1: Position B — Bus clock = CGMXCLK ÷ 2 2. SW2, SW3, and SW4: Position C — Enter monitor mode using off-chip oscillator only. SW2, SW3, and SW4: Position D — Enter monitor mode using 32.768kHz XTAL and internal PLL. 3. See Table 24-5 for IRQ1 voltage level requirements. 4. See Table 10-1 for other monitor mode entry configurations. Figure 10-1. Monitor Mode Circuit MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Monitor ROM (MON) Data Sheet 167 Monitor ROM (MON) The monitor code allows enabling the PLL to generate the internal clock, provided the reset vector is blank ($FF), when the device is being clocked by a low-frequency crystal. This entry method, which is enabled when IRQ1 is held low out of reset, is intended to support serial communication/programming at 9600 baud in monitor mode by stepping up the external frequency (assumed to be 32.768 kHz) by a fixed amount to generate the desired internal frequency (2.4576 MHz). If the reset vector is not blank (not $FF), the frequency stepping feature is not supported, because IRQ1 cannot be held low for monitor mode entry. With a non-blank reset vector, entry into monitor mode requires VTST on IRQ1. 10.4.1 Entering Monitor Mode Table 10-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a POR and will allow communication at 9600 baud provided one of the following sets of conditions is met: 1. If $FFFE and $FFFF do not contain $FF (programmed state): – The external clock is 4.9152 MHz with PTC1 low or 9.8304 MHz with PTC1 high – IRQ1 = VTST (PLL off) 2. If $FFFE and $FFFF both contain $FF (erased state): – The external clock is 9.8304 MHz – IRQ1 = VDD (this can be implemented through the internal IRQ1 pullup; PLL off) 3. If $FFFE and $FFFF both contain $FF (erased state): – The external clock is 32.768 kHz (crystal) – IRQ1 = VSS (this setting initiates the PLL to boost the external 32.768 kHz to an internal bus frequency of 2.4576 MHz) Data Sheet 168 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Table 10-1. Monitor Mode Signal Requirements and Options IRQ1 RST Address $FFFE/ $FFFF PTA2 PTA1 PTA0(1) PTC1 External Clock Bus Frequency PLL COP Baud Rate X GND X X X X X X 0 X Disabled 0 No operation until reset goes high VTST VDD or VTST X 0 1 1 0 4.9152 2.4576 MHz OFF Disabled 9600 PTA1 and PTA2 voltages only required if IRQ1 = VTST; PTC1 determines frequency divider VDD or VTST X 2.4576 MHz OFF Disabled 9600 PTA1 and PTA2 voltages only required if IRQ1 = VTST; PTC1 determines frequency divider VDD Blank "$FFFF" X 2.4576 MHz OFF Disabled 9600 External frequency always divided by 4 Blank "$FFFF" X 2.4576 MHz ON Disabled 9600 kHz(3) PLL enabled (BCS set) in monitor code VTST VDD GND VDD MHz(2) 0 1 1 1 9.8304 MHz(2) X 1 X 9.8304 MHz(3) X 1 X 32.768 Comment VDD or GND VTST Blank "$FFFF" X X X X X — OFF Enabled — Enters user mode — will encounter an illegal address reset VDD or GND VDD or VTST Not Blank X X X X X — OFF Enabled — Enters user mode Data Sheet 169 Monitor ROM (MON) Functional Description Notes: 1. PTA0 = 1 if serial communication; PTA0 = 0 if parallel communication (factory use only) 2. When IRQ1 = VTST, external clock must be derived by a 4.9152MHz or 9.8304MHz off-chip oscillator. 3. External clock is derived by a crystal or an off-chip oscillator. Monitor ROM (MON) If VTST is applied to IRQ1 and PTC1 is low upon monitor mode entry (above condition set 1), the bus frequency is a divide-by-two of the input clock. If PTC1 is high with VTST applied to IRQ1 upon monitor mode entry, the bus frequency will be a divide-by-four of the input clock. Holding the PTC1 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator only if VTST is applied to IRQ1. In this event, the CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. If entering monitor mode without high voltage on IRQ1 (above condition set 2 or 3, where applied voltage is either VDD or VSS), then all port A pin requirements and conditions, including the PTC1 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming. NOTE: If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial POR reset. Once the part has been programmed, the traditional method of applying a voltage, VTST, to IRQ1 must be used to enter monitor mode. The COP module is disabled in monitor mode based on these conditions: • If monitor mode was entered as a result of the reset vector being blank (above condition set 2 or 3), the COP is always disabled regardless of the state of IRQ1 or RST. • If monitor mode was entered with VTST on IRQ1 (condition set 1), then the COP is disabled as long as VTST is applied to either IRQ1 or RST. The second condition states that as long as VTST is maintained on the IRQ1 pin after entering monitor mode, or if VTST is applied to RST after the initial reset to get into monitor mode (when VTST was applied to IRQ1), then the COP will be disabled. In the latter situation, after VTST is applied to the RST pin, VTST can be removed from the IRQ1 pin in the interest of freeing the IRQ1 for normal functionality in monitor mode. Data Sheet 170 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description Figure 10-2 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just 1 x VDD voltage is applied to the IRQ1 pin. An external oscillator of 9.8304 MHz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four. POR RESET IS VECTOR BLANK? NO NORMAL USER MODE YES MONITOR MODE EXECUTE MONITOR CODE POR TRIGGERED? NO YES Figure 10-2. Low-Voltage Monitor Mode Entry Flowchart Enter monitor mode with pin configuration shown in Figure 10-1 by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes. (See 10.5 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command. In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Monitor ROM (MON) Data Sheet 171 Monitor ROM (MON) NOTE: Exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset (POR). Pulling RST low will not exit monitor mode in this situation. Table 10-2 summarizes the differences between user mode and monitor mode. Table 10-2. Mode Differences Functions Modes Reset Vector High Reset Vector Low Break Vector High Break Vector Low SWI Vector High SWI Vector Low User $FFFE $FFFF $FFFC $FFFD $FFFC $FFFD Monitor $FEFE $FEFF $FEFC $FEFD $FEFC $FEFD 10.4.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical. START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 NEXT START STOP BIT BIT BIT 7 Figure 10-3. Monitor Data Format 10.4.3 Break Signal A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal. MISSING STOP BIT 2-STOP BIT DELAY BEFORE ZERO ECHO 0 1 2 3 4 5 6 0 7 1 2 3 4 5 6 7 Figure 10-4. Break Transaction Data Sheet 172 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description 10.4.4 Baud Rate The communication baud rate is controlled by the crystal frequency and the state of the PTC1 pin (when IRQ1 is set to VTST) upon entry into monitor mode. When PTC1 is high, the divide by ratio is 1024. If the PTC1 pin is at logic 0 upon entry into monitor mode, the divide by ratio is 512. If monitor mode was entered with VDD on IRQ1, then the divide by ratio is set at 1024, regardless of PTC1. If monitor mode was entered with VSS on IRQ, then the internal PLL steps up the external frequency, presumed to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor mode entry require that the reset vector is blank. Table 10-3 lists external frequencies required to achieve a standard baud rate of 9600 BPS. Other standard baud rates can be accomplished using proportionally higher or lower frequency generators. If using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module can handle. See 24.6 5.0V DC Electrical Characteristics and 24.8 5.0V Control Timing for this limit. Table 10-3. Monitor Baud Rate Selection External Frequency IRQ1 PTC1 Internal Frequency Baud Rate (BPS) 4.9152 MHz VTST 0 2.4576 MHz 9600 9.8304 MHz VTST 1 2.4576 MHz 9600 9.8304 MHz VDD X 2.4576 MHz 9600 32.768 kHz VSS X 2.4576 MHz 9600 10.4.5 Commands The monitor ROM firmware uses these commands: • READ (read memory) • WRITE (write memory) • IREAD (indexed read) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Monitor ROM (MON) Data Sheet 173 Monitor ROM (MON) • IWRITE (indexed write) • READSP (read stack pointer) • RUN (run user program) The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command. NOTE: Wait one bit time after each echo before sending the next byte. FROM HOST READ 4 ADDRESS HIGH READ 4 1 ADDRESS HIGH ADDRESS LOW 1 4 ADDRESS LOW 1 DATA 3, 2 4 ECHO RETURN Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 3 = Cancel command delay, 11 bit times 4 = Wait 1 bit time before sending next byte. Figure 10-5. Read Transaction FROM HOST 3 ADDRESS HIGH WRITE WRITE 1 3 ADDRESS HIGH 1 ADDRESS LOW 3 ADDRESS LOW 1 DATA DATA 3 1 2, 3 ECHO Notes: 1 = Echo delay, 2 bit times 2 = Cancel command delay, 11 bit times 3 = Wait 1 bit time before sending next byte. Figure 10-6. Write Transaction Data Sheet 174 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description A brief description of each monitor mode command is given in Table 10-4 through Table 10-9. Table 10-4. READ (Read Memory) Command Description Read byte from memory Operand 2-byte address in high-byte:low-byte order Data Returned Returns contents of specified address Opcode $4A Command Sequence SENT TO MONITOR ADDRESS HIGH READ READ ADDRESS HIGH ADDRESS LOW ADDRESS LOW DATA ECHO RETURN Table 10-5. WRITE (Write Memory) Command Description Write byte to memory Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte Data Returned None Opcode $49 Command Sequence FROM HOST WRITE WRITE ADDRESS HIGH ADDRESS HIGH ADDRESS LOW ADDRESS LOW DATA DATA ECHO MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Monitor ROM (MON) Data Sheet 175 Monitor ROM (MON) Table 10-6. IREAD (Indexed Read) Command Description Read next 2 bytes in memory from last address accessed Operand 2-byte address in high byte:low byte order Data Returned Returns contents of next two addresses Opcode $1A Command Sequence FROM HOST IREAD IREAD DATA ECHO DATA RETURN Table 10-7. IWRITE (Indexed Write) Command Description Write to last address accessed + 1 Operand Single data byte Data Returned None Opcode $19 Command Sequence FROM HOST IWRITE DATA IWRITE DATA ECHO Data Sheet 176 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64k-byte memory map. Table 10-8. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data Returned Returns incremented stack pointer value (SP + 1) in high-byte:lowbyte order Opcode $0C Command Sequence FROM HOST READSP SP HIGH READSP ECHO SP LOW RETURN Table 10-9. RUN (Run User Program) Command Description Executes PULH and RTI instructions Operand None Data Returned None Opcode $28 Command Sequence FROM HOST RUN RUN ECHO MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Monitor ROM (MON) Data Sheet 177 Monitor ROM (MON) The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6. SP HIGH BYTE OF INDEX REGISTER SP + 1 CONDITION CODE REGISTER SP + 2 ACCUMULATOR SP + 3 LOW BYTE OF INDEX REGISTER SP + 4 HIGH BYTE OF PROGRAM COUNTER SP + 5 LOW BYTE OF PROGRAM COUNTER SP + 6 SP + 7 Figure 10-7. Stack Pointer at Monitor Mode Entry 10.5 Security A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain userdefined data. NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons, program locations $FFF6–$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 10-8.) Data Sheet 178 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Security VDD 4096 + 32 ICLK CYCLES RST COMMAND BYTE 8 BYTE 2 BYTE 1 256 BUS CYCLES (MINIMUM) FROM HOST PTA0 4 BREAK 2 1 COMMAND ECHO NOTES: 1 = Echo delay, 2 bit times. 2 = Data return delay, 2 bit times. 4 = Wait 1 bit time before sending next byte. 1 BYTE 8 ECHO BYTE 1 ECHO FROM MCU 1 BYTE 2 ECHO 4 1 Figure 10-8. Monitor Mode Entry Timing Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command. NOTE: The MCU does not transmit a break character until after the host sends the eight security bits. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank). MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Monitor ROM (MON) Data Sheet 179 Monitor ROM (MON) Data Sheet 180 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 11. Timer Interface Module (TIM) 11.1 Contents 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 188 11.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .189 11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 189 11.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 190 11.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 191 11.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 194 11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 196 11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 199 11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 200 11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 181 Timer Interface Module (TIM) 11.2 Introduction This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 11-1 is a block diagram of the TIM. This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2. 11.3 Features Features of the TIM include: • Two input capture/output compare channels: – Rising-edge, falling-edge, or any-edge input capture trigger – Set, clear, or toggle output compare action Data Sheet 182 • Buffered and unbuffered pulse-width-modulation (PWM) signal generation • Programmable TIM clock input with 7-frequency internal bus clock prescaler selection • Free-running or modulo up-count operation • Toggle any channel pin on overflow • TIM counter stop and reset bits MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Pin Name Conventions 11.4 Pin Name Conventions The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2” is used to indicate TIM2. The two TIMs share four I/O pins with four I/O port pins. The full names of the TIM I/O pins are listed in Table 11-1. The generic pin names appear in the text that follows. Table 11-1. Pin Name Conventions TIM Generic Pin Names: Full TIM Pin Names: NOTE: T[1,2]CH0 T[1,2]CH1 TIM1 PTA6/T1CH0 PTA7/T1CH1 TIM2 PTB4/T2CH0 PTB5/T2CH1 References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1. 11.5 Functional Description Figure 11-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels (per timer) are programmable independently as input capture or output compare channels. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 183 Timer Interface Module (TIM) PRESCALER SELECT INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 PS0 16-BIT COUNTER TOF TOIE INTERRUPT LOGIC 16-BIT COMPARATOR TMODH:TMODL TOV0 ELS0B CHANNEL 0 ELS0A CH0MAX 16-BIT COMPARATOR TCH0H:TCH0L PORT LOGIC T[1,2]CH0 CH0F INTERRUPT LOGIC 16-BIT LATCH MS0A CH0IE MS0B INTERNAL BUS TOV1 ELS1B CHANNEL 1 ELS1A CH1MAX PORT LOGIC T[1,2]CH1 16-BIT COMPARATOR TCH1H:TCH1L CH1F INTERRUPT LOGIC 16-BIT LATCH MS1A CH1IE Figure 11-1. TIM Block Diagram Figure 11-2 summarizes the timer registers. NOTE: Data Sheet 184 References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC and T2SC. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Functional Description Addr. Register Name Bit 7 Read: Timer 1 Status and Control $0020 Write: Register (T1SC) Reset: TOF 0 0 1 0 Read: Timer 1 Counter Register $0021 Write: High (T1CNTH) Reset: Bit 15 14 13 0 0 Read: Timer 1 Counter Register $0022 Write: Low (T1CNTL) Reset: Bit 7 Read: Timer 1 Counter Modulo $0023 Write: Register High (T1MODH) Reset: $0024 Read: Timer 1 Counter Modulo Write: Register Low (T1MODL) Reset: Read: Timer 1 Channel 0 Status $0025 and Control Register Write: (T1SC0) Reset: $0026 $0027 Read: Timer 1 Channel 0 Write: Register High (T1CH0H) Reset: Read: Timer 1 Channel 0 Write: Register Low (T1CH0L) Reset: Read: Timer 1 Channel 1 Status $0028 and Control Register Write: (T1SC1) Reset: 6 5 TOIE TSTOP 2 1 Bit 0 PS2 PS1 PS0 0 0 0 0 12 11 10 9 Bit 8 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 0 4 3 0 0 TRST CH0F 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CH1F 0 CH1IE MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 11-2. TIM I/O Register Summary (Sheet 1 of 3) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 185 Timer Interface Module (TIM) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 PS2 PS1 PS0 Read: $0029 Timer 1 Channel 1 Write: Register High (T1CH1H) Reset: Indeterminate after reset Read: $002A $002B Timer 1 Channel 1 Write: Register Low (T1CH1L) Reset: Bit 7 Read: TOF Timer 2 Status and Control Write: Register (T2SC) Reset: 6 5 4 3 Indeterminate after reset 0 TOIE 0 TSTOP 0 TRST 0 0 1 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Timer 2 Counter Modulo Write: Register Low (T2MODL) Reset: Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 Read: Timer 2 Channel 0 Status $0030 and Control Register Write: (T2SC0) Reset: CH0F CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 Read: $002C Timer 2 Counter Register Write: High (T2CNTH) Reset: Read: $002D Timer 2 Counter Register Write: Low (T2CNTL) Reset: Read: $002E Timer 2 Counter Modulo Write: Register High (T2MODH) Reset: Read: $002F 0 Read: $0031 Timer 2 Channel 0 Write: Register High (T2CH0H) Reset: Indeterminate after reset = Unimplemented Figure 11-2. TIM I/O Register Summary (Sheet 2 of 3) Data Sheet 186 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Functional Description Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Timer 2 Channel 0 Write: Register Low (T2CH0L) Reset: Bit 7 6 5 4 3 2 1 Bit 0 Read: Timer 2 Channel 1 Status $0033 and Control Register Write: (T2SC1) Reset: CH1F Read: $0032 Indeterminate after reset 0 CH1IE MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Read: $0034 Timer 2 Channel 1 Write: Register High (T2CH1H) Reset: Indeterminate after reset Read: $0035 Timer 2 Channel 1 Write: Register Low (T2CH1L) Reset: Bit 7 6 5 4 3 Indeterminate after reset = Unimplemented Figure 11-2. TIM I/O Register Summary (Sheet 3 of 3) 11.5.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source. 11.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 187 Timer Interface Module (TIM) 11.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. 11.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 11.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: Data Sheet 188 • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Functional Description 11.5.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. NOTE: In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. 11.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 11-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 189 Timer Interface Module (TIM) The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000. See 11.10.1 TIM Status and Control Register. OVERFLOW OVERFLOW OVERFLOW PERIOD PULSE WIDTH TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE Figure 11-3. PWM Period and Pulse Width The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 11.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 11.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. Data Sheet 190 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Functional Description Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: NOTE: • When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. • When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 11.5.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 191 Timer Interface Module (TIM) NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals. 11.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 11-3.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 11-3.) NOTE: In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. Data Sheet 192 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Interrupts Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 11.10.4 TIM Channel Status and Control Registers.) 11.6 Interrupts The following TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. • TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register. 11.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 193 Timer Interface Module (TIM) 11.7.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. 11.7.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. 11.8 TIM During Break Interrupts A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 9.8.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. Data Sheet 194 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Signals 11.9 I/O Signals Port A and port B each shares two of its pins with the TIM. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0, and T2CH1 as described in 11.4 Pin Name Conventions. Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins. 11.10 I/O Registers NOTE: References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC AND T2SC. These I/O registers control and monitor operation of the TIM: • TIM status and control register (TSC) • TIM counter registers (TCNTH:TCNTL) • TIM counter modulo registers (TMODH:TMODL) • TIM channel status and control registers (TSC0, TSC1) • TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 195 Timer Interface Module (TIM) 11.10.1 TIM Status and Control Register The TIM status and control register (TSC): • Enables TIM overflow interrupts • Flags TIM overflows • Stops the TIM counter • Resets the TIM counter • Prescales the TIM counter clock Address: T1SC, $0020 and T2SC, $002B Bit 7 Read: 6 5 TOIE TSTOP TOF Write: 0 Reset: 0 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 TRST 0 1 0 0 = Unimplemented Figure 11-4. TIM Status and Control Register (TSC) TOF — TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled Data Sheet 196 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. PS[2:0] — Prescaler Select Bits These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 11-2 shows. Reset clears the PS[2:0] bits. Table 11-2. Prescaler Selection PS2 PS1 PS0 0 0 0 Internal bus clock ÷ 1 0 0 1 Internal bus clock ÷ 2 0 1 0 Internal bus clock ÷ 4 0 1 1 Internal bus clock ÷ 8 1 0 0 Internal bus clock ÷ 16 1 0 1 Internal bus clock ÷ 32 1 1 0 Internal bus clock ÷ 64 1 1 1 Not available MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) TIM Clock Source Data Sheet 197 Timer Interface Module (TIM) 11.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers. NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break. Address: T1CNTH, $0021 and T2CNTH, $002C Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 11-5. TIM Counter Registers High (TCNTH) Address: T1CNTL, $0022 and T2CNTL, $002D Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 11-6. TIM Counter Registers Low (TCNTL) Data Sheet 198 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers 11.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. Address: T1MODH, $0023 and T2MODH, $002E Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 11-7. TIM Counter Modulo Register High (TMODH) Address: T1MODL, $0024 and T2MODL, $002F Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 11-8. TIM Counter Modulo Register Low (TMODL) NOTE: Reset the TIM counter before writing to the TIM counter modulo registers. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 199 Timer Interface Module (TIM) 11.10.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers: • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on TIM overflow • Selects 0% and 100% PWM duty cycle • Selects buffered or unbuffered output compare/PWM operation Address: T1SC0, $0025 and T2SC0, $0030 Bit 7 Read: CH0F Write: 0 Reset: 0 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 Figure 11-9. TIM Channel 0 Status and Control Register (TSC0) Address: T1SC1, $0028 and T2SC1, $0033 Bit 7 Read: 6 CH1F 5 0 Reset: 0 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 CH1IE Write: 4 0 0 Figure 11-10. TIM Channel 1 Status and Control Register (TSC1) Data Sheet 200 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:ELSxA ≠ 0:0, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 11-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 201 Timer Interface Module (TIM) When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See Table 11-3. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high NOTE: Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is available as a general-purpose I/O pin. Table 11-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 11-3. Mode, Edge, and Level Selection MSxB:MSxA ELSxB:ELSxA X0 00 Mode Configuration Pin under port control; initial output level high Output preset Data Sheet 202 X1 00 Pin under port control; initial output level low 00 01 Capture on rising edge only 00 10 00 11 01 01 01 10 01 11 1X 01 1X 10 1X 11 Input capture Capture on falling edge only Capture on rising or falling edge Output compare or PWM Buffered output compare or buffered PWM Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers NOTE: Before enabling a TIM channel register for input capture operation, make sure that the TCHx pin is stable for at least two bus clocks. TOVx — Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow 0 = Channel x pin does not toggle on TIM counter overflow NOTE: When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 11-11 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared. OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 11-11. CHxMAX Latency 11.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 203 Timer Interface Module (TIM) In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Address: T1CH0H, $0026 and T2CH0H, $0031 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 11-12. TIM Channel 0 Register High (TCH0H) Address: T1CH0L, $0027 and T2CH0L $0032 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 11-13. TIM Channel 0 Register Low (TCH0L) Address: T1CH1H, $0029 and T2CH1H, $0034 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 11-14. TIM Channel 1 Register High (TCH1H) Address: T1CH1L, $002A and T2CH1L, $0035 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 11-15. TIM Channel 1 Register Low (TCH1L) Data Sheet 204 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 12. Timebase Module (TBM) 12.1 Contents 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . . 207 12.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 12.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 12.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 12.2 Introduction This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by the selected OSCCLK clock from the oscillator module. This TBM version uses 18 divider stages, eight of which are user selectable. 12.3 Features Features of the TBM module include: • Software programmable 8s, 4s, 2s, 1s, 2ms, 1ms, 0.5ms, and 0.25ms periodic interrupt using 32.768-kHz OSCCLK clock • User selectable oscillator clock source enable during stop mode to allow periodic wake-up from stop MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timebase Module (TBM) Data Sheet 205 Timebase Module (TBM) 12.4 Functional Description This module can generate a periodic interrupt by dividing the oscillator clock frequency, OSCCLK. The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 12-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2:TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period. The reference clock OSCCLK is derived from the oscillator module, see 7.3.2 TBM Reference Clock Selection. TBON ÷2 OSCCLK ÷2 ÷2 From OSC module (See Section 7. Oscillator (OSC).) ÷2 ÷8 ÷2 ÷ 16 ÷2 ÷ 32 ÷2 ÷2 ÷2 ÷2 ÷2 ÷ 64 ÷ 2048 ÷2 ÷2 ÷ 32768 ÷2 ÷ 65536 ÷2 ÷ 131072 TACK ÷2 TBR0 ÷2 TBR1 ÷2 TBR2 TBMINT ÷ 262144 TBIF 000 TBIE R 001 010 011 100 SEL 101 110 111 Figure 12-1. Timebase Block Diagram Data Sheet 206 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timebase Module (TBM) Freescale Semiconductor Timebase Module (TBM) Timebase Register Description 12.5 Timebase Register Description The timebase has one register, the TBCR, which is used to enable the timebase interrupts and set the rate. Address: $0046 Bit 7 Read: 6 5 4 TBR2 TBR1 TBR0 TBIF 2 1 Bit 0 TBIE TBON R 0 0 0 0 Write: Reset: 3 TACK 0 0 0 0 = Unimplemented 0 R = Reserved Figure 12-2. Timebase Control Register (TBCR) TBIF — Timebase Interrupt Flag This read-only flag bit is set when the timebase counter has rolled over. 1 = Timebase interrupt pending 0 = Timebase interrupt not pending TBR2–TBR0 — Timebase Rate Selection These read/write bits are used to select the rate of timebase interrupts as shown in Table 12-1. Table 12-1. Timebase Rate Selection for OSCCLK = 32.768 kHz Timebase Interrupt Rate TBR2 TBR1 TBR0 Divider ms 0 0 0 262144 0.125 8000 0 0 1 131072 0.25 4000 0 1 0 65536 0.5 2000 0 1 1 32768 1 1000 1 0 0 64 512 ~2 1 0 1 32 1024 ~1 1 1 0 16 2048 ~0.5 1 1 1 8 4096 ~0.24 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Hz Timebase Module (TBM) Data Sheet 207 Timebase Module (TBM) NOTE: Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1). TACK — Timebase ACKnowledge The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic 0 to this bit has no effect. 1 = Clear timebase interrupt flag 0 = No effect TBIE — Timebase Interrupt Enabled This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the TBIE bit. 1 = Timebase interrupt enabled 0 = Timebase interrupt disabled TBON — Timebase Enabled This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption when its function is not necessary. The counter can be initialized by clearing and then setting this bit. Reset clears the TBON bit. 1 = Timebase enabled 0 = Timebase disabled and the counter initialized to 0s 12.6 Interrupts The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. The interrupt vector is defined in Table 2-1 . Vector Addresses. Interrupts must be acknowledged by writing a logic 1 to the TACK bit. Data Sheet 208 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timebase Module (TBM) Freescale Semiconductor Timebase Module (TBM) Low-Power Modes 12.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 12.7.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction. 12.7.2 Stop Mode The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the stop mode oscillator enable bit (STOP_ICLKEN, STOP_RCLKEN, or STOP_XCLKEN) for the selected oscillator in the CONFIG2 register. The timebase module can be used in this mode to generate a periodic walk-up from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during STOP mode. In stop mode the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Timebase Module (TBM) Data Sheet 209 Timebase Module (TBM) Data Sheet 210 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Timebase Module (TBM) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 13. Pulse Width Modulator (PWM) 13.1 Contents 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 13.4 PWM Period and Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . 214 13.5 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 13.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 13.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 13.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.10.1 PWM Control Register (PWMCR) . . . . . . . . . . . . . . . . . . . 217 13.10.2 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . . 218 13.10.3 PWM Data Registers (PWMDR0–PWMDR2) . . . . . . . . . . 219 13.10.4 PWM Phase Control Register . . . . . . . . . . . . . . . . . . . . . . 220 13.2 Introduction This section describes the pulse width modulator (PWM) module. The PWM module provides three 8-bit PWM output channels, with an independent 8-bit counter for each channel. The PWM period is equal to 1 256 × --------------- seconds, where PCLK is the PWM counter clock. P CLK For a 32MHz PWM counter clock, the PWM period is 8µs (a PWM frequency of 125kHz). The automatic phase control feature allows phase delays between the channels. Figure 13-2 shows the structure of the PWM module. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM) Data Sheet 211 Pulse Width Modulator (PWM) NOTE: The CGM’s PLL must be running (enabled by setting PLLON bit in the PLL control register) if the CGMVCLK is selected for the PWM module input clock. (See Section 8. Clock Generator Module (CGM).) 13.3 Features Features of the PWM include the following: Addr. $0051 • Three independent PWM channels with independent counters • PWM input clock select • PWM input clock prescaler • Automatic phase control Register Name Bit 7 6 5 Read: PWMEN2 PWMEN1 PWMEN0 PWM Control Register Write: (PWMCR) Reset: 0 0 0 Read: PWM Clock Control PCLKSEL Register Write: (PWMCCR) Reset: 0 $0052 4 3 2 1 Bit 0 0 0 PCH2 PCH1 PCH0 0 0 0 0 0 PCLK1 PCLK0 0 0 0 0 0 0 0 0 0 0 0 0 $0053 Read: 0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0 PWM Data Register 0 Write: (PWMDR0) Reset: 0 0 0 0 0 0 0 0 $0054 Read: 1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0 PWM Data Register 1 Write: (PWMDR1) Reset: 0 0 0 0 0 0 0 0 $0055 Read: 2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0 PWM Data Register 2 Write: (PWMDR2) Reset: 0 0 0 0 0 0 0 0 $0056 Read: PWM Phase Control Register Write: (PWMPCR) Reset: PHEN PHD6 PHD5 PHD4 PHD3 PHD2 PHD1 PHD0 0 0 0 0 0 0 0 0 = Unimplemented Figure 13-1. PWM I/O Register Summary Data Sheet 212 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor Pulse Width Modulator (PWM) Features INTERNAL BUS CHANNEL 0 ÷2 ÷2 PWMCR 8-BIT PWM DATA REGISTER S CGMVCLK FROM CGM WHEN PCLKSEL=0, PWMCLK=CGMOUT. IF CGMVCLK IS SELECTED, CGM’S PLL MUST BE RUNNING. MUX PCLKSEL PCLK0 PWMCCR PCLK 8-BIT DATA REGISTER BUFFER 8-BIT COUNTER 8-BIT COUNTER 8-BIT COUNTER TO CHANNEL 1 TO CHANNEL 2 ZERO DETECTOR COMPARATOR CHANNEL 0 OUTPUT LOGIC S LATCH PWM0 Q A CHANNEL 1 OUTPUT LOGIC A S S 1 B S PTC0/PWM0/CD PIN A IS SELECTED WHEN S=0 TO/FROM PTC0 LOGIC B1 B1 A R TO/FROM PTC1 LOGIC CGMOUT B1 PCLK1 PWMR0 PWM1 A PWMCLK ÷2 PCH0 CDIF CDOEN PWMCR FROM ANALOG MODULE CONFIG2 CHANNEL 2 OUTPUT LOGIC PTC1/PWM1 PIN PWM2 TO/FROM PTC2 LOGIC B1 A S PTC2/PWM2 PIN A IS SELECTED WHEN S=0 A IS SELECTED WHEN S=0 PCH1 PCH2 PWMCR PWMCR Figure 13-2. PWM Block Diagram MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM) Data Sheet 213 Pulse Width Modulator (PWM) 13.4 PWM Period and Resolution 1 1 The PWM period is equal to 256 × --------------- , resolution is --------------- , where P CLK P CLK PCLK is the PWM counter clock. The value in the PWM data register (PWMDR) defines the period where the PWM output is high, the low period is equal to 256 minus that value. Each PWM channel has its own counter and I/O control bits so it can be turned on and off independently. Figure 13-3 shows the PWM output waveforms for a channel with different values in the PWM data register. PWM PERIOD = 256 × T PWMDR = 256 255 × T T PWMDR = 1 128 × T PWMDR = 128 128 × T 255 × T T PWMDR = 255 NOTE: T = 1 PCLK Figure 13-3. PWM Output Waveforms Data Sheet 214 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor Pulse Width Modulator (PWM) PWM Automatic Phase Control 13.5 PWM Automatic Phase Control The automatic phase control function allows precise phase difference between the PWM output signals. Figure 13-4 shows the phase delays between the PWM output signals. 256 × T 256 × T PWM2 256 × T PHASE VALUE 1 PWM1 PHASE VALUE 2 256 × T PWM0 Figure 13-4. PWM Automatic Phase Control Use the following steps to generate phase difference on PWM channels: 1. Clear PWM enable bits, PWMEN[0:2], to logic 0. 2. Write delay value in PHD[0:6]. 3. Set PWM automatic phase control enable bit, PHEN, to logic 1. 4. Set the PWM channel enable bits, PCH[0:2], to logic 1. 5. Set the PWM enable bits, PWMEN[0:2], to logic 1, to enable the PWM counters. When phase control is enabled, the PWM2 counter will start counting immediately, but the PWM1 and PWM0 counters will be held at zero. After the PWM2 counter reaches the phase value, PH[0:6], the PWM1 counter is released and starts counting. Finally, when the PMW1 counter reaches the phase value, PH[0:6], PWM0 is released and starts counting. It is possible to change the value of PH[0:6] after the PWM1 counter has started and before the start of the PWM0 counter. This way, difference phases can be set between PWM2 and PWM1; PWM1 and PWM0. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM) Data Sheet 215 Pulse Width Modulator (PWM) The PH[0:6] value is used once to determine the start-up time of the different PWM counters. After that, all PWM counters become free running counters and the phase between the counters will remain unchanged. Changing the value of PH[0:6] after all PWM counters are running has no effect. The counters must first be disabled by clearing the PWM enable bits, PWMEN[0:2], to logic 0, before a new phase value is effective. Automatic phase control is only available with two (PWM2–PWM1) or three (PWM2–PWM0) PWM channels. 13.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 13.7 Wait Mode The PWM module remains active after the execution of a WAIT instruction. In wait mode, the PWM registers are not accessible by the CPU. If PWM functions are not required during wait mode, reduce power consumption by disabling the PWM before executing the WAIT instruction. 13.8 Stop Mode The PWM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the PWM counters and outputs. PWM operation resumes when the MCU exits stop mode after an external interrupt. Data Sheet 216 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor Pulse Width Modulator (PWM) I/O Signals 13.9 I/O Signals The PWM module has three output pins shared with port C: PTC0/PWM0/CD, PWM1/PTC1, and PTC2/PWM2. PTC0 is also shared with current flow detect output, CD, of the analog module, see (see 18.5 Port C). 13.10 I/O Registers These I/O registers control PWM operation: • PWM control register (PWMCR) • PWM clock control register (PWMCCR) • PWM phase control register (PWMPCR) • Three PWM data registers (PWMDR0–PWMDR2) 13.10.1 PWM Control Register (PWMCR) The PWM control register (PWMCR) enables/disables the independent PWM counters and port pins used for the PWM channels. Address: $0051 Read: 0 0 PWMEN2 PWMEN1 PWMEN0 PCH2 PCH1 PCH0 0 0 0 Write: Reset: 0 0 0 0 0 = Unimplemented Figure 13-5. PWM Control Register (PWMCR) PWMEN2–PWMEN0 — PWM Enable Bits Writing a 0 to the PWMENx bit clears the corresponding PWM counter and force the PWM channel x output to 0. Reset clears these bits. 1 = PWM channel x enabled 0 = PWM channel x is disabled; PWM counter cleared to zero and PWM channel x output forced to zero MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM) Data Sheet 217 Pulse Width Modulator (PWM) PCH2–PCH0 — PWM Channel Enable Bits Setting a bit will enable the corresponding port pin to be a PWM output pin. When a bit is set, the DDR bit has no effect on the port function. 1 = Port pin is enabled for PWM output 0 = Port pin is standard I/O pin Exception for PTC0/PWM0/CD control: Table 13-1. PTC0 Pin Configuration Pin CDOEN Bit ($001D) PCH0 Bit ($0051) Pin function 0 0 PTC0 0 1 PWM0 1 X CD PTC0/PWM0/CD 13.10.2 PWM Clock Control Register (PWMCCR) The PWM clock control register (PWMCCR) selects and defines the clock to the PWM counter, PCLK. Address: $0052 Read: 0 0 0 0 0 PCLKSEL PCLK1 PCLK0 0 0 Write: Reset: 0 0 0 0 0 0 = Unimplemented Figure 13-6. PWM Clock Control Register (PWMCCR) PCLKSEL — PWM Input Clock Select Bit This bit selects either the CGMOUT or CGMVCLK clock as the input clock to the PWM counters. Reset clears this bit. 1 = Select CGMVCLK as PWM input clock 0 = Select CGMOUT (CPU bus clock) as PWM input clock Data Sheet 218 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor Pulse Width Modulator (PWM) I/O Registers PCLK1–PCLK0 — PWM Clock Prescaler Bits These two bits select the divide ratio used to divide the PWM input clock. Table 13-2 shows the available clock divisions. Table 13-2. PWM Counter Clock Prescaler Selection PCLK1 PCLK0 PWM Clock, PCLK 0 0 Source clock ÷ 1 0 1 Source clock ÷ 2 1 0 Source clock ÷ 4 1 1 Source clock ÷ 8 13.10.3 PWM Data Registers (PWMDR0–PWMDR2) The three PWM data registers (PWMDR0–PWMDR2) defines the high period for corresponding PWM channels. Address: $0053 Read: 0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0 Write: Reset: 0 0 0 0 0 0 0 0 Figure 13-7. PWM Data Register 0 (PWMDR0) Address: $0054 Read: 1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0 Write: Reset: 0 0 0 0 0 0 0 0 Figure 13-8. PWM Data Register 1 (PWMDR1) Address: $0055 Read: 2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0 Write: Reset: 0 0 0 0 0 0 0 0 Figure 13-9. PWM Data Register 2 (PWMDR2) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM) Data Sheet 219 Pulse Width Modulator (PWM) The value of each PWM data register is continuously compared with the content of a PWM counter to determine the state of each PWM channel output pin. A value of $00 loaded into these register results in a continuously low output on the corresponding PWM output pin. A value of $80 results in a 50% duty cycle output and so on. The maximum value, $FF correspond to an output which is a "1" for 255/256 of the PWM cycle. A new value written to the PWM data register will not be effective until the end of the current PWM period. Upon the end of the current PWM period, the contain of the PWM data register is loaded into the PWM data buffer, the value of the PWM data buffer controls the PWM output. 13.10.4 PWM Phase Control Register The PWM phase control register (PWMPCR) enables the automatic phase control and sets the phase values between the PWM channels. Address: $0056 Read: PHEN PHD6 PHD5 PHD4 PHD3 PHD2 PHD1 PHD0 0 0 0 0 0 0 0 0 Write: Reset: Figure 13-10. PWM Phase Control Register (PWMPCR) PHEN — PWM Automatic Phase Control Enable Bit Setting this bit to 1 will enable the automatic phase control function. Reset clears this bit. 1 = Automatic phase control enabled 0 = Automatic phase control disabled PHD6–PHD0 — PWM Phase Value Bits This 7-bit phase value is used to determined the start-up time of the different PWM counters when PHEN bit is set. Reset clears these bits. Data Sheet 220 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 14. Analog Module 14.1 Contents 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 14.4.1 On-Chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . 223 14.4.2 Two-Stage Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 14.4.3 Amplifier Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 224 14.4.4 Current Flow Detection Amplifier . . . . . . . . . . . . . . . . . . . . 225 14.4.5 Current Flow Detect Output . . . . . . . . . . . . . . . . . . . . . . . . 225 14.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.7 Analog Module I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . 226 14.7.1 Analog Module Control Register (AMCR) . . . . . . . . . . . . . 226 14.7.2 Analog Module Gain Control Register (AMGCR) . . . . . . . . 227 14.7.3 Analog Module Status and Control Register (AMSCR) . . . 228 14.2 Introduction This section describes the analog module. The analog module is designed to be use in conjunction with the analog-to-digital converter module for monitoring temperature, charge and discharge currents in smart battery applications. NOTE: The analog module uses clock signals from the CGM’s PLL, therefore the PLL must be running — PLLON bit in the PLL control register must be set. (See Section 8. Clock Generator Module (CGM).) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Analog Module 221 Analog Module 14.3 Features The features of the analog module include the following: • Temperature sensor • Current flow detection amplifier • Two-stage amplifier ATD1 BATT + ADCICLK OPIN2/ ATD1 CLOCK DIVIDER ANALOG MODULE TO ADC ATD0 FROM ADC DO[2:0] AMCDIV[1:0] EXTERNAL THERMISTOR GAINA[3:0] GAINB[3:0] AMCLK INTERNAL TEMPERATURE SENSOR TSOUT BATT – BATT + INTERNAL REFERENCE – DOF OPCH[1:0] + CGMVCLK FROM CGM IN3 IN2 ISENSE OPIN1/ ATD0 OPOUT 2-STAGE AMP IN1 TO ADC IN0 RSENSE 0.01Ω BATT – OPIFR CGMXCLK VSSAM VDD –9mV VSSA PTC0/ PWM0/ CD OPIF VDET D – OPIF ANALOG MODULE INTERRUPT REQUEST CDIF TO IRQ LOGIC Q + R CDIFR CDIF AMIEN PTC0 LOGIC CDOEN FROM CONFIG2 Figure 14-1. Analog Module Block Diagram Data Sheet 222 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog Module Freescale Semiconductor Analog Module Functional Description Addr. $000E $000F Register Name Read: Analog Module Control Register Write: (AMCR) Reset: Bit 7 6 5 4 3 2 1 Bit 0 PWR1 PWR0 OPCH1 OPCH0 AMIEN DO2 DO1 DO0 0 0 0 0 0 0 0 0 GAINB2 GAINB1 GAINB0 GAINA3 GAINA2 GAINA1 GAINA0 0 0 0 0 0 0 0 0 OPIF 0 DOF 0 CDIF Read: Analog Module Gain GAINB3 Control Register Write: (AMGCR) Reset: 0 Read: Analog Module Status and AMCDIV1 AMCDIV0 $0010 Control Register Write: (AMSCR) Reset: 0 0 CDIFR OPIFR U = Unimplemented 0 0 0 U 0 U = Unaffected Figure 14-2. Analog Module I/O Register Summary 14.4 Functional Description Figure 14-1 shows the block diagram of the analog module. The central component of the analog module is the two-stage gain amplifier used for amplifying the small signals on the analog input pins, OPIN1 and OPIN2. These two signals feed into a multiplexer together with the signal from the internal temperature sensor and a reference input. The selected signal is then fed into the two-stage gain amplifier before going into the analog-to-digital converter (ADC) as OPOUT. The OPIN1 and OPIN2 pins can also feed directly into the ADC as channels ATD0 and ATD1 respectively, without any amplification. 14.4.1 On-Chip Temperature Sensor The on-chip temperature sensor is designed to measure temperatures from –20°C to 70 °C. The output of the internal temperature sensor TSOUT is amplified by the two-stage amplifier. The amplified temperature sensor signal is routed to the analog-to-digital converter for analog-to-digital conversion (see Figure 14-1). MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Analog Module 223 Analog Module 14.4.2 Two-Stage Amplifier The two-stage amplifier is used to amplify small input signals from the on-chip temperature sensor or external voltage sources such as external thermistor and current sensing resistor, for temperature and current monitoring. The amplified signal, OPOUT, is fed to the ADC module for analog-to-digital conversion. The gain of the two-stage amplifier is defined by the GAINAx and GAINBx bits in the analog module gain control register (AMGCR) (see Figure 14-1). 14.4.3 Amplifier Response Time The two-stage amplifier requires the input signal to be stable for sampling. This signal hold-time varies with gain setting for stage-1 of the two-stage amplifier, and is determined by the formula: 10 + [(Gain of stage-1 amplifier – 1) × 2] AMCLK cycles The AMCLK clock is the analog amplifier clock, which is divided from the ADC clock, ADCICLK. The time for the two-stage amplifier to amplify the input signal to the desired output is dependent on the gain setting in both stages of the twostage amplifier. The amplifier response time is determined by the formula: 70 + (8 × Gain of stage-1) + (6 × Gain of stage-2) AMCLK cycles This amplifier response time should be added to the ADC conversion time to obtain the total time for the small-signal conversion. Therefore, conversion time for OPINx signals, with amplification is: Amplifier response time + ADC conversion time Data Sheet 224 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog Module Freescale Semiconductor Analog Module Interrupts 14.4.4 Current Flow Detection Amplifier The current flow detection amplifier is used to detect charge and discharge current flowing through an external sensing resistor, RSENSE. The current flow detection flag CDIF is set when the voltage at OPIN1 exceeds –9mV (typical) (0.9 ampere when RSENSE = 0.01Ω). When set, CDIF can generate an interrupt request to the CPU when the analog module interrupt enable bit AMIEN is set (see Figure 14-1). 14.4.5 Current Flow Detect Output The current detect flag, CDIF, can be configured for direct control to other external circuitry. When the CDOEN bit in CONFIG2 is set, the status of CDIF is reflected on the PTC0/PWM0/CD pin. (See 5.5 Configuration Register 2 (CONFIG2) and 18.5 Port C.) 14.5 Interrupts When the AMIEN bit is set, the analog module is capable of generating CPU interrupt requests. The interrupt vector is defined in Table 2-1 . Vector Addresses. 14.6 Low-Power Modes The STOP and WAIT instructions put the MCU in low powerconsumption standby modes. 14.6.1 Wait Mode In wait mode the analog module if enabled, continues to operate and may generate an interrupt to trigger the MCU out of wait mode. 14.6.2 Stop Mode In stop mode, the temperature sensor and the two-stage amplifier are disabled, but the current flow detection amplifier (when enabled) continues to operate if the oscillator is enabled in stop mode. When AMIEN is set, CDIF can be used to wake-up the MCU from the stop mode. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Analog Module 225 Analog Module 14.7 Analog Module I/O Registers Three registers control and monitor the operation of the analog module: • Analog module control register (AMCR) — $000E • Analog module gain control register (AMGCR) — $000F • Analog module status and control register (AMSCR) — $0010 14.7.1 Analog Module Control Register (AMCR) The analog module control register (AMCR): • Powers on and off analog sub-modules • Selects the input signal to the two-stage amplifier • Enables analog module interrupt requests • Offset adjustment for calibration Address: $000E Bit 7 6 5 4 3 2 1 Bit 0 PWR1 PWR0 OPCH1 OPCH0 AMIEN DO2 DO1 DO0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 14-3. Analog Module Control Register (AMCR) PWR1–PWR0 — Analog Module Power Control Bits These read/write bits power on/off the different functions within the analog module. Reset clears the PWR1 and PWR0 bits. Table 14-1. Analog Module Power Control PWR1 PWR0 Current Detect Module Temperature Sensor Two-Stage Amplifier 0 0 Off Off Off 0 1 On Off Off 1 0 Off Off On 1 1 On On On Data Sheet 226 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog Module Freescale Semiconductor Analog Module Analog Module I/O Registers OPCH1–OPCH0 — Amplifier Channel Select Control Bits These read/write bits select the input source to be amplified by the two-stage amplifier. Reset clears the OPCH1 and OPCH0 bits. Table 14-2. Amplifier Channel Select Control bits OPCH1 OPCH0 Input Source Comments 0 0 VSSAM External negative reference 0 1 OPIN1/ATD0 External pin 1 0 OPIN2/ATD1 External pin 1 1 TSOUT (internal) Internal temperature sensor AMIEN — Analog Module Interrupt Enable Setting this bit will enable the CDIF and OPIF flags to generate an CPU interrupt requests. Reset clears the AMIEN bit. 1 = Analog module CPU interrupt requests enabled 0 = Analog module CPU interrupt requests disabled DO[2:0] — DC Offset Control Bits Set these bits to zero for optimum analog module performance. 14.7.2 Analog Module Gain Control Register (AMGCR) The analog module gain control register (AMGCR) selects the two gains for the two-stage amplifier. Address: $000F Bit 7 6 5 4 3 2 1 Bit 0 GAINB3 GAINB2 GAINB1 GAINB0 GAINA3 GAINA2 GAINA1 GAINA0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 14-4. Analog Module Gain Control Register (AMGCR) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Analog Module 227 Analog Module GAINB[3:0] — Analog Module 2nd-stage Gain Control Bits These read/write bits define the 2nd-stage gain of the two-stage amplifier. The overall gain of the amplifier equals the 1st-stage gain multiplied by the 2nd-stage gain. Reset clears the GAINB[3:0] bits. GAINA[3:0] — Analog Module 1st-stage Gain Control Bits These read/write bits define the 1st-stage gain of the two-stage amplifier. The overall gain of the amplifier equals the 1st-stage gain multiplied by the 2nd-stage gain. Reset clears the GAINA[3:0] bits. Table 14-3. Analog Module Gain Values GAINx3 GAINx2 GAINx1 GAINx0 Amplifier Gain 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 10 1 0 1 0 11 1 0 1 1 12 1 1 0 0 13 1 1 0 1 14 1 1 1 0 15 1 1 1 1 16 14.7.3 Analog Module Status and Control Register (AMSCR) The analog module status and control register (AMSCR): • Selects input clock divider value • Monitors and clears the amplifier ready interrupt flag • Monitors DC offset flag • Monitors and clears the current detect interrupt flag Data Sheet 228 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog Module Freescale Semiconductor Analog Module Analog Module I/O Registers Address: $0010 Bit 7 6 Read: 5 4 3 2 1 Bit 0 0 OPIF 0 DOF 0 CDIF AMCDIV1 AMCDIV0 Write: Reset: OPIFR 0 0 CDIFR U 0 = Unimplemented 0 0 U 0 U = Unaffected Figure 14-5. Analog Module Status and Control Register (AMSCR) AMCDIV[1:0] — Analog Module Clock Divider Control Bits These read/write bits select the analog module input clock divider value. The ADC clock, ADICLK, is divided by this value to obtain the AMCLK. Reset clears the AMCDIV[1:0] bits. Table 14-4. Analog Module Clock Divider Select AMCDIV1 AMCDIV0 Divider Value 0 0 2 0 1 4 1 0 8 1 1 16 Set AMCDIV1 and AMCDIV0 bits to zero for optimum analog module performance. OPIFR — Amplifier Ready Interrupt Flag Reset Writing a logic 1 to this write-only bit clears the OPIF bit. OPIFR always reads as a logic 0. Reset does not affect OPIFR. 1 = Clear OPIF bit 0 = No affect on OPIF bit OPIF — Amplifier Ready Interrupt Flag This read-only bit is set when the output of the two-stage amplifier is ready. A CPU interrupt request will be generated if the AMIEN bit is also set. Reset clears OPIF bit. 1 = Two-stage amplifier output is ready 0 = Two-stage amplifier output is not ready MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Data Sheet Analog Module 229 Analog Module DOF — DC Offset Flag This is a reserved bit. CDIFR — Current Detect Interrupt Flag Reset Writing a logic 1 to this write-only bit clears the CDIF bit. CDIFR always reads as a logic 0. Reset does not affect CDIFR. 1 = Clear CDIF bit 0 = No affect on CDIF bit CDIF — Current Detect Interrupt Flag This read-only bit is set when the voltage developed across the sense resistor, RSENSE is equal to or greater than VDET (the current sense amplifier comparator trip voltage, typically –9mV). CDIF generates an CPU interrupt request if AMIEN bit is also set. The CDIF bit is cleared by writing a logic 1 to the CDIFR bit. Reset clears CDIF bit. 1 = Current detect interrupt has occurred 0 = No current detect interrupt since CDIF last cleared Data Sheet 230 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog Module Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 15. Analog-to-Digital Converter (ADC) 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 15.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 15.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 15.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 15.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 15.4.5 Auto-scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 15.4.6 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 15.4.7 Data Register Interlocking . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.4.8 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.7.1 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.7.2 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . 240 15.7.3 ADC Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . 240 15.7.4 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . 241 15.7.5 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . 241 15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 15.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .242 15.8.2 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . 244 15.8.3 ADC Data Register 0 (ADRH0 and ADRL0). . . . . . . . . . . . 246 15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3). . 248 15.8.5 ADC Auto-Scan Control Register (ADASCR). . . . . . . . . . . 248 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 231 Analog-to-Digital Converter (ADC) 15.2 Introduction This section describes the analog-to-digital converter (ADC). The ADC is a 14-channel 10-bit linear successive approximation ADC. 15.3 Features Features of the ADC module include: • Fourteen channels with multiplexed input • High impedance buffered input • Linear successive approximation with monotonicity • 10-bit resolution • Single or continuous conversion • Auto-scan conversion on four channels • Conversion complete flag or conversion complete interrupt • Selectable ADC clock • Conversion result justification – 8-bit truncated mode – Right justified mode – Left justified mode – Left justified sign mode Data Sheet 232 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) Features Addr. 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 ADIV2 ADIV1 ADIV0 ADICLK MODE1 MODE0 0 0 0 0 0 0 0 1 0 0 Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: ADx ADx ADx ADx ADx ADx ADx ADx R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset: ADx ADx ADx ADx ADx ADx ADx ADx R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 1 $005B Write: (ADRL1) Reset: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 2 $005C Write: (ADRL3) Reset: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 3 $005D Write: (ADRL3) Reset: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 0 0 0 0 0 AUTO1 AUTO0 ASCAN 0 0 0 0 0 0 0 0 $0057 $0058 $005E Register Name Bit 7 Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Clock Control Register Write: (ADICLK) Reset: Read: ADC Auto-scan Control Register Write: (ADASCR) Reset: COCO = Unimplemented R R = Reserved Figure 15-1. ADC I/O Register Summary MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 233 Analog-to-Digital Converter (ADC) 15.4 Functional Description The ADC provides thirteen pins for sampling external sources at pins PTA0/ATD2–PTA5/ATD7, PTC3/ATD8–PTC7/ATD12, and OPIN1–OPIN2; one internal source from the analog module. An analog multiplexer allows the single ADC converter to select one of fourteen ADC channels as ADC voltage in (VADIN). VADIN is converted by the successive approximation register-based analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register, high and low byte (ADRH0 and ADRL0), and sets a flag or generates an interrupt. An additional three ADC data registers (ADRL1–ADRL3) are available to store the individual converted data for ADC channels ATD1–ATD3 when the auto-scan mode is enabled. Data from channel ATD0 is stored in ADRL0 in the auto-scan mode. Figure 15-2 shows the structure of the ADC module. 15.4.1 ADC Port I/O Pins PTA0–PTA5 and PTC3–PTC7 are general-purpose I/O pins that are shared with the ADC channels, OPIN1 and OPIN2 are two analog inputs that are always connected to the ADC channel select multiplexer. The channel select bits, ADCH[4:0], define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as generalpurpose I/O pins. Writes to the port data register or data direction register will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return the pin condition if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read. Data Sheet 234 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) Functional Description 15.4.2 Voltage Conversion When the input voltage to the ADC equals VREFH, the ADC converts the signal to $3FF (full scale). If the input voltage equals VREFL, the ADC converts it to $000. Input voltages between VREFH and VREFL is a straight-line linear conversion. All other input voltages will result in $3FF if greater than VREFH and $000 if less than VREFL. NOTE: Input voltage should not exceed the analog supply voltages. INTERNAL DATA BUS READ DDRAx/DDRCx DISABLE WRITE DDRAx/DDRCx RESET WRITE PTAx/PTCx DDRAx/DDRCx PTAx/PTCx PTAx/PTCx READ PTAx/PTCx ATD2–ATD12 (11 CHANNELS) ADC DATA REGISTERS DISABLE OPIN1 ADRH0 ADRL0 OPIN2 ADRL1 ADRL2 VREFH ADRL3 INTERRUPT LOGIC AIEN VREFL ADC VOLTAGE IN (VADIN) CONVERSION COMPLETE ADC OPOUT FROM ANALOG MODULE CHANNEL SELECT ADCICLK COCO MUX CGMXCLK BUS CLOCK ASCAN CLOCK GENERATOR ADCH[4:0] ADIV[2:0] ADICLK 2-BIT UP-COUNTER AUTO[1:0] Figure 15-2. ADC Block Diagram MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 235 Analog-to-Digital Converter (ADC) 15.4.3 Conversion Time Conversion starts after a write to the ADSCR. One conversion will take between 16 and 17 ADC clock cycles, therefore: Conversion time = 16 to17 ADC cycles ADC frequency Number of bus cycles = conversion time × bus frequency The ADC conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is either the bus clock or CGMXCLK and is selectable by the ADICLK bit located in the ADC clock register. The divide ratio is selected by the ADIV[2:0] bits. For example, if a 4MHz CGMXCLK is selected as the ADC input clock source, with a divide-by-four prescale, and the bus speed is set at 2MHz: Conversion time = 16 to17 ADC cycles = 16 to 17 µs 4MHz ÷ 4 Number of bus cycles = 16 µs × 2MHz = 32 to 34 cycles NOTE: The ADC frequency must be between fADIC minimum and fADIC maximum to meet ADC specifications. (See 24.12 5.0V ADC Electrical Characteristics.) Since an ADC cycle may comprised of several bus cycles (two in the previous example) and the start of a conversion is initiated by a bus cycle write to the ADSCR, from zero to two additional bus cycles may occur before the start of the initial ADC cycle. This results in a fractional ADC cycle and is represented as the 17th cycle. NOTE: Data Sheet 236 When OPOUT is selected as the ADC input, VADIN, the conversion time is the accumulation of the op-amp settling time and the normal ADC conversion time. After writing to the ADSCR to initiate a conversion cycle, the ADC module sends a signal to the analog module for a OPOUT output. A signal will be sent back to the ADC by the analog module to indicate that OPOUT signal is ready for sampling. Upon receiving this signal, the ADC module starts its normal conversion cycle. (See 24.12 5.0V ADC Electrical Characteristics.) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) Functional Description 15.4.4 Continuous Conversion In the continuous conversion mode, the ADC continuously converts the selected channel, filling the ADC data register with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit is set after each conversion and can be cleared by writing to the ADC status and control register or reading of the ADRL0 data register. 15.4.5 Auto-scan Mode In auto-scan mode, the ADC input channel is selected by the value of the 2-bit up-counter, instead of the channel select bits, ADCH[4:0]. The value of the counter also defines the data register ADRLx to be used to store the conversion result. When ASCAN bit is set, a write to ADC status and control register (ADSCR) will reset the auto-scan up-counter and ADC conversion will start on the channel 0 up to the channel number defined by the integer value of AUTO[1:0]. After a channel conversion is completed, data is stored in ADRLx and the COCO-bit will be set. The counter value will be incremented by 1 and a new conversion will start. This process will continue until the counter value reaches the value of AUTO[1:0]. When this happens, it indicates that the current channel is the last channel to be converted. Upon the completion on the last channel, the counter value will not be incremented and no further conversion will be performed. To start another auto-scan cycle, a write to ADSCR must be performed. NOTE: The system only provides 8-bit data storage in auto-scan code, user must clear MODE[1:0] bits to select 8-bit truncation mode before entering auto-scan mode. It is recommended that user should disable the auto-scan function before switching channel and also before entering STOP mode. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 237 Analog-to-Digital Converter (ADC) 15.4.6 Result Justification The conversion result may be formatted in four different ways. • Left justified • Right justified • Left justified sign data mode • 8-bit truncation All four of these modes are controlled using MODE0 and MODE1 bits located in the ADC clock control register (ADICLK). Left justification will place the eight most significant bits (MSB) in the corresponding ADC data register high (ADRH). This may be useful if the result is to be treated as an 8-bit result where the least significant two bits, located in the ADC data register low (ADRL) can be ignored. However, you must read ADRL after ADRH or else the interlocking will prevent all new conversions from being stored. Right justification will place only the two MSBs in the corresponding ADC data register high (ADRH) and the eight LSB bits in ADC data register low (ADRL). This mode of operation typically is used when a 10-bit unsigned result is desired. Left justified sign data mode is similar to left justified mode with one exception. The MSB of the 10-bit result, AD9 located in ADRH is complemented. This mode of operation is useful when a result, represented as a signed magnitude from mid-scale, is needed. Finally, 8-bit truncation mode will place the eight MSBs in ADC data register low (ADRL). The two LSBs are dropped. This mode of operation is used when compatibility with 8-bit ADC designs are required. No interlocking between ADRH and ADRL is present. Data Sheet 238 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) Interrupts 15.4.7 Data Register Interlocking Reading ADRH in any 10-bit mode latches the contents of ADRL until ADRL is read. Until ADRL is read all subsequent ADC results will be lost. This register interlocking can also be reset by a write to the ADC status and control register, or ADC clock control register. A power-on reset or reset will also clear the interlocking. Note that an external conversion request will not reset the lock. 15.4.8 Monotonicity The conversion process is monotonic and has no missing codes. 15.5 Interrupts When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion or after an auto-scan conversion cycle. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. The interrupt vector is defined in Table 2-1 . Vector Addresses. 15.6 Low-Power Modes The STOP and WAIT instructions put the MCU in low powerconsumption standby modes. 15.6.1 Wait Mode The ADC continues normal operation in wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits to logic 1’s before executing the WAIT instruction. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 239 Analog-to-Digital Converter (ADC) 15.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode. 15.7 I/O Signals The ADC module has fourteen channels, eleven channels are shared with port A and port C I/O pins; two channels are analog pins, OPIN1 and OPIN2, that are shared with the analog module; and one channel, OPOUT, from the analog module. 15.7.1 ADC Voltage In (VADIN) VADIN is the input voltage signal from one of the fourteen channels to the ADC module. 15.7.2 ADC Analog Power Pin (VDDA) The ADC analog portion uses VDDA as its power pin. Connect the VDDA pin to the same voltage potential as VDD. External filtering may be necessary to ensure clean VDDA for good results. NOTE: Route VDDA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. 15.7.3 ADC Analog Ground Pin (VSSA) The ADC analog portion uses VSSA as its ground pin. Connect the VSSA pin to the same voltage potential as VSS. Data Sheet 240 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) I/O Registers 15.7.4 ADC Voltage Reference High Pin (VREFH) VREFH is the power supply for setting the reference voltage VREFH. Connect the VREFH pin to the same voltage potential as VDDA. There will be a finite current associated with VREFH (see Section 24. Electrical Specifications). NOTE: Route VREFH carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. 15.7.5 ADC Voltage Reference Low Pin (VREFL) VREFL is the lower reference supply for the ADC. Connect the VREFL pin to the same voltage potential as VSSA. There will be a finite current associated with VREFL (see Section 24. Electrical Specifications). 15.8 I/O Registers These I/O registers control and monitor ADC operation: • ADC status and control register (ADSCR) — $0057 • ADC clock control register (ADICLK) — $0058 • ADC data register high 0 (ADRH0) — $0059 • ADC data register low 0 (ADRL0) — $005A • ADC data register low 1 (ADRL1) — $005B • ADC data register low 2 (ADRL2) — $005C • ADC data register low 3 (ADRL3) — $005D • ADC auto-scan control register (ADASCR) — $005E MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 241 Analog-to-Digital Converter (ADC) 15.8.1 ADC Status and Control Register Function of the ADC status and control register is described here. Address: $0057 Read: COCO AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 1 1 1 1 1 Write: Reset: 0 = Unimplemented Figure 15-3. ADC Status and Control Register (ADSCR) COCO — Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the ADSCR is written, or whenever the ADC clock control register is written, or whenever the ADC data register low, ADRLx, is read. If the AIEN bit is logic 1, the COCO bit always read as logic 0. ADC interrupt will be generated at the end if an ADC conversion. Reset clears the COCO bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN=1) AIEN — ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register, ADR0, is read or the ADSCR is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO — ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADC data register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion This bit should not be set when auto-scan mode is enabled; i.e. when ASCAN=1. Data Sheet 242 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) I/O Registers ADCH[4:0] — ADC Channel Select Bits ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels when not in auto-scan mode. The five channel select bits are detailed in Table 15-1. NOTE: Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. NOTE: Recovery from the disabled state requires one conversion cycle to stabilize. Table 15-1. MUX Channel Select ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 ADC Channel Input Select 0 0 0 0 0 ATD0 OPIN1 0 0 0 0 1 ATD1 OPIN2 0 0 0 1 0 ATD2 PTA0 0 0 0 1 1 ATD3 PTA1 0 0 1 0 0 ATD4 PTA2 0 0 1 0 1 ATD5 PTA3 0 0 1 1 0 ATD6 PTA4 0 0 1 1 1 ATD7 PTA5 0 1 0 0 0 ATD8 PTC3 0 1 0 0 1 ATD9 PTC4 0 1 0 1 0 ATD10 PTC5 0 1 0 1 1 ATD11 PTC6 0 1 1 0 0 ATD12 PTC7 0 1 1 0 1 ATD13 OPOUT 0 1 0 0 0 ↓ ↓ ↓ ↓ ↓ Reserved 1 1 1 0 0 ATD14 ↓ ATD28 1 1 1 0 1 ATD29 VREFH (see Note 2) 1 1 1 1 0 ATD30 VREFL (see Note 2) 1 1 1 1 1 ADC powered-off — NOTES: 1. If any unused channels are selected, the resulting ADC conversion will be unknown. 2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 243 Analog-to-Digital Converter (ADC) 15.8.2 ADC Clock Control Register The ADC clock control register (ADICLK) selects the clock frequency for the ADC. Address: $0058 Read: 0 ADIV2 ADIV1 ADIV0 ADICLK MODE1 Write: Reset: 0 MODE0 R 0 0 0 0 = Unimplemented 0 R 1 0 0 = Reserved Figure 15-4. ADC Clock Control Register (ADICLK) ADIV[2:0] — ADC Clock Prescaler Bits ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 15-2 shows the available clock configurations. The ADC clock should be set to between 500kHz and 2MHz. Table 15-2. ADC Clock Divide Ratio ADIV2 ADIV1 ADIV0 ADC Clock Rate 0 0 0 ADC input clock ÷ 1 0 0 1 ADC input clock ÷ 2 0 1 0 ADC input clock ÷ 4 0 1 1 ADC input clock ÷ 8 1 X X ADC input clock ÷ 16 X = don’t care ADICLK — ADC Input Clock Select Bit ADICLK selects either bus clock or CGMXCLK as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source. Data Sheet 244 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) I/O Registers If the external clock (CGMXCLK) is equal to or greater than 1MHz, CGMXCLK can be used as the clock source for the ADC. If CGMXCLK is less than 1MHz, use the PLL-generated bus clock as the clock source. As long as the internal ADC clock is at fADIC, correct operation can be guaranteed. 1 = Internal bus clock 0 = External clock, CGMXCLK CGMXCLK or bus frequency ADIV[2:0] fADIC = MODE1 and MODE0 — Modes of Result Justification MODE1 and MODE0 selects between four modes of operation. The manner in which the ADC conversion results will be placed in the ADC data registers is controlled by these modes of operation. Reset returns right-justified mode. Table 15-3. ADC Mode Select MODE1 MODE0 Justification Mode 0 0 8-bit truncated mode 0 1 Right justified mode 1 0 Left justified mode 1 1 Left justified sign data mode MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 245 Analog-to-Digital Converter (ADC) 15.8.3 ADC Data Register 0 (ADRH0 and ADRL0) The ADC data register 0 consist of a pair of 8-bit registers: high byte (ADRH0), and low byte (ADRL0). This pair form a 16-bit register to store the 10-bit ADC result for the selected ADC result justification mode. In 8-bit truncated mode, the ADRL0 holds the eight most significant bits (MSBs) of the 10-bit result. The ADRL0 is updated each time an ADC conversion completes. In 8-bit truncated mode, ADRL0 contains no interlocking with ADRH0. (See Figure 15-5 . ADRH0 and ADRL0 in 8Bit Truncated Mode.) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset: Figure 15-5. ADRH0 and ADRL0 in 8-Bit Truncated Mode In right justified mode the ADRH0 holds the two MSBs, and the ADRL0 holds the eight least significant bits (LSBs), of the 10-bit result. ADRH0 and ADRL0 are updated each time a single channel ADC conversion completes. Reading ADRH0 latches the contents of ADRL0. Until ADRL0 is read all subsequent ADC results will be lost. (See Figure 15-6 . ADRH0 and ADRL0 in Right Justified Mode.) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: 0 0 0 0 0 0 AD9 AD8 R R R R R R R R 0 0 0 0 0 0 0 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset: Figure 15-6. ADRH0 and ADRL0 in Right Justified Mode Data Sheet 246 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) I/O Registers In left justified mode the ADRH0 holds the eight most significant bits (MSBs), and the ADRL0 holds the two least significant bits (LSBs), of the 10-bit result. The ADRH0 and ADRL0 are updated each time a single channel ADC conversion completes. Reading ADRH0 latches the contents of ADRL0. Until ADRL0 is read all subsequent ADC results will be lost. (See Figure 15-7 . ADRH0 and ADRL0 in Left Justified Mode.) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 0 Write: $005A (ADRL0) Reset: AD1 AD0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Figure 15-7. ADRH0 and ADRL0 in Left Justified Mode In left justified sign mode the ADRH0 holds the eight MSBs with the MSB complemented, and the ADRL0 holds the two least significant bits (LSBs), of the 10-bit result. The ADRH0 and ADRL0 are updated each time a single channel ADC conversion completes. Reading ADRH0 latches the contents of ADRL0. Until ADRL0 is read all subsequent ADC results will be lost. (See Figure 15-8 . ADRH0 and ADRL0 in Left Justified Sign Data Mode.) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 R R R R R R R R 0 0 0 0 0 0 0 0 Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset: AD1 AD0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Figure 15-8. ADRH0 and ADRL0 in Left Justified Sign Data Mode MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 247 Analog-to-Digital Converter (ADC) 15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3) The ADC data registers 1 to 3 (ADRL1–ADRL3), are 8-bit registers for conversion results in 8-bit truncated mode, for channels ATD1 to ATD3, when the ADC is operating in auto-scan mode (MODE[1:0] = 00). Address: ADRL1, $005B; ADRL2, $005C; and ADRL3, $005D Read: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 15-9. ADC Data Register Low 1 to 3 (ADRL1–ADRL3) 15.8.5 ADC Auto-Scan Control Register (ADASCR) The ADC auto-scan control register (ADASCR) enables and controls the ADC auto-scan function. Address: Read: $005E 0 0 0 0 0 AUTO1 AUTO0 ASCAN 0 0 0 Write: Reset: 0 0 0 0 0 = Unimplemented R = Reserved Figure 15-10. ADC Scan Control Register (ADASCR) AUTO[1:0] — Auto-scan Mode Channel Select Bits AUTO1 and AUTO0 form a 2-bit field which is used to define the number of auto-scan channels used when in auto-scan mode. Reset clears these bits. Table 15-4. Auto-scan Mode Channel Select Data Sheet 248 AUTO1 AUTO0 Auto-Scan Channels 0 0 ATD0 only 0 1 ATD0 to ATD1 1 0 ATD0 to ATD2 1 1 ATD0 to ATD3 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) I/O Registers ASCAN — Auto-scan Mode Enable Bit This bit enable/disable the Auto-scan mode. Reset clears this bit. 1 = Auto-scan mode is enabled 0 = Auto-scan mode is disabled Auto-scan mode should not be enabled when ADC continuous conversion is enabled; i.e. when ADCO=1. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 249 Analog-to-Digital Converter (ADC) Data Sheet 250 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 16. Serial Communications Interface (SCI) 16.1 Contents 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 16.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 16.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254 16.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 16.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 16.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 261 16.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .261 16.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 16.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 16.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .266 16.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 16.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 16.5.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 16.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .272 16.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 16.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 251 Serial Communications Interface (SCI) 16.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 16.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 16.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 16.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 16.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . .288 16.2 Introduction This section describes the serial communications interface (SCI) module, which allows high-speed asynchronous communications with peripheral devices and other MCUs. NOTE: When the SCI is enabled, the TxD pin is an open-drain output and requires a pullup resistor to be connected for proper SCI operation. NOTE: References to DMA (direct-memory access) and associated functions are only valid if the MCU has a DMA module. This MCU does not have the DMA function. Any DMA-related register bits should be left in their reset state for normal MCU operation. 16.3 Features Features of the SCI module include the following: Data Sheet 252 • Full-duplex operation • Standard mark/space non-return-to-zero (NRZ) format • 32 programmable baud rates • Programmable 8-bit or 9-bit character length • Separately enabled transmitter and receiver • Separate receiver and transmitter CPU interrupt requests • Programmable transmitter output polarity MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Features • Two receiver wakeup methods: – Idle line wakeup – Address mark wakeup • Interrupt-driven operation with eight interrupt flags: – Transmitter empty – Transmission complete – Receiver full – Idle receiver input – Receiver overrun – Noise error – Framing error – Parity error • Receiver framing error detection • Hardware parity checking • 1/16 bit-time noise detection • Configuration register bit, SCIBDSRC, to allow selection of baud rate clock source MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 253 Serial Communications Interface (SCI) 16.4 Pin Name Conventions The generic names of the SCI I/O pins are: • RxD (receive data) • TxD (transmit data) SCI I/O (input/output) lines are implemented by sharing parallel I/O port pins. The full name of an SCI input or output reflects the name of the shared port pin. Table 16-1 shows the full names and the generic names of the SCI I/O pins. The generic pin names appear in the text of this section. Table 16-1. Pin Name Conventions NOTE: Generic Pin Names: RxD TxD Full Pin Names: PTB3/SCL1/RxD PTB2/SDA1/TxD When the SCI is enabled, the TxD pin is an open-drain output and requires a pullup resistor to be connected for proper SCI operation. 16.5 Functional Description Figure 16-1 shows the structure of the SCI module. The SCI allows fullduplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data. The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC, of the CONFIG2 register ($001D). Source selection values are shown in Figure 16-1. Data Sheet 254 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Functional Description INTERNAL BUS SCI DATA REGISTER ERROR INTERRUPT CONTROL RECEIVER INTERRUPT CONTROL DMA INTERRUPT CONTROL RECEIVE SHIFT REGISTER RxD TRANSMITTER INTERRUPT CONTROL SCI DATA REGISTER TRANSMIT SHIFT REGISTER TxD TXINV SCTIE R8 TCIE T8 SCRIE ILIE DMARE TE SCTE RE DMATE TC RWU SBK SCRF OR ORIE IDLE NF NEIE FE FEIE PE PEIE LOOPS LOOPS WAKEUP CONTROL SCIBDSRC FROM CONFIG FLAG CONTROL RECEIVE CONTROL ENSCI ENSCI TRANSMIT CONTROL BKF M RPF WAKE ILTY SL CGMXCLK A X B IT12 SL = 0 => X = A SL = 1 => X = B ÷4 CGMXCLK is from CGM module IT12 = fBUS PRESCALER BAUD DIVIDER ÷ 16 PEN PTY DATA SELECTION CONTROL Figure 16-1. SCI Module Block Diagram MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 255 Serial Communications Interface (SCI) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE U U 0 0 0 0 0 0 SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 BKF RPF Read: $0013 LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 Read: $0014 SCI Control Register 2 Write: (SCC2) Reset: Read: $0015 SCI Control Register 3 Write: (SCC3) Reset: Read: $0016 SCI Status Register 1 Write: (SCS1) Reset: R8 Read: $0017 SCI Status Register 2 Write: (SCS2) Reset: 0 0 0 0 0 0 0 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 SCI Data Register Write: (SCDR) Reset: $0018 Read: $0019 SCI Baud Rate Register Write: (SCBR) Reset: Unaffected by reset 0 0 0 0 SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 = Unimplemented R = Reserved U = Unaffected Figure 16-2. SCI I/O Register Summary Data Sheet 256 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Functional Description 16.5.1 Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 16-3. 8-BIT DATA FORMAT BIT M IN SCC1 CLEAR START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 PARITY BIT BIT 6 BIT 7 9-BIT DATA FORMAT BIT M IN SCC1 SET START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 STOP BIT NEXT START BIT PARITY BIT BIT 6 BIT 7 BIT 8 STOP BIT NEXT START BIT Figure 16-3. SCI Data Formats 16.5.2 Transmitter Figure 16-4 shows the structure of the SCI transmitter. The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC. Source selection values are shown in Figure 16-4. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 257 Serial Communications Interface (SCI) SCIBDSRC FROM CONFIG2 SL A CGMXCLK X B IT12 SL = 0 => X = A SL = 1 => X = B INTERNAL BUS ÷ 16 SCI DATA REGISTER SCP1 11-BIT TRANSMIT SHIFT REGISTER STOP SCP0 SCR1 H SCR2 7 6 5 4 3 2 1 0 L TxD MSB TXINV PTY PARITY GENERATION T8 DMATE DMATE SCTIE SCTE DMATE SCTE SCTIE TC TCIE BREAK ALL 0s PEN PREAMBLE ALL 1s M LOAD FROM SCDR TRANSMITTER DMA SERVICE REQUEST TRANSMITTER CPU INTERRUPT REQUEST SCR0 8 START BAUD DIVIDER SHIFT ENABLE PRESCALER ÷4 TRANSMITTER CONTROL LOGIC SCTE SBK LOOPS SCTIE ENSCI TC TE TCIE Figure 16-4. SCI Transmitter Data Sheet 258 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Functional Description 16.5.2.1 Character Length The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8). 16.5.2.2 Character Transmission During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To initiate an SCI transmission: 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1). 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2). 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR. 4. Repeat step 3 for each subsequent transmission. At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit position. The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port pin. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 259 Serial Communications Interface (SCI) 16.5.2.3 Break Characters Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on SCI registers: • Sets the framing error bit (FE) in SCS1 • Sets the SCI receiver full bit (SCRF) in SCS1 • Clears the SCI data register (SCDR) • Clears the R8 bit in SCC3 • Sets the break flag bit (BKF) in SCS2 • May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits 16.5.2.4 Idle Characters An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted. Data Sheet 260 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Functional Description NOTE: When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost. Toggle the TE bit for a queued idle character when the SCTE bit becomes set and just before writing the next byte to the SCDR. 16.5.2.5 Inversion of Transmitted Output The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. (See 16.9.1 SCI Control Register 1.) 16.5.2.6 Transmitter Interrupts These conditions can generate CPU interrupt requests from the SCI transmitter: • SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests. • Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 261 Serial Communications Interface (SCI) 16.5.3 Receiver Figure 16-5 shows the structure of the SCI receiver. 16.5.3.1 Character Length The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7). 16.5.3.2 Character Reception During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request. Data Sheet 262 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Functional Description INTERNAL BUS SCIBDSRC FROM CONFIG2 SCR1 SCP0 SCR0 PRESCALER BAUD DIVIDER ÷ 16 DATA RECOVERY RxD CPU INTERRUPT REQUEST 11-BIT RECEIVE SHIFT REGISTER 8 7 6 5 M WAKE ILTY PEN PTY 4 3 2 1 0 L ALL 0s RPF ERROR CPU INTERRUPT REQUEST DMA SERVICE REQUEST H ALL 1s BKF STOP ÷4 SCI DATA REGISTER START SCR2 MSB SL CGMXCLK A X B IT12 SL = 0 => X = A SL = 1 => X = B SCP1 SCRF WAKEUP LOGIC PARITY CHECKING IDLE ILIE DMARE SCRF SCRIE DMARE SCRF SCRIE DMARE OR ORIE NF NEIE FE FEIE PE PEIE RWU IDLE R8 ILIE SCRIE DMARE OR ORIE NF NEIE FE FEIE PE PEIE Figure 16-5. SCI Receiver Block Diagram MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 263 Serial Communications Interface (SCI) 16.5.3.3 Data Sampling The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following times (see Figure 16-6): • After every start bit • After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0) To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16. START BIT LSB RxD START BIT QUALIFICATION SAMPLES START BIT VERIFICATION DATA SAMPLING RT4 RT3 RT2 RT1 RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT2 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT CLOCK STATE RT1 RT CLOCK RT CLOCK RESET Figure 16-6. Receiver Data Sampling Data Sheet 264 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Functional Description To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 16-2 summarizes the results of the start bit verification samples. Table 16-2. Start Bit Verification RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag 000 Yes 0 001 Yes 1 010 Yes 1 011 No 0 100 Yes 1 101 No 0 110 No 0 111 No 0 Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 16-3 summarizes the results of the data bit samples. Table 16-3. Data Bit Recovery RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag 000 0 0 001 0 1 010 0 1 011 1 1 100 0 1 101 1 1 110 1 1 111 1 0 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 265 Serial Communications Interface (SCI) NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 16-4 summarizes the results of the stop bit samples. Table 16-4. Stop Bit Recovery RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag 000 1 0 001 1 1 010 1 1 011 0 1 100 1 1 101 0 1 110 0 1 111 0 0 16.5.3.4 Framing Errors If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has no stop bit. The FE bit is set at the same time that the SCRF bit is set. 16.5.3.5 Baud Rate Tolerance A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate Data Sheet 266 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Functional Description tolerance is much more than the degree of misalignment that is likely to occur. As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times. Slow Data Tolerance Figure 16-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10. RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 STOP RT5 RT4 RT3 RT2 RECEIVER RT CLOCK RT1 MSB DATA SAMPLES Figure 16-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 16-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is 154 – 147 × 100 = 4.54% -------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 267 Serial Communications Interface (SCI) With the misaligned character shown in Figure 16-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is 170 – 163 × 100 = 4.12% -------------------------170 Fast Data Tolerance Figure 16-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10. RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 IDLE OR NEXT CHARACTER RT6 RT5 RT4 RT3 RT2 RECEIVER RT CLOCK RT1 STOP DATA SAMPLES Figure 16-8. Fast Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 16-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is · 154 – 160 × 100 = 3.90% -------------------------154 Data Sheet 268 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Functional Description For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 16-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is 170 – 176 × 100 = 3.53% -------------------------170 16.5.3.6 Receiver Wakeup So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled. Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the receiver out of the standby state: • Address mark — An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state. • Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the SCI receiver MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 269 Serial Communications Interface (SCI) full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit. NOTE: With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately. 16.5.3.7 Receiver Interrupts The following sources can generate CPU interrupt requests from the SCI receiver: • SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts. • Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests. 16.5.3.8 Error Interrupts The following receiver error flags in SCS1 can generate CPU interrupt requests: Data Sheet 270 • Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests. • Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) Low-Power Modes • Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests. • Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests. 16.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 16.6.1 Wait Mode The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. Refer to 9.7 Low-Power Modes for information on exiting wait mode. 16.6.2 Stop Mode The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect SCI register states. SCI module operation resumes after an external interrupt. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. Refer to 9.7 Low-Power Modes for information on exiting stop mode. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 271 Serial Communications Interface (SCI) 16.7 SCI During Break Module Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. 16.8 I/O Signals Port B shares two of its pins with the SCI module. The two SCI I/O pins are: • PTB2/SDA1/TxD — Transmit data • PTB3/SCL1/RxD — Receive data 16.8.1 TxD (Transmit Data) When the SCI is enabled (ENSCI=1), the PTB2/SDA1/TxD pin becomes the serial data output, TxD, from the SCI transmitter regardless of the state of the DDRB2 bit in data direction register B (DDRB). The TxD pin is an open-drain output and requires a pullup resistor to be connected for proper SCI operation. NOTE: Data Sheet 272 The PTB2/SDA1/TxD pin is an open-drain pin when configured as an output. Therefore, when configured as a general purpose output pin (PTB2), a pullup resistor must be connected to this pin. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers 16.8.2 RxD (Receive Data) When the SCI is enabled (ENSCI=1), the PTB3/SCL1/RxD pin becomes the serial data input, RxD, to the SCI receiver regardless of the state of the DDRB3 bit in data direction register B (DDRB). NOTE: The PTB3/SCL1/RxD pin is an open-drain pin when configured as an output. Therefore, when configured as a general purpose output pin (PTB3), a pullup resistor must be connected to this pin. 16.9 I/O Registers These I/O registers control and monitor SCI operation: • SCI control register 1 (SCC1) • SCI control register 2 (SCC2) • SCI control register 3 (SCC3) • SCI status register 1 (SCS1) • SCI status register 2 (SCS2) • SCI data register (SCDR) • SCI baud rate register (SCBR) 16.9.1 SCI Control Register 1 SCI control register 1: • Enables loop mode operation • Enables the SCI • Controls output polarity • Controls character length • Controls SCI wakeup method • Controls idle character detection • Enables parity function • Controls parity type MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 273 Serial Communications Interface (SCI) Address: $0013 Bit 7 6 5 4 3 2 1 Bit 0 LOOPS ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 16-9. SCI Control Register 1 (SCC1) LOOPS — Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. 1 = Loop mode enabled 0 = Normal operation enabled ENSCI — Enable SCI Bit This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. 1 = SCI enabled 0 = SCI disabled TXINV — Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. 1 = Transmitter output inverted 0 = Transmitter output not inverted NOTE: Data Sheet 274 Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers M — Mode (Character Length) Bit This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 16-5.) The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit. 1 = 9-bit SCI characters 0 = 8-bit SCI characters WAKE — Wakeup Condition Bit This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup ILTY — Idle Line Type Bit This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. 1 = Idle character bit count begins after stop bit 0 = Idle character bit count begins after start bit PEN — Parity Enable Bit This read/write bit enables the SCI parity function. (See Table 16-5.) When enabled, the parity function inserts a parity bit in the most significant bit position. (See Figure 16-3.) Reset clears the PEN bit. 1 = Parity function enabled 0 = Parity function disabled MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 275 Serial Communications Interface (SCI) PTY — Parity Bit This read/write bit determines whether the SCI generates and checks for odd parity or even parity. (See Table 16-5.) Reset clears the PTY bit. 1 = Odd parity 0 = Even parity NOTE: Changing the PTY bit in the middle of a transmission or reception can generate a parity error. Table 16-5. Character Format Selection Control Bits Character Format M PEN and PTY Start Bits Data Bits Parity Stop Bits Character Length 0 0X 1 8 None 1 10 bits 1 0X 1 9 None 1 11 bits 0 10 1 7 Even 1 10 bits 0 11 1 7 Odd 1 10 bits 1 10 1 8 Even 1 11 bits 1 11 1 8 Odd 1 11 bits 16.9.2 SCI Control Register 2 SCI control register 2: • Enables the following CPU interrupt requests: – Enables the SCTE bit to generate transmitter CPU interrupt requests – Enables the TC bit to generate transmitter CPU interrupt requests – Enables the SCRF bit to generate receiver CPU interrupt requests – Enables the IDLE bit to generate receiver CPU interrupt requests Data Sheet 276 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers • Enables the transmitter • Enables the receiver • Enables SCI wakeup • Transmits SCI break characters Address: $0014 Bit 7 6 5 4 3 2 1 Bit 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 16-10. SCI Control Register 2 (SCC2) SCTIE — SCI Transmit Interrupt Enable Bit This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset clears the SCTIE bit. 1 = SCTE enabled to generate CPU interrupt 0 = SCTE not enabled to generate CPU interrupt TCIE — Transmission Complete Interrupt Enable Bit This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears the TCIE bit. 1 = TC enabled to generate CPU interrupt requests 0 = TC not enabled to generate CPU interrupt requests SCRIE — SCI Receive Interrupt Enable Bit This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears the SCRIE bit. 1 = SCRF enabled to generate CPU interrupt 0 = SCRF not enabled to generate CPU interrupt ILIE — Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears the ILIE bit. 1 = IDLE enabled to generate CPU interrupt requests 0 = IDLE not enabled to generate CPU interrupt requests MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 277 Serial Communications Interface (SCI) TE — Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. 1 = Transmitter enabled 0 = Transmitter disabled NOTE: Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RE — Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RWU — Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation Data Sheet 278 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers SBK — Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. 1 = Transmit break characters 0 = No break characters being transmitted NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble. 16.9.3 SCI Control Register 3 SCI control register 3: • Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted • Enables these interrupts: – Receiver overrun interrupts – Noise error interrupts – Framing error interrupts • Address: Parity error interrupts $0015 Bit 7 Read: 6 5 4 3 2 1 Bit 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE U 0 0 0 0 0 0 R8 Write: Reset: U = Unimplemented U = Unaffected Figure 16-11. SCI Control Register 3 (SCC3) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 279 Serial Communications Interface (SCI) R8 — Received Bit 8 When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits. When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit. T8 — Transmitted Bit 8 When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit. DMARE — DMA Receive Enable Bit CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) 0 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) DMATE — DMA Transfer Enable Bit CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = SCTE DMA service requests enabled; SCTE CPU interrupt requests disabled 0 = SCTE DMA service requests disabled; SCTE CPU interrupt requests enabled Data Sheet 280 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers ORIE — Receiver Overrun Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR. 1 = SCI error CPU interrupt requests from OR bit enabled 0 = SCI error CPU interrupt requests from OR bit disabled NEIE — Receiver Noise Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE. 1 = SCI error CPU interrupt requests from NE bit enabled 0 = SCI error CPU interrupt requests from NE bit disabled FEIE — Receiver Framing Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE. 1 = SCI error CPU interrupt requests from FE bit enabled 0 = SCI error CPU interrupt requests from FE bit disabled PEIE — Receiver Parity Error Interrupt Enable Bit This read/write bit enables SCI receiver CPU interrupt requests generated by the parity error bit, PE. (See 16.9.4 SCI Status Register 1.) Reset clears PEIE. 1 = SCI error CPU interrupt requests from PE bit enabled 0 = SCI error CPU interrupt requests from PE bit disabled MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 281 Serial Communications Interface (SCI) 16.9.4 SCI Status Register 1 SCI status register 1 (SCS1) contains flags to signal these conditions: • Transfer of SCDR data to transmit shift register complete • Transmission complete • Transfer of receive shift register data to SCDR complete • Receiver input idle • Receiver overrun • Noisy data • Framing error • Parity error Address: Read: $0016 Bit 7 6 5 4 3 2 1 Bit 0 SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 16-12. SCI Status Register 1 (SCS1) SCTE — SCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register Data Sheet 282 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers TC — Transmission Complete Bit This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit. 1 = No transmission in progress 0 = Transmission in progress SCRF — SCI Receiver Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF. 1 = Received data available in SCDR 0 = Data not available in SCDR IDLE — Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an SCI error CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input active (or idle since the IDLE bit was cleared) OR — Receiver Overrun Bit This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 283 Serial Communications Interface (SCI) bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receive shift register full and SCRF = 1 0 = No receiver overrun Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 16-13 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flagclearing sequence reads byte 3 in the SCDR instead of byte 2. In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flagclearing routine can check the OR bit in a second read of SCS1 after reading the data register. NF — Receiver Noise Flag Bit This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected 0 = No noise detected FE — Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. 1 = Framing error detected 0 = No framing error detected Data Sheet 284 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers BYTE 1 BYTE 2 BYTE 3 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 NORMAL FLAG CLEARING SEQUENCE BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1 READ SCDR BYTE 2 READ SCDR BYTE 3 BYTE 1 BYTE 2 BYTE 3 SCRF = 0 OR = 0 SCRF = 1 OR = 1 SCRF = 0 OR = 1 SCRF = 1 SCRF = 1 OR = 1 DELAYED FLAG CLEARING SEQUENCE BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 1 READ SCDR BYTE 1 READ SCDR BYTE 3 Figure 16-13. Flag Clearing Sequence PE — Receiver Parity Error Bit This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. 1 = Parity error detected 0 = No parity error detected MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 285 Serial Communications Interface (SCI) 16.9.5 SCI Status Register 2 SCI status register 2 contains flags to signal the following conditions: • Break character detected • Incoming data Address: $0017 Bit 7 6 5 4 3 2 Read: 1 Bit 0 BKF RPF 0 0 Write: Reset: 0 0 0 0 0 0 = Unimplemented Figure 16-14. SCI Status Register 2 (SCS2) BKF — Break Flag Bit This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit. 1 = Break character detected 0 = No break character detected RPF — Reception in Progress Flag Bit This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress. 1 = Reception in progress 0 = No reception in progress Data Sheet 286 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers 16.9.6 SCI Data Register The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register. Address: $0018 Bit 7 6 5 4 3 2 1 Bit 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 Write: T7 T6 T5 T4 T3 T2 T1 T0 Reset: Unaffected by reset Figure 16-15. SCI Data Register (SCDR) R7/T7–R0/T0 — Receive/Transmit Data Bits Reading the SCI data register (SCDR) accesses the read-only received data bits, R7:R0. Writing to the SCDR writes the data to be transmitted, T7:T0. Reset has no effect on the SCDR. NOTE: Do not use read/modify/write instructions on the SCI data register. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 287 Serial Communications Interface (SCI) 16.9.7 SCI Baud Rate Register The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter. Address: Read: $0019 Bit 7 6 0 0 5 4 3 2 1 Bit 0 SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 R = Reserved Write: Reset: 0 0 = Unimplemented Figure 16-16. SCI Baud Rate Register (SCBR) SCP1 and SCP0 — SCI Baud Rate Prescaler Bits These read/write bits select the baud rate prescaler divisor as shown in Table 16-6. Reset clears SCP1 and SCP0. Table 16-6. SCI Baud Rate Prescaling SCP1 and SCP0 Prescaler Divisor (PD) 00 1 01 3 10 4 11 13 SCR2–SCR0 — SCI Baud Rate Select Bits These read/write bits select the SCI baud rate divisor as shown in Table 16-7. Reset clears SCR2–SCR0. Data Sheet 288 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Serial Communications Interface (SCI) I/O Registers Table 16-7. SCI Baud Rate Selection SCR2, SCR1, and SCR0 Baud Rate Divisor (BD) 000 1 001 2 010 4 011 8 100 16 101 32 110 64 111 128 Use this formula to calculate the SCI baud rate: SCI clock source baud rate = --------------------------------------------64 × PD × BD where: SCI clock source = fBUS or CGMXCLK (selected by SCIBDSRC bit in CONFIG2 register) PD = prescaler divisor BD = baud rate divisor Table 16-8 shows the SCI baud rates that can be generated with a 4.9152-MHz bus clock when fBUS is selected as SCI clock source. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 289 Serial Communications Interface (SCI) Table 16-8. SCI Baud Rate Selection Examples SCP1 and SCP0 Prescaler Divisor (PD) SCR2, SCR1, and SCR0 Baud Rate Divisor (BD) Baud Rate (fBUS = 4.9152 MHz) 00 1 000 1 76,800 00 1 001 2 38,400 00 1 010 4 19,200 00 1 011 8 9600 00 1 100 16 4800 00 1 101 32 2400 00 1 110 64 1200 00 1 111 128 600 01 3 000 1 25,600 01 3 001 2 12,800 01 3 010 4 6400 01 3 011 8 3200 01 3 100 16 1600 01 3 101 32 800 01 3 110 64 400 01 3 111 128 200 10 4 000 1 19,200 10 4 001 2 9600 10 4 010 4 4800 10 4 011 8 2400 10 4 100 16 1200 10 4 101 32 600 10 4 110 64 300 10 4 111 128 150 11 13 000 1 5908 11 13 001 2 2954 11 13 010 4 1477 11 13 011 8 739 11 13 100 16 369 11 13 101 32 185 11 13 110 64 92 11 13 111 128 46 Data Sheet 290 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 17. Multi-Master IIC Interface (MMIIC) 17.1 Contents 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 17.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 17.5 Multi-Master IIC System Configuration . . . . . . . . . . . . . . . . . . 295 17.6 Multi-Master IIC Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 295 17.6.1 START Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 17.6.2 Slave Address Transmission . . . . . . . . . . . . . . . . . . . . . . .296 17.6.3 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 17.6.4 Repeated START Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.5 STOP Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.6 Arbitration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.7 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 17.6.8 Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 17.6.9 Packet Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 17.7 MMIIC I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 17.7.1 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . . 299 17.7.2 MMIIC Control Register 1 (MMCR1) . . . . . . . . . . . . . . . . . 301 17.7.3 MMIIC Control Register 2 (MMCR2) . . . . . . . . . . . . . . . . . 303 17.7.4 MMIIC Status Register (MMSR). . . . . . . . . . . . . . . . . . . . . 305 17.7.5 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . . 307 17.7.6 MMIIC Data Receive Register (MMDRR). . . . . . . . . . . . . . 308 17.7.7 MMIIC CRC Data Register (MMCRCDR). . . . . . . . . . . . . . 309 17.7.8 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . . 310 17.8 Program Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 17.8.1 Data Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312 17.9 SMBus Protocols with PEC and without PEC. . . . . . . . . . . . . 313 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 291 Multi-Master IIC Interface (MMIIC) 17.9.1 17.9.2 17.9.3 17.9.4 17.9.5 17.9.6 17.9.7 Quick Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Send Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Read Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 17.10 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . 316 17.2 Introduction The multi-master IIC (MMIIC) interface is a two wire, bidirectional serial bus which provides a simple, efficient way for data exchange between devices. The interface is designed for internal serial communication between the MCU and other IIC devices. It has hardware generated START and STOP signals; and byte by byte interrupt driven software algorithm. This bus is suitable for applications which need frequent communications over a short distance between a number of devices. It also provides a flexibility that allows additional devices to be connected to the bus. The maximum data rate is 100k-bps, and the maximum communication distance and number of devices that can be connected is limited by a maximum bus capacitance of 400pF. This MMIIC interface is also SMBus (System Management Bus) version 1.0 and 1.1 compatible, with hardware cyclic redundancy code (CRC) generation, making it suitable for smart battery applications. For connection flexibility, two channels are available: • Channel 0 — SDA0 and SCL0 • Channel 1 — SDA1 and SCL1 The two channels are multiplexed; only one channel is active at any one time. Data Sheet 292 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Features 17.3 Features Features of the MMIC module include: • Full SMBus version 1.0/1.1 compliance • Multi-master IIC bus standard • Software programmable for one of eight different serial clock frequencies • Software controllable acknowledge bit generation • Interrupt driven byte by byte data transfer • Calling address identification interrupt • Arbitration loss detection and no-ACK awareness in master mode and automatic mode switching from master to slave • Auto detection of R/W bit and switching of transmit or receive mode accordingly • Detection of START, repeated START, and STOP signals • Auto generation of START and STOP condition in master mode • Repeated start generation • Master clock generator with eight selectable baud rates • Automatic recognition of the received acknowledge bit • Busy detection • Software enabled 8-bit CRC generation/decoding 17.4 I/O Pins The MMIIC module uses four I/O pins, shared with standard port I/O pins. The full name of the MMIIC I/O pins are listed in Table 17-1. The generic pin name appear in the text that follows. The SDA0/SCL0 and SDA1/SCL1 pins are open-drain. When configured as general purpose output pins (PTB0–PTB3), pullup resistors must be connected to these pins. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 293 Multi-Master IIC Interface (MMIIC) Table 17-1. Pin Name Conventions MMIIC Generic Pin Names: Full MCU Pin Names: SDA0 PTB0/SDA0 SCL0 PTB1/SCL0 SDA1 PTB2/SDA1/TxD SCL1 PTB3/SCL1/RxD Addr. $0048 Register Name Bit 7 Read: MMAD7 MMIIC Address Register Write: (MMADR) Reset: 1 Read: MMIIC Control Register 1 $0049 Write: (MMCR1) Reset: MMEN $004D ENSCI bit in SCC1 ($0013); MMEN and SDASCL1 bits in MMCR1 ($0049) 5 4 3 2 1 Bit 0 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD 0 1 0 0 0 0 0 0 0 MMCRCBYTE SDASCL1 0 0 0 0 0 MMIEN MMTXAK REPSEN MMCLRBB 0 Read: MMRXIF MMIIC Status Register Write: 0 (MMSR) Reset: 0 $004C MMEN and SDASCL1 bits in MMCR1 ($0049) 6 0 Read: MMALIF MMNAKIF MMIIC Control Register 2 $004A Write: 0 0 (MMCR2) Reset: 0 0 $004B Pin Selected for MMIIC Function By: Read: MMIIC Data Transmit MMTD7 Register Write: (MMDTR) Reset: 0 Read: MMRD7 MMIIC Data Receive Register Write: (MDDRR) Reset: 0 MMTXIF 0 MMBB 0 0 0 MMAST MMRW 0 0 MMCRCEF 0 0 Unaffected MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF 0 0 0 0 1 0 1 0 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0 0 0 0 0 0 0 0 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0 0 0 0 0 0 0 0 Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0 MMIIC CRC Data Register Write: $004E (MMCRDR) Reset: 0 0 0 0 0 0 0 0 Read: MMIIC Frequency Divider $004F Register Write: (MMFDR) Reset: 0 0 0 0 0 0 0 0 0 0 MMBR2 MMBR1 MMBR0 1 0 0 = Unimplemented Figure 17-1. MMIIC I/O Register Summary Data Sheet 294 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Multi-Master IIC System Configuration 17.5 Multi-Master IIC System Configuration The multi-master IIC system uses a serial data line SDA and a serial clock line SCL for data transfer. All devices connected to it must have open collector (drain) outputs and the logical-AND function is performed on both lines by two pull-up resistors. 17.6 Multi-Master IIC Bus Protocol Normally a standard communication is composed of four parts: 1. START signal, 2. slave address transmission, 3. data transfer, and 4. STOP signal. These are described briefly in the following sections and illustrated in Figure 17-2. 9th clock pulse MSB SCL 1 1 0 0 0 0 1 9th clock pulse LSB MSB 1 1 LSB 1 0 1 0 0 1 1 SDA Data must be stable when SCL is HIGH ACK START signal MSB SCL 1 LSB 1 0 0 0 0 1 No ACK STOP signal MSB 1 1 LSB 1 0 1 0 0 1 1 SDA ACK No ACK Repeated START signal START signal STOP signal Figure 17-2. Multi-Master IIC Bus Transmission Signal Diagram MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 295 Multi-Master IIC Interface (MMIIC) 17.6.1 START Signal When the bus is free, (i.e. no master device is engaging the bus — both SCL and SDA lines are at logic high) a master may initiate communication by sending a START signal. As shown in Figure 17-2, a START signal is defined as a high to low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer (each data transfer may contain several bytes of data) and wakes up all slaves. 17.6.2 Slave Address Transmission The first byte transferred immediately after the START signal is the slave address transmitted by the master. This is a 7-bit calling address followed by a R/W-bit. The R/W-bit dictates to the slave the desired direction of the data transfer. A logic 0 indicates that the master wishes to transmit data to the slave; a logic 1 indicates that the master wishes to receive data from the slave. Only the slave with a matched address will respond by sending back an acknowledge bit by pulling SDA low on the 9th clock cycle. (See Figure 17-2.) 17.6.3 Data Transfer Once a successful slave addressing is achieved, the data transfer can proceed byte by byte in the direction specified by the R/W-bit sent by the calling master. Each data byte is 8 bits. Data can be changed only when SCL is low and must be held stable when SCL is high as shown in Figure 17-2. The MSB is transmitted first and each byte has to be followed by an acknowledge bit. This is signalled by the receiving device by pulling the SDA low on the 9th clock cycle. Therefore, one complete data byte transfer requires 9 clock cycles. If the slave receiver does not acknowledge the master, the SDA line should be left high by the slave. The master can then generate a STOP signal to abort the data transfer or a START signal (repeated START) to commence a new transfer. Data Sheet 296 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Multi-Master IIC Bus Protocol If the master receiver does not acknowledge the slave transmitter after a byte has been transmitted, it means an “end of data” to the slave. The slave should release the SDA line for the master to generate a STOP or START signal. 17.6.4 Repeated START Signal As shown in Figure 17-2, a repeated START signal is used to generate START signal without first generating a STOP to terminate the communication. This is used by the master to communicate with another slave or with the same slave in a different mode (transmit/receive mode) without releasing the bus. 17.6.5 STOP Signal The master can terminate the communication by generating a STOP signal to free the bus. However, the master may generate a START signal followed by a calling command without first generating a STOP signal. This is called repeat START. A STOP signal is defined as a low to high transition of SDA while SCL is at logic high (see Figure 17-2). 17.6.6 Arbitration Procedure The interface circuit is a multi-master system which allows more than one master to be connected. If two or more masters try to control the bus at the same time, a clock synchronization procedure determines the bus clock. The clock low period is equal to the longest clock low period and the clock high period is equal to the shortest one among the masters. A data arbitration procedure determines the priority. A master will lose arbitration if it transmits a logic 1 while another transmits a logic 0. The losing master will immediately switch over to slave receive mode and stops its data and clock outputs. The transition from master to slave will not generate a STOP condition. Meanwhile a software bit will be set by hardware to indicates loss of arbitration. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 297 Multi-Master IIC Interface (MMIIC) 17.6.7 Clock Synchronization Since wired-AND logic is performed on SCL line, a high to low transition on the SCL line will affect the devices connected to the bus. The devices start counting their low period once a device’s clock has gone low, it will hold the SCL line low until the clock high state is reached. However, the change of low to high in this device clock may not change the state of the SCL line if another device clock is still in its low period. Therefore the synchronized clock SCL will be held low by the device which last releases SCL to logic high. Devices with shorter low periods enter a high wait state during this time. When all devices concerned have counted off their low period, the synchronized SCL line will be released and go high, and all devices will start counting their high periods. The first device to complete its high period will again pull the SCL line low. Figure 17-3 illustrates the clock synchronization waveforms. WAIT Start counting high period SCL1 SCL2 SCL Internal counter reset Figure 17-3. Clock Synchronization 17.6.8 Handshaking The clock synchronization mechanism can be used as a handshake in data transfer. A slave device may hold the SCL low after completion of one byte data transfer and will halt the bus clock, forcing the master clock into a wait state until the slave releases the SCL line. Data Sheet 298 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers 17.6.9 Packet Error Code The packet error code (PEC) for the MMIIC interface is in the form a cyclic redundancy code (CRC). The PEC is generated by hardware for every transmitted and received byte of data. The transmission of the generated PEC is controlled by user software. The CRC data register, MMCRCDR, contains the generated PEC byte, with three other bits in the MMIIC control registers and status register monitoring and controlling the PEC byte. 17.7 MMIIC I/O Registers These I/O registers control and monitor MMIIC operation: • MMIIC address register (MMADR) — $0048 • MMIIC control register 1 (MMCR1) — $0049 • MMIIC control register 2 (MMCR2) — $004A • MMIIC status register (MMSR) — $004B • MMIIC data transmit register (MMDTR) — $004C • MMIIC data receive register (MMDRR) — $004D • MMIIC CRC data register (MMCRCDR) — $004E • MMIIC frequency divide register (MMFDR) — $004F 17.7.1 MMIIC Address Register (MMADR) Address: $0048 Bit 7 6 5 4 3 2 1 Bit 0 MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD 1 0 1 0 0 0 0 0 Read: Write: Reset: Figure 17-4. MMIIC Address Register (MMADR) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 299 Multi-Master IIC Interface (MMIIC) MMAD[7:1] — Multi-Master Address These seven bits represent the MMIIC interface’s own specific slave address when in slave mode, and the calling address when in master mode. Software must update MMAD[7:1] as the calling address while entering master mode and restore its own slave address after master mode is relinquished. This register is cleared as $A0 upon reset. MMEXTAD — Multi-Master Expanded Address This bit is set to expand the address of the MMIIC in slave mode. When set, the MMIIC will acknowledge the following addresses from a calling master: $MMAD[7:1], 0000000, and 0001100. Reset clears this bit. 1 = MMIIC responds to the following calling addresses: $MMAD[7:1], 0000000, and 0001100. 0 = MMIIC responds to address $MMAD[7:1] For example, when MMADR is configured as: MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD 1 1 0 1 0 1 0 1 The MMIIC module will respond to the calling address: Bit 7 6 5 4 3 2 Bit 1 1 1 0 1 0 1 0 0 0 0 0 0 or the general calling address: 0 0 or the calling address: Bit 7 6 5 4 3 2 Bit 1 0 0 0 1 1 0 0 Note that bit-0 of the 8-bit calling address is the MMRW bit from the calling master. Data Sheet 300 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers 17.7.2 MMIIC Control Register 1 (MMCR1) Address: $0049 Bit 7 6 MMEN MMIEN Read: Write: Reset: 5 4 0 0 3 2 MMTXAK REPSEN 1 Bit 0 MMCRCBYTE SDASCL1 0 0 MMCLRBB 0 0 0 0 0 0 = Unimplemented Figure 17-5. MMIIC Control Register 1 (MMCR1) MMEN — MMIIC Enable This bit is set to enable the Multi-master IIC module. When MMEN = 0, module is disabled and all flags will restore to its poweron default states. Reset clears this bit. 1 = MMIIC module enabled 0 = MMIIC module disabled MMIEN — MMIIC Interrupt Enable When this bit is set, the MMTXIF, MMRXIF, MMALIF, and MMNAKIF flags are enabled to generate an interrupt request to the CPU. When MMIEN is cleared, the these flags are prevented from generating an interrupt request. Reset clears this bit. 1 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will generate interrupt request to CPU 0 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will not generate interrupt request to CPU MMCLRBB — MMIIC Clear Busy Flag Writing a logic 1 to this write-only bit clears the MMBB flag. MMCLRBB always reads as a logic 0. Reset clears this bit. 1 = Clear MMBB flag 0 = No affect on MMBB flag MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 301 Multi-Master IIC Interface (MMIIC) MMTXAK — MMIIC Transmit Acknowledge Enable This bit is set to disable the MMIIC from sending out an acknowledge signal to the bus at the 9th clock bit after receiving 8 data bits. When MMTXAK is cleared, an acknowledge signal will be sent at the 9th clock bit. Reset clears this bit. 1 = MMIIC does not send acknowledge signals at 9th clock bit 0 = MMIIC sends acknowledge signal at 9th clock bit REPSEN — Repeated Start Enable This bit is set to enable repeated START signal to be generated when in master mode transfer (MMAST = 1). The REPSEN bit is cleared by hardware after the completion of repeated START signal or when the MMAST bit is cleared. Reset clears this bit. 1 = Repeated START signal will be generated if MMAST bit is set 0 = No repeated START signal will be generated MMCRCBYTE — MMIIC CRC Byte In receive mode, this bit is set by software to indicate that the next receiving byte will be the packet error checking (PEC) data. In master receive mode, after completion of CRC generation on the received PEC data, an acknowledge signal is sent if MMTXAK = 0; no acknowledge is sent If MMTXAK = 1. In slave receive mode, no acknowledge signal is sent if a CRC error is detected on the received PEC data. If no CRC error is detected, an acknowledge signal is sent if MMTXAK = 0; no acknowledge is sent If MMTXAK = 1. Under normal operation, the user software should clear MMTXAK bit before setting MMCRCBYTE bit to ensure that an acknowledge signal is sent when no CRC error is detected. The MMCRCBYTE bit should not be set in transmit mode. This bit is cleared by the next START signal. Reset also clears this bit. 1 = Next receiving byte is the packet error checking (PEC) data 0 = Next receiving byte is not PEC data Data Sheet 302 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers SDASCL1 — SDA and SCL I/O Pin Select This bit selects either SDA0 and SCL0, or SDA1 and SCL1, for MMIIC I/O pins when MMIIC module is enabled (MMEN = 1). If the SCI module is enabled (ENSCI = 0), the SDA1 and SCL1 pins are not available for MMIIC. Reset clears SDASCL1 bit. 1 = MMIIC module uses SDA1 and SCL1 I/O pins 0 = MMIIC module uses SDA0 and SCL0 I/O pins 17.7.3 MMIIC Control Register 2 (MMCR2) Address: $004A Bit 7 6 Read: MMALIF MMNAKIF Write: 0 0 Reset: 0 0 5 4 3 MMAST MMRW 0 0 MMBB 0 2 1 0 0 Bit 0 MMCRCEF 0 0 Unaffected = Unimplemented Figure 17-6. MMIIC Control Register 2 (MMCR2) MMALIF — Arbitration Loss Interrupt Flag This flag is set when software attempt to set MMAST but the MMBB has been set by detecting the start condition on the lines or when the MMIIC is transmitting a "1" to SDA line but detected a "0" from SDA line in master mode — an arbitration loss. This bit generates an interrupt request to the CPU if the MMIEN bit in MMCR1 is set. This bit is cleared by writing "0" to it or by reset. 1 = Lost arbitration in master mode 0 = No arbitration lost MMNAKIF — No AcKnowledge Interrupt Flag (Master Mode) This flag is only set in master mode (MMAST = 1) when there is no acknowledge bit detected after one data byte or calling address is transferred. This flag also clears MMAST. MMNAKIF generates an interrupt request to CPU if the MMIEN bit in MMCR1 is set. This bit is cleared by writing "0" to it or by reset. 1 = No acknowledge bit detected 0 = Acknowledge bit detected MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 303 Multi-Master IIC Interface (MMIIC) MMBB — MMIIC Bus Busy Flag This flag is set after a start condition is detected (bus busy), and is cleared when a stop condition (bus idle) is detected or the MMIIC is disabled. Reset clears this bit. 1 = Start condition detected 0 = Stop condition detected or MMIIC is disabled MMAST — MMIIC Master Control This bit is set to initiate a master mode transfer. In master mode, the module generates a start condition to the SDA and SCL lines, followed by sending the calling address stored in MMADR. When the MMAST bit is cleared by MMNAKIF set (no acknowledge) or by software, the module generates the stop condition to the lines after the current byte is transmitted. If an arbitration loss occurs (MMALIF = 1), the module reverts to slave mode by clearing MMAST, and releasing SDA and SCL lines immediately. This bit is cleared by writing "0" to it or by reset. 1 = Master mode operation 0 = Slave mode operation MMRW — MMIIC Master Read/Write This bit is transmitted out as bit 0 of the calling address when the module sets the MMAST bit to enter master mode. The MMRW bit determines the transfer direction of the data bytes that follows. When it is "1", the module is in master receive mode. When it is "0", the module is in master transmit mode. Reset clears this bit. 1 = Master mode receive 0 = Master mode transmit MMCRCEF — MMIIC CRC Error Flag This flag is set when a CRC error is detected, and cleared when no CRC error is detected. The MMCRCEF is only meaningful after receiving a PEC data. This flag is unaffected by reset. 1 = CRC error detected on PEC byte 0 = No CRC error detected on PEC byte Data Sheet 304 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers 17.7.4 MMIIC Status Register (MMSR) Address: $004B Bit 7 Read: MMRXIF 6 MMTXIF Write: 0 0 Reset: 0 0 5 4 3 2 1 Bit 0 MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF 0 0 1 0 1 0 = Unimplemented Figure 17-7. MMIIC Status Register (MMSR) MMRXIF — MMIIC Receive Interrupt Flag This flag is set after the data receive register (MMDRR) is loaded with a new received data. Once the MMDRR is loaded with received data, no more received data can be loaded to the MMDRR register until the CPU reads the data from the MMDRR to clear MMRXBF flag. MMRXIF generates an interrupt request to CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or by reset; or when the MMEN = 0. 1 = New data in data receive register (MMDRR) 0 = No data received MMTXIF — MMIIC Transmit Interrupt Flag This flag is set when data in the data transmit register (MMDTR) is downloaded to the output circuit, and that new data can be written to the MMDTR. MMTXIF generates an interrupt request to CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or when the MMEN = 0. 1 = Data transfer completed 0 = Data transfer in progress MMATCH — MMIIC Address Match Flag This flag is set when the received data in the data receive register (MMDRR) is a calling address which matches with the address or its extended addresses (MMEXTAD = 1) specified in the address register (MMADR). The MMATCH flag is set at the 9th clock of the calling address and will be cleared on the 9th clock of the next receiving data. Note: slave transmits do not clear MMATCH. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 305 Multi-Master IIC Interface (MMIIC) 1 = Received address matches MMADR 0 = Received address does not match MMSRW — MMIIC Slave Read/Write Select This bit indicates the data direction when the module is in slave mode. It is updated after the calling address is received from a master device. MMSRW = 1 when the calling master is reading data from the module (slave transmit mode). MMSRW = 0 when the master is writing data to the module (receive mode). 1 = Slave mode transmit 0 = Slave mode receive MMRXAK — MMIIC Receive Acknowledge When this bit is cleared, it indicates an acknowledge signal has been received after the completion of eight data bits transmission on the bus. When MMRXAK is set, it indicates no acknowledge signal has been detected at the 9th clock; the module will release the SDA line for the master to generate STOP or repeated START condition. Reset sets this bit. 1 = No acknowledge signal received at 9th clock 0 = Acknowledge signal received at 9th clock MMCRCBF — CRC Data Buffer Full Flag This flag is set when the CRC data register (MMCRCDR) is loaded with a CRC byte for the current received or transmitted data. In transmit mode, after a byte of data has been sent (MMTXIF = 1), the MMCRCBF will be set when the CRC byte has been generated and ready in the MMCRCDR. The content of the MMCRCDR should be copied to the MMDTR for transmission. In receive mode, the MMCRCBF is set when the CRC byte has been generated and ready in MMCRCDR, for the current byte of received data. The MMCRCBF bit is cleared when the CRC data register is read. Reset also clears this bit. 1 = Data ready in CRC data register (MMCRCDR) 0 = Data not ready in CRC data register (MMCRCDR) Data Sheet 306 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers MMTXBE — MMIIC Transmit Buffer Empty This flag indicates the status of the data transmit register (MMDTR). When the CPU writes the data to the MMDTR, the MMTXBE flag will be cleared. MMTXBE is set when MMDTR is emptied by a transfer of its data to the output circuit. Reset sets this bit. 1 = Data transmit register empty 0 = Data transmit register full MMRXBF — MMIIC Receive Buffer Full This flag indicates the status of the data receive register (MMDRR). When the CPU reads the data from the MMDRR, the MMRXBF flag will be cleared. MMRXBF is set when MMDRR is full by a transfer of data from the input circuit to the MMDRR. Reset clears this bit. 1 = Data receive register full 0 = Data receive register empty 17.7.5 MMIIC Data Transmit Register (MMDTR) Address: $004C Bit 7 6 5 4 3 2 1 Bit 0 MMTD7 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 17-8. MMIIC Data Transmit Register (MMDTR) When the MMIIC module is enabled, MMEN = 1, data written into this register depends on whether module is in master or slave mode. In slave mode, the data in MMDTR will be transferred to the output circuit when: • the module detects a matched calling address (MMATCH = 1), with the calling master requesting data (MMSRW = 1); or • the previous data in the output circuit has be transmitted and the receiving master returns an acknowledge bit, indicated by a received acknowledge bit (MMRXAK = 0). MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 307 Multi-Master IIC Interface (MMIIC) If the calling master does not return an acknowledge bit (MMRXAK = 1), the module will release the SDA line for master to generate a STOP or repeated START condition. The data in the MMDTR will not be transferred to the output circuit until the next calling from a master. The transmit buffer empty flag remains cleared (MMTXBE = 0). In master mode, the data in MMDTR will be transferred to the output circuit when: • the module receives an acknowledge bit (MMRXAK = 0), after setting master transmit mode (MMRW = 0), and the calling address has been transmitted; or • the previous data in the output circuit has be transmitted and the receiving slave returns an acknowledge bit, indicated by a received acknowledge bit (MMRXAK = 0). If the slave does not return an acknowledge bit (MMRXAK = 1), the master will generate a STOP or repeated START condition. The data in the MMDTR will not be transferred to the output circuit. The transmit buffer empty flag remains cleared (MMTXBE = 0). The sequence of events for slave transmit and master transmit are illustrated in Figure 17-12. 17.7.6 MMIIC Data Receive Register (MMDRR) Address: $004D Bit 7 Read: MMRD7 6 5 4 3 2 1 Bit 0 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0 0 0 0 0 0 0 0 Write: Reset: 0 = Unimplemented Figure 17-9. MMIIC Data Receive Register (MMDRR) When the MMIIC module is enabled, MMEN = 1, data in this read-only register depends on whether module is in master or slave mode. In slave mode, the data in MMDRR is: Data Sheet 308 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers • the calling address from the master when the address match flag is set (MMATCH = 1); or • the last data received when MMATCH = 0. In master mode, the data in the MMDRR is: • the last data received. When the MMDRR is read by the CPU, the receive buffer full flag is cleared (MMRXBF = 0), and the next received data is loaded to the MMDRR. Each time when new data is loaded to the MMDRR, the MMRXIF interrupt flag is set, indicating that new data is available in MMDRR. The sequence of events for slave receive and master receive are illustrated in Figure 17-12. 17.7.7 MMIIC CRC Data Register (MMCRCDR) Address: $004E Bit 7 6 5 4 3 2 1 Bit 0 Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0 Write: Reset: 0 0 0 0 0 0 0 0 = Unimplemented Figure 17-10. MMIIC CRC Data Register (MMCRCDR) When the MMIIC module is enabled, MMEN = 1, and the CRC buffer full flag is set (MMCRCBF = 1), data in this read-only register contains the generated CRC byte for the last byte of received or transmitted data. A CRC byte is generated for each received and transmitted data byte and loaded to the CRC data register. The MMCRCBF bit will be set to indicate the CRC byte is ready in the CRC data register. Reading the CRC data register clears the MMCRCBF bit. If the CRC data register is not read, the MMCRCBF bit will be cleared by hardware before the next CRC byte is loaded. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 309 Multi-Master IIC Interface (MMIIC) 17.7.8 MMIIC Frequency Divider Register (MMFDR) Address: Read: $004F Bit 7 6 5 4 3 0 0 0 0 0 2 1 Bit 0 MMBR2 MMBR1 MMBR0 1 0 0 Write: Reset: 0 0 0 0 0 = Unimplemented Figure 17-11. MMIIC Frequency Divider Register (MMFDR) The three bits in the frequency divider register (MMFDR) selects the divider to divide the bus clock to the desired baud rate for the MMIIC data transfer. Table 17-2 shows the divider values for MMBR[2:0]. Table 17-2. MMIIC Baud Rate Selection MMIIC Baud Rates for Bus Clocks: MMBR2 MMBR1 Divider 8MHz 4MHz 2MHz 1MHz 0 0 0 20 400kHz 200kHz 100kHz 50kHz 0 0 1 40 200kHz 100kHz 50kHz 25kHz 0 1 0 80 100kHz 50kHz 25kHz 12.5kHz 0 1 1 160 50kHz 25kHz 12.5kHz 6.25kHz 1 0 0 320 25kHz 12.5kHz 6.25kHz 3.125kHz 1 0 1 640 12.5kHz 6.25kHz 3.125kHz 1.5625kHz 1 1 0 1280 6.25kHz 3.125kHz 1.5625kHz 0.78125kHz 1 1 1 2560 3.125kHz 1.5625kHz 0.78125kHz 0.3906kHz NOTE: Data Sheet 310 MMBR0 The frequency of the MMIIC baud rate is only guaranteed for 100kHz to 10kHz. The divider is available for the flexibility on bus frequency selection. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Program Algorithm 17.8 Program Algorithm When the MMIIC module detects an arbitration loss in master mode, it releases both SDA and SCL lines immediately. But if there are no further STOP conditions detected, the module will hang up. Therefore, it is recommended to have time-out software to recover from this condition. The software can start the time-out counter by looking at the MMBB (bus busy) flag and reset the counter on the completion of one byte transmission. If a time-out has occurred, software can clear the MMEN bit (disable MMIIC module) to release the bus, and hence clear the MMBB flag. This is the only way to clear the MMBB flag by software if the module hangs up due to a no STOP condition received. The MMIIC can resume operation again by setting the MMEN bit. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 311 Multi-Master IIC Interface (MMIIC) 17.8.1 Data Sequence (a) Master Transmit Mode START Address 0 ACK TX Data1 MMTXBE=1 MMTXIF=1 Data2 → MMDTR MMTXBE=0 MMRW=0 MMAST=1 Data1 → MMDTR ACK MMTXBE=1 MMTXIF=1 Data3 → MMDTR TX DataN ACK STOP MMTXBE=1 MMNAKIF=1 MMTXIF=1 MMAST=0 DataN+2 → MMDTR MMTXBE=0 (b) Master Receive Mode START Address 1 ACK RX Data1 ACK Data1 → MMDRR MMRXIF=1 MMRXBF=1 MMRXBF=0 MMRW=1 MMAST=1 MMTXBE=0 (dummy data → MMDTR) RX DataN NAK STOP DataN → MMDRR MMNAKIF=1 MMRXIF=1 MMAST=0 MMRXBF=1 (c) Slave Transmit Mode START Address MMTXBE=1 MMRXBF=0 1 ACK TX Data1 MMRXIF=1 MMRXBF=1 MMATCH=1 MMSRW=1 Data1 → MMDTR ACK MMTXBE=1 MMTXIF=1 Data2 → MMDTR TX DataN NAK STOP MMTXBE=1 MMNAKIF=1 MMTXIF=1 MMTXBE=0 DataN+2 → MMDTR (d) Slave Receive Mode START MMTXBE=0 MMRXBF=0 Address 0 ACK RX Data1 MMRXIF=1 MMRXBF=1 MMATCH=1 MMSRW=0 ACK Data1 → MMDRR MMRXIF=1 MMRXBF=1 RX DataN ACK STOP DataN → MMDRR MMRXIF=1 MMRXBF=1 Shaded data packets indicate transmissions by the MCU Figure 17-12. Data Transfer Sequences for Master/Slave Transmit/Receive Modes Data Sheet 312 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) SMBus Protocols with PEC and without PEC 17.9 SMBus Protocols with PEC and without PEC Following is a description of the various MMIIC bus protocols with and without a packet error code (PEC). 17.9.1 Quick Command 1 7 1 1 1 Slave Address RW ACK START Master to Slave STOP Start Condition Slave to Master Stop Condition Command Bit Acknowledge Figure 17-13. Quick Command 17.9.2 Send Byte START Slave Address W ACK Command Code ACK W ACK Command Code ACK STOP (a) Send Byte Protocol START Slave Address PEC ACK STOP NAK STOP (b) Send Byte Protocol with PEC Figure 17-14. Send Byte 17.9.3 Receive Byte START Slave Address R ACK Data Byte NAK R ACK Data Byte ACK STOP (a) Receive Byte Protocol START Slave Address PEC (b) Receive Byte Protocol with PEC Figure 17-15. Receive Byte MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 313 Multi-Master IIC Interface (MMIIC) 17.9.4 Write Byte/Word START Slave Address W ACK Command Code ACK Data Byte ACK W ACK Command Code ACK Data Byte ACK PEC ACK STOP W ACK Command Code ACK Data Byte Low ACK Data Byte High ACK STOP W ACK Command Code ACK Data Byte Low ACK Data Byte High ACK STOP (a) Write Byte Protocol START Slave Address (b) Write Byte Protocol with PEC START Slave Address (c) Write Word Protocol START Slave Address PEC ACK STOP (d) Write Word Protocol with PEC Figure 17-16. Write Byte/Word 17.9.5 Read Byte/Word START Slave Address W ACK Command Code ACK START Slave Address R ACK Data Byte NAK W ACK Command Code ACK START Slave Address R ACK Data Byte ACK Command Code ACK START Slave Address R ACK Data Byte Low ACK Command Code ACK START Slave Address R ACK Data Byte Low ACK STOP (a) Read Byte Protocol START Slave Address PEC NAK STOP (b) Read Byte Protocol with PEC START Slave Address Data Byte High NAK W ACK STOP (c) Read Word Protocol START Slave Address Data Byte High ACK W ACK PEC NAK STOP (d) Read Word Protocol with PEC Figure 17-17. Read Byte/Word Data Sheet 314 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) SMBus Protocols with PEC and without PEC 17.9.6 Process Call START Slave Address W ACK START Slave Address R START Slave Address W ACK START Slave Address R ACK Command Code ACK Data Byte Low ACK Data Byte Low ACK Data Byte High NAK Command Code ACK Data Byte Low ACK Data Byte Low ACK Data Byte High ACK Data Byte High ACK STOP (a) Process Call ACK Data Byte High ACK PEC STOP NAK STOP (b) Process Call with PEC Figure 17-18. Process Call 17.9.7 Block Read/Write START Slave Address Data Byte 2 ACK W ACK Command Code Data Byte N ACK ACK Byte Count = N ACK Data Byte 1 ACK ACK Data Byte 1 ACK R ACK Byte Count = N ACK R ACK Byte Count = N ACK STOP (a) Block Read START Slave Address Data Byte 2 ACK W ACK Command Code Data Byte N ACK Byte Count = N PEC ACK ACK STOP (b) Block Read with PEC START Slave Address Data Byte 1 ACK W ACK Command Code Data Byte 2 ACK ACK START Data Byte N Slave Address NAK STOP (c) Block Write START Slave Address Data Byte 1 ACK W ACK Command Code Data Byte 2 ACK ACK START Data Byte N Slave Address ACK PEC NAK STOP (d) Block Write with PEC Figure 17-19. Block Read/Write MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 315 Multi-Master IIC Interface (MMIIC) 17.10 SMBus Protocol Implementation Shaded data packets indicate transmissions by the MCU MASTER MODE START Address 0 ACK Command ACK START Address 1 ACK RX Data1 ACK ACK RX DataN NAK STOP OPERATION: Prepare for repeated START OPERATION: Get ready to receive data OPERATION: Read received data OPERATION: Generate STOP FLAGS: MMTXIF set MMRXAK clear FLAGS: MMTXIF set MMRXAK clear FLAGS: MMRXIF set FLAGS: MMRXIF set ACTION: 1. Set MMRW 2. Set REPSEN 3. Clear MMTXAK 4. Load dummy ($FF) to MMDTR ACTION: Load dummy ($FF) to MMDTR ACTION: Read Data1 from MMDRR ACTION: Read DataN from MMDRR OPERATION: Read received data and prepare for STOP OPERATION: Prepare for Master mode FLAGS: MMRXIF set ACTION: 1. Load slave address to MMADR 2. Clear MMRW 3. Load command to MMDTR 4. Set MMAST ACTION: 1. Set MMTXAK 2. Read Data(N-1) from MMDRR 3. Clear MMAST SLAVE MODE START Address 0 ACK Command ACK START Address 1 ACK OPERATION: Slave address match and check for data direction OPERATION: Slave address match and get ready to transmit data FLAGS: MMRXIF set MMATCH set MMSRW depends on 8th bit of calling address byte ACTION: 1. Check MMSRW 2. Read Slave address FLAGS: MMRXIF set MMATCH set MMSRW depends on 8th bit of calling address byte OPERATION: Prepare for Slave mode ACTION: 1. Load slave address to MMADR 2. Clear MMTXAK 3. Clear MMAST TX Data1 ACK ACK TX DataN NAK STOP OPERATION: Transmit data OPERATION: Last data sent FLAGS: MMTXIF set MMRXAK clear FLAGS: MMTXIF set MMRXAK set ACTION: Load Data3 to MMDTR ACTION: Load dummy ($FF) to MMDTR ACTION: Check MMSRW OPERATION: Read and decode received command FLAGS: MMRXIF set MMATCH clear ACTION: Load Data1 to MMDTR OPERATION: Transmit data OPERATION: Last data is going to be sent FLAGS: MMTXIF set FLAGS: MMTXIF set MMRXAK clear ACTION: Load Data2 to MMDTR ACTION: Load dummy ($FF) to MMDTR Figure 17-20. SMBus Protocol Implementation Data Sheet 316 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 18. Input/Output (I/O) Ports 18.1 Contents 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 320 18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 321 18.3.3 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . 323 18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 324 18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 325 18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . 327 18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . 329 18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . . 330 18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 331 18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 332 18.2 Introduction Thirty-one (31) bidirectional input-output (I/O) pins form four parallel ports. All I/O pins are programmable as inputs or outputs. NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 317 Input/Output (I/O) Ports Addr. Register Name $0000 Read: Port A Data Register Write: (PTA) Reset: $0001 $0002 $0003 Read: Port B Data Register Write: (PTB) Reset: Read: Port C Data Register Write: (PTC) Reset: Read: Port D Data Register Write: (PTD) Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset 0 PTC7 PTD7 $000D Read: Port-C LED Control Register Write: (LEDC) Reset: PTB3 PTC6 PTC5 PTC4 PTC3 PTD6 PTD5 PTD4 PTD3 Unaffected by reset 0 0 Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 $000C PTB4 Unaffected by reset Read: DDRC7 Data Direction Register C $0006 Write: (DDRC) Reset: 0 Read: Port-A LED Control Register Write: (LEDA) Reset: PTB5 Unaffected by reset Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: Data Direction Register B $0005 Write: (DDRB) Reset: PTB6 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 LEDA5 LEDA4 LEDA3 LEDA2 LEDA1 LEDA0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LEDC7 LEDC6 LEDC5 LEDC4 LEDC3 0 0 0 0 0 Figure 18-1. I/O Port Register Summary Data Sheet 318 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Introduction Table 18-1. Port Control Register Bits Summary Port A B Module Control Bit DDR 0 DDRA0 PTA0/ATD2 1 DDRA1 PTA1/ATD3 2 DDRA2 3 DDRA3 4 DDRA4 PTA4/ATD6 5 DDRA5 PTA5/ATD7 6 DDRA6 7 DDRA7 0 DDRB0 1 DDRB1 2 Module ADC Register ADSCR ($0057) Control Bit ADCH[4:0] Pin PTA2/ATD4 PTA3/ATD5 T1SC0 ($0025) ELS0B:ELS0A PTA6/T1CH0 T1SC1 ($0028) ELS1B:ELS1A PTA7/T1CH1 MBUS MMCR1 ($0049) MMEN SDASCL1 DDRB2 SCI SCC1 ($0013)(2) ENSCI PTB2/SDA1/TxD(1) 3 DDRB3 MBUS MMCR1 ($0049) MMEN SDASCL1 PTB3/SCL1/RxD(1) 4 DDRB4 T2SC0 ($0030) ELS0B:ELS0A PTB4/T2CH0 5 DDRB5 T2SC1 ($0033) ELS1B:ELS1A PTB5/T2CH1 6 DDRB6 — — PTB6/IRQ2 0 DDRC0 TIM1 TIM2 IRQ ANALOG CONFIG2 ($001D)(1) CDOEN PTB0/SDA0(1) PTB1/SCL0(1) PTC0/PWM0/CD PCH0 C D 1 DDRC1 PWM 2 DDRC2 3 DDRC3 PTC3/ATD8 4 DDRC4 PTC4/ATD9 5 DDRC5 6 DDRC6 PTC6/ATD11 7 DDRC7 PTC7/ATD12 0 DDRD0 KBIE0 PTD0/KBI0 1 DDRD1 KBIE1 PTD1/KBI1 2 DDRD2 KBIE2 PTD2/KBI2 3 DDRD3 KBIE3 PTD3/KBI3 4 DDRD4 KBIE4 PTD4/KBI4 5 DDRD5 KBIE5 PTD5/KBI5 6 DDRD6 KBIE6 PTD6/KBI6 7 DDRD7 KBIE7 PTD7/KBI7 ADC KBI PWMCR ($0051) ADSCR ($0057) KBIER ($001B) PCH1 PTC1/PWM1 PCH2 PTC2/PWM2 ADCH[4:0] PTC5/ATD10 Notes: 1. Pins are open-drain when configured as outputs. Pullup resistors must be connected when configured as outputs. 2. Register has the highest priority control on port pin. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 319 Input/Output (I/O) Ports 18.3 Port A Port A is an 8-bit special function port that shares six of its port pins with the analog-to-digital converter (ADC) module and two of its port pins with the timer interface module 1 (TIM1). See Section 15. Analog-to-Digital Converter (ADC) and Section 11. Timer Interface Module (TIM). PTA5–PTA0 pins can be configured for direct LED drive. 18.3.1 Port A Data Register (PTA) The port A data register contains a data latch for each of the eight port A pins. Address: $0000 Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 ATD4 ATD3 ATD2 Read: Write: Reset: Alternative Function: Additional Function: Unaffected by Reset T1CH1 T1CH0 ATD7 ATD6 ATD5 LED drive LED drive LED drive LED drive LED drive LED drive Figure 18-2. Port A Data Register (PTA) PTA[7:0] — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. ATD[7:2] — ADC channels 2 to 7 ATD[7:2] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Section 14. Analog Module. Data Sheet 320 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port A T1CH[1:0] — Timer 1 Channel I/O Bits The T1CH1 and T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTA7/T1CH1 and PTA6/T1CH0 pins are timer channel I/O pins or general-purpose I/O pins. See Section 11. Timer Interface Module (TIM). NOTE: Care must be taken when reading port A while applying analog voltages to ATD[7:2] pins. If the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTAx/ATDx pin, while PTA is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports. LED drive — Direct LED drive Pins PTA5–PTA0 pins can be configured for direct LED drive. See 18.3.3 Port A LED Control Register (LEDA). 18.3.2 Data Direction Register A (DDRA) Data direction register A determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer. Address: $0004 Bit 7 6 5 4 3 2 1 Bit 0 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 18-3. Data Direction Register A (DDRA) DDRA[7:0] — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 321 Input/Output (I/O) Ports NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 18-4 shows the port A I/O logic. READ DDRA ($0004) INTERNAL DATA BUS WRITE DDRA ($0004) RESET DDRAx WRITE PTA ($0000) PTAx PTAx READ PTA ($0000) Figure 18-4. Port A I/O Circuit When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 18-2 summarizes the operation of the port A pins. Table 18-2. Port A Pin Functions Accesses to DDRA DDRA Bit PTA Bit 0 X(1) 1 X Accesses to PTA I/O Pin Mode Read/Write Read Write Input, Hi-Z(2) DDRA[7:0] Pin PTA[7:0](3) Output DDRA[7:0] PTA[7:0] PTA[7:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input. Data Sheet 322 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port B 18.3.3 Port A LED Control Register (LEDA) The port-A LED control register (LEDA) controls the direct LED drive capability on PTA5–PTA0 pins. Each bit is individually configurable and requires that the data direction register, DDRA, bit be configured as an output. Address: Read: $000C Bit 7 6 0 0 5 4 3 2 1 Bit 0 LEDA5 LEDA4 LEDA3 LEDA2 LEDA1 LEDA0 0 0 0 0 0 0 Write: Reset: 0 0 Figure 18-5. Port A LED Control Register (LEDA) LEDA[5:0] — Port A LED Drive Enable Bits These read/write bits are software programmable to enable the direct LED drive on an output port pin. 1 = Corresponding port A pin configured for direct LED drive 0 = Corresponding port A pin configured for standard drive 18.4 Port B Port B is a 7-bit special function port that shares four of its port pins with the multi-master IIC (MMIIC) interface module, two of its port pins with the serial communications interface (SCI) module, two of its port pins with the timer interface module 2 (TIM2), and one of its port pins with the IRQ module. See Section 17. Multi-Master IIC Interface (MMIIC), Section 16. Serial Communications Interface (SCI), Section 11. Timer Interface Module (TIM), and Section 19. External Interrupt (IRQ). NOTE: PTB3–PTB0 are open-drain pins when configured as outputs regardless whether the pins are used as general purpose I/O pins, MMIIC pins, or SCI pins. Therefore, when configured as general purpose output pins, MMIIC pins, or SCI pins (the TxD pin), pullup resistors must be connected to these pins. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 323 Input/Output (I/O) Ports 18.4.1 Port B Data Register (PTB) The port B data register contains a data latch for each of the eight port B pins. Address: $0001 Bit 7 Read: 6 5 4 3 2 1 Bit 0 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 SCL0 SDA0 0 Write: Reset: Alternative Functions: Unaffected by reset IRQ2 T2CH1 RxD TxD SCL1 SDA1 T2CH0 These four pins are open-drain when configured as output pins. Pullup resistors must be connected when configured as outputs. Figure 18-6. Port B Data Register (PTB) PTB[6:0] — Port B Data Bits These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. SDA0, SCL0, SDA1, SCL1 — MMIIC Channels 1 and 2 SDAx and SCLx are the data and clock lines for the MMIIC module. The multi-master enable bit, MMEN, and the MMIIC channel select bit, SDASCL1, in the MMIIC control register 1 determine whether the PTB0/SDA0, PTB1/SCL0, PTB2/SDA1/TxD, and PTB3/SCL1/RxD pins are MMIIC I/O pins or general purpose I/O pins. See Section 17. Multi-Master IIC Interface (MMIIC). TxD, RxD — SCI Data I/O Pins The TxD and RxD pins are the transmit data output and receive data input for the SCI module. The enable SCI bit, ENSCI, in the SCI control register 1 enables the PTB2/SDA1/TxD and PTB3/SCL1/RxD pins as SCI TxD and RxD pins and overrides any control from the port I/O or MMIIC logic. See Section 16. Serial Communications Interface (SCI). Data Sheet 324 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port B Table 18-3. PTB2 and PTB3 Pin Configurations ENSCI Bit ($0013) MMEN Bit ($0049) SDASCL1 Bit ($0049) Pin function 0 0 X PTB2, PTB3 PTB2/SDA1/TxD 0 1 0 PTB2, PTB3 PTB3/SCL1/RxD 0 1 1 SDA1, SCL1 1 X X TxD, RxD Pin T2CH[1:0] — Timer 2 Channel I/O Bits The T2CH1 and T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTB5/T2CH1 and PTB4/T2CH0 pins are timer channel I/O pins or general-purpose I/O pins.See Section 11. Timer Interface Module (TIM). IRQ2 — External Interrupt Pin 2 IRQ2 pin is the second external interrupt input to the IRQ module. When PTB6/IRQ2 is configured as an input by the data direction bit bit, DDRB6, the pin is both a standard port input pin and an external interrupt pin. See Section 19. External Interrupt (IRQ). 18.4.2 Data Direction Register B (DDRB) Data direction register B determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. Address: $0005 Bit 7 Read: 6 5 4 3 2 1 Bit 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Write: Reset: 0 Figure 18-7. Data Direction Register B (DDRB) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 325 Input/Output (I/O) Ports DDRB[6:0] — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[6:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 18-8 shows the port B I/O logic. READ DDRB ($0005) INTERNAL DATA BUS WRITE DDRB ($0005) RESET DDRBx WRITE PTB ($0001) PTBx # PTBx READ PTB ($0001) # PTB3–PTB0 are open-drain pins when configured as outputs. Figure 18-8. Port B I/O Circuit When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 18-4 summarizes the operation of the port B pins. Table 18-4. Port B Pin Functions Accesses to DDRB DDRB Bit PTB Bit 0 X(1) 1 X Accesses to PTB I/O Pin Mode Read/Write Read Write Input, Hi-Z(2) DDRB[6:0] Pin PTB[6:0](3) Output DDRB[6:0] PTB[6:0] PTB[6:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input. Data Sheet 326 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port C 18.5 Port C Port C is an 8-bit special function port that shares three of its port pins with the pulse width modulator module, five of its port pins with the analog-to-digital converter module, and one of its pins with the analog module. See Section 13. Pulse Width Modulator (PWM), Section 15. Analog-to-Digital Converter (ADC), and Section 14. Analog Module. PTC7–PTC3 pins can be configured for direct LED drive. 18.5.1 Port C Data Register (PTC) The port C data register contains a data latch for each of the six port C pins. NOTE: Bit 7 and bit 6 of PTC are not available in a 42-pin shrink dual in-line package. Address: $0002 Bit 7 6 5 4 3 2 1 Bit 0 PTC7 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 PWM2 PWM1 PWM0 Read: Write: Reset: Alternative Function: Unaffected by reset ATD12 ATD11 ATD10 ATD9 ATD8 CD Additional Function: LED drive LED drive LED drive LED drive LED drive Figure 18-9. Port C Data Register (PTC) PTC[7:0] — Port C Data Bits These read/write bits are software programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 327 Input/Output (I/O) Ports PWM[2:0] — PWM Channels 0 to 2 PWM[2:0] are pins used for the output channels from the pulse width modulator (PWM) module. The PWM enables bit, PCH[2:0], in the PWM control register define which port pin will be used as a PWM output and overrides any control from the port I/O logic. The PWM0 function on PCT0/PWM0/CD pin can be overrided by the CD output function. See Section 13. Pulse Width Modulator (PWM). ATD[12:8] — ADC channels 8 to 12 ATD[12:8] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Section 15. Analog-to-Digital Converter (ADC). NOTE: Care must be taken when reading port C while applying analog voltages to ATD[12:8] pins. If the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTCx/ATDx pin, while PTC is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports. CD — Current Detect Output Pin The CD pin is used for the current detect output from the analog module. The pin reflects the status of the current detect interrupt flag. The current detect output enable bit, CDOEN, in the configuration register 2 enables the PTC0/PWM0/CD pin as the CD output pin and overrides any control from the port I/O or PWM logic. See Section 14. Analog Module. Table 18-5. PTC0 Pin Configuration Pin PTC0/PWM0/CD CDOEN Bit ($001D) PCH0 Bit ($0051) Pin function 0 0 PTC0 0 1 PWM0 1 X CD LED drive — Direct LED drive Pins PTC7–PTC3 pins can be configured for direct LED drive. See 18.5.3 Port C LED Control Register (LEDC). Data Sheet 328 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port C 18.5.2 Data Direction Register C (DDRC) Data direction register C determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer. Address: $0006 Bit 7 6 5 4 3 2 1 Bit 0 DDRC7 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 18-10. Data Direction Register B (DDRB) DDRC[7:0] — Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC[7:0], configuring all port C pins as inputs. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input NOTE: Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. Figure 18-11 shows the port C I/O logic. NOTE: For those devices packaged in a 42-pin shrink dual in-line package, PTC6 and PTC7 are not connected. DDRC6 and DDRC7 should be set to a 1 to configure PTC6 and PTC7 as outputs. READ DDRC ($0006) INTERNAL DATA BUS WRITE DDRC ($0006) RESET DDRCx WRITE PTC ($0002) PTCx PTCx READ PTC ($0002) Figure 18-11. Port C I/O Circuit MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 329 Input/Output (I/O) Ports When DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When DDRCx is a logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 18-6 summarizes the operation of the port C pins. Table 18-6. Port C Pin Functions Accesses to DDRC DDRC Bit PTC Bit 0 X(1) 1 X Accesses to PTC I/O Pin Mode Read/Write Read Write Input, Hi-Z(2) DDRC[7:0] Pin PTC[7:0](3) Output DDRC[7:0] PTC[7:0] PTC[7:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input. 18.5.3 Port C LED Control Register (LEDC) The port-C LED control register (LEDC) controls the direct LED drive capability on PTC7–PTC3 pins. Each bit is individually configurable and requires that the data direction register, DDRD, bit be configured as an output. Address: $000D Bit 7 6 5 4 3 LEDC7 LEDC6 LEDC5 LEDC4 LEDC3 0 0 0 0 0 Read: 2 1 Bit 0 0 0 0 0 0 0 Write: Reset: Figure 18-12. Port A LED Control Register (LEDA) LEDC[7:3] — Port C LED Drive Enable Bits These read/write bits are software programmable to enable the direct LED drive on an output port pin. 1 = Corresponding port C pin configured for direct LED drive 0 = Corresponding port C pin configured for standard drive Data Sheet 330 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port D 18.6 Port D Port D is an 8-bit special function port that shares all of its pins with the keyboard interrupt module. See Section 20. Keyboard Interrupt Module (KBI). 18.6.1 Port D Data Register (PTD) The port D data register contains a data latch for each of the eight port D pins. Address: $0003 Bit 7 6 5 4 3 2 1 Bit 0 PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 KBI2 KBI1 KBI0 Read: Write: Reset: Alternative Function: Unaffected by reset KBI7 KBI6 KBI5 KBI4 KBI3 Figure 18-13. Port D Data Register (PTD) PTD[7:0] — Port D Data Bits These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. KBI[7:0] — Keyboard Interrupt Pins The keyboard interrupt enable bits, KBIE[7:0], in the keyboard interrupt enable register (KBIER), enable the port D pins as external interrupt pins. See Section 20. Keyboard Interrupt Module (KBI). MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 331 Input/Output (I/O) Ports 18.6.2 Data Direction Register D (DDRD) Data direction register D determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer. Address: $0007 Bit 7 6 5 4 3 2 1 Bit 0 DDRD7 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 18-14. Data Direction Register D (DDRD) DDRD[7:0] — Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input NOTE: Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 18-15 shows the port D I/O logic. READ DDRD ($0007) INTERNAL DATA BUS WRITE DDRD ($0007) RESET DDRDx WRITE PTD ($0003) PTDx PTDx READ PTD ($0003) Figure 18-15. Port D I/O Circuit Data Sheet 332 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port D When DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 18-7 summarizes the operation of the port D pins. Table 18-7. Port D Pin Functions DDRD Bit PTD Bit I/O Pin Mode Accesses to DDRD Accesses to PTD Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRD[7:0] Pin PTD[7:0](3) 1 X Output DDRD[7:0] PTD[7:0] PTD[7:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 333 Input/Output (I/O) Ports Data Sheet 334 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 19. External Interrupt (IRQ) 19.1 Contents 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 19.5 IRQ1 and IRQ2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 19.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 339 19.7 IRQ Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 19.7.1 IRQ1 Status and Control Register . . . . . . . . . . . . . . . . . . . 340 19.7.2 IRQ2 Status and Control Register . . . . . . . . . . . . . . . . . . . 341 19.2 Introduction The external interrupt (IRQ) module provides two maskable interrupt inputs: IRQ1 and IRQ2. 19.3 Features Features of the IRQ module include: • A dedicated external interrupt pin, IRQ1 • An external interrupt pin shared with a port pin, IRQ2/PTB6 • Separate IRQ interrupt control bits for IRQ1 and IRQ2 • Hysteresis buffers • Programmable edge-only or edge and level interrupt sensitivity • Automatic interrupt acknowledge • Internal pullup resistor, with disable option on IRQ2 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor External Interrupt (IRQ) Data Sheet 335 External Interrupt (IRQ) NOTE: Addr. $001C $001E References to either IRQ1 or IRQ2 may be made in the following text by omitting the IRQ number. For example, IRQF may refer generically to IRQ1F and IRQ2F, and IMASK may refer to IMASK1 and IMASK2. Register Name Bit 7 6 5 4 3 2 0 0 IRQ2F 0 Read: IRQ2 Status and Control Register Write: (INTSCR2) Reset: 0 0 0 0 0 0 0 Read: IRQ1 Status and Control Register Write: (INTSCR1) Reset: 0 0 0 0 IRQ1F 0 PTBPUE6 ACK2 ACK1 0 0 0 0 0 0 1 Bit 0 IMASK2 MODE2 0 0 IMASK1 MODE1 0 0 = Unimplemented Figure 19-1. External Interrupt I/O Register Summary 19.4 Functional Description A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 19-2 and Figure 19-3 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch. • Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch. • Reset — A reset automatically clears the interrupt latch. The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-leveltriggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin. Data Sheet 336 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 External Interrupt (IRQ) Freescale Semiconductor External Interrupt (IRQ) Functional Description When an interrupt pin is edge-triggered only, the interrupt remains set until a vector fetch, software clear, or reset occurs. When an interrupt pin is both falling-edge and low-level-triggered, the interrupt remains set until both of the following occur: • Vector fetch or software clear • Return of the interrupt pin to logic 1 The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear. NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. INTERNAL ADDRESS BUS ACK1 RESET TO CPU FOR BIL/BIH INSTRUCTIONS VECTOR FETCH DECODER VDD INTERNAL PULLUP DEVICE IRQ1 VDD IRQ1F D CLR Q CK SYNCHRONIZER IRQ1 INTERRUPT REQUEST IRQ1 FF IMASK1 MODE1 HIGH VOLTAGE DETECT TO MODE SELECT LOGIC Figure 19-2. IRQ1 Block Diagram MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor External Interrupt (IRQ) Data Sheet 337 External Interrupt (IRQ) INTERNAL ADDRESS BUS ACK2 RESET VECTOR FETCH DECODER VDD INTERNAL PULLUP DEVICE VDD IRQ2F PTBPUE6 D CLR Q SYNCHRONIZER CK IRQ2 IRQ2 INTERRUPT REQUEST IRQ2 FF IMASK2 MODE2 Figure 19-3. IRQ2 Block Diagram 19.5 IRQ1 and IRQ2 Pins A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur to clear IRQ: • Data Sheet 338 Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at location defined in Table 2-1 . Vector Addresses. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 External Interrupt (IRQ) Freescale Semiconductor External Interrupt (IRQ) IRQ Module During Break Interrupts • Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, IRQ remains active. The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ1 pin. NOTE: The BIH and BIL instructions do not read the logic level on the IRQ2 pin. NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. The IRQ1 pin has a permanent internal pullup device connected, while the IRQ2 pin has an optional pullup device that can be enabled or disabled by the PTBPUE6 bit in the INTSCR2 register. 19.6 IRQ Module During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during the break state. (See Section 23. Break Module (BRK).) To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect CPU interrupt flags during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ interrupt flags. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor External Interrupt (IRQ) Data Sheet 339 External Interrupt (IRQ) 19.7 IRQ Registers Each IRQ is controlled and monitored by an status and control register. • IRQ1 Status and Control Register — $001E • IRQ2 Status and Control Register — $001C 19.7.1 IRQ1 Status and Control Register The IRQ1 status and control register (INTSCR1) controls and monitors operation of IRQ1. The INTSCR1 has the following functions: • Shows the state of the IRQ1 flag • Clears the IRQ1 latch • Masks IRQ1 interrupt request • Controls triggering sensitivity of the IRQ1 interrupt pin Address: Read: $001E Bit 7 6 5 4 3 2 0 0 0 0 IRQ1F 0 Write: Reset: 1 Bit 0 IMASK1 MODE1 0 0 ACK1 0 0 0 0 0 0 = Unimplemented Figure 19-4. IRQ1 Status and Control Register (INTSCR1) IRQ1F — IRQ1 Flag Bit This read-only status bit is high when the IRQ1 interrupt is pending. 1 = IRQ1 interrupt pending 0 = IRQ1 interrupt not pending ACK1 — IRQ1 Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ1 latch. ACK1 always reads as logic 0. Reset clears ACK1. Data Sheet 340 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 External Interrupt (IRQ) Freescale Semiconductor External Interrupt (IRQ) IRQ Registers IMASK1 — IRQ1 Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ1 interrupt requests. Reset clears IMASK1. 1 = IRQ1 interrupt requests disabled 0 = IRQ1 interrupt requests enabled MODE1 — IRQ1 Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ1 pin. Reset clears MODE1. 1 = IRQ1 interrupt requests on falling edges and low levels 0 = IRQ1 interrupt requests on falling edges only 19.7.2 IRQ2 Status and Control Register The IRQ2 status and control register (INTSCR2) controls and monitors operation of IRQ2. The INTSCR2 has the following functions: • Enables/disables the internal pullup device on IRQ2 pin • Shows the state of the IRQ2 flag • Clears the IRQ2 latch • Masks IRQ2 interrupt request • Controls triggering sensitivity of the IRQ2 interrupt pin Address: $001C Bit 7 Read: 6 0 5 4 3 2 0 0 IRQ2F 0 PTBPUE6 Write: Reset: 1 Bit 0 IMASK2 MODE2 0 0 ACK2 0 0 0 0 0 0 = Unimplemented Figure 19-5. IRQ2 Status and Control Register (INTSCR2) PTBPUE6 — IRQ2 Pin Pullup Enable Bit. Setting this bit to logic 1 disables the pullup on PTB6/IRQ2 pin. Reset clears this bit. 1 = IRQ2 pin internal pull-up is disabled 0 = IRQ2 pin internal pull-up is enabled MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor External Interrupt (IRQ) Data Sheet 341 External Interrupt (IRQ) IRQ2F — IRQ2 Flag Bit This read-only status bit is high when the IRQ2 interrupt is pending. 1 = IRQ2 interrupt pending 0 = IRQ2 interrupt not pending ACK2 — IRQ2 Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ2 latch. ACK2 always reads as logic 0. Reset clears ACK2. IMASK2 — IRQ2 Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ2 interrupt requests. Reset clears IMASK2. 1 = IRQ2 interrupt requests disabled 0 = IRQ2 interrupt requests enabled MODE2 — IRQ2 Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ2 pin. Reset clears MODE2. 1 = IRQ2 interrupt requests on falling edges and low levels 0 = IRQ2 interrupt requests on falling edges only Data Sheet 342 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 External Interrupt (IRQ) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 20. Keyboard Interrupt Module (KBI) 20.1 Contents 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 20.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 347 20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 348 20.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 349 20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 20.10 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 350 20.2 Introduction The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTD0–PTD7. When a port pin is enabled for keyboard interrupt function, an internal 30kΩ pullup device is also enabled on the pin. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Keyboard Interrupt Module (KBI) Data Sheet 343 Keyboard Interrupt Module (KBI) 20.3 Features Features of the keyboard interrupt module include the following: • Eight keyboard interrupt pins with pullup devices • Separate keyboard interrupt enable bits and one keyboard interrupt mask • Programmable edge-only or edge- and level- interrupt sensitivity • Exit from low-lower modes Addr. Register Name $001A Read: Keyboard Status and Control Register Write: (KBSCR) Reset: Read: Keyboard Interrupt Enable Write: $001B Register (KBIER) Reset: Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 1 Bit 0 IMASKK MODEK ACKK 0 0 0 0 0 0 0 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 = Unimplemented Figure 20-1. KBI I/O Register Summary 20.4 I/O Pins The eight keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins are listed in Table 20-1. The generic pin name appear in the text that follows. Table 20-1. Pin Name Conventions KBI Generic Pin Name Full MCU Pin Name Pin Selected for KBI Function by KBIEx Bit in KBIER KBI0–KBI7 PTD0/KBI0–PTD7/KBI7 KBIE0–KBIE7 Data Sheet 344 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Keyboard Interrupt Module (KBI) Freescale Semiconductor Keyboard Interrupt Module (KBI) Functional Description 20.5 Functional Description INTERNAL BUS KBI0 ACKK VDD VECTOR FETCH DECODER KEYF RESET . KBIE0 D CLR Q SYNCHRONIZER . CK TO PULLUP ENABLE . KEYBOARD INTERRUPT FF KBI7 Keyboard Interrupt Request IMASKK MODEK KBIE7 TO PULLUP ENABLE Figure 20-2. Keyboard Interrupt Block Diagram Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port D pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port D also enables its internal pull-up device. A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. • If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. • If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low. If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request: MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Keyboard Interrupt Module (KBI) Data Sheet 345 Keyboard Interrupt Module (KBI) • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFE0 and $FFE1. • Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register. NOTE: Data Sheet 346 Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Keyboard Interrupt Module (KBI) Freescale Semiconductor Keyboard Interrupt Module (KBI) Keyboard Interrupt Registers 20.5.1 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pull-up to reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDR bits in data direction register. 2. Write logic 1s to the appropriate data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 20.6 Keyboard Interrupt Registers Two registers control the operation of the keyboard interrupt module: • Keyboard Status and Control Register — $001A • Keyboard Interrupt Enable Register — $001B MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Keyboard Interrupt Module (KBI) Data Sheet 347 Keyboard Interrupt Module (KBI) 20.6.1 Keyboard Status and Control Register • Flags keyboard interrupt requests • Acknowledges keyboard interrupt requests • Masks keyboard interrupt requests • Controls keyboard interrupt triggering sensitivity Address: Read: $001A Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 Write: Reset: 1 Bit 0 IMASKK MODEK 0 0 ACKK 0 0 0 0 0 0 = Unimplemented Figure 20-3. Keyboard Status and Control Register (KBSCR) KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK — Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only Data Sheet 348 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Keyboard Interrupt Module (KBI) Freescale Semiconductor Keyboard Interrupt Module (KBI) Low-Power Modes 20.6.2 Keyboard Interrupt Enable Register The port-D keyboard interrupt enable register enables or disables each port-D pin to operate as a keyboard interrupt pin. Address: $001B Bit 7 6 5 4 3 2 1 Bit 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 20-4. Keyboard Interrupt Enable Register (KBIER) KBIE7–KBIE0 — Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = KBIx pin enabled as keyboard interrupt pin 0 = KBIx pin not enabled as keyboard interrupt pin 20.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 20.7.1 Wait Mode The keyboard interrupt module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 20.7.2 Stop Mode The keyboard interrupt module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Keyboard Interrupt Module (KBI) Data Sheet 349 Keyboard Interrupt Module (KBI) 20.8 Keyboard Module During Break Interrupts The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the SIM break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. Data Sheet 350 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Keyboard Interrupt Module (KBI) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 21. Computer Operating Properly (COP) 21.1 Contents 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 21.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352 21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 354 21.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 21.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 21.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 356 21.2 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the configuration register 1 (CONFIG1). MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Computer Operating Properly (COP) Data Sheet 351 Computer Operating Properly (COP) 21.3 Functional Description Figure 21-1 shows the structure of the COP module. CLEAR STAGES 5–12 RESET STATUS REGISTER COP TIMEOUT STOP INSTRUCTION INTERNAL RESET SOURCES RESET VECTOR FETCH RESET CIRCUIT 12-BIT COP PRESCALER CLEAR ALL STAGES ICLK COPCTL WRITE COP CLOCK 6-BIT COP COUNTER COPEN (FROM SIM) COP DISABLE (COPD FROM CONFIG1) RESET COPCTL WRITE CLEAR COP COUNTER COP RATE SEL (COPRS FROM CONFIG1) Figure 21-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 – 24 or 213 – 24 ICLK cycles, depending on the state of the COP rate select bit, COPRS, in the CONFIG1 register. With a 213 – 24 ICLK cycle overflow option, a 24-kHz ICLK gives a COP timeout period of 341ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the prescaler. NOTE: Data Sheet 352 Service the COP immediately after reset and before entering or after exiting STOP Mode to guarantee the maximum time before the first COP counter overflow. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Computer Operating Properly (COP) Freescale Semiconductor Computer Operating Properly (COP) I/O Signals A COP reset pulls the RST pin low for 32 ICLK cycles and sets the COP bit in the SIM reset status register (SRSR). In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held at VTST. During the break state, VTST on the RST pin disables the COP. NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. 21.4 I/O Signals The following paragraphs describe the signals shown in Figure 21-1. 21.4.1 ICLK ICLK is the internal oscillator output signal. ICLK frequency is approximately equal to 24kHz. See Section 24. Electrical Specifications for ICLK parameters. 21.4.2 STOP Instruction The STOP instruction clears the COP prescaler. 21.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see 21.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low byte of the reset vector. 21.4.4 Power-On Reset The power-on reset (POR) circuit clears the COP prescaler 4096 ICLK cycles after power-up. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Computer Operating Properly (COP) Data Sheet 353 Computer Operating Properly (COP) 21.4.5 Internal Reset An internal reset clears the COP prescaler and the COP counter. 21.4.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler. 21.4.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the CONFIG1 register. (See Figure 21-2 and Section 5. Configuration and Mask Option Registers (CONFIG & MOR).) 21.4.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the CONFIG1 register. Address: $001F Bit 7 6 5 4 3 2 1 Bit 0 SSREC STOP COPD 0 0 0 Read: COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 Write: Reset: 0 0 0 0 0* * Reset by POR only. Figure 21-2. Configuration Register 1 (CONFIG1) COPRS — COP Rate Select COPRS selects the COP time-out period. Reset clears COPRS. 1 = COP time out period = 213 – 24 ICLK cycles 0 = COP time out period = 218 – 24 ICLK cycles COPD — COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled Data Sheet 354 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Computer Operating Properly (COP) Freescale Semiconductor Computer Operating Properly (COP) COP Control Register 21.5 COP Control Register The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. Address: $FFFF Bit 7 6 5 4 3 Read: Low byte of reset vector Write: Clear COP counter Reset: Unaffected by reset 2 1 Bit 0 Figure 21-3. COP Control Register (COPCTL) 21.6 Interrupts The COP does not generate CPU interrupt requests. 21.7 Monitor Mode When monitor mode is entered with VTST on the IRQ1 pin, the COP is disabled as long as VTST remains on the IRQ1 pin or the RST pin. When monitor mode is entered by having blank reset vectors and not having VTST on the IRQ1 pin, the COP is automatically disabled until a POR occurs. 21.8 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Computer Operating Properly (COP) Data Sheet 355 Computer Operating Properly (COP) 21.8.1 Wait Mode The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. 21.8.2 Stop Mode Stop mode turns off the ICLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction is disabled, execution of a STOP instruction results in an illegal opcode reset. 21.9 COP Module During Break Mode The COP is disabled during a break interrupt when VTST is present on the RST pin. Data Sheet 356 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Computer Operating Properly (COP) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 22. Low-Voltage Inhibit (LVI) 22.1 Contents 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358 22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 22.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .360 22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 360 22.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 22.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 22.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 22.2 Introduction This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF. 22.3 Features Features of the LVI module include: • Programmable LVI reset • Selectable LVI trip voltage • Programmable stop mode operation MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Low-Voltage Inhibit (LVI) Data Sheet 357 Low-Voltage Inhibit (LVI) Addr. Register Name Bit 7 Read: LVIOUT Low-Voltage Inhibit Status $FE0F Register Write: (LVISR) Reset: 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 22-1. LVI I/O Register Summary 22.4 Functional Description Figure 22-2 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5V or 3V trip point bit, LVI5OR3, enables the trip point voltage, VTRIPF, to be configured for 5V operation. Clearing the LVI5OR3 bit enables the trip point voltage, VTRIPF, to be configured for 3V operation. The actual trip points are shown in Section 24. Electrical Specifications. VDD STOP INSTRUCTION LVISTOP FROM CONFIG1 FROM CONFIG1 LVIRSTD LVIPWRD FROM CONFIG VDD > VTRIPR = 0 LOW VDD DETECTOR LVI RESET VDD ≤ VTRIPF = 1 LVIOUT LVI5OR3 TO LVISR FROM CONFIG1 Figure 22-2. LVI Module Block Diagram Data Sheet 358 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Low-Voltage Inhibit (LVI) Freescale Semiconductor Low-Voltage Inhibit (LVI) Functional Description NOTE: After a power-on reset (POR) the LVI’s default mode of operation is 3V. If a 5V system is used, the user must set the LVI5OR3 bit to raise the trip point to 5V operation. Note that this must be done after every poweron reset since the default will revert back to 3V mode after each poweron reset. If the VDD supply is below the 5V mode trip voltage but above the 3V mode trip voltage when POR is released, the MCU will operate because VTRIPF defaults to 3V mode after a POR. So, in a 5V system care must be taken to ensure that VDD is above the 5V mode trip voltage after POR is released. NOTE: If the user requires 5V mode and sets the LVI5OR3 bit after a power-on reset while the VDD supply is not above the VTRIPF for 5V mode, the MCU will immediately go into reset. The LVI in this case will hold the MCU in reset until either VDD goes above the rising 5V trip point, VTRIPR, which will release reset or VDD decreases to approximately 0V which will re-trigger the power-on reset and reset the trip point to 3V operation. LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration register 1 (CONFIG1). See Section 5. Configuration and Mask Option Registers (CONFIG & MOR) for details of the LVI’s configuration bits. Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which causes the MCU to exit reset. See 9.4.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction between the SIM and the LVI. The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR). An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices. 22.4.1 Polled LVI Operation In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling the LVIOUT bit. In the configuration register 1 (CONFIG1), the LVIPWRD bit must be at logic 0 to enable the LVI module, and the LVIRSTD bit must be at logic 1 to disable LVI resets. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Low-Voltage Inhibit (LVI) Data Sheet 359 Low-Voltage Inhibit (LVI) 22.4.2 Forced Reset Operation In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register 1 (CONFIG1), the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets. 22.4.3 Voltage Hysteresis Protection Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS. 22.4.4 LVI Trip Selection The LVI5OR3 bit in the CONFIG1 register selects whether the LVI is configured for 5V or 3V protection. NOTE: Data Sheet 360 The MCU is guaranteed to operate at a minimum supply voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. (See Section 24. Electrical Specifications for the actual trip point voltages.) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Low-Voltage Inhibit (LVI) Freescale Semiconductor Low-Voltage Inhibit (LVI) LVI Status Register 22.5 LVI Status Register The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level. Address: Read: $FE0F Bit 7 6 5 4 3 2 1 Bit 0 LVIOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 22-3. LVI Status Register LVIOUT — LVI Output Bit This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage (see Table 22-1). Reset clears the LVIOUT bit. Table 22-1. LVIOUT Bit Indication VDD LVIOUT VDD > VTRIPR 0 VDD < VTRIPF 1 VTRIPF < VDD < VTRIPR Previous value 22.6 LVI Interrupts The LVI module does not generate interrupt requests. 22.7 Low-Power Modes The STOP and WAIT instructions put the MCU in low powerconsumption standby modes. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Low-Voltage Inhibit (LVI) Data Sheet 361 Low-Voltage Inhibit (LVI) 22.7.1 Wait Mode If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode. 22.7.2 Stop Mode If enabled in stop mode (LVISTOP = 1), the LVI module remains active in stop mode. If enabled to generate resets (LVIRSTD = 0), the LVI module can generate a reset and bring the MCU out of stop mode. Data Sheet 362 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Low-Voltage Inhibit (LVI) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 23. Break Module (BRK) 23.1 Contents 23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 23.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364 23.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 366 23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .366 23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 366 23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 366 23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366 23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367 23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 367 23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 368 23.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 368 23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 370 23.2 Introduction This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Break Module (BRK) Data Sheet 363 Break Module (BRK) 23.3 Features Features of the break module include: • Accessible input/output (I/O) registers during the break interrupt • CPU-generated break interrupts • Software-generated break interrupts • COP disabling during break interrupts 23.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: • A CPU-generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic 1 to the BRKA bit in the break status and control register. When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 23-1 shows the structure of the break module. Data Sheet 364 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Break Module (BRK) Freescale Semiconductor Break Module (BRK) Functional Description IAB15–IAB8 BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB15–IAB0 BREAK CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW IAB7–IAB0 Figure 23-1. Break Module Block Diagram Addr. Register Name Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: $FE03 $FE0C $FE0D Read: SIM Break Flag Control Write: Register (SBFCR) Reset: Read: Break Address Register Write: High (BRKH) Reset: Read: Break Address Register Write: Low (BRKL) Reset: Read: Break Status and Control $FE0E Write: Register (BRKSCR) Reset: Note: Writing a logic 0 clears SBSW. Bit 7 6 5 4 3 2 R R R R R R 1 SBSW Note Bit 0 R 0 BCFE R R R R R R R Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved Figure 23-2. Break Module I/O Register Summary MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Break Module (BRK) Data Sheet 365 Break Module (BRK) 23.4.1 Flag Protection During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. 23.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 23.4.3 TIM1 and TIM2 During Break Interrupts A break interrupt stops the timer counters. 23.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VTST is present on the RST pin. 23.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 23.5.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set (see Section 9. System Integration Module (SIM)). Clear the SBSW bit by writing logic 0 to it. Data Sheet 366 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Break Module (BRK) Freescale Semiconductor Break Module (BRK) Break Module Registers 23.5.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. 23.6 Break Module Registers These registers control and monitor operation of the break module: • Break status and control register (BRKSCR) • Break address register high (BRKH) • Break address register low (BRKL) • SIM break status register (SBSR) • SIM break flag control register (SBFCR) 23.6.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits. Address: $FE0E Bit 7 6 BRKE BRKA 0 0 Read: 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 23-3. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Break Module (BRK) Data Sheet 367 Break Module (BRK) BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = (When read) Break address match 0 = (When read) No break address match 23.6.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Address: $FE0C Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 23-4. Break Address Register High (BRKH) Address: $FE0D Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 23-5. Break Address Register Low (BRKL) 23.6.3 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode. The flag is useful in applications requiring a return to wait mode after exiting from a break interrupt. Data Sheet 368 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Break Module (BRK) Freescale Semiconductor Break Module (BRK) Break Module Registers Address: $FE00 Bit 7 6 5 4 3 2 R R R R R R Read: 1 Bit 0 SBSW R Write: Note Reset: 0 Note: Writing a logic 0 clears SBSW. R = Reserved Figure 23-6. SIM Break Status Register (SBSR) SBSW — Break Wait Bit This status bit is set when a break interrupt causes an exit from wait mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The following code is an example. ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI BRCLR SBSW,SBSR, RETURN ; See if wait mode or stop mode was exited by ; break. TST LOBYTE,SP ;If RETURNLO is not zero, BNE DOLO ;then just decrement low byte. DEC HIBYTE,SP ;Else deal with high byte, too. DOLO DEC LOBYTE,SP ;Point to WAIT/STOP opcode. RETURN PULH RTI ;Restore H register. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Break Module (BRK) Data Sheet 369 Break Module (BRK) 23.6.4 SIM Break Flag Control Register The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: Reset: 0 R = Reserved Figure 23-7. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Data Sheet 370 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Break Module (BRK) Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 24. Electrical Specifications 24.1 Contents 24.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 24.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 372 24.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 373 24.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 24.6 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 374 24.7 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 376 24.8 5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 24.9 3.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 24.10 5.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 378 24.11 3.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 379 24.12 5.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .380 24.13 3.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .381 24.14 Analog Module Electrical Characteristics . . . . . . . . . . . . . . . . 382 24.14.1 Temperature Sensor Electrical Characteristics . . . . . . . . . 382 24.14.2 Current Detection Electrical Characteristics. . . . . . . . . . . . 382 24.14.3 Two-Stage Amplifier Electrical Characteristics. . . . . . . . . . 382 24.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 383 24.16 MMIIC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 383 24.17 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 385 24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 386 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Electrical Specifications Data Sheet 371 Electrical Specifications 24.2 Introduction This section contains electrical and timing specifications. 24.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 24.6 5.0V DC Electrical Characteristics for guaranteed operating conditions. Table 24-1. Absolute Maximum Ratings(1) Characteristic Symbol Value Unit Supply voltage VDD –0.3 to +6.0 V Input voltage All pins (except IRQ1) IRQ1 pin VIN VSS –0.3 to VDD +0.3 VSS –0.3 to 8.5 V I ±25 mA Maximum current out of VSS IMVSS 100 mA Maximum current into VDD IMVDD 100 mA Storage temperature TSTG –55 to +150 °C Maximum current per pin excluding VDD and VSS Notes: 1. Voltages referenced to VSS. NOTE: Data Sheet 372 This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD.) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Electrical Specifications Freescale Semiconductor Electrical Specifications Functional Operating Range 24.4 Functional Operating Range Table 24-2. Operating Range Characteristic Operating temperature range Operating voltage range Symbol Value Unit TA – 40 to +125 – 40 to +85 °C VDD — 5V ± 10% 3V ± 10%(1) 5V ± 10% V Notes: 1. A minimum operating VDD of 3V is required to achieve the ADC module specifications stated in Table 24-11 . 3V ADC Electrical Characteristics. 24.5 Thermal Characteristics Table 24-3. Thermal Characteristics Characteristic Symbol Value Unit Thermal resistance 42-pin SDIP 48-pin LQFP θJA 60 80 °C/W °C/W I/O pin power dissipation PI/O User determined W Power dissipation(1) PD PD = (IDD × VDD) + PI/O = K/(TJ + 273 °C) W Constant(2) K Average junction temperature TJ PD x (TA + 273 °C) + PD2 × θJA W/°C TA + (PD × θJA) °C Notes: 1. Power dissipation is a function of temperature. 2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Electrical Specifications Data Sheet 373 Electrical Specifications 24.6 5.0V DC Electrical Characteristics Table 24-4. 5V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILOAD = –2.0 mA) PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7] VOH VDD –0.8 — — V Output low voltage (ILOAD = 1.6mA) PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7] VOL — — 0.4 V LED sink current (VDrain = 4.0V) PTA[0:5], PTC[3:7] IOL — –15 — mA Input high voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1. VIH 0.7 × VDD — VDD V Input low voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VIL VSS — 0.3 × VDD V Run(3), fOP = 8.0 MHz with ADC on with ADC off Wait(4), fOP = 8.0 MHz — — — 24 18 7.5 40 30 15 mA mA mA Stop(5) 25°C (with OSC, TBM, current sense, LVI) 25°C (with OSC, TBM, current sense) 25°C (with OSC, TBM) 25°C –40°C to 85°C (with OSC, TBM, current sense, LVI) –40°C to 85°C (with OSC, TBM, current sense) –40°C to 85°C (with OSC, TBM) –40°C to 85°C –40°C to 125°C (with OSC, TBM, current sense, LVI) –40°C to 125°C (with OSC, TBM, current sense) –40°C to 125°C (with OSC, TBM) –40°C to 125°C — — — — — — — — — — — — 50 12 9 1 — — — — — — — — 150 40 30 10 180 50 40 15 200 60 50 25 µA µA µA µA µA µA µA µA µA µA µA µA VDD supply current IDD Digital I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — ±1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR re-arm voltage(6) VPOR 0 — 100 mV Data Sheet 374 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Electrical Specifications Freescale Semiconductor Electrical Specifications 5.0V DC Electrical Characteristics Table 24-4. 5V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit POR rise-time ramp rate(7) RPOR 0.035 — — V/ms Monitor mode entry voltage VTST 1.4 × VDD — 8 V Pullup resistors(8) PTD[0:7] configured as KBI[0:7] RST, IRQ1, IRQ2 RPU1 RPU2 24 24 35 35 42 42 kΩ kΩ Low-voltage inhibit, trip falling voltage VLVII5 3.80 4.15 4.45 V Low-voltage inhibit, trip rising voltage VLVII5 3.95 4.30 4.60 V Schmitt trigger input low level trip voltage RST, IRQ1, IRQ2, KBI[0:7] VSCMTL — 1.21 — V Schmitt trigger input high level trip voltage RST, IRQ1, IRQ2, KBI[0:7] VSCMTH — 1.65 — V Notes: 1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Electrical Specifications Data Sheet 375 Electrical Specifications 24.7 3.0V DC Electrical Characteristics Table 24-5. 3V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILOAD = –1.0mA) PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7] VOH VDD –0.4 — — V Output low voltage (ILOAD = 0.8mA) PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7] VOL — — 0.4 V LED sink current (VDrain = 2.0V) PTA[0:5], PTC[3:7] VOL — –5 — mA Input high voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VIH 0.7 × VDD — VDD V Input low voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VIL VSS — 0.3 × VDD V — — — 7 5 2.5 16 12 6 mA mA mA — — — — — — 27 5 0.5 — — — 80 12 5 100 15 5 µA µA µA µA µA µA VDD supply current Run(3), fOP = 4.0 MHz with ADC on with ADC off Wait(4), fOP = 4.0 MHz Stop(5) 25°C (with OSC, TBM, LVI) 25°C (with OSC, TBM) 25°C –40°C to 85°C (with OSC, TBM, LVI) –40°C to 85°C (with OSC, TBM) –40°C to 85°C IDD Digital I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — ±1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR re-arm voltage(6) VPOR 0 — 100 mV POR rise-time ramp rate(7) RPOR 0.035 — — V/ms Monitor mode entry voltage VHI 1.4 × VDD — 2.0 × VDD V RPU1 RPU2 24 24 35 35 42 42 kΩ kΩ Pullup resistors(8) PTD[0:7] configured as KBI[0:7] RST, IRQ1, IRQ2 Data Sheet 376 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Electrical Specifications Freescale Semiconductor Electrical Specifications 5.0V Control Timing Table 24-5. 3V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit VLVI3 2.32 2.49 2.68 V Schmitt trigger input low level trip voltage RST, IRQ1, IRQ2, KBI[0:7] VSCMTL — 0.8 — V Schmitt trigger input high level trip voltage RST, IRQ1, IRQ2, KBI[0:7] VSCMTH — 1.2 — V Low-voltage inhibit, trip voltage (No hysteresis implemented for 3V LVI) Notes: 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V. 24.8 5.0V Control Timing Table 24-6. 5V Control Timing Characteristic(1) Symbol Min Max Unit Internal operating frequency(2) fOP — 8.0 MHz RST input pulse width low(3) tIRL 750 — ns Notes: 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. 24.9 3.0V Control Timing Table 24-7. 3V Control Timing Characteristic(1) Symbol Min Max Unit Internal operating frequency(2) fOP — 4.0 MHz RST input pulse width low(3) tIRL 1.5 — µs Notes: 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Electrical Specifications Data Sheet 377 Electrical Specifications 24.10 5.0V Oscillator Characteristics Table 24-8. 5V Oscillator Specifications Characteristic Symbol Min Typ Max Unit Internal oscillator clock frequency fICLK 19.2k 24k 28.8k Hz External reference clock to OSC1(1) fOSC dc — 20M Hz Crystal reference frequency(2) fXCLK 32.768k 4.9152M Hz Crystal load capacitance(3) CL — — — Crystal fixed capacitance C1 — 2 × CL (25p) — F Crystal tuning capacitance C2 — 2 × CL (25p) — F Feedback bias resistor RB — 10M — Ω Series resistor(4) RS — 100k — Ω fRCCLK 2M — 18M Hz External RC clock frequency External resistor REXT External capacitor CEXT Ω See Figure 24-1 — 10 — pF Notes: 1. No more than 10% duty cycle deviation from 50%. 2. Fundamental mode crystals only. 3. Consult crystal manufacturer’s data. 4. Not Required for high frequency crystals. Bus Frequency, fOP (MHz) 5 MCU CEXT = 10 pF 4 5V @ 25°C OSC1 3 VDD REXT 2 CEXT 1 fRCCLK = fOP × 4 0 0 2 4 6 Resistor REXT (kΩ) 8 10 Figure 24-1. RC vs. Bus Frequency (5V @25°C) Data Sheet 378 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Electrical Specifications Freescale Semiconductor Electrical Specifications 3.0V Oscillator Characteristics 24.11 3.0V Oscillator Characteristics Table 24-9. 3V Oscillator Specifications Characteristic Symbol Min Typ Max Unit Internal oscillator clock frequency fICLK 13.8k 17.2k 20.6k Hz External reference clock to OSC1(1) fOSC dc — 16M Hz Crystal reference frequency(2) fXCLK 32.768k 4.9152M Hz Crystal load capacitance(3) CL — — — Crystal fixed capacitance C1 — 2 × CL (25p) — F Crystal tuning capacitance C2 — 2 × CL (25p) — F Feedback bias resistor RB — 10M — Ω Series resistor(4) RS — 100k — Ω fRCCLK 2M — 10M Hz External RC clock frequency External resistor REXT External capacitor CEXT Ω See Figure 24-2 — 10 — pF Notes: 1. No more than 10% duty cycle deviation from 50%. 2. Fundamental mode crystals only. 3. Consult crystal manufacturer’s data. 4. Not Required for high frequency crystals. Bus Frequency, fOP (MHz) 3 MCU CEXT = 10 pF 2.5 3V @ 25°C OSC1 2 1.5 VDD REXT CEXT 1 0.5 fRCCLK = fOP × 4 0 0 5 10 Resistor REXT (kΩ) 15 20 Figure 24-2. RC vs. Bus Frequency (3V @25°C) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Electrical Specifications Data Sheet 379 Electrical Specifications 24.12 5.0V ADC Electrical Characteristics Table 24-10. 5V ADC Electrical Characteristics Characteristic Symbol Min Max Unit Supply voltage VDDA 4.5 5.5 V VDDA is an dedicated pin and should be tied to VDD on the PCB with proper decoupling. Input range VADIN 0 VDDA V VADIN ≤ VDDA Resolution BAD 10 10 bits Absolute accuracy AAD — ± 1.5 LSB ADC internal clock fADIC 500k 2M Hz Conversion range RAD VREFL VREFH V ADC voltage reference high VREFH — VDDA + 0.1 V ADC voltage reference low VREFL VSSA – 0.1 — V Conversion time tADC 16 17 tADIC cycles Sample time tADS 5 — tADIC cycles Monotonicity MAD Zero input reading ZADI 000 001 HEX VADIN = VREFL Full-scale reading FADI 3FD 3FF HEX VADIN = VREFH Input capacitance CADI — 20 pF Input impedance RADI 20M — Ω VREFH/VREFL IVREF — 1.6 mA Data Sheet 380 Notes Includes quantization. ±0.5 LSB = ±1 ADC step. tADIC = 1/fADIC Guaranteed Not tested. Not tested. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Electrical Specifications Freescale Semiconductor Electrical Specifications 3.0V ADC Electrical Characteristics 24.13 3.0V ADC Electrical Characteristics Table 24-11. 3V ADC Electrical Characteristics Characteristic Symbol Min Max Unit Supply voltage VDDA 3.0 3.3 V VDDA is an dedicated pin and should be tied to VDD on the PCB with proper decoupling. Input range VADIN 0 VDDA V VADIN ≤ VDDA Resolution BAD 10 10 bits Absolute accuracy AAD — ± 1.5 LSB ADC internal clock fADIC 500 k 2M Hz Conversion range RAD VREFL VREFH V ADC voltage reference high VREFH — VDDA + 0.1 V ADC voltage reference low VREFL VSSA – 0.1 — V Conversion time tADC 16 17 tADIC cycles Sample time tADS 5 — tADIC cycles Monotonicity MAD Zero input reading ZADI 000 001 HEX VADIN = VREFL Full-scale reading FADI 3FD 3FF HEX VADIN = VREFH Input capacitance CADI — 20 pF Not tested. Input impedance RADI 20M — Ω Measured at 5V VREFH/VREFL IVREF — 1.6 mA Includes quantization. ±0.5 LSB = ±1 ADC step. tADIC = 1/fADIC Guaranteed MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Notes Electrical Specifications Not tested. Data Sheet 381 Electrical Specifications 24.14 Analog Module Electrical Characteristics 24.14.1 Temperature Sensor Electrical Characteristics Table 24-12. Temperature Sensor Electrical Characteristics Characteristic Symbol Min Typ Max Unit –20 — 70 °C 1.275 1.048 1.338 1.089 1.372 1.146 ADC steps/°C Temperature range Temperature slope VDD =5V ± 10%, GAINA=2, GAINB=6 VDD =3V ± 10%, GAINA=2, GAINB=4 24.14.2 Current Detection Electrical Characteristics Table 24-13. Current Detection Electrical Characteristics Characteristic Trip point(1) Symbol Min Typ Max Unit VDET –6 — +12 mV Notes: 1. The current detect comparator is designed for VDD =5V ± 10% only. 24.14.3 Two-Stage Amplifier Electrical Characteristics Table 24-14. Two-Stage Amplifier Electrical Characteristics Characteristic Symbol Min Typ Max Unit Amplifier input signal hold time tAMH 10 + [(GAINA – 1) × 2] tAM cycles(1) Amplifier response time tAMR 70 + (8×GAINA) + (6×GAINB) tAM cycles Amplifier gain tolerance VDD =5V ± 10%, GAINA=4, GAINB=16 VIN = 10mV to 30mV VIN = 30mV to 65mV VDD =5V ± 10%, GAINA=6, GAINB=16 VIN = 10mV to 30mV VIN = 30mV to 44mV VDD =3V ± 10%, GAINA=4, GAINB=16 VIN = 10mV to 38mV VDD =3V ± 10%, GAINA=6, GAINB=16 VIN = 10mV to 24mV –3.5 –1.5 — — +3.5 +1.5 –3.5 –1.5 — — +3.5 +1.5 –3.5 — +3.5 –3.5 — +3.5 % Notes: 1. tAM is the AMCLK. Data Sheet 382 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Electrical Specifications Freescale Semiconductor Electrical Specifications Timer Interface Module Characteristics 24.15 Timer Interface Module Characteristics Characteristic Input capture pulse width Symbol Min Max Unit tTIH, tTIL 1 — tcyc 24.16 MMIIC Electrical Characteristics Table 24-15. MMIIC DC Electrical Characteristics Characteristic(1) Symbol Min Input low VIL Input high VIH Output low Typ Max Unit –0.5 0.8 V Data, clock input low. 2.1 5.5 V Data, clock input high. VOL 0.4 V Data, clock output low; @IPULLUP,MAX Input leakage ILEAK ±5 µA Input leakage current Pullup current IPULLUP µA Current through pull-up resistor or current source. See note.(2) 100 350 Comments Notes: 1. VDD = 2.7 to 5.5Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. The IPULLUP (max) specification is determined primarily by the need to accommodate a maximum of 1.1kΩ equivalent series resistor of removable SMBus devices, such as the smart battery, while maintaining the VOL (max) of the bus. SDA SCL tHD.STA tLOW tHIGH tSU.DAT tHD.DAT tSU.STA tSU.STO Figure 24-3. MMIIC Signal Timings See Table 24-16 for MMIIC timing parameters. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Electrical Specifications Data Sheet 383 Electrical Specifications Table 24-16. MMIIC Interface Input/Output Signal Timing Characteristic Symbol Min Typ Max Unit 100 kHz Operating frequency fSMB 10 Bus free time tBUF 4.7 µs Bus free time between STOP and START condition Repeated start hold time. tHD.STA 4.0 µs Hold time after (repeated) START condition. After this period, the first clock is generated. Repeated start setup time. tSU.STA 4.7 µs Repeated START condition setup time. Stop setup time tSU.STO 4.0 µs Stop condition setup time. Hold time tHD.DAT 300 ns Data hold time. Setup time tSU.DAT 250 ns Data setup time. Clock low time-out tTIMEOUT 25 ms Clock low time-out.(1) Clock low tLOW 4.7 µs Clock low period Clock high tHIGH 4.0 µs Clock high period.(2) 35 Comments MMIIC operating frequency Slave clock low extend time tLOW.SEXT 25 ms Cumulative clock low extend time (slave device)(3) Master clock low extend time tLOW.MEXT 10 ms Cumulative clock low extend time (master device) (4) Fall time tF 300 ns Clock/Data Fall Time(5) Rise time tR 1000 ns Clock/Data Rise Time(5) Notes: 1. Devices participating in a transfer will timeout when any clock low exceeds the value of TTIMEOUT min. of 25ms. Devices that have detected a timeout condition must reset the communication no later than TTIMEOUT max of 35ms. The maximum value specified must be adhered to by both a master and a slave as it incorporates the cumulative limit for both a master (10 ms) and a slave (25 ms). Software should turn-off the MMIIC module to release the SDA and SCL lines. 2. THIGH MAX provides a simple guaranteed method for devices to detect the idle conditions. 3. TLOW.SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start to the stop. If a slave device exceeds this time, it is expected to release both its clock and data lines and reset itself. 4. TLOW.MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from start-to-ack, ack-to-ack, or ack-to-stop. 5. Rise and fall time is defined as follows: TR = (VILMAX – 0.15) to (VIHMIN + 0.15), TF = 0.9×VDD to (VILMAX – 0.15). Data Sheet 384 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Electrical Specifications Freescale Semiconductor Electrical Specifications CGM Electrical Specifications 24.17 CGM Electrical Specifications Characteristic Symbol Min Typ Max Unit Reference frequency fRDV 30 32.768 100 kHz Range nominal multiplies fNOM — 38.4 — kHz VCO center-of-range frequency fVRS 38.4k — 40.0M Hz VCO range linear range multiplier L 1 — 255 VCO power-of-two-range multiplier 2E 1 — 4 VCO multiply factor N 1 — 4095 VCO prescale multiplier 2P 1 — 8 Reference divider factor R 1 1 15 VCO operating frequency fVCLK 38.4k — 40.0M Hz Manual acquisition time tLOCK — — 50 ms Automatic lock time tLOCK — — 50 ms Automatic lock time Wake up from stop with OSC enabled(1) tLOCK — 10 15 ms — fRCLK × 0.025% × 2P N/4 Hz PLL jitter (2) fJ 0 Notes: 1. Test condition: VDD = 5.0Vdc / 3.0Vdc, VSS = 0 Vdc. Reference frequency = 32.768kHz, locking to 4MHz bus frequency. 2. Deviation of average bus frequency over 2ms. N = VCO multiplier. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Electrical Specifications Data Sheet 385 Electrical Specifications 24.18 FLASH Memory Characteristics Table 24-17. FLASH Memory Electrical Characteristics Characteristic Data retention voltage Symbol Min. Max. Unit VRDR 1.3 — V Number of rows per page 2 Rows Number of bytes per page 128 Bytes Read bus clock frequency fRead(1) 32k 8M Hz Page erase time tErase(2) 1 — ms Mass erase time tMErase(3) 4 — ms PGM/ERASE to HVEN setup time tnvs 10 — µs High-voltage hold time tnvh 5 — µs High-voltage hold time (mass erase) tnvhl 100 — µs Program hold time tpgs 5 — µs Program time tProg 30 40 µs Address/data setup time tads — 30 ns Address/data hold time tadh — 30 ns Recovery time trcv(4) 1 — µs Cumulative HV period thv(5) — 25 ms Row erase endurance(6) — 10k — Cycles Row program endurance(7) — 10k — Cycles Data retention time(8) — 10 — Years Notes: 1. fRead is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than tErase (Min.), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tMErase (Min.), there is no erase-disturb, but is reduces the endurance of the FLASH memory. 4. It is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. thv is the cumulative high voltage programming time to the same row before next erase, and the same address can not be programmed twice before next erase. 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycle. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified. Data Sheet 386 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Electrical Specifications Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 25. Mechanical Specifications 25.1 Contents 25.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 25.3 48-Pin Plastic Low Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 388 25.4 42-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . 389 25.2 Introduction This section gives the dimensions for: • 48-pin plastic low quad flat pack (case #932-02) • 42-pin shrink dual in-line package (case #858-01) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Mechanical Specifications Data Sheet 387 Mechanical Specifications 25.3 48-Pin Plastic Low Quad Flat Pack (LQFP) 4X 0.200 AB T–U Z DETAIL Y A P A1 48 37 1 36 T U B V AE B1 12 25 13 AE V1 24 DIM A A1 B B1 C D E F G H J K L M N P R S S1 V V1 W AA Z S1 T, U, Z S DETAIL Y 4X 0.200 AC T–U Z 0.080 AC G AB AD AC MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.170 0.270 1.350 1.450 0.170 0.230 0.500 BSC 0.050 0.150 0.090 0.200 0.500 0.700 1° 5° 12° REF 0.090 0.160 0.250 BSC 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF M° BASE METAL TOP & BOTTOM N R 0.250 J C E GAUGE PLANE 9 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS T, U, AND Z TO BE DETERMINED AT DATUM PLANE AB. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE AC. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE AB. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.350. 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076. 9. EXACT SHAPE OF EACH CORNER IS OPTIONAL. F D 0.080 M AC T–U Z SECTION AE–AE W H L° K DETAIL AD AA Figure 25-1. 48-Pin LQFP (Case #932-02) Data Sheet 388 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Mechanical Specifications Freescale Semiconductor Mechanical Specifications 42-Pin Shrink Dual In-Line Package (SDIP) 25.4 42-Pin Shrink Dual In-Line Package (SDIP) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010). –A– 42 22 –B– 1 21 DIM A B C D F G H J K L M N L H C –T– SEATING PLANE 0.25 (0.010) N G F D 42 PL K M T A M J 42 PL 0.25 (0.010) S M T B INCHES MIN MAX 1.435 1.465 0.540 0.560 0.155 0.200 0.014 0.022 0.032 0.046 0.070 BSC 0.300 BSC 0.008 0.015 0.115 0.135 0.600 BSC 0° 15° 0.020 0.040 MILLIMETERS MIN MAX 36.45 37.21 13.72 14.22 3.94 5.08 0.36 0.56 0.81 1.17 1.778 BSC 7.62 BSC 0.20 0.38 2.92 3.43 15.24 BSC 0° 15° 0.51 1.02 S Figure 25-2. 42-Pin SDIP (Case #858-01) MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Mechanical Specifications Data Sheet 389 Mechanical Specifications Data Sheet 390 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Mechanical Specifications Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Section 26. Ordering Information 26.1 Contents 26.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 26.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 26.2 Introduction This section contains ordering numbers for the MC68HC908SR12. 26.3 MC Order Numbers Table 26-1. MC Order Numbers MC order number Operating temperature range MC68HC908SR12CB –40 °C to +85 °C MC68HC908SR12MB(2) –40 °C to +125 °C MC68HC908SR12CFA –40 °C to +85 °C MC68HC908SR12MFA(2) –40 °C to +125 °C Package 42-Pin SDIP(1) 48-pin LQFP(3) Notes: 1. SDIP = Shrink Dual In-Line Package. 2. Temperature grade "M" is available for 5V operating voltage only. 3. LQFP = Low Quad Flat Pack. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor Ordering Information Data Sheet 391 Ordering Information Data Sheet 392 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Ordering Information Freescale Semiconductor Data Sheet — MC68HC908SR12•MC68HC08SR12 Appendix A. MC68HC08SR12 A.1 Contents A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 A.3 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 A.4 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 A.5 Mask Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 A.6 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 A.7 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397 A.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 A.8.1 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 398 A.8.2 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 399 A.8.3 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 A.9 ROM Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor MC68HC08SR12 Data Sheet 393 MC68HC08SR12 A.2 Introduction This section introduces the MC68HC08SR12, the ROM part equivalent to the MC68HC908SR12. The entire data book apply to this ROM device, with exceptions outlined in this appendix. Table A-1. Summary of MC68HC08SR12 and MC68HC908SR12 Differences MC68HC08SR12 MC68HC908SR12 Memory ($C000–$EFFF) 12,288 bytes ROM 12,288 bytes FLASH User vectors ($FFDA–$FFFF) 38 bytes ROM 38 bytes FLASH Oscillator selection (Register at $FF80) Mask option register; defined by mask; read only. $FF80 — MOR Mask option register; defined by programming FLASH location $FF80. $FF80 — MOR Registers at $FE08 and $FF09 Not used; locations are reserved. FLASH related registers. $FE08 — FLCR $FF09 — FLBPR Monitor ROM ($FE10–$FF7F) Used for testing purposes only. Used for testing and FLASH programming/erasing. A.3 MCU Block Diagram Figure A-1 shows the block diagram of the MC68HC08SR12. A.4 Memory Map The MC68HC08SR12 has 12,288 bytes of user ROM from $C000 to $EFFF, and 38 bytes of user ROM vectors from $FFDA to $FFFF. On the MC68HC908SR12, these memory locations are FLASH memory. Figure A-2 shows the memory map of the MC68HC08SR12 Data Sheet 394 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 MC68HC08SR12 Freescale Semiconductor CONTROL AND STATUS REGISTERS — 96 BYTES 2-CHANNEL TIMER INTERFACE MODULE 1 DDRA ARITHMETIC/LOGIC UNIT (ALU) PORTA CPU REGISTERS PTA7/T1CH1 PTA6/T1CH0 PTA5/ATD7 – PTA0/ATD2 ‡ 2-CHANNEL TIMER INTERFACE MODULE 2 PORTB PTB6/IRQ2 PTB5/T2CH1 PTB4/T2CH0 PTB3//SCL1/RxD † PTB2/SDA1/TxD † PTB1/SCL0 † PTB0/SDA0 † DDRC PORTC PTC7/ATD12 ‡ # PTC6/ATD11 ‡ # PTC5/ATD10 ‡ PTC4/ATD9 ‡ PTC3/ATD8 ‡ PTC2/PWM2 PTC1/PWM1 PTC0/PWM0/CD DDRD USER ROM — 12,288 BYTES PORTD MC68HC08SR12 TIMEBASE MODULE USER RAM — 512 BYTES MONITOR ROM — 368 BYTES SERIAL COMMUNICATIONS INTERFACE MODULE DDRB MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor INTERNAL BUS M68HC08 CPU USER ROM VECTORS — 38 BYTES OSCILLATORS AND CLOCK GENERATOR MODULE MULTI-MASTER IIC (SMBUS) INTERFACE MODULE INTERNAL OSCILLATOR OSC1 OSC2 RC OSCILLATOR PULSE WIDTH MODULATOR MODULE X-TAL OSCILLATOR CGMXFC PHASE-LOCKED LOOP 8-BIT KEYBOARD INTERRUPT MODULE * RST SYSTEM INTEGRATION MODULE COMPUTER OPERATING PROPERLY MODULE * IRQ1 ** IRQ2 EXTERNAL IRQ MODULE OPIN1/ATD0 # OPIN2/ATD1 VSSAM VREFH VREFL POWER-ON RESET MODULE 10-BIT ANALOG-TO-DIGITAL CONVERTER MODULE POWER LOW-VOLTAGE INHIBIT MODULE * Pin contains integrated pullup device. ** Pin contains configurable pullup device. *** Pin contains integrated pullup device for KBI functions. † Pin is open-drain when configured as output. ‡ High current drive pin (for LED). # Pin not bonded on 42-pin SDIP. Shaded blocks indicate differences to MC68HC908SR12 Figure A-1. MC68HC08SR12 Block Diagram MC68HC08SR12 395 Data Sheet VDD VSS VDDA VSSA ANALOG MODULE PTD7/KBI7 – PTD0/KBI0 *** MC68HC08SR12 $0000 ↓ $005F I/O Registers 96 Bytes $0060 ↓ $025F RAM 512 Bytes $0260 ↓ $BFFF Unimplemented 48,544 Bytes $C000 ↓ $EFFF ROM 12,288 Bytes $F000 ↓ $FDFF Unimplemented 3,584 Bytes $FE00 SIM Break Status Register (SBSR) $FE01 SIM Reset Status Register (SRSR) $FE02 Reserved $FE03 SIM Break Flag Control Register (SBFCR) $FE04 Interrupt Status Register 1 (INT1) $FE05 Interrupt Status Register 2 (INT2) $FE06 Interrupt Status Register 3 (INT3) $FE07 Reserved $FE08 Reserved $FE09 Reserved $FE0A Reserved $FE0B Reserved $FE0C Break Address Register High (BRKH) $FE0D Break Address Register Low (BRKL) $FE0E Break Status and Control Register (BRKSCR) $FE0F LVI Status Register (LVISR) $FE10 ↓ $FF7F Monitor ROM 368 Bytes $FF80 Mask Option Register $FF81 ↓ $FFD9 Reserved 89 Bytes $FFDA ↓ $FFFF ROM Vectors 38 Bytes Figure A-2. MC68HC08SR12 Memory Map Data Sheet 396 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 MC68HC08SR12 Freescale Semiconductor MC68HC08SR12 A.5 Mask Option Register The mask option register (MOR) is used for selecting one of the three clock options for the MCU. The MOR at $FF80 is a read-only register on the MC68HC08SR12. It is defined by a mask option (hard-wired connection) specified at the same time as the ROM code submission. On the MC68HC908SR12, the MOR is a byte located in FLASH memory, and is written by a FLASH programming routine. A.6 Reserved Registers The two registers at $FE08 and $FF09 are reserved locations on the MC68HC08SR12. On the MC68HC908SR12, these two locations are the FLASH control register and the FLASH block protect register respectively. A.7 Monitor ROM The monitor program (monitor ROM, $FE10–$FF7F) on the MC68HC08SR12 is for device testing only. A.8 Electrical Specifications Electrical specifications for the MC68HC908SR12 apply to the MC68HC08SR12, except for the parameters indicated below. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor MC68HC08SR12 Data Sheet 397 MC68HC08SR12 A.8.1 5.0V DC Electrical Characteristics Table A-2. 5V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILOAD = –2.0 mA) PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7] VOH VDD –0.8 — — V Output low voltage (ILOAD = 1.6mA) PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7] VOL — — 0.4 V LED sink current (VDrain = 4.0V) PTA[0:5], PTC[3:7] IOL — –15 — mA Input high voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1. VIH 0.7 × VDD — VDD V Input low voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VIL VSS — 0.3 × VDD V — — — 24 18 7.5 40 30 15 mA mA mA IDD — — — — — — — — 50 12 9 2 — — — — 150 40 30 10 180 50 40 15 µA µA µA µA µA µA µA µA Digital I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — ±1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR re-arm voltage(6) VPOR 0 — 100 mV POR rise-time ramp rate(7) RPOR 0.035 — — V/ms Monitor mode entry voltage VTST 1.4 × VDD — 8 V VDD supply current Run(3), fOP = 8.0 MHz with ADC on with ADC off Wait(4), fOP = 8.0 MHz Stop(5) 25°C (with OSC, TBM, current sense, LVI) 25°C (with OSC, TBM, current sense) 25°C (with OSC, TBM) 25°C –40°C to 85°C (with OSC, TBM, current sense, LVI) –40°C to 85°C (with OSC, TBM, current sense) –40°C to 85°C (with OSC, TBM) –40°C to 85°C Data Sheet 398 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 MC68HC08SR12 Freescale Semiconductor MC68HC08SR12 Table A-2. 5V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit Pullup resistors(8) PTD[0:7] configured as KBI[0:7] RST, IRQ1, IRQ2 RPU1 RPU2 24 24 35 35 42 42 kΩ kΩ Low-voltage inhibit, trip falling voltage VLVII5 3.80 4.15 4.45 V Low-voltage inhibit, trip rising voltage VLVII5 3.95 4.30 4.60 V Schmitt trigger input low level trip voltage RST, IRQ1, IRQ2, KBI[0:7] VSCMTL — 1.21 — V Schmitt trigger input high level trip voltage RST, IRQ1, IRQ2, KBI[0:7] VSCMTH — 1.65 — V Notes: 1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V A.8.2 3.0V DC Electrical Characteristics Table A-3. 3V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILOAD = –1.0mA) PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7] VOH VDD –0.4 — — V Output low voltage (ILOAD = 0.8mA) PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7] VOL — — 0.4 V LED sink current (VDrain = 2.0V) PTA[0:5], PTC[3:7] VOL — –5 — mA Input high voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VIH 0.7 × VDD — VDD V Input low voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VIL VSS — 0.3 × VDD V MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor MC68HC08SR12 Data Sheet 399 MC68HC08SR12 Table A-3. 3V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit — — — 7 5 2.5 16 12 6 mA mA mA — — — — — — 27 5 1.5 — — — 80 12 5 100 15 5 µA µA µA µA µA µA VDD supply current Run(3), fOP = 4.0 MHz with ADC on with ADC off Wait(4), fOP = 4.0 MHz Stop(5) 25°C (with OSC, TBM, LVI) 25°C (with OSC, TBM) 25°C –40°C to 85°C (with OSC, TBM, LVI) –40°C to 85°C (with OSC, TBM) –40°C to 85°C IDD Digital I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — ±1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR re-arm voltage(6) VPOR 0 — 100 mV POR rise-time ramp rate(7) RPOR 0.035 — — V/ms Monitor mode entry voltage VHI 1.4 × VDD — 2.0 × VDD V Pullup resistors(8) PTD[0:7] configured as KBI[0:7] RST, IRQ1, IRQ2 RPU1 RPU2 24 24 35 35 42 42 kΩ kΩ Low-voltage inhibit, trip voltage (No hysteresis implemented for 3V LVI) VLVI3 2.32 2.49 2.68 V Schmitt trigger input low level trip voltage RST, IRQ1, IRQ2, KBI[0:7] VSCMTL — 0.8 — V Schmitt trigger input high level trip voltage RST, IRQ1, IRQ2, KBI[0:7] VSCMTH — 1.2 — V Notes: 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V. Data Sheet 400 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 MC68HC08SR12 Freescale Semiconductor MC68HC08SR12 A.8.3 Memory Characteristics Characteristic Symbol Min Max Unit VRDR 1.3 — V RAM data retention voltage Notes: Since MC68HC08SR12 is a ROM device, FLASH memory electrical characteristics do not apply. A.9 ROM Order Numbers These part numbers are generic numbers only. To place an order, ROM code must be submitted to the ROM Processing Center (RPC). Table A-4. MC68HC08SR12 Order Numbers Operating temperature range Package MC68HC08SR12CB –40 to +85 °C 42-Pin SDIP(1) MC68HC08SR12CFA –40 to +85 °C 48-pin LQFP(2) MC order number Notes: 1. SDIP = Shrink Dual In-Line Package. 2. LQFP = Low Quad Flat Pack. MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 Freescale Semiconductor MC68HC08SR12 Data Sheet 401 MC68HC08SR12 Data Sheet 402 MC68HC908SR12•MC68HC08SR12 — Rev. 5.0 MC68HC08SR12 Freescale Semiconductor How to Reach Us: USA/Europe/Locations Not Listed: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 Japan: Freescale Semiconductor Japan Ltd. Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-8573, Japan 81-3-3440-3569 Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong 852-26668334 Home Page: www.freescale.com RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp. Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Learn More: For more information about Freescale products, please visit www.freescale.com Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2004 MC68HC908SR12 Rev. 5 07/2004