深圳市南天星电子科技有限公司 专业代理飞思卡尔 (Freescale) 飞思卡尔主要产品 8 位微控制器 16 位微控制器 数字信号处理器与控制器 i.MX 应用处理器 基于 ARM®技术的 Kinetis MCU 32/64 位微控制器与处理器 模拟与电源管理器件 射频器件(LDMOS,收发器) 传感器(压力,加速度,磁场, 触摸,电池) 飞思卡尔产品主要应用 汽车电子 数据连接 消费电子 工业控制 医疗保健 电机控制 网络 智能能源 深圳市南天星电子科技有限公司 电话:0755-83040796 传真:0755-83040790 邮箱:[email protected] 网址:www.soustar.com.cn 地址:深圳市福田区福明路雷圳大厦 2306 室 Freescale Semiconductor Data Sheet: Technical Data i.MX28 Applications Processors Data Sheet for Consumer Products Document Number: IMX28CEC Rev. 1, 04/2011 i.MX28 Silicon Version 1.2 Package Information Plastic package Case 5284 14 x 14 mm, 0.8 mm Pitch 1 Introduction The i.MX28 is a low-power, high-performance applications processor optimized for the general embedded industrial and consumer markets.The core of the i.MX28 is Freescale's fast, power-efficient implementation of the ARM926EJ-S™ core, with speeds of up to 454 MHz. The device is suitable for a wide range of applications, including the following: • Human-machine interface (HMI) panels: industrial, home • Industrial drive, PLC, I/O control display, factory robotics display, graphical remote controls • Handheld scanners and printers • Patient-monitoring, portable medical devices • Smart energy meters, energy gateways • Media phones, media gateways The integrated power management unit (PMU) on the i.MX28 is composed of a triple output DC-DC switching converter and multiple linear regulators. These provide power sequencing for the device and its I/O peripherals such as memories and SD cards, as well as provide battery charging capability for Li-Ion batteries. © Freescale Semiconductor, Inc., 2011. All rights reserved. Ordering Information See Table 1 on page 3 for ordering information. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Device Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Ordering Information & Functional Part Differences 3 1.3. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1. Special Signal Considerations . . . . . . . . . . . . . . . 10 3. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1. i.MX28 Device-Level Conditions . . . . . . . . . . . . . . 11 3.2. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . 19 3.3. I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4. I/O AC Timing and Parameters . . . . . . . . . . . . . . . 24 3.5. Module Timing and Electrical Parameters . . . . . . 28 4. Package Information and Contact Assignments . . . . . . . 60 4.1. 289-Ball MAPBGA—Case 14 x 14 mm, 0.8 mm Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2. Ground, Power, Sense, and Reference Contact Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3. Signal Contact Assignments . . . . . . . . . . . . . . . . . 62 4.4. i.MX287 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5. i.MX286 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.6. i.MX283 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.7. i.MX280 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 68 5. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 The i.MX28 processor includes an additional 128-Kbyte on-chip SRAM to make the device ideal for eliminating external RAM in applications with small footprint RTOS. The i.MX28 supports connections to various types of external memories, such as mobile DDR, DDR2 and LV-DDR2, SLC and MLC NAND Flash. The i.MX28 can be connected to a variety of external devices such as high-speed USB2.0 OTG, CAN, 10/100 Ethernet, and SD/SDIO/MMC. 1.1 Device Features The following lists the features of the i.MX28: • ARM926EJ-S CPU running at 454 MHz: — 16-Kbyte instruction cache and 32-Kbyte data cache — ARM embedded trace macrocell (CoreSight™ ETM9™) — Parallel JTAG interface • 128 KBytes of integrated low-power on-chip SRAM • 128 KBytes of integrated mask-programmable on-chip ROM • 1280 bits of on-chip one-time-programmable (OCOTP) ROM • 16-bit mobile DDR (mDDR) (1.8 V), DDR2 (1.8 V) and LV-DDR2 (1.5 V), up to 205 MHz DDR clock frequency with voltage overdrive • Support for up to eight NAND flash memory devices with up to 20-bit BCH ECC • Four synchronous serial ports (SSP) for SDIO/MMC/MS/SPI. Two can be used for SDIO/MMC/MS interfaces (supports SD2.0, eMMC4.4 and MSPro), and all can be used for the SPI interface. • 10/100-Mbps Ethernet MAC compatible with IEEE Std 802.3™, supporting IEEE Std 1588™-compatible hardware timestamp. Also supports 50-MHz/25-MHz clock output for external Ethernet PHY. • Two 2.0B protocol-compatible Controller Area Network (CAN) interfaces • One USB2.0 OTG device/host controller and PHY • One USB2.0 host controller and PHY • LCD controller, up to 24-bit RGB (DOTCK) modes and 24-bit system-mode • Pixel-processing pipeline (PXP) supports full path from color-space conversion, scaling, alpha-blending to rotation without intermediate memory access. • SPDIF transmitter • Dual serial audio interface (SAIF) to support full-duplex transmit and receive operations; each SAIF supports three stereo pairs • Five application Universal Asynchronous Receiver-Transmitters (UARTs), up to 3.25 Mbps with hardware flow control • One debug UART operating at up to 115 Kb/s using programmed I/O • Two I2C master/slave interfaces, up to 400 kbps • Four 32-bit timers and a rotary decoder i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 2 Freescale Semiconductor • • • • • • • • • • Eight Pulse Width Modulators (PWMs) Real-time clock (RTC) GPIO with interrupt capability Power Management Unit (PMU) supports a triple output DC-DC switching converter, multiple linear regulators, battery charger, and detector. 16-channel Low-Resolution A/D Converter (LRADC) 4/5-wire touchscreen controller Up to 8X8 keypad matrix with button-detect circuit Single channel High Speed A/D Converter (HSADC), up to 2 Msps data rate Security features: — Read-only unique ID for Digital Rights Management (DRM) algorithms — Secure boot using 128-bit AES hardware decryption — SHA-1 and SHA256 hashing hardware — High assurance boot (HAB4) Offered in 289-pin Ball Grid Array (BGA) 1.2 Ordering Information & Functional Part Differences Table 1 provides the ordering information for the i.MX28. Table 1. Ordering Information Part Number Projected Temperature Range (°C) Package MCIMX280DVM4B –20 to +70 14 x 14 mm, 0.8mm pitch, MAPBGA-289 MCIMX280CVM4B –40 to +85 14 x 14 mm, 0.8mm pitch, MAPBGA-289 MCIMX283DVM4B –20 to +70 14 x 14 mm, 0.8 mm pitch, MAPBGA-289 MCIMX283CVM4B –40 to +85 14 x 14 mm, 0.8 mm pitch, MAPBGA-289 MCIMX286DVM4B –20 to +70 14 x 14 mm, 0.8 mm pitch, MAPBGA-289 MCIMX286CVM4B –40 to +85 14 x 14 mm, 0.8 mm pitch, MAPBGA-289 MCIMX287CVM4B –40 to +85 14 x 14 mm, 0.8 mm pitch, MAPBGA-289 Table 2 provides the functional differences between the i.MX280, i.MX283, i.MX286, and the i.MX287. Table 2. i.MX28 Functional Differences Function i.MX280 i.MX283 i.MX286 i.MX287 LCD Interface — Yes Yes Yes Touch Screen — Yes Yes Yes Ethernet x1 x1 x1 x2 L2 Switch — — — Yes CAN — — x2 x2 12-bit ADC x8 x8 x8 x8 i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 3 Table 2. i.MX28 Functional Differences (continued) Function i.MX280 i.MX283 i.MX286 i.MX287 x1 x1 x1 x1 OTG HS with HS PHY x1 OTG HS with HS PHY x1 OTG HS with HS PHY x1 OTG HS with HS PHY x1 HS Host with HS PHY x1 HS Host with HS PHY x1 HS Host with HS PHY x1 HS Host with HS PHY x1 SDIO x4 x4 x4 x4 SPI x4 x4 x4 x4 Application UART x6 x5 x5 x5 Debug UART x1 x1 x1 x1 PWM — x8 x8 x8 S/PDIF Tx — — Yes Yes Securtiy Yes Yes Yes Yes High-speed ADC USB 2.0 i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 4 Freescale Semiconductor 1.3 Block Diagram Figure 1 shows the simplified interface block diagram. Figure 1. i.MX28 Simplified Interface Block Diagram 2 Features Table 3 shows the device functions. Table 3. i.MX28 Functions Function External Memory Interface (EMI) (1.5 V LV-DDR2, 1.8 V DDR2, 1.8 V LP-DDR1) BGA289 Yes General-Purpose Media Interface (GPMI): • NAND data width • Number of external NANDs supported 8-bit 4 dedicated / 8 with muxing Pulse Width Modulator (PWM) 5 dedicated / 8 with muxing i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 5 Table 3. i.MX28 Functions (continued) Function BGA289 Application UART (AUART): Interfaces supported 4 dedicated / 5 with muxing Synchronous Serial Port (SSP): Supported through dedicated pins 3 dedicated / 4 with muxing 2 I C 1 dedicated / 2 with muxing SPDIF 1 SAIF 2 FlexCAN 2 LCD interface 24 bits High-speed ADC Yes LRADC (touchscreen, keypad...) Yes Ethernet MAC and switch 2 MACs with switch Universal Serial Bus (USB) 2 Table 4 describes the digital and analog modules of the device. Table 4. i.MX28 Digital and Analog Modules Block Mnemonic Block Name Subsystem Brief Description APBHDMA AHB to APBH System control Bridge with DMA The AHB to APBH bridge with DMA includes the AHB-to-APB PIO bridge for memory-mapped I/O to the APB devices, as well a central DMA facility for devices on this bus. The bridge provides a peripheral attachment bus running on the AHB’s HCLK. (The ‘H’ in APBH denotes that the APBH is synchronous to HCLK, as compared to APBX, which runs on the crystal-derived XCLK.) The DMA controller transfers read and write data to and from each peripheral on APBH bridge. APBXDMA AHB to APBX System control Bridge with DMA The AHB-to-APBX bridge includes the AHB-to-APB PIO bridge for memory-mapped I/O to the APB devices, as well a central DMA facility for devices on this bus. The AHB-to-APBX bridge provides a peripheral attachment bus running on the AHB’s XCLK. (The ‘X’ in APBX denotes that the APBX runs on a crystal-derived clock, as compared to APBH, which is synchronous to HCLK.) The DMA controller transfers read and write data to and from each peripheral on APBX bridge. ARM9 or ARM926 ARM926EJ-S ARM® CPU The ARM926 Platform consists of the ARM926EJ-S™ core and the ETM real-time debug modules. It contains the 16-Kbyte L1 instruction cache, 32-Kbyte L1 data cache, 128-Kbyte ROM and 128-Kbyte RAM. AUART(5) Application UART interface Each of the UART modules supports the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, one or two stop bits, programmable parity (even, odd, or none) • Programmable baud rates up to 3.25 MHz. This is a higher maximum baud rate than the 1.875 MHz specified by the TIA/EIA-232-F standard and previous Freescale UART modules. 16-byte FIFO on Tx and 16-byte FIFO on Rx supporting auto-baud detection Connectivity peripherals i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 6 Freescale Semiconductor Table 4. i.MX28 Digital and Analog Modules (continued) Block Mnemonic Block Name Subsystem Brief Description BCH Bit-correcting Connectivity ECC peripherals accelerator The Bose, Ray-Chaudhuri, Hocquenghem (BCH) Encoder and Decoder module is capable of correcting from 2 to 20 single bit errors within a block of data no larger than about 900 bytes (512 bytes is typical) in applications such as protecting data and resources stored on modern NAND flash devices. BSI Boundary Connectivity Scan Interface peripherals The boundary scan interface is provided to enable board level testing. There are five pins on the device which is used to implement the IEEE Std 1149.1™ boundary scan protocol. CLKCTRL Clock control module Clocks The clock control module, or CLKCTRL, generates the clock domains for all components in the i.MX28 system. The crystal clock or PLL clock are the two fundamental sources used to produce most of the clock domains. For lower performance and reduced power consumption, the crystal clock is selected. The PLL is selected for higher performance requirements but requires increased power consumption. In most cases, when the PLL is used as the source, a Phase Fractional Divider (PFD) can be programmed to reduce the PLL clock frequency by up to a factor of 2. DCP Data co-processor Security This module provides support for general encryption and hashing functions typically used for security functions. Because its basic job is moving data from memory to memory, it also incorporates a memory-copy (memcopy) function for both debugging and as a more efficient method of copying data between memory blocks than the DMA-based approach. DFLPT System control Default first-level page table The DFLPT provides a unique method of implementing the ARM MMU first-level page table (L1PT) using a hardware-based approach. DIGCTL Digital control System control and on-chip RAM The digital control module includes sections for controlling the SRAM, the performance monitors, high-entropy pseudo-random number seed, free-running microseconds counter, and other chip control functions. DUART Debug UART Connectivity peripherals The Debug UART performs the following data conversions: • Serial-to-parallel conversion on data received from a peripheral device • Parallel-to-serial conversion on data transmitted to the peripheral device External memory interface Connectivity peripherals The i.MX28 supports off-chip DRAM storage through the EMI controller, which is connected to the four internal AHB/AXI busses. The EMI supports multiple external memory types, including: • 1.8-V Mobile DDR1 (LP-DDR1) • Standard 1.8-V DDR2 • Low Voltage 1.5-V DDR2 (LV-DDR2) Ethernet MAC Connectivity Controller peripherals Ethernet MAC controller connected to the uDMA (unified DMA). Supports 10/100 Mbps with TCP/UDP/IP Acceleration and IEEE 1588 Functions; also supports RMII or MII connectivity. FlexCAN(2) Controller area network module Connectivity peripherals The Controller Area Network (CAN) protocol is a message based protocol used for serial data. It was designed specifically for automotive but is also used in industrial control and medical applications. The serial data bus runs at 1 Mbps. GPMI General-purpose media interface Connectivity peripherals The General-Purpose Media Interface (GPMI) controller is a flexible NAND flash controller with 8-bit data width, up to 50-MBps I/O speed and individual chip select and DMA channels for up to 8 NAND devices. It also provides a interface to 20-bit BCH for ECC. EMI ENET i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 7 Table 4. i.MX28 Digital and Analog Modules (continued) Block Mnemonic Block Name Subsystem Brief Description HSADC High-speed ADC Connectivity peripherals The high-speed ADC block is designed to sample an analog input with 12-bit resolution and a sample rate of up to 2 Msps. The output of the HSADC block can be moved to the external memory through APBH-DMA. A typical user case of the HSADC is to work with the PWM block to drive an external linear image scanner sensor. I2C(2) I2C module Connectivity peripherals The I2C is a standard two-wire serial interface used to connect the chip with peripherals or host controllers. The I2C operates up to 400 kbps in either I2C master or I2C slave mode. Each I2C has a dedicated DMA channel and can also controlled by CPU in PIO or PIO queue modes. It supports both 7-bit and 10-bit device address in master mode, and has programmable 7-bit address in slave mode. ICOLL Interrupt Collector System control The ARM9 CPU core has two interrupt input lines, IRQ and FIQ. The interrupt collector (ICOLL) can steer any of 128 interrupt sources to either the FIQ or IRQ line of the ARM9 CPU. L2 Switch 3-Port L2 Switch Network Control Programmable 3-Port Ethernet Switch with QOS LCDIF LCD Interface Multimedia peripherals The LCDIF provides display data for external LCD panels from simple text-only displays to WVGA, 16/18/24 bpp color TFT panels. The LCDIF supports all of these different interfaces by providing fully programmable functionality and sharing register space, FIFOs, and ALU resources at the same time. The LCDIF supports RGB (DOTCLK) modes as well as system mode including both VSYNC and WSYNC modes. LRADC Low resolution Connectivity ADC module peripherals The sixteen-channel 12-bit low-resolution ADC (LRADC) block is used for voltage measurement. Channels 0 – 6 measure the voltage on the seven application-dependent LRADC pins. The auxiliary channels can be used for a variety of uses, including a resistor-divider-based wired remote control, external temperature sensing, touch-screen, and other measurement functions. OCOTP Controller On-chip OTP controller Security The on-chip one-time-programmable (OCOTP) ROM serves the functions of hardware and software capability bits, Freescale operations and unique-ID, the customer-programmable cryptography key, and storage of various ROM configuration bits. PINCTRL Pin control and GPIO System control peripherals Used for general purpose input/output to external ICs. Each GPIO bank supports 32 bits of I/O. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 8 Freescale Semiconductor Table 4. i.MX28 Digital and Analog Modules (continued) Block Mnemonic PMU PWM(8) Block Name Subsystem Brief Description Power Power management management Unit (DC-DC) system The i.MX28 integrates a comprehensive power supply subsystem, including the following features: • One integrated DC-DC converter that supports Li-Ion battery. • Four linear regulators directly power the supply rails from 5-V. • Linear battery charger for Li-Ion cells. • Battery voltage and brownout detection monitoring for VDDD, VDDA, VDDIO, VDD4P2 and 5-V supplies. • Integrated current limiter from 5-V power source. • Reset controller. • System monitors for temperature and speed. • Generates USB-Host 5-V from Li-Ion battery (using PWM). • Support for on-the-fly transitioning between 5-V and battery power. • VDD4P2, a nominal 4.2-V supply, is available when the i.MX28 is connected to a 5-V source and allows the DCDC to run from a 5-V source with a depleted battery. • The 4.2-V regulated output also allows for programmable current limits: – Battery Charge current + DCDC input current < the 5-V current limit – DCDC input current (which ultimately provides current to the on-chip and off-chip loads) as the priority and battery charge current is automatically reduced if the 5-V current limit is reached Pulse width modulation There are eight PWM output controllers that can be used in place of GPIO pins. Applications include HSADC driving signals and LED & backlight brightness control. Independent output control of each phase allows 0, 1, or high-impedance to be independently selected for the active and inactive phases. Individual outputs can be run in lock step with guaranteed non-overlapping portions for differential drive applications. Connectivity peripherals PXP Pixel Pipeline Multimedia The pixel pipeline (PXP) is used to perform alpha blending of graphic or video buffers with graphics data before sending to an LCD display. The PXP also supports image rotation for hand-held devices that require both portrait and landscape image support. RTC Real-time clock, alarm, watchdog Clocks The real-time clock (RTC) and alarm share a one-second pulse time domain. The watchdog reset and millisecond counter run on a one-millisecond time domain. The RTC, alarm, and persistent bits reside in a special power domain (crystal domain) that remains powered up even when the rest of the chip is in its powered-down state. SAIF(2) Serial audio interface Connectivity peripherals SAIF provides a half-duplex serial port for communication with a variety of serial devices, including industry-standard codecs and DSPs. It supports a continuous range of sample rates from 8 kHz–192 kHz using a high-resolution fractional divider driven by the PLL. Samples are transferred to/from the FIFO through the APBX DMA interface, a FIFO service interrupt, or software polling. SPDIF SPDIF Connectivity peripherals The Sony-Philips Digital Interface Format (SPDIF) transmitter module transmits data according to the SPDIF digital audio interface standard (IEC-60958). i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 9 Table 4. i.MX28 Digital and Analog Modules (continued) Block Mnemonic Block Name Subsystem Brief Description SSP(4) Synchronous serial port Connectivity peripherals The synchronous serial port is a flexible interface for inter-IC and removable media control and communication. The SSP supports master operation of SPI, Texas Instruments SSI; 1-bit, 4-bit, and 8-bit SD/SDIO/MMC and 1-bit and 4-bit MS modes. The SPI mode has enhancements to support 1-bit legacy MMC cards. SPI master dual (2-bit) and quad (4-bit) mode reads are also supported. The SSP also supports slave operation for the SPI and SSI modes. The SSP has a dedicated DMA channel in the bridge and can also be controlled directly by the CPU through PIO registers. Each of the four SSP modules is independent of the other and can have separate SSPCLK frequencies. TIMROT Timers and Rotary Decoder Timer peripherals This module implements four timers and a rotary decoder. The timers and decoder can take their inputs from any of the pins defined for PWM, rotary encoders, or certain divisions from the 32-kHz clock input. Thus, the PWM pins can be inputs or outputs, depending on the application. USBOTG USBHOST High-speed USB on-the-go Connectivity peripherals The USB module provides high-performance USB On-The-Go (OTG) and host functionality (up to 480 Mbps), compliant with the USB 2.0 specification and the OTG supplement. The module has DMA capabilities for handling data transfer between internal buffers and system memory. When the OTG controller works in device mode, it can only work in FS or HS mode. Two USB2.0 PHYs are also integrated (one for the OTG port, another for the host port.) Integrated USB PHY Connectivity peripherals The integrated USB 2.0 PHY macrocells are capable of connecting to USB host/device systems at the USB low-speed (LS) rate of 1.5 Mbps, full-speed (FS) rate of 12 Mbps or at the USB 2.0 high-speed (HS) rate of 480 Mbps. The integrated PHYs provide a standard UTM interface. The USB_DP and USB_DN pins connect directly to a USB connector. USBPHY 2.1 Special Signal Considerations Special signal considerations are listed in Table 5. The package contact assignment is found in Section 4, “Package Information and Contact Assignments.” Signal descriptions are provided in the reference manual. Table 5. Signal Considerations Signal Descriptions PSWITCH The pin is used for chip power on or recovery. VDDIO can be applied to PSWITCH through a 10 kΩ resistor. This is necessary in order to enter the chip’s firmware recovery. The on-chip circuitry prevents the actual voltage on the pin from exceeding acceptable levels. VDDXTAL This pin is an output of i.MX28. Should be coupled to ground with a 0.1 uF capacitor. User should not supply external power to this pin. BATTERY This pin should be connected to the battery with minimal resistance. It provides charging current to the battery. See the “Power Supply” section of the reference manual for details. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 10 Freescale Semiconductor Table 5. Signal Considerations (continued) Signal Descriptions DCDC_BATTERY XTALI XTALO These analog pins are connected to an external 24 MHz crystal circuit. This crystal provides the clock source for on-chip PLLs. RTC_XTALO RTC_XTALI These analog pins are connected to an external 32.768/32.0 kHz crystal circuit. This crystal provides clock source to the on-chip real-time counter circuits. RESETN This pin resets the chip if it is low. This pin is pulled up to VDDIO33 with an internal 10 kohm resistor. No external pull up resistors are needed. DEBUG This pin is used for JTAG interface. DEBUG=0: JTAG interface works for boundary scan. DEBUG=1: JTAG interface works for ARM debugging. TESTMODE 3 This pin is an input of i.MX28 that provides supply to the DCDC converter. It should be connected to the battery with minimal resistance. See the “Power Supply” section of the reference manual for details. For Freescale factory use only. Must be externally connected to GND for normal operation. Electrical Characteristics This section provides the device-level and module-level electrical characteristics for the i.MX28. 3.1 i.MX28 Device-Level Conditions This section provides the device-level electrical characteristics for the IC. 3.1.1 DC Absolute Maximum Ratings Table 7 provides the DC absolute maximum operating conditions. • • • CAUTION Stresses beyond those listed under Table 7 may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Table 6 gives stress ratings only—functional operation of the device is not implied beyond the conditions indicated in Table 8. Table 6. DC Absolute Maximum Ratings Parameter Symbol Min. Max. Units BATT, VDD4P2V –0.3 4.242 V 5-Volt Source Pin - transient, t<30ms, duty cycle <0.05% VDD5V –0.3 7.00 V 5 Volt Source Pin - static VDD5V –0.3 6.00 V — –0.3 BATT/2 V Battery Pin PSWITCH1 i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 11 Table 6. DC Absolute Maximum Ratings (continued) Parameter Symbol Min. Max. Units Analog Supply Voltage VDDA –0.3 2.10 V Digital Core Supply Voltage VDDD –0.3 1.575 V Non-EMI Digital I/O Supply VDDIO –0.3 3.63 V VDDIO.EMI –0.3 3.63 V DCDC_BATT –0.3 BATT V Input Voltage on Any Digital I/O Pin Relative to Ground — –0.3 VDDIO+0.3 V Input Voltage on USB_DP and USB_DN Pins Relative to Ground3 — –0.3 3.63 V Analog I/O absolute maximum ratings (exceptions: XTALI, XTALO, RTC_XTALI, RTC_XTALO) — –0.3 VDDIO+0.3 V Storage Temperature — –40 125 °C EMI Digital I/O Supply DC-DC Converter2 1 VDDIO can be applied to PSWITCH through a 10 kΩ resistor. This is necessary in order to enter the chip’s firmware recovery mode. (The on-chip circuitry prevents the actual voltage on the pin from exceeding acceptable levels.) 2 Application should include a Schottky diode between BATT and VDD4P2. 3 USB_DN and USB_DP can tolerate 5V for up to 24 hours. Note that while 5V is applied to USB_DN or USB_DP, LRADC readings can be corrupted. Table 7 shows the electrostatic discharge immunity. Table 7. Electrostatic Discharge Immunity 289-Pin BGA Package Tested Level Human Body Model (HBM) 2 kV Charge Device Model (CDM) 500 V Note that HBM and CDM pass ESD testing per AEC-Q100. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 12 Freescale Semiconductor 3.1.2 DC Operating Conditions Table 8 provides the DC recommended operating conditions. Table 8. Recommended Power Supply Operating Conditions Parameter Symbol Min Typ Max Units Analog Core Supply Voltage VDDA 1.62 — 2.10 V Digital Core Supply Voltage Specification dependent on frequency.1, 2 VDDD 1.35 — 1.55 V 3.0 1.7 — — 3.6 1.9 1.7 1.425 1.8 1.5 1.9 1.625 BATT DCDC_BATT 3.103 — 4.242 V VDD5V Supply Voltage (5 V current < 100 mA) — TBD 5.00 5.25 V VDD5V Supply Voltage (5V current ≥ 100 mA) — 4.75 5.00 5.25 V • 32-kHz RTC off, BATT = 4.2 V — — 11 30 µA • 32-kHz RTC on, BATT = 4.2 V — — 13.5 30 µA VDDIO33/VDDIO33_EMI/VDDI Digital Supply Voltages: • VDDIO33/VDDIO33_EMI • VDDIO18 O18 V VDDIO.EMI/VDDIO_EMIQ EMI Digital I/O Supply Voltage: • DDR2/mDDR • LVDDR2 Battery / DCDC Input Voltage - BATT, DCDC_BATT V 4 Offstate Current: 1 For optimum USB jitter performance, VDDD = 1.35 V or greater. VDDD supply minimum voltage includes 75 mV guardband. 3 Tested with only the i.MX28 processor loading the MX28 PMU output rails during start up. 4 When the real-time clock is enabled, the chip consumes additional current in the OFF state to keep the crystal oscillator and the real-time clock running. 2 Table 9 provides the DC operating temperature conditions. Table 9. Operating Temperature Conditions Parameter Symbol Min Typ Max Units Commercial Ambient Operating Temperature Range1, 2 TA –20 — 70 °C Commercial Junction Temperature Range1, 2 TJ –20 — 85 °C TA –40 — 85 °C TJ –40 — 105 °C Industrial Ambient Operating Temperature Industrial Junction Temperature Range1, 2 1 Range1, 2 In most portable systems designs, battery and display specifications limits the operating range to well within these specifications. Most battery manufacturers recommend enabling battery charge only when the ambient temperature is between 0°C and 40°C. To ensure that battery charging does not occur outside the recommended temperature range, the system ambient temperature may be monitored by connecting a thermistor to the LRADC0 or LRADC6 pin on the i.MX28. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 13 2 Maximum Ambient Operating Temperature may be limited due to on-chip power dissipation. TA (MAX) ≤ TJ - (ΘJA x PD) where: TJ = Maximum Junction Temperature ΘJA = Package Thermal Resistance. See Section 3.2, “Thermal Characteristics.” PD = Total On-chip Power Dissipation =PVDD4P2 + PBatteryCharger + PDCDC + PLinearRegulators + PInternal. Depending on the application, some of these power dissipation terms may not apply. PVDD4P2 = VDD4P2 On-Chip Power Dissipation = (VDD5V - VDD4P2) x IDD4P2 PBatteryCharger = Battery Charger On-Chip Power Dissipation = (VDD5V - BATT) x ICHARGE PDCDC = DC-DC Converter On-Chip Power Dissipation = (BATT x DCDC Input Current) x (1 - efficiency) PLinearRegulators = Linear Regulator On-Chip Power Dissipation = (VDD5V - VDDIO) x (IDDIO + IDDA + IDDD + IDD1P5) + (VDDIO - VDDA) x (IDDA + IDDD) + (VDDA - VDDD) x IDDD + (VDDA - VDD1P5) x IDD1P5 PInternal = Internal Digital On-Chip Power Dissipation = ~VDDD x IDDD Table 10 provides the recommended analog operating conditions. Table 10. Recommended Analog Operating Conditions Parameter Low Resolution ADC Input Impedance (CH0 - CH5) Min Typ Max Units >1 — — MΩ Table 11 shows the PSWITCH input characteristics. See the reference schematics for the recommended PSWITCH button circuitry. Table 11. PSWITCH Input Characteristics Parameter HW_PWR_STS_PSWITCH Min Max Units PSWITCH LOW LEVEL 0x00 0.00 0.30 V PSWITCH MID LEVEL & STARTUP1 0x01 0.65 1.50 V 0x11 (1.1 * VDDXTAL) + 0.58 2.45 V PSWITCH HIGH LEVEL2 1 A MID LEVEL PSWITCH state can be generated by connecting the VDDXTAL output of the SOC to PSWITCH through a switch. 2 PSWITCH acts like a high impedance input (>300 kΩ) when the voltage applied to it is less than 1.5V. However, above 1.5V it becomes lower impedance. To simplify design, it is recommended that a 10 kΩ resistor to VDDIO be applied to PSWITCH to set the HIGH LEVEL state (the PSWITCH input can tolerate voltages greater than 2.45 V as long as there is a 10 kΩ resistor in series to limit the current). Table 12 shows the power consumption. Table 12. Power Consumption Parameter Min Typ Max Units Power Consumption: Conditions - TBD — TBD — mW i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 14 Freescale Semiconductor Table 13 illustrates the power supply characteristics. Table 13. Power Supply Characteristics Parameter Min Typ Max Units Output Voltage Accuracy (VDDIO, VDDA, VDDM, VDDD)1 –3 — +3 % VDDIO Maximum Output Current (VDDIO = 3.30 V, VDD5V = 4.75 V)2, 3 270 — — mA VDDIO Maximum Output Current (VDDIO = 3.30 V, VDD5V = 4.40 V)2, 3 200 — — mA VDDM Maximum Output Current (VDDM = 1.5 V)2 160 — — mA VDDA Maximum Output Current (VDDA = 1.8 V)2, 3 225 — — mA VDDD Maximum Output Current (VDDD = 1.2 V)2, 3 200 — — mA Output Voltage Accuracy (DCDC_VDDIO, DCDC_VDDA, DCDC_VDDD)1 –3 — +3 % DCDC_VDDD Maximum Output Current (VDDD = 1.55 V)4, 5 250 — — mA 200 — — mA 250 — — mA –3 — +3 % VDD4P2 Output Current Limit Accuracy (VDD5V = 4.75 V, ILIMIT=480 mA)7 TBD 480 TBD mA VDD4P2 Output Current Limit Accuracy (VDD5V=4.75 V, ILIMIT=100 mA)7 TBD 100 TBD mA -2 — +1 % Linear Regulators DCDC Converters DCDC_VDDA Maximum Output Current (VDDA = 1.8 V)4, 5 DCDC_VDDIO Maximum Output Current (VDDIO = 3.15 V, 3.3 V < BATT < 4.242 V)4, 5, 6 VDD4P2 Regulated Output VDD4P2 Output Voltage Accuracy (TARGET=4.2V)1 Battery Charger Final Charge Voltage Accuracy (TARGET=4.2 V) 1 2 3 4 5 6 No load. Maximum output current measured when output voltage droops 100 mV from the programmed target voltage with no load present. Because the internal linear regulators are cascaded, it is not possible to simultaneously operate the VDDIO, VDDA, VDDM, and VDDD linear regulators at the maximum specified load current. For example, the VDDIO linear regulator provides current to both the VDDIO 3.3 V supply rail as well as the VDDM and VDDA linear regulator inputs. Likewise, the VDDA linear regulator provides current to both the 1.8 V supply rail as well as the VDDD linear regulator input. The application designer should ensure the following two conditions are met: (VDDIO Load Current + VDDM Load Current + VDDA Load Current) < VDDIO Maximum Output Current (VDDA Load Current + VDDD Load Current) < VDDA Maximum Output Current DCDC Double FETs Enabled, Inductor Value = 15 μH. The DCDC Converter is a triple output buck converter. The maximum output current capability of each output of the converter is dependent on the loads on the other two outputs. For a given output, it may be possible to achieve a maximum output current higher than that specified by ensuring the load on the other outputs is well below the maximum. Assumes simultaneous load of IDDD = 250 mA@ 1.55 V and IDDA = 200 [email protected] V. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 15 7 Untuned. 3.1.2.1 Recommended Operating Conditions for Specific Clock Targets Table 14 through Table 18 provide the recommended operating conditions for specific clock targets. Table 14. System Clocks Name Min. Freq. (MHz) Max. Freq. (MHz) Description clk_gpmi — TBD General purpose memory interface clock domain clk_ssp — TBD SSP interface clock domain Table 15. Recommended Operating States—289-Pin BGA Package HW_ DIGCTRL CPUCLK / clk_p HW_ CLKCTRL ARMCACH E1 Frequency (MHz) CPU_DIV_CP U HW_ CLKCTRL EMICLK / clk_emi FRAC_ CPUFRC / PFD Frequency (MHz) HBUS_DI V Frequency (MHz) EMI_ DIV_EMI FRAC_ EMIFRAC 5 27 64 1 130.91 2 33 DDR2 mDDR 261.81 1 33 130.91 2 130.91 2 33 DDR2 mDDR 00 360 1 24 120.00 3 130.91 2 33 DDR2 mDDR 1.350 00 392.72 1 22 130.91 3 160.00 2 27 DDR2 mDDR 1.450 00 454.73 1 19 151.57 3 205.71 2 21 DDR2 mDDR TBD TBD 00 64 1.350 1.250 00 1.350 1.250 1.450 1.550 1 HW_ CLKCTRL AHBCLK / clk_h VDDD (V) VDDD Brown-out (V) HW_ HW_ CLKCTRL CLKCTRL Supported DRAM All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value. Table 16. Recommended Operating Conditions—CPU Clock (clk_p) 1 HW_CLKCTRL CPUCLK / clk_p FRAC_CPUFRC / PFD Frequency max (MHz) Minimum VDDD (V) Minimum VDDDBrown-out (V) HW_DIGCTRL ARMCACHE1 TBD TBD 00 27 - 35 TBD 1.350 1.250 00 18 - 35 360 1.450 1.350 00 18 - 35 392.72 1.550 1.450 00 18 - 35 454.73 All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 16 Freescale Semiconductor Table 17. Recommended Operating Conditions—AHB Clock (clk_h) 1 Minimum VDDD (V) Minimum VDDDBrown-out (V) HW_DIGCTRL ARMCACHE1 TBD TBD 00 27 - 35 TBD 1.350 1.250 00 18 - 35 160 1.450 1.350 00 18 - 35 196 1.550 1.45 00 18 - 35 206 HW_CLKCTRL AHBCLK / clk_h FRAC_CPUFRC / PFD Frequency max (MHz) All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value. Table 18. Frequency vs. Voltage for EMICLK—289-Pin BGA Package 3.1.3 EMICLK Fmax (MHz) Minimum VDDD (V) Minimum VDDDBrownout (V) DDR2 mDDR 1.550 1.450 205.71 205.71 1.450 1.350 196.36 196.36 1.350 1.250 196.36 196.36 Fusebox Supply Current Parameters Table 19 lists the fusebox supply current parameters. Table 19. Fusebox Supply Current Parameters Parameter eFuse Program Current1 Current to program one eFuse bit efuse_vddq=2.5V eFuse Read Current2 Current to read an 8-bit eFuse word vdd_fusebox = 3.3 V 1 2 Symbol Min Typ Max Units Iprogram 21.39 25.05 33.54 mA Iread — — 4.07 mA The current Iprogram is during program time. The current Iread is present for approximately 10 ns of the read access to the 8-bit word. 3.1.4 Interface Frequency Limits Table 20 provides information for interface frequency limits. Table 20. Interface Frequency Limits Parameter Min. Typ. Max. Units JTAG: TCK Frequency of Operation — — 10 MHz OSC24M_XTAL Oscillator — 24.000 — MHz OSC32K_XTAL Oscillator — 32.768/32.0 — KHz i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 17 3.1.5 Power Modes Table 21 describes the core, clock, and module settings for the different power modes of the processor. Table 21. Power Mode Settings Core/Clock/Module 3.1.6 Deep-Sleep Standby Run ARM Core Off Off On USB0 PLL (System PLL) Off Off On OSC24M Off On On OSC32K On On On DCDC Off On On RTC On On On Other Modules Off On/Off On/Off Supply Power-Up/Power-Down Requirements There is no special power-up sequence. After applying 5 V or battery in any order, the rest of the power supplies are internally generated and automatically come up in a safe way. There is no special power-down sequence. 5 V or the battery can be removed at any time. 3.1.7 Reset Timing Because the i.MX28 is a PMU and an SoC, power-on reset is generated internally and there is no timing requirement on external pins. The i.MX28 can be reset by asserting the external pin RESETN for at least 100 mS and later deasserting RESETN. If the reset occurs while the device is only powered by the battery, then the reset kills all of the power supplies and the system reboots on the assertion of PSWITCH. If auto-restart is set up ahead of time, the system reboots immediately. If the chip is powered by 5 V, then the reset serves to reset the digital sections of the chip. If the DCDC is operating at the time of the reset, then power switches back to the default linear regulators powered by 5 V. RESETN At least 100ms Figure 2. RESETN Timing i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 18 Freescale Semiconductor 3.2 Thermal Characteristics The thermal resistance characteristics for the device are given in Table 22. These values are measured under the following conditions: • Two layer Substrate • Substrate solder mask thickness: 0.025 mm • Substrate metal thicknesses: 0.016 mm • Substrate core thickness: 0.160 mm • Core via I.D: 0.068 mm, Core via plating 0.016 mm • Flag: trace style with ground balls under the die connected to the flag • Die Attach: 0.033 mm non-conductive die attach, k = 0.3 W/m K • Mold Compound: generic mold compound, k = 0.9 W/m K Table 22. Thermal Resistance Data Rating Value Unit Junction to ambient1 natural convection Single layer board (1s) RθJA 62 °C/W Junction to ambient1 natural convection Four layer board (2s2p) RθJA 36 °C/W Junction to ambient1 (@200 ft/min) Single layer board (1s) RθJMA 53 °C/W Junction to ambient1 (@200 ft/min) Four layer board (2s2p) RθJMA 33 °C/W RθJB 24 °C/W RθJCtop 15 °C/W ΨJT 3 °C/W Junction to boards2 Junction to case (top)3 Junction to package top4 Natural Convection 1 Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-2 and JESD51-6. Thermal test board meets JEDEC specification for this package. 2 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 3 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 3.3 I/O DC Parameters This section includes the DC parameters of the following I/O types: • DDR I/O: Mobile DDR (LPDDR1), standard 1.8 V DDR2, and low-voltage 1.5 V DDR2 (LVDDR2) • General purpose I/O (GPIO) i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 19 3.3.1 DDR I/O DC Parameters Table 23 shows the EMI digital pin DC characteristics. NOTE The current values and the I-V curves of the I/O DC characteristics are estimated based on an overly conservative device model. They are updated upon the measurement results of the first silicon. Table 23. EMI Digital Pin DC Characteristics Parameter Symbol Min. Max. Units Input voltage high (dc) VIH VREF + 0.125 VDDIO_EMI + 0.3 V Input voltage low (dc) VIL 0.3 VREF – 0.125 V Output voltage high (dc) VOH 0.8 * VDDIO_EMI — V Output voltage low (dc) VOL Output source current (dc) LVDDR2 Mode Output sink current (dc) LVDDR2 Mode Output source current (dc) mDDR, DDR2 Mode Output sink current (dc) mDDR, DDR2 Mode 1 2 - 0.2 * VDDIO_EMI V 1—Low IOH TBD TBD mA IOH—Medium TBD TBD mA IOH—High TBD TBD mA IOL2—Low TBD TBD mA IOL—Medium TBD TBD mA IOL—High TBD TBD mA IOH—Low TBD TBD mA IOH—Medium TBD TBD mA IOH—High TBD TBD mA IOL—Low TBD TBD mA IOL—Medium TBD TBD mA IOL—High TBD TBD mA IOH is the output current at which the VOH specification is met. IOL is the output current at which the VOL specification is met. Table 24 shows the ON impedance of EMI drivers for different drive strengths. Table 24. ON Impedance of EMI Drivers for Different Drive Strengths Mode Drive Min. (Ω) Typ. (Ω) Max. (Ω) 1.5 LVDDR2 Low TBD TBD TBD Medium TBD TBD TBD High TBD TBD TBD i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 20 Freescale Semiconductor Table 24. ON Impedance of EMI Drivers for Different Drive Strengths (continued) Mode Drive Min. (Ω) Typ. (Ω) Max. (Ω) 1.8 DDR2/mDDR Low TBD TBD TBD Medium TBD TBD TBD High TBD TBD TBD Table 25 shows the external devices supported by the EMI. Table 25. External Devices Supported by the EMI 1 2 DRAM Device Max Load1, 2 Pad Voltage DDR2 15 pF 1.8 V mDDR 15 pF 1.8 V LVDDR2 15 pF 1.5 V Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading. Setting is for worst case. Freescale’s EMI interface uses less powerful drivers than those typically used in mDDR devices. A possible transmission-line effect on the PC board must be suppressed by minimizing the trace length combined with Freescale’s slower edge-rate drivers. The i.MX28 provides up to 16 mA programmable drive strength. However, the 16-mA mode is an experimental mode. With the 16-mA mode, the EMI function may be impaired by Simultaneous Switching Output (SSO) noise. In general, the stronger the driver mode, the noisier the on-chip power supply. Freescale recommends not using a stronger driver mode than is required. Because on-chip power and ground noise is proportional to the inductance of its return path, users should make their best effort to reduce inductance between the EMI power and ground balls and the PC board power and ground planes. 3.3.2 GPIO I/O DC Parameters Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading. For the internal pull up setting of each pad, see the “Pin Control and GPIO” section of the reference manual. Table 26 shows the digital pin DC characteristics for GPIO in 3.3-V mode. Measurements are valid for eight pins loaded using the 4mA driver, four pins loaded using the 8mA driver, and two pins loaded using either the 12mA or 16mA driver. Table 26. Digital Pin DC Characteristics for GPIO in 3.3-V Mode Parameter Symbol Min Max Units Input voltage high (dc) VIH 2 VDDIO V Input voltage low (dc) VIL — 0.8 V Output voltage high (dc) VOH 0.8 × VDDIO — V Output voltage low (dc) VOL — 0.4 V Output source current1 (dc) gpio IOH – Low -5.0 — mA IOH – Medium -9.5 — mA IOH – High -11.4 — mA i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 21 Table 26. Digital Pin DC Characteristics for GPIO in 3.3-V Mode (continued) Parameter Symbol Min Max Units Output sink current1 (dc) gpio IOL – Low 3.8 — mA IOL – Medium 7.7 — mA IOL – High 9.0 — mA IOH – Low -9.2 — mA IOH – High -15.2 — mA IOL – Low 7.6 — mA IOL – High 12.0 — mA 10-K pull-up resistance2 Rpu10k 8 12 KΩ 47-K pull-up resistance2 Rpu47k 39 56 KΩ Output source current1 (dc) gpio_clk Output sink current1 (dc) gpio_clk 1 The conditions of the current measurements for all different drives are as follows: IOL: at 0.4 V IOH: at VDDIO * 0.8 V Maximum corner for 3.3 V mode: 3.6 V, -40°C, fast process. Minimum corner for 3.3 V mode: 3.0 V, 105°C, slow process 8 gpio pins (LCD_D0-D7) and 2 gpio_clk pins (LCD_DOTCLK and LCD_WR_RWN) simultaneously loaded. 2 See the i.MX28 reference manual for detailed pull-up configuration of each I/O. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 22 Freescale Semiconductor Table 27 shows the digital pin DC characteristics for GPIO in 1.8 V mode. Table 27. Digital Pin DC Characteristics for GPIO in 1.8 V Mode Symbol Min Max Units Input voltage high (DC) VIH 0.7 × VDDIO18 VDDIO18 V Input voltage low (DC) VIL — 0.3 × VDDIO18 V Output voltage high (DC) VOH 0.8 * VDDIO18 — V Output voltage low (DC) VOL — 0.2 × VDDIO18 V IOH – low -2.2 — mA IOH – medium -3.5 — mA IOH – high -4.0 — mA IOL – low 3.3 — mA IOL – medium 7.0 — mA IOL – high 7.5 — mA IOH – low -4.2 — mA IOH – high -6.0 — mA Output source current (DC) gpio 1 Output sink current1 (DC) gpio current1 Output source (DC) gpio_clk Output sink current1 (DC) gpio_clk IOL – low 6.8 — mA IOL – high 11.5 — mA 10-K pull-up resistance2 Rpu10k 8 12 KΩ 47-K pull-up resistance2 Rpu47k 39 56 KΩ 1 The condition of the current measurements for all different drives are as follows: Maximum corner for 1.8 V mode: 1.9 V, -40°C, Fast process. Minimum corner for 1.8 V mode: 1.7 V, 105°C, Slow process. 1 gpio pin (GPMI_D0) and 1 gpio_clk pin (GPMI_WRN) simultaneously loaded. 2 See the i.MX28 reference manual for detailed pull-up configuration of each I/O. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 23 3.4 I/O AC Timing and Parameters Figure 3 and Figure 4 show the Driver Used for AC Simulation Testpoint and the Output Pad Transition Waveform. Driver Used for AC simulation Testpoint Figure 3. Driver Used for AC Simulation Testpoint Output Pad Transition Waveform VDDIO 80% 20% Figure 4. Output Pad Transition Waveform Table 28 shows the base GPIO AC timing and parameters. Table 28. Base GPIO Parameters Symbol Test Voltage Test Capacitance Min Rise/Fall MaxRise/Fall Units Notes Duty cycle Fduty — — — — % — Output pad transition times (maximum drive) tpr 1.7~1.9V 10pF 0.82 0.91 1.93 1.97 ns — 1.7~1.9V 20pF 1.18 1.22 2.69 2.71 — 1.7~1.9V 50pF 2.11 2.03 4.62 4.44 — 3.0~3.6V 10pF 1.04 1.08 2.46 2.18 — 3.0~3.6V 20pF 1.42 1.5 3.29 3 — 3.0~3.6V 50pF 2.46 2.61 5.34 5.12 — i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 24 Freescale Semiconductor Table 28. Base GPIO (continued) Min Rise/Fall Parameters Symbol Test Voltage Test Capacitance Output pad transition times (medium drive) tpr 1.7~1.9V 10pF 1.02 1.08 2.34 2.38 1.7~1.9V 20pF 1.51 1.5 3.34 3.28 — 1.7~1.9V 50pF 2.91 2.62 6.24 5.67 — 3.0~3.6V 10pF 1.26 1.29 2.9 2.6 — 3.0~3.6V 20pF 1.8 1.88 4 3.67 — 3.0~3.6V 50pF 3.3 3.46 6.91 6.64 — 1.7~1.9V 10pF 1.62 1.68 3.65 3.68 1.7~1.9V 20pF 2.55 2.45 5.59 5.37 — 1.7~1.9V 50pF 5.42 4.62 11.46 10.01 — 3.0~3.6V 10pF 1.95 2.12 4.43 4.25 — 3.0~3.6V 20pF 2.96 3.21 6.36 6.25 — 3.0~3.6V 50pF 5.89 6.39 12.02 12.18 — 1.7~1.9V 10pF 1.39 1.25 0.53 0.52 1.7~1.9V 20pF 0.97 0.93 0.38 0.38 — 1.7~1.9V 50pF 0.54 0.56 0.22 0.23 — 3.0~3.6V 10pF 2.08 2.00 0.73 0.83 — 3.0~3.6V 20pF 1.52 1.44 0.55 0.60 — 3.0~3.6V 50pF 0.88 0.83 0.34 0.35 — 1.7~1.9V 10pF 1.12 1.06 0.44 0.43 1.7~1.9V 20pF 0.75 0.76 0.31 0.31 — 1.7~1.9V 50pF 0.39 0.44 0.16 0.18 — 3.0~3.6V 10pF 1.71 1.67 0.62 0.69 — 3.0~3.6V 20pF 1.20 1.15 0.45 0.49 — 3.0~3.6V 50pF 0.65 0.62 0.26 0.27 — 1.7~1.9V 10pF 1.17 1.13 0.47 0.46 1.7~1.9V 20pF 0.75 0.78 0.30 0.32 — 1.7~1.9V 50pF 0.35 0.41 0.15 0.17 — 3.0~3.6V 10pF 1.11 1.02 0.41 0.42 — 3.0~3.6V 20pF 0.73 0.67 0.28 0.29 — 3.0~3.6V 50pF 0.37 0.34 0.15 0.15 — 1.7 V–1.9 V — 100 75 3.0 V–3.6 V — 100 50 Output pad transition times (low drive) tpr Output pad slew rate (maximum drive) tps Output pad slew rate (medium drive) tps Output pad slew rate (low drive) tps Input pad average hysteresis tih MaxRise/Fall Units Notes ns — ns V/ns V/ns V/ns mV — — — — — — i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 25 Table 29 shows the F-type GPIO AC timing and parameters. Table 29. F-type GPIO Parameters Symbol Test Voltage Duty cycle Fduty — — Output pad transition times (maximum drive) tpr 1.7~1.9V 10pF 0.58 0.61 1.29 1.33 1.7~1.9V 20pF 0.89 0.88 1.94 1.88 — 1.7~1.9V 50pF 1.83 1.59 3.88 3.39 — 3.0~3.6V 10pF 0.71 0.68 1.47 1.34 — 3.0~3.6V 20pF 1.02 1.04 2.11 1.99 — 3.0~3.6V 50pF 1.98 2.09 3.97 3.96 — 1.7~1.9V 10pF 0.76 0.76 1.68 1.61 1.7~1.9V 20pF 1.23 1.13 2.63 2.38 — 1.7~1.9V 50pF 2.66 2.18 5.61 4.6 — 3.0~3.6V 10pF 0.9 0.88 1.84 1.7 — 3.0~3.6V 20pF 1.36 1.4 2.76 2.67 — 3.0~3.6V 50pF 2.85 3.02 5.59 5.67 — 1.7~1.9V 10pF 1.32 1.26 2.88 2.72 1.7~1.9V 20pF 2.27 1.98 4.84 4.23 — 1.7~1.9V 50pF 5.23 4.13 10.95 8.8 — 3.0~3.6V 10pF 1.46 1.55 3.05 3 — 3.0~3.6V 20pF 2.46 2.62 4.92 5.02 — 3.0~3.6V 50pF 5.56 5.96 10.78 11.22 — 1.7~1.9V 10pF 1.97 1.87 0.79 0.77 1.7~1.9V 20pF 1.28 1.30 0.53 0.54 — 1.7~1.9V 50pF 0.62 0.72 0.26 0.30 — 3.0~3.6V 10pF 3.04 3.18 1.22 1.34 — 3.0~3.6V 20pF 2.12 2.08 0.85 0.90 — 3.0~3.6V 50pF 1.09 1.03 0.45 0.45 — 1.7~1.9V 1.7~1.9V 10pF 20pF 1.50 0.93 1.50 1.01 0.61 0.39 0.63 0.43 1.7~1.9V 50pF 0.43 0.52 0.18 0.22 — 3.0~3.6V 10pF 2.40 2.45 0.98 1.06 — 3.0~3.6V 20pF 1.59 1.54 0.65 0.67 — 3.0~3.6V 50pF 0.76 0.72 0.32 0.32 — Output pad transition times (medium drive) Output pad transition times (low drive) Output pad slew rate (maximum drive) Output pad slew rate (medium drive) tpr tpr tps tps Test Capacitance Min Rise/Fall Max Rise/Fall — — Units Notes % — ns — ns ns ns ns — — — — — i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 26 Freescale Semiconductor Table 29. F-type GPIO (continued) Parameters Symbol Test Voltage Output pad slew rate (low drive) tps 1.7~1.9V 1.7~1.9V 10pF 20pF 1.44 0.84 1.51 0.96 0.59 0.35 0.63 0.40 1.7~1.9V 50pF 0.36 0.46 0.16 0.19 — 3.0~3.6V 10pF 1.48 1.39 0.59 0.60 — 3.0~3.6V 20pF 0.88 0.82 0.37 0.36 — 3.0~3.6V 50pF 0.39 0.36 0.17 0.16 — 1.7 V–1.9 V — 100 75 3.0 V–3.6 V — 100 50 Input pad average hysteresis tih Test Capacitance Min Rise/Fall Max Rise/Fall Units Notes ns — — mV — — Table 30 shows the CLK-type GPIO AC timing and parameters. Table 30. CLK-Type GPIO Parameters Symbol Duty cycle Fduty — — Output pad transition times (maximum drive) tpr 1.7~1.9V 10pF 0.48 0.52 1.08 1.12 1.7~1.9V 20pF 0.72 0.74 1.56 1.56 — 1.7~1.9V 50pF 1.41 1.28 3.04 2.7 — 3.0~3.6V 10pF 0.61 0.57 1.25 1.12 — 3.0~3.6V 20pF 0.85 0.85 1.73 1.63 — 3.0~3.6V 50pF 1.56 1.63 3.13 3.08 — 1.7~1.9V 10pF 0.76 0.76 1.67 1.62 1.7~1.9V 20pF 1.22 1.14 2.64 2.41 — 1.7~1.9V 50pF 2.66 2.2 5.61 4.62 — 3.0~3.6V 10pF 0.9 0.89 1.83 1.72 — 3.0~3.6V 20pF 1.37 1.41 2.77 2.69 — 3.0~3.6V 50pF 2.85 3.03 5.59 5.72 — 1.7~1.9V 10pF 2.38 2.19 0.94 0.91 1.7~1.9V 20pF 1.58 1.54 0.65 0.65 — 1.7~1.9V 50pF 0.81 0.89 0.34 0.38 — 3.0~3.6V 10pF 3.54 3.79 1.44 1.61 — 3.0~3.6V 20pF 2.54 2.54 1.04 1.10 — 3.0~3.6V 50pF 1.38 1.33 0.58 0.58 — Output pad transition times (medium drive) tpr Output pad slew rate (maximum drive) tps Test Voltage Test Capacitance Min Rise/Fall Max Rise/Fall units Notes — — % — ns — ns ns — — i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 27 Table 30. CLK-Type GPIO (continued) Parameters Symbol Output pad slew rate (medium drive) tps Input pad average hysteresis 3.5 tih Test Voltage Test Capacitance Min Rise/Fall Max Rise/Fall units Notes ns — 1.7~1.9V 10pF 1.50 1.50 0.61 0.63 1.7~1.9V 20pF 0.93 1.00 0.39 0.42 — 1.7~1.9V 50pF 0.43 0.52 0.18 0.22 — 3.0~3.6V 10pF 2.40 2.43 0.98 1.05 — 3.0~3.6V 20pF 1.58 1.53 0.65 0.67 — 3.0~3.6V 50pF 0.76 0.71 0.32 0.31 — 1.7 V–1.9 V — 100 75 3.0 V–3.6 V — 100 50 mV — — Module Timing and Electrical Parameters 3.5.1 ADC Electrical Specifications This section describes the electrical specifications, including DC and AC information, of Low-Resolution ADC (LRADC) and High-Speed ADC (HSADC). 3.5.1.1 LRADC Electrical Specifications Table 31 shows the electrical specifications for the LRADC. Table 31. LRADC Electrical Specifications Parameter Conditions Min. Typ. Max. Unit — 0.5 — pF AC Electrical Specification Input capacitance (Cp) No pin/pad capacitance included Resolution — Maximum sampling rate1 (fs) — Power-up time2 — 12 — — bits 428 1 kHz sample cycles DC Electrical Specification DC input voltage 0 3 Current consumption VDDA VDDD — 1.85 V — TBD — mA mA 200 — 50000 Ω Touchscreen Interface Expected plate resistance 1 — There is no sample and hold circuit in LRADC, so it is only for DC input voltage or ones with very small slope. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 28 Freescale Semiconductor 2 3 This comprises only the required initial dummy conversion cycle, NOT including the Analog part power-up time. This value only includes the ADC and the driver switches, but it does not take into account the current consumption in the touchscreen plate. For example, if the plate resistance is 200 ohm, the total current consumption is about 11 mA. 3.5.1.2 HSADC Electrical Specification Table 32 shows the electrical specifications for the HSADC Table 32. HSADC Electrical Specification Parameter Conditions Min. Typ. Max. — 0.5 — Unit AC Electrical Specification No pin/pad capacitance included Input sampling capacitance (Cs) Resolution — Maximum sampling rate (fs) — Power-up time — 12 — pF bits — 2 1 MHz sample cycles DC Electrical Specification DC input voltage — 0.5 — Current Consumption VDDA VDDD — — TBD VDDA-0.5 V — mA mA DNL fin = 1 kHz — — TBD LSB INL fin = 1kHz — — TBD LSB 3.5.2 DPLL Electrical Specifications This section includes descriptions of the USB PLL electrical specifications and Ethernet PLL electrical specifications. 3.5.2.1 USB PLL Electrical Specifications The i.MX28 integrates a high-frequency USB PLL that provides the 480-MHz clock for the USB and other system blocks. Table 33 lists the USB PLL output electrical specifications. Table 33. USB PLL Specifications Parameter PLL lock time Test Conditions Min Typ Max Unit — — — 10 µs i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 29 3.5.2.2 Ethernet PLL Electrical Specifications i.MX28 provides a 50-MHz/25-MHz output clock, called the Ethernet PLL output. Table 34 lists the Ethernet PLL output electrical specifications. Table 34. Ethernet PLL Specifications Parameter Test Conditions Min Typ Max Unit Output Duty Cycle — 45 50 55 % PLL lock time — — — 10 µs Cycle to cycle jitter — — 25 — ps Clock output frequency tolerance1 — — — +/-20 ppm 1 This Ethernet output clock tolerance specification is the contribution from the PLL only and assumes a perfect 24 MHz clock/crystal source with 0 ppm deviation. The 24 MHz crystal frequency tolerance/deviation should be added to this number for the total Ethernet clock output frequency tolerance. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 30 Freescale Semiconductor 3.5.3 EMI AC Timing This section includes descriptions of the electrical specifications of EMI module which interfaces external DDR2 and Mobile-DDR1 (LP-DDR1) memory devices. 3.5.3.1 EMI Command & Address AC Timing Figure 5 and Table 35 specify the timing related to the address and command pins that interfaces DDR2 and Mobile-DDR1 memory devices. DDR2 DDR3 EMI_CLKN EMI_CLK DDR1 EMI_CE0N DDR4 DDR5 EMI_RASN EMI_CASN DDR4 EMI_WEN DDR5 DDR5 DDR4 bank row EMI_ADDR bank column Figure 5. EMI Command/Address AC Timing Table 35. EMI Command/Address AC Timing ID Description DDR1 CK cycle time DDR2 CK high level width Symbol Min. Max. Unit tCK 4.86 — ns tCH 0.5 tCK –0.5 0.5 tCK + 0.5 ns i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 31 Table 35. EMI Command/Address AC Timing (continued) ID Description DDR3 CK low level width DDR4 Address and control output setup time DDR5 Address and control output hold time 3.5.3.2 Symbol Min. Max. Unit tCL 0.5 tCK –0.5 0.5 tCK + 0.5 ns tIS 0.5 tCK – 1 0.5 tCK + 0.5 ns tIH 0.5 tCK – 1 0.5 tCK + 0.5 ns DDR Output AC Timing Figure 6 and Table 36 show the DDR output AC timing defined for all DDR types: LPDDR1, standard DDR2 (1.8 V), and LVDDR2 (1.5 V) EMI_CLKN EMI_CLK DDR10 DDR11 DDR12 EMI_DQSN EMI_DQS DDR13 EMI_DQ & EMI_DQM DDR14 d0 d1 d2 d3 DDR15 DDR16 Figure 6. DDR Output AC Timing Table 36. DDR Output AC Timing ID Description Symbol Min Max Unit DDR10 Positive DQS latching edge to associated CK edge tDQSS –0.5 0.5 ns DDR11 DQS falling edge from CK rising edge—hold time tDSH 0.5 tCK –0.5 0.5 tCK + 0.5 ns DDR12 DQS falling edge to CK rising edge—setup time tDSS 0.5 tCK –0.5 0.5 tCK + 0.5 ns i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 32 Freescale Semiconductor Table 36. DDR Output AC Timing (continued) ID Description Symbol Min Max Unit DDR13 DQS output high pulse width tDQSH 0.5 tCK –0.5 0.5 tCK + 0.5 ns DDR14 DQS output low pulse width tDQSL 0.5 tCK –0.5 0.5 tCK + 0.5 ns DDR15 DQ & DQM output setup time relative to DQS tDS 1/4 tCK –0.8 1/4 tCK –0.5 ns DDR16 DQ & DQM output hold time relative to DQS tDH 1/4 tCK –0.8 1/4 tCK –0.5 ns 3.5.3.3 DDR2 Input AC Timing Figure 7 and Table 37 show input AC timing for standard DDR2 and LVDDR2. EMI_CLKN EMI_CLK DDR20 EMI_DQSN EMI_DQS DDR22 DDR21 EMI_DQ d0 d1 d2 d3 Figure 7. DDR2 Input AC Timing Table 37. DDR2 Input AC Timing ID DDR20 Description Positive DQS latching edge to associated CK edge DDR21 Symbol DQS to DQ input hold time Max Unit tDQSCK –0.5 0.5 ns tDQSQ 0.25 tCK –0.85 0.25 tCK –0.5 ns tQH 0.25 tCK +0.75 0.25 tCK +1 ns DQS to DQ input skew DDR22 Min i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 33 3.5.3.4 LPDDR1 Input AC Timing Figure 8 and Table 38 show input AC timing for LPDDR1. EMI_CLKN EMI_CLK DDR20 EMI_DQSN EMI_DQS DDR22 DDR21 EMI_DQ d0 d1 d2 d3 Figure 8. LPDDR1 Input AC Timing Table 38. DDR2 Input AC Timing ID Description Symbol Min Max Unit DDR20 Positive DQS latching edge to associated CK edge tDQSCK 2 6 ns DDR21 DQS to DQ input skew tDQSQ 0.25 tCK –0.85 0.25 tCK –0.5 ns DDR22 DQS to DQ input hold time tQH 0.25 tCK +0.75 0.25 tCK +1 ns 3.5.4 Ethernet MAC Controller (ENET) Timing The ENET is designed to support both 10- and 100-Mbps Ethernet networks compliant with IEEE 802.3. An external transceiver interface and transceiver function are required to complete the interface to the media. The ENET supports 10/100-Mbps MII (18 pins altogether), 10/100-Mbps RMII (10 pins, including serial management interface), for connection to an external Ethernet transceiver. All signals are compatible with transceivers operating at a voltage of 3.3 V. The following subsections describe the timing for MII and RMII modes. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 34 Freescale Semiconductor 3.5.4.1 ENET MII Mode Timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings. 3.5.4.1.1 MII Receive Signal Timing (ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER, and ENET0_RX_CLK) The receiver functions correctly up to an ENET0_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET0_RX_CLK frequency. Figure 9 shows MII receive signal timings. Table 39 describes the timing parameters (M1–M4) shown in the figure. M3 ENET0_RX_CLK (input) M4 ENET0_RXD[3:0] (inputs) ENET0_RX_DV ENET0_RX_ER M1 M2 Figure 9. MII Receive Signal Timing Diagram Table 39. MII Receive Signal Timing Characteristic1 ID Min. Max. Unit M1 ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER to ENET0_RX_CLK setup 5 — ns M2 ENET0_RX_CLK to ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER hold 5 — ns M3 ENET0_RX_CLK pulse width high 35% 65% ENET0_RX_CLK period M4 ENET0_RX_CLK pulse width low 35% 65% ENET0_RX_CLK period 1 ENET0_RX_DV, ENET0_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode. 3.5.4.1.2 MII Transmit Signal Timing (ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER, and ENET0_TX_CLK) The transmitter functions correctly up to an ENET0_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET0_TX_CLK frequency. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 35 Figure 10 shows MII transmit signal timings. Table 40 describes the timing parameters (M5–M8) shown in the figure. M7 ENET0_TX_CLK (input) M5 M8 ENET0_TXD[3:0] (outputs) ENET0_TX_EN ENET0_TX_ER M6 Figure 10. MII Transmit Signal Timing Diagram Table 40. MII Transmit Signal Timing Characteristic1 ID Min. Max. Unit M5 ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER invalid 5 — ns M6 ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER valid — 20 ns M7 ENET0_TX_CLK pulse width high 35% 65% ENET0_TX_CLK period M8 ENET0_TX_CLK pulse width low 35% 65% ENET0_TX_CLK period 1 ENET0_TX_EN, ENET0_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode. 3.5.4.1.3 MII Asynchronous Inputs Signal Timing (ENET0_CRS and ENET0_COL) Figure 11 shows MII asynchronous input timings. Table 41 describes the timing parameter (M9) shown in the figure. ENET0_CRS, ENET0_COL M9 Figure 11. MII Async Inputs Timing Diagram Table 41. MII Asynchronous Inputs Signal Timing ID M91 1 Characteristic ENET0_CRS to ENET0_COL minimum pulse width Min. Max. Unit 1.5 — ENET0_TX_CLK period ENET0_COL has the same timing in 10-Mbit 7-wire interface mode. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 36 Freescale Semiconductor 3.5.4.1.4 MII Serial Management Channel Timing (ENET0_MDIO and ENET0_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 12 shows MII asynchronous input timings. Table 42 describes the timing parameters (M10–M15) shown in the figure. M14 M15 ENET0_MDC (output) M10 ENET0_MDIO (output) M11 ENET0_MDIO (input) M12 M13 Figure 12. MII Serial Management Channel Timing Diagram Table 42. MII Serial Management Channel Timing ID Characteristic Min. Max. Unit M10 ENET0_MDC falling edge to ENET0_MDIO output invalid (min. propagation delay) 0 — ns M11 ENET0_MDC falling edge to ENET0_MDIO output valid (max. propagation delay) — 5 ns M12 ENET0_MDIO (input) to ENET0_MDC rising edge setup 18 — ns M13 ENET0_MDIO (input) to ENET0_MDC rising edge hold 0 — ns M14 ENET0_MDC pulse width high 40% 60% ENET0_MDC period M15 ENET0_MDC pulse width low 40% 60% ENET0_MDC period 3.5.4.2 RMII Mode Timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET0_RX_DV is used as the CRS_DV in RMII. Other signals under RMII mode include ENET0_TX_EN, ENET0_TXD[1:0], ENET0_RXD[1:0] and ENET0_RX_ER. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 37 Figure 13 shows RMII mode timings. Table 43 describes the timing parameters (M16–M21) shown in the figure. M16 M17 ENET_CLK (input) M18 ENET0_TXD[1:0] (output) ENET0_TX_EN M19 CRS_DV (input) ENET0_RXD[1:0] ENET0_RX_ER M20 M21 Figure 13. RMII Mode Signal Timing Diagram Table 43. RMII Signal Timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN invalid 3 — ns M19 ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN valid — 12 ns M20 ENET0_RXD[1:0], CRS_DV(ENET0_RX_DV), ENET0_RX_ER to ENET_CLK setup 2 — ns M21 ENET_CLK to ENET0_RXD[1:0], ENET0_RX_DV, ENET0_RX_ER hold 2 — ns 3.5.5 Coresight ETM9 AC Interface Timing The following timing specifications are given as a guide for a TPA that supports TRACECLK frequencies up to 80 MHz. 3.5.5.1 TRACECLK Timing This section describes TRACECLK timings. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 38 Freescale Semiconductor Figure 14 shows TRACECLK signal timings. Table 44 describes the timing parameters shown in the figure. Figure 14. TRACECLK Signal Timing Diagram Table 44. MII Receive Signal Timing Characteristic1 ID Min. Max. Unit Tr Clock and data raise time 3 — ns Tf Clock and data fall time 3 — ns Twh High pulse wide 2 — ns Twl Low pulse wide 2 — ns Tcyc Clock period 12.5 — ns 3.5.5.2 Trace Data Signal Timing Figure 15 shows the setup and hold requirements of the trace data pins with respect to TRACECLK. Table 45 describes the timing parameters shown in the figure. Figure 15. MII Transmit Signal Timing Diagram Table 45. MII Transmit Signal Timing Characteristic1 ID Min. Max. Unit Ts Data setup 2 — ns Th Data hold 2 — ns i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 39 3.5.6 FlexCAN AC Timing Table 46 and Table 47 show voltage requirements for the FlexCAN transceiver Tx and Rx pins. Table 46. Tx Pin Characteristics 1 Parameter Symbol Min. Typ. Max. Units High-level output voltage VOH 2 — Vcc1 + 0.3 V Low-level output voltage VOL — 0.8 — V Vcc = +3.3 V ± 5% Table 47. Rx Pin Characteristics 1 Parameter Symbol Min. Typ. Max. Units High-level input voltage VIH 0.8 × Vcc1 — Vcc1 V Low-level input voltage VIL — 0.4 — V Vcc = +3.3 V ± 5% Figure 16 through Figure 19 show the FlexCAN timing, including timing of the standby and shutdown signals. VCC/2 VCC/2 TXD tOFFTXD tONTXD 0.9V VDIFF 0.5V tONRXD RXD tOFFRXD VCC/2 VCC/2 Figure 16. FlexCAN Timing Diagram i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 40 Freescale Semiconductor VCC x 0.75 RS Bus Externally Driven 1.1V VDIFF tSBRXDL tDRXDL RXD VCC/2 VCC/2 Figure 17. Timing Diagram for FlexCAN Standby Signal SHDN VCC/2 VCC/2 tOFFSHDN tONSHDN VDIFF 0.5V Bus Externally Driven VCC/2 RXD Figure 18. Timing Diagram for FlexCAN Shutdown Signal SHDN VCC/2 tSHDNSB 0.75 x VCC RS Figure 19. Timing Diagram for FlexCAN Shutdown-to-Standby Signal i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 41 3.5.7 General-Purpose Media Interface (GPMI) Timing The i.MX28 GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 50MB/s I/O speed and individual chip select. It supports normal timing mode, using two Flash clock cycles for one access of RE and WE. AC timings are provided as multiplications of the clock cycle and fixed delay. Figure 20, Figure 21, Figure 22 and Figure 23 depict the relative timing between GPMI signals at the module level for different operations under normal mode. Table 48 describes the timing parameters (NF1–NF17) that are shown in the figures. CLE NF2 NF1 NF3 NF4 CEn NF5 WE NF6 NF7 ALE NF8 NF9 Command IO[7:0] Figure 20. Command Latch Cycle Timing Diagram CLE NF1 NF4 NF3 CEn NF10 NF11 NF5 WE NF7 NF6 ALE NF8 NF9 IO[7:0] Address Figure 21. Address Latch Cycle Timing Diagram i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 42 Freescale Semiconductor CLE NF1 NF3 CEn NF10 NF11 NF5 WE NF7 NF6 ALE NF8 NF9 IO[7:0] Data to NF Figure 22. Write Data Latch Cycle Timing Diagram CLE CEn NF14 NF15 NF13 RE NF16 NF17 RB NF12 IO[7:0] Data from NF Figure 23. Read Data Latch Cycle Timing Diagram i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 43 Table 48. NFC Timing Parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Example Timing for GPMI Clock ≈ 100MHz T = 10ns Min. Max. Min. Max. Unit NF1 CLE setup time tCLS (AS+1)*T — 10 — ns NF2 CLE hold time tCLH (DH+1)*T — 20 — ns NF3 CEn setup time tCS (AS+1)*T — 10 — ns NF4 CE hold time tCH (DH+1)*T — 20 — ns NF5 WE pulse width tWP NF6 ALE setup time tALS (AS+1)*T — 10 — ns NF7 ALE hold time tALH (DH+1)*T — 20 — ns NF8 Data setup time tDS DS*T — 10 — ns NF9 Data hold time tDH DH*T — 10 — ns NF10 Write cycle time tWC (DS+DH)*T 20 ns NF11 WE hold time tWH DH*T 10 ns NF12 Ready to RE low tRR (AS+1)*T — 10 — ns NF13 RE pulse width tRP DS*T — 10 — ns NF14 READ cycle time tRC (DS+DH)*T — 20 — ns NF15 RE high hold time tREH DH*T 10 — ns NF16 Data setup on read tDSR N/A 10 — ns NF17 Data hold on read tDHR N/A 10 — ns DS*T 10 ns 1 The Flash clock maximum frequency is 100 MHz. 2)GPMI’s output timing could be controlled by module’s internal register, say HW_GPMI_TIMING0_ADDRESS_SETUP,HW_GPMI_TIMING0_DATA_SETUP,HW_GPMI_TIMING0_DATA_HOLD, this AC timing depends on these registers’ setting. In the above table we use AS/DS/DH representing these settings each. 3)AS minimum value could be 0, while DS/DH minimum value is 1. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 44 Freescale Semiconductor 3.5.8 LCD AC Output Electrical Specifications Figure 24 depicts the AC output timing for the LCD module. Table 49 lists the LCD module timing parameters. T PAD_LCD_DOTCK Falling edge capture tSF tHF tSR tHR PAD_LCD_DOTCK Rising edge capture tDW PAD_LCD_D[17:0], PAD_LCD_VSYNC, etc DATA/CTRL Notes: T = LCD interface clock period I/O Drive Strength = 4mA I/O Voltage = 3.3V Cck = Capacitance load on DOTCK pad Cd = Capacitance load on DATA/CTRL pad Figure 24. LCD AC Output Timing Diagram Table 49. LCD AC Output Timing Parameters ID Parameter Description tSF Data setup for falling edge DOTCK = T/2 – 1.97ns + 0.15*Cck – 0.19*Cd tHF Data hold for falling edge DOTCK = T/2 + 0.29ns + 0.09*Cd – 0.10*Cck tSR Data setup for rising edge DOTCK = T/2 – 2.09ns + 0.18*Cck – 0.19*Cd tHR Data hold for rising edge DOTCK = T/2 + 0.40ns + 0.09*Cd – 0.10*Cck tDW Data valid window tDW = T – 1.45ns i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 45 3.5.9 Inter IC (I2C) Timing The I2C module is designed to support up to 400-Kbps I2C connection compliant with I2C bus protocol. The following section describes I2C SDA and SCL signal timings. Figure 25 shows the timing of the I2C module. Table 50 describes the I2C module timing parameters (IC1–IC11) shown in the figure. I2C_SCL IC11 IC10 I2C_SDA IC2 IC10 START IC7 IC4 IC8 IC11 IC6 IC9 IC3 STOP START START IC5 IC1 Figure 25. I2C Module Timing Diagram Table 50. I2C Module Timing Parameters: 1.8 V – 3.6 V Standard Mode ID Fast Mode Parameter Unit Min. Max. Min. Max. IC1 I2C_SCL cycle time 10 — 2.5 — μs IC2 Hold time (repeated) START condition 4.0 — 0.6 — μs IC3 Set-up time for STOP condition 4.0 — 0.6 — μs 01 0.92 μs 1 IC4 Data hold time 0 3.452 IC5 HIGH Period of I2C_SCL clock 4.0 — 0.6 — μs IC6 LOW Period of the I2C_SCL clock 4.7 — 1.3 — μs IC7 Set-up time for a repeated START condition 4.7 — 0.6 — μs — ns IC8 Data set-up time 250 — 1003 IC9 Bus free time between a STOP and START condition 4.7 — 1.3 — μs 4 300 ns IC10 Rise time of both I2C_SDA and I2C_SCL signals — 1000 20+0.1Cb IC11 Fall time of both I2C_SDA and I2C_SCL signals — 300 20+0.1Cb4 300 ns IC12 Capacitive load for each bus line (Cb) — 400 — 400 pF 1 A device must internally provide a hold time of at least 300 ns for the I2C_SDA signal in order to bridge the undefined region of the falling edge of I2C_SCL. 2 The maximum IC4 has to be met only if the device does not stretch the LOW period (ID no IC5) of the I2C_SCL signal. 3 A fast-mode I2C bus device can be used in a standard-mode I2C bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal. If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line max_rise_time (ID No IC9) + data_setup_time (ID No IC7) = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before the I2C_SCL line is released. 4 Cb = total capacitance of one bus line in pF. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 46 Freescale Semiconductor 3.5.10 JTAG Interface Timing Figure 26 through Figure 29 show respectively the test clock input, boundary scan, test access port, and TRST timings for the SJC. Table 51 describes the SJC timing parameters (SJ1–SJ13) indicated in the figures. SJ1 SJ2 TCK (Input) SJ2 VM VIH VM VIL SJ3 SJ3 Figure 26. Test Clock Input Timing Diagram TCK (Input) VIH VIL SJ4 Data Inputs SJ5 Input Data Valid SJ6 Data Outputs Output Data Valid SJ7 Data Outputs SJ6 Data Outputs Output Data Valid Figure 27. Boundary Scan (JTAG) Timing Diagram i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 47 TCK (Input) VIH VIL SJ8 TDI TMS (Input) SJ9 Input Data Valid SJ10 TDO (Output) Output Data Valid SJ11 TDO (Output) SJ10 TDO (Output) Output Data Valid Figure 28. Test Access Port Timing Diagram TCK (Input) SJ13 TRST (Input) SJ12 Figure 29. TRST Timing Diagram Table 51. SJC Timing Parameters All Frequencies ID Parameter Unit Min. Max. SJ1 TCK cycle time 100 — ns SJ2 TCK clock pulse width measured at VM1 40 — ns SJ3 TCK rise and fall times — 3 ns SJ4 Boundary scan input data set-up time 10 — ns SJ5 Boundary scan input data hold time 50 — ns SJ6 TCK low to output data valid — 50 ns SJ7 TCK low to output high impedance — 50 ns SJ8 TMS, TDI data set-up time 10 — ns SJ9 TMS, TDI data hold time 50 — ns i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 48 Freescale Semiconductor Table 51. SJC Timing Parameters (continued) All Frequencies ID 1 Parameter Unit Min. Max. SJ10 TCK low to TDO data valid — 44 ns SJ11 TCK low to TDO high impedance — 44 ns SJ12 TRST assert time 100 — ns SJ13 TRST set-up time to TCK low 40 — ns VM – mid point voltage 3.5.11 Pulse Width Modulator (PWM) Timing Figure 30 depicts the timing of the PWM, and Table 52 lists the PWM timing characteristics. The PWM can be programmed to select one of two clock signals as its source frequency: xtal clock or hsadc clock. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse width modulator output (PWMO) external pin. PWM also supports MATT mode. In this mode, it can be programmed to select one of two clock signals as its source frequency, 24-MHz or 32-KHz crystal clock. For a 32-KHz source clock input, the PWM outputs the 32-KHz clock directly to PAD. 1 2a 3b PWM Source Clock 2b 4b 3a 4a PWM Output Figure 30. PWM Timing Table 52. PWM Output Timing Parameter: Xtal clock 1 Ref No. Parameter Minimum Maximum Unit 1 System CLK frequency1 0 24MHz MHz 2a Clock high time 21 — ns 2b Clock low time 21 — ns 3a Clock fall time — 0.3 ns 3b Clock rise time — 0.3 ns 4a Output delay time — 15.08 ns 4b Output setup time 15.77 — ns CL of PWMO = 30 pF i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 49 1 2a 3b PWM Source Clock 2b 4b 3a 4a PWM Output Figure 31. PWM Timing Table 53. PWM Output Timing Parameter: HSADC clock 1 Ref No. Parameter Minimum Maximum Unit 1 System CLK frequency1 0 32 MHz 2a Clock high time 6.813 — ns 2b Clock low time 24.432 — ns 3a Clock fall time — 0.3 ns 3b Clock rise time — 0.3 ns 4a Output delay time — 14.93 ns 4b Output setup time 15.71 — ns CL of PWMO = 30 pF 2a PWM Source Clock 4a 3a 2b 3b 4b PWM Output Figure 32. PWM Timing i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 50 Freescale Semiconductor Table 54. PWM Output Timing Parameter: MATT Mode 24 MHz Crystal Clock Ref No. 1 Parameter 1 Minimum Maximum Unit 1 System CLK frequency 24 24 MHz 2a Clock high time 20.99 — ns 2b Clock low time 21.01 — ns 3a Clock fall time — 0.3 ns 3b Clock rise time — 0.3 ns 4a Output delay time — 15.23 ns 4b Output setup time 15.92 — ns CL of PWMO = 30 pF 3.5.12 Serial Audio Interface (SAIF) AC Timing The following subsections describe SAIF timing in two cases: • Transmitter • Receiver 3.5.12.1 SAIF Transmitter Timing Figure 33 shows the timing for SAIF transmitter with internal clock, and Table 55 describes the timing parameters (SS1–SS13). SS1 SS3 SS5 SS2 SS4 BITCLK SS6 LRCLK SS7 SS8 SS11 SS9 SDATA0-2 SS10 SS13 SS12 Figure 33. SAIF Transmitter Timing Diagram i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 51 Table 55. SAIF Transmitter Timing ID Parameter Min. Max. Unit SS1 BITCLK period 81.4 — ns SS2 BITCLK high period 36.0 — ns SS3 BITCLK rise time — 6.0 ns SS4 BITCLK low period 36.0 — ns SS5 BITCLK fall time — 6.0 ns SS6 BITCLK high to LRCLK high — 15.0 ns SS7 BITCLK high to LRCLK low — 15.0 ns SS8 LRCLK rise time — 6.0 ns SS9 LRCLK fall time — 6.0 ns SS10 BITCLK high to SDATA valid from high impedance — 15.0 ns SS11 BITCLK high to SDATA high/low — 15.0 ns SS12 BITCLK high to SDATA high impedance — 15.0 ns SS13 SDATA rise/fall time — 6.0 ns 3.5.12.1.5 SAIF Receiver Timing Figure 34 shows the timing for the SAIF receiver with internal clock. Table 56 describes the timing parameters (SS1–SS17) shown in the figure. SS1 SS3 SS5 SS2 SS4 BITCLK SS14 SS15 LRCLK SS16 SS17 SDATA0-2 Figure 34. SAIF Receiver Timing Diagram i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 52 Freescale Semiconductor Table 56. SAIF Receiver Timing with Internal Clock ID Parameter Min. Max. Unit SS1 BITCLK period 81.4 — ns SS2 BITCLK high period 36.0 — ns SS3 BITCLK rise time — 6.0 ns SS4 BITCLK low period 36.0 — ns SS5 BITCLK fall time — 6.0 ns SS14 BITCLK high to LRCLK high — 15.0 ns SS15 BITCLK high to LRCLK low — 15.0 ns SS16 SDATA setup time before BITCLK high 10.0 — ns SS17 SDATA hold time after BITCLK high 0.0 — ns 3.5.13 SPDIF AC Timing SPDIF data is sent using bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. The following Table 57 shows SPDIF timing parameters, including the timing of the modulating Tx clock (spdif_clk) in SPDIF transmitter as shown in the Figure 35. Table 57. SPDIF Timing Timing Parameter Range Characteristics Symbol SPDIFOUT output (Load = 30pf) • Skew • Transition Rising • Transition Falling Unit — — — Min Max — — — 1.5 13.6 18.0 ns Modulating Tx clock (spdif_clk) period spclkp 81.4 — ns spdif_clk high period spclkph 65.1 — ns spdif_clk low period spclkpl 65.1 — ns spclkp spclkpl spclkph spdif_clk (Input) Figure 35. spdif_clk Timing i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 53 3.5.14 Synchronous Serial Port (SSP) AC Timing This section describes the electrical information of the SSP, which includes SD/MMC4.3 (Single Data Rate) timing, MMC4.4 (Dual Date Rate) timing, MS (Memory Stick) timing, and SPI timing. 3.5.14.1 SD/MMC4.3 (Single Data Rate) AC Timing Figure 36 depicts the timing of SD/MMC4.3, and Table 58 lists the SD/MMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SCK SD3 output from SSP to card CMD DAT0 DAT1 ...... DAT7 SD6 SD7 input from card to SSP SD8 CMD DAT0 DAT1 ...... DAT7 Figure 36. SD/MMC4.3 Timing Table 58. SD/MMC4.3 Interface Timing Specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns tOD -5 5 ns Card Input Clock SD1 SSP Output / Card Inputs CMD, DAT (Reference to CLK) SD6 SSP Output Delay SSP Input / Card Outputs CMD, DAT (Reference to CLK) i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 54 Freescale Semiconductor Table 58. SD/MMC4.3 Interface Timing Specification (continued) ID Parameter Symbols Min Max Unit SD7 SSP Input Setup Time tISU 2.5 — ns SD8 SSP Input Hold Time tIH4 2.5 — ns 1 In low speed mode, the card clock must be lower than 400 kHz, and the voltage ranges from 2.7 to 3.6 V. In normal speed mode for the SD/SDIO card, clock frequency can be any value between 0 ~ 25 MHz. In high speed mode, clock frequency can be any value between 0 ~ 50 MHz. 3 In normal speed mode for MMC card, clock frequency can be any value between 0 ~ 20 MHz. In high speed mode, clock frequency can be any value between 0 ~ 52MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2ns. 2 3.5.14.2 MMC4.4 (Dual Data Rate) AC Timing Figure 37 depicts the timing of MMC4.4, and Table 59 lists the MMC4.4 timing characteristics. Be aware that only DATA0–DATA7 are sampled on both edges of the clock (not applicable to CMD). SD1 SCK output from SSP to card DAT0 DAT1 ...... DAT7 SD2 SD2 ...... SD3 input from card to SSP SD4 DAT0 DAT1 ...... DAT7 ...... Figure 37. MMC4.4 Timing Table 59. MMC4.4 Interface Timing Specification ID Parameter Symbols Min Max Unit Clock Frequency (MMC Full Speed/High Speed) fPP 0 52 MHz tOD –5 5 ns Card Input Clock SD1 SSP Output / Card Inputs CMD, DAT (Reference to CLK) SD2 SSP Output Delay SSP Input / Card Outputs CMD, DAT (Reference to CLK) SD3 SSP Input Setup Time tISU 2.5 — ns SD4 SSP Input Hold Time tIH 2.5 — ns i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 55 3.5.14.3 MS (Memory Stick) AC Timing The SSP module, which also has the function of a memory stick host controller, is compatible with the Sony Memory Stick version 1.x and Memory Stick PRO. Figure 38, Figure 39 and Table 40 show the timing of the Memory Stick. Table 60 and Table 61 list the Memory Stick timing characteristics. MS1 80% 50% 20% 80% 50% 20% SCK MS2 80% 50% 20% MS3 MS5 MS4 Figure 38. MS Clock Time Waveforms MS1 SCK BS(CMD) MS6 MS7 MS9 MS8 DATA (Output) MS10 DATA (Input) Figure 39. MS Serial Transfer Mode Timing Diagram i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 56 Freescale Semiconductor MS1 SCK BS(CMD) MS11 MS12 MS14 MS13 DATA (Output) MS15 DATA (Input) Figure 40. MS Parallel Transfer Mode Timing Diagram Table 60. MS Serial Transfer Timing Parameters ID Parameter Symbol Min Max Units MS1 SCK Cycle Time tCLKc 50 — ns MS2 SCK High Pulse Time tCLKwh 15 — ns MS3 SCK Low Pulse Time tCLKwl 15 — ns MS4 SCK Rise Time tCLKr — 10 ns MS5 SCK Fall Time tCLKf — 10 ns MS6 BS Setup Time tBSsu 5 — ns MS7 BS Hold Time tBSh 5 — ns MS8 DATA Setup Time tDsu 5 — ns MS9 DATA Hold Time tDh 5 — ns MS10 DATA Input Delay Time tDd — 15 ns Table 61. MS Parallel Transfer Timing Parameters ID Parameter Symbol Min Max Units MS1 SCK Cycle Time tCLKc 25 — ns MS2 SCK High Pulse Time tCLKwh 5 — ns MS3 SCK Low Pulse Time tCLKwl 5 — ns i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 57 Table 61. MS Parallel Transfer Timing Parameters (continued) ID Parameter Symbol Min Max Units MS4 SCK Rise Time tCLKr — 10 ns MS5 SCK Fall Time tCLKf — 10 ns MS11 BS Setup Time tBSsu 8 — ns MS12 BS Hold Time tBSh 1 — ns MS13 DATA Setup Time tDsu 8 — ns MS14 DATA Hold Time tDh 1 — ns MS15 DATA Input Delay Time tDd — 15 ns 3.5.14.4 SPI AC Timing Figure 41 depicts the master mode and slave mode timings of the SPI, and Table 62 lists the timing parameters. SSn CS1 CS3 CS2 CS5 CS6 CS4 SCK CS9 CS3 CS10 CS2 MISO CS8 CS7 MOSI Figure 41. SPI Interface Timing Diagram Table 62. SPI Interface Timing Parameters ID Parameter Symbol Min. Max. Units CS1 SCK cycle time tclk 50 — ns CS2 SCK high or low time tSW 25 — ns CS3 SCK rise or fall tRISE/FALL — 7.6 ns CS4 SSn pulse width tCSLH 25 — ns CS5 SSn lead time (CS setup time) tSCS 25 — ns CS6 SSn lag time (CS hold time) tHCS 25 — ns CS7 MOSI setup time tSmosi 5 — ns CS8 MOSI hold time tHmosi 5 — ns CS9 MISO setup time tSmiso 5 — ns CS10 MISO hold time tHmiso 5 — ns i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 58 Freescale Semiconductor 3.5.15 UART (UARTAPP and DebugUART) AC Timing This section describes the UART module AC timing which is applicable to both UARTAPP and DebugUART. 3.5.15.1 UART Transmit Timing Figure 39 shows the UART transmit timing, showing only eight data bits and one stop bit. Table 63 describes the timing parameter (UA1) shown in the figure. UA1 TXD (output) Start Bit Possible Parity Bit UA1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT UA1 Next Start Bit UA1 Figure 42. UART Transmit Timing Diagram Table 63. UART Transmit Timing Parameters ID UA1 Parameter Symbol Transmit Bit Time Min. 1/Fbaud_rate1 tTbit – Tref_clk 2 Max. Units 1/Fbaud_rate + Tref_clk — 1 Fbaud_rate: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate of DebugUART is 115.2 kbps. 2 T ref_clk: The period of UART reference clock ref_clk (which is APBX clock = 24 MHz). 3.5.15.2 UART Receive Timing Figure 43 shows the UART receive timing, showing only eight data bits and one stop bit. Table 64 describes the timing parameter (UA2) shown in the figure. – UA2 RXD (input) Start Bit Possible Parity Bit UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT UA2 Next Start Bit UA2 Figure 43. UART Receive Timing Diagram i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 59 Table 64. UART Receive Timing Parameters ID UA2 Parameter 1 Receive bit time Symbol Min. Max. Units tRbit 1/Fbaud_rate2 – 1/(16 1/Fbaud_rate + 1/(16 × Fbaud_rate) — × Fbaud_rate) The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 × Fbaud_rate). 2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate of DebugUART is 115 kbps. 1 4 4.1 Package Information and Contact Assignments 289-Ball MAPBGA—Case 14 x 14 mm, 0.8 mm Pitch The following notes apply to Figure 44: • All dimensions are in millimeters. • Dimensioning and tolerancing per ASME Y14.5M-1994. • Maximum solder bump diameter measured parallel to datum A. • Datum A, the seating plane, is determined by the spherical crowns of the solder bumps. • Parallelism measurement excludes any effect of mark on top surface of package. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 60 Freescale Semiconductor Figure 44 shows the i.MX28 production package. Figure 44. i.MX28 Production Package zzxz 4.2 Ground, Power, Sense, and Reference Contact Assignments Table 65 shows power and ground contact assignments for the MAPBGA package. Table 65. MAPBGA Power and Ground Contact Assignments Contact Name Contact Assignment VDDA1 C13 VDDD G12,G11,F10,F11,K12,F12,G10 VDDIO18 G8,F9,F8,G9 VDDIO33 H8,J8,N3,G3,E6,J9,J10,A7,E16 VDDIO33_EMI N17 VDDIO_EMI P11,R13,N13,N15,G17,M12,M10,G13,M11,L13,G15 i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 61 Table 65. MAPBGA Power and Ground Contact Assignments (continued) Contact Name Contact Assignment VDDIO_EMIQ K15,J13,R15 VDDXTAL C12 VSS E15,L11,A1,K10,K11,J11,M14,H11,U1,H9,H12,H3,K9,C16,L10,H16,J12,H10,B7,E5,J15,A9,N4 VSSA1 B13 VSSA2 B11 VSSIO_EMI F16,R10,H14,M16,F14,L12,P16,U17,T14,P14,R12 4.3 Signal Contact Assignments Table 66 lists the i.MX287 MAPBGA package signal contact assignments. Table 66. MAPBGA Contact Assignments Signal Name Contact Assignment Signal Name Contact Assignment Signal Name Contact Assignment AUART0_CTS J6 EMI_DQS1N J16 LCD_D17 R3 AUART0_RTS J7 EMI_ODT0 R17 LCD_D18 U4 AUART0_RX G5 EMI_ODT1 T17 LCD_D19 T4 AUART0_TX H5 EMI_RASN R16 LCD_D20 R4 AUART1_CTS K5 EMI_VREF0 R14 LCD_D21 U5 AUART1_RTS J5 EMI_VREF1 K13 LCD_D22 T5 AUART1_RX L4 EMI_WEN T15 LCD_D23 R5 AUART1_TX K4 ENET0_COL J4 LCD_DOTCLK N1 AUART2_CTS H6 ENET0_CRS J3 LCD_ENABLE N5 AUART2_RTS H7 ENET0_MDC G4 LCD_HSYNC M1 AUART2_RX F6 ENET0_MDIO H4 LCD_RD_E P4 AUART2_TX F5 ENET0_RXD0 H1 LCD_RESET M6 AUART3_CTS L6 ENET0_RXD1 H2 LCD_RS M4 AUART3_RTS K6 ENET0_RXD2 J1 LCD_VSYNC L1 AUART3_RX M5 ENET0_RXD3 J2 LCD_WR_RWN K1 AUART3_TX L5 ENET0_RX_CLK F3 LRADC0 C15 BATTERY A15 ENET0_RX_EN E4 LRADC1 C9 DCDC_BATT B15 ENET0_TXD0 F1 LRADC2 C8 DCDC_GND A17 ENET0_TXD1 F2 LRADC3 D9 DCDC_LN1 B17 ENET0_TXD2 G1 LRADC4 D13 DCDC_LP A16 ENET0_TXD3 G2 LRADC5 D15 i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 62 Freescale Semiconductor Table 66. MAPBGA Contact Assignments (continued) Signal Name Contact Assignment Signal Name Contact Assignment Signal Name Contact Assignment DCDC_VDDA B16 ENET0_TX_CLK E3 LRADC6 C14 DCDC_VDDD D17 ENET0_TX_EN F4 PSWITCH A11 DCDC_VDDIO C17 ENET_CLK E2 PWM0 K7 DEBUG B9 GPMI_ALE P6 PWM1 L7 EMI_A00 U15 GPMI_CE0N N7 PWM2 K8 EMI_A01 U12 GPMI_CE1N N9 PWM3 E9 EMI_A02 U14 GPMI_CE2N M7 PWM4 E10 EMI_A03 T11 GPMI_CE3N M9 RESETN A14 EMI_A04 U10 GPMI_CLE P7 RTC_XTALI D11 EMI_A05 R11 GPMI_D00 U8 RTC_XTALO C11 EMI_A06 R9 GPMI_D01 T8 SAIF0_BITCLK F7 EMI_A07 N11 GPMI_D02 R8 SAIF0_LRCLK G6 EMI_A08 U9 GPMI_D03 U7 SAIF0_MCLK G7 EMI_A09 P10 GPMI_D04 T7 SAIF0_SDATA0 E7 EMI_A10 U13 GPMI_D05 R7 SAIF1_SDATA0 E8 EMI_A11 T10 GPMI_D06 U6 SPDIF D7 EMI_A12 U11 GPMI_D07 T6 SSP0_CMD A4 EMI_A13 T9 GPMI_RDN R6 SSP0_DATA0 B6 EMI_A14 N10 GPMI_RDY0 N6 SSP0_DATA1 C6 EMI_BA0 T16 GPMI_RDY1 N8 SSP0_DATA2 D6 EMI_BA1 T12 GPMI_RDY2 M8 SSP0_DATA3 A5 EMI_BA2 N12 GPMI_RDY3 L8 SSP0_DATA4 B5 EMI_CASN U16 GPMI_RESETN L9 SSP0_DATA5 C5 EMI_CE0N P12 GPMI_WRN P8 SSP0_DATA6 D5 EMI_CE1N P9 HSADC0 B14 SSP0_DATA7 B4 EMI_CKE T13 I2C0_SCL C7 SSP0_DETECT D10 EMI_CLK L17 I2C0_SDA D8 SSP0_SCK A6 EMI_CLKN L16 JTAG_RTCK E14 SSP1_CMD C1 EMI_D00 N16 JTAG_TCK E11 SSP1_DATA0 D1 EMI_D01 M13 JTAG_TDI E12 SSP1_DATA3 E1 EMI_D02 P15 JTAG_TDO E13 SSP1_SCK B1 EMI_D03 N14 JTAG_TMS D12 SSP2_MISO B3 i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 63 Table 66. MAPBGA Contact Assignments (continued) Signal Name Contact Assignment Signal Name Contact Assignment Signal Name Contact Assignment EMI_D04 P13 JTAG_TRST D14 SSP2_MOSI C3 EMI_D05 P17 LCD_CS P5 SSP2_SCK A3 EMI_D06 L14 LCD_D00 K2 SSP2_SS0 C4 EMI_D07 M17 LCD_D01 K3 SSP2_SS1 D3 EMI_D08 G16 LCD_D02 L2 SSP2_SS2 D4 EMI_D09 H15 LCD_D03 L3 SSP3_MISO B2 EMI_D10 G14 LCD_D04 M2 SSP3_MOSI C2 EMI_D11 J14 LCD_D05 M3 SSP3_SCK A2 EMI_D12 H13 LCD_D06 N2 SSP3_SS0 D2 EMI_D13 H17 LCD_D07 P1 TESTMODE C10 EMI_D14 F13 LCD_D08 P2 USB0DM A10 EMI_D15 F17 LCD_D09 P3 USB0DP B10 EMI_DDR_OPE N K14 LCD_D10 R1 USB1DM B8 EMI_DDR_OPE N_FB L15 LCD_D11 R2 USB1DP A8 EMI_DQM0 M15 LCD_D12 T1 VDD1P5 D16 EMI_DQM1 F15 LCD_D13 T2 VDD4P2 A13 EMI_DQS0 K17 LCD_D14 U2 VDD5V E17 EMI_DQS0N K16 LCD_D15 U3 XTALI A12 EMI_DQS1 J17 LCD_D16 T3 XTALO B12 i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 64 Freescale Semiconductor 4.4 i.MX287 Ball Map Figure 45 shows the i.MX287 MAPBGA Ball Map. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A VSS SSP3 _SCK SSP2 _SCK SSP0 _CMD SSP0 _DAT A3 SSP0 _SCK VDDI O33 USB1 DP VSS USB0 DM PSWI TCH XTALI VDD4 P2 RESE TN BATT ERY DCDC DCDC _LP _GND A B SSP1 _SCK SSP3 _MIS O SSP2 _MIS O SSP0 _DAT A7 SSP0 _DAT A4 SSP0 _DAT A0 VSS USB1 DM DEBU G USB0 DP VSSA 2 XTAL O VSSA 1 HSAD C0 DCDC DCDC DCDC _BAT _VDD _LN1 T A B C SSP3 SSP2 SSP1 _MOS _MOS _CMD I I SSP2 _SS0 SSP0 _DAT A5 SSP0 _DAT A1 I2C0_ SCL LRAD C2 LRAD C1 TEST MOD E RTC_ XTAL O VDDX VDDA TAL 1 LRAD C6 LRAD C0 VSS DCDC _VDD IO C D SSP1 _DAT A0 SSP3 _SS0 SSP2 _SS1 SSP2 _SS2 SSP0 _DAT A6 SSP0 _DAT A2 SPDI F I2C0_ SDA LRAD C3 SSP0 _DET ECT RTC_ XTALI JTAG _TMS LRAD C4 JTAG _TRS T LRAD C5 VDD1 P5 DCDC _VDD D D E SSP1 _DAT A3 ENET _CLK ENET 0_TX _CLK ENET 0_RX _EN VSS VDDI O33 SAIF0 SAIF1 _SDA _SDA TA0 TA0 PWM 3 PWM 4 JTAG _TCK JTAG _TDI JTAG _TDO JTAG _RTC K VSS VDDI O33 VDD5 V E F ENET 0_TX D0 ENET 0_TX D1 ENET 0_RX _CLK ENET 0_TX _EN AUAR AUAR SAIF0 T2_T T2_R _BITC X X LK VDDI O18 VDDI O18 VDDD VDDD VDDD EMI_ D14 VSSI VSSI EMI_ O_EM O_EM DQM1 I I EMI_ D15 F G ENET 0_TX D2 ENET 0_TX D3 VDDI O33 ENET 0_MD C AUAR SAIF0 SAIF0 T0_R _LRC _MCL X LK K VDDI O18 VDDI O18 VDDI VDDD VDDD VDDD O_EM I EMI_ D10 VDDI O_EM I EMI_ D08 VDDI O_EM I G H ENET 0_RX D0 ENET 0_RX D1 VSS ENET 0_MD IO AUAR AUAR AUAR T0_T T2_C T2_R X TS TS VDDI O33 VSS VSS VSS VSS EMI_ D12 VSSI O_EM I EMI_ D09 VSS EMI_ D13 H J ENET 0_RX D2 ENET 0_RX D3 ENET 0_CR S ENET 0_CO L AUAR AUAR AUAR T1_R T0_C T0_R TS TS TS VDDI O33 VDDI O33 VDDI O33 VSS VSS VDDI O_EM IQ EMI_ D11 VSS EMI_ DQS1 N EMI_ DQS1 J K LCD_ WR_ RWN LCD_ D00 LCD_ D01 AUAR AUAR AUAR T1_T T1_C T3_R X TS TS PWM 0 PWM 2 VSS VSS VSS VDDD EMI_ VREF 1 EMI_ VDDI DDR_ O_EM OPEN IQ EMI_ DQS0 N EMI_ DQS0 K L LCD_ VSYN C LCD_ D02 LCD_ D03 AUAR AUAR AUAR T1_R T3_T T3_C X X TS PWM 1 GPMI _RDY 3 GPMI _RES ETN VSS VSS VSSI VDDI O_EM O_EM I I EMI_ D06 EMI_ DDR_ EMI_ OPEN CLKN _FB EMI_ CLK L M LCD_ HSYN C LCD_ D04 LCD_ D05 LCD_ RS AUAR LCD_ T3_R RESE X T GPMI _CE2 N GPMI _RDY 2 GPMI _CE3 N VDDI VDDI VDDI O_EM O_EM O_EM I I I EMI_ D01 VSS VSSI EMI_ O_EM DQM0 I EMI_ D07 M N LCD_ DOTC LK LCD_ D06 VDDI O33 VSS LCD_ ENAB LE GPMI _RDY 0 GPMI _CE0 N GPMI _RDY 1 GPMI _CE1 N EMI_ A14 EMI_ A07 EMI_ BA2 VDDI O_EM I EMI_ D03 VDDI O_EM I EMI_ D00 VDDI O33_ EMI N P LCD_ D07 LCD_ D08 LCD_ D09 LCD_ RD_E LCD_ CS GPMI _ALE GPMI _CLE GPMI _WR N EMI_ CE1N EMI_ A09 VDDI O_EM I EMI_ CE0N EMI_ D04 VSSI O_EM I EMI_ D02 VSSI O_EM I EMI_ D05 P R LCD_ D10 LCD_ D11 LCD_ D17 LCD_ D20 LCD_ D23 GPMI _RDN GPMI _D05 GPMI _D02 EMI_ A06 VSSI O_EM I EMI_ A05 VSSI VDDI O_EM O_EM I I EMI_ VREF 0 VDDI EMI_ O_EM RASN IQ EMI_ ODT0 R T LCD_ D12 LCD_ D13 LCD_ D16 LCD_ D19 LCD_ D22 GPMI _D07 GPMI _D04 GPMI _D01 EMI_ A13 EMI_ A11 EMI_ A03 EMI_ BA1 EMI_ CKE VSSI O_EM I EMI_ WEN EMI_ BA0 EMI_ ODT1 T U VSS LCD_ D14 LCD_ D15 LCD_ D18 LCD_ D21 GPMI _D06 GPMI _D03 GPMI _D00 EMI_ A08 EMI_ A04 EMI_ A12 EMI_ A01 EMI_ A10 EMI_ A02 EMI_ A00 VSSI EMI_ O_EM CASN I U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 Figure 45. 289-pin i.MX287 MAPBGA Ball Map i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 65 4.5 i.MX286 Ball Map Figure 46 shows the i.MX286 MAPBGA ball map. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A VSS NC SSP2 _SCK SSP0 _CMD SSP0 _DAT A3 SSP0 _SCK VDDI O33 USB1 DP VSS USB0 DM PSWI TCH XTALI VDD4 P2 RESE TN BATT ERY DCDC DCDC _LP _GND A B NC NC SSP2 _MIS O SSP0 _DAT A7 SSP0 _DAT A4 SSP0 _DAT A0 VSS USB1 DM DEBU G USB0 DP VSSA 2 XTAL O VSSA 1 HSAD C0 DCDC DCDC DCDC _BAT _VDD _LN1 T A B C NC NC SSP2 _MOS I SSP2 _SS0 SSP0 _DAT A5 SSP0 _DAT A1 I2C0_ SCL LRAD C2 LRAD C1 TEST MOD E RTC_ XTAL O VDDX VDDA TAL 1 LRAD C6 LRAD C0 VSS DCDC _VDD IO C D NC NC SSP2 _SS1 SSP2 _SS2 SSP0 _DAT A6 SSP0 _DAT A2 SPDI F I2C0_ SDA LRAD C3 SSP0 _DET ECT RTC_ XTALI JTAG _TMS LRAD C4 JTAG _TRS T LRAD C5 VDD1 P5 DCDC _VDD D D E NC ENET _CLK NC ENET 0_RX _EN VSS VDDI O33 SAIF0 SAIF1 _SDA _SDA TA0 TA0 PWM 3 PWM 4 JTAG _TCK JTAG _TDI JTAG _TDO JTAG _RTC K VSS VDDI O33 VDD5 V E F ENET 0_TX D0 ENET 0_TX D1 NC ENET 0_TX _EN NC NC SAIF0 _BITC LK VDDI O18 VDDI O18 VDDD VDDD VDDD EMI_ D14 VSSI VSSI EMI_ O_EM O_EM DQM1 I I EMI_ D15 F G NC NC VDDI O33 ENET 0_MD C AUAR SAIF0 SAIF0 T0_R _LRC _MCL X LK K VDDI O18 VDDI O18 VDDI VDDD VDDD VDDD O_EM I EMI_ D10 VDDI O_EM I EMI_ D08 VDDI O_EM I G H ENET 0_RX D0 ENET 0_RX D1 VSS ENET 0_MD IO AUAR T0_T X VDDI O33 VSS VSS VSS VSS EMI_ D12 VSSI O_EM I EMI_ D09 VSS EMI_ D13 H J NC NC NC NC NC AUAR AUAR T0_C T0_R TS TS VDDI O33 VDDI O33 VDDI O33 VSS VSS VDDI O_EM IQ EMI_ D11 VSS EMI_ DQS1 N EMI_ DQS1 J K LCD_ WR_ RWN LCD_ D00 LCD_ D01 AUAR T1_T X NC NC PWM 0 PWM 2 VSS VSS VSS VDDD EMI_ VREF 1 EMI_ VDDI DDR_ O_EM OPEN IQ EMI_ DQS0 N EMI_ DQS0 K L NC LCD_ D02 LCD_ D03 AUAR T1_R X NC NC PWM 1 GPMI _RDY 3 GPMI _RES ETN VSS VSS VSSI VDDI O_EM O_EM I I EMI_ D06 EMI_ DDR_ EMI_ OPEN CLKN _FB EMI_ CLK L M NC LCD_ D04 LCD_ D05 LCD_ RS NC LCD_ RESE T GPMI _CE2 N GPMI _RDY 2 GPMI _CE3 N VDDI VDDI VDDI O_EM O_EM O_EM I I I EMI_ D01 VSS VSSI EMI_ O_EM DQM0 I EMI_ D07 M N NC LCD_ D06 VDDI O33 VSS NC GPMI _RDY 0 GPMI _CE0 N GPMI _RDY 1 GPMI _CE1 N EMI_ A14 EMI_ A07 EMI_ BA2 VDDI O_EM I EMI_ D03 VDDI O_EM I EMI_ D00 VDDI O33_ EMI N P LCD_ D07 LCD_ D08 LCD_ D09 LCD_ RD_E LCD_ CS GPMI _ALE GPMI _CLE GPMI _WR N EMI_ CE1N EMI_ A09 VDDI O_EM I EMI_ CE0N EMI_ D04 VSSI O_EM I EMI_ D02 VSSI O_EM I EMI_ D05 P R LCD_ D10 LCD_ D11 LCD_ D17 LCD_ D20 LCD_ D23 GPMI _RDN GPMI _D05 GPMI _D02 EMI_ A06 VSSI O_EM I EMI_ A05 VSSI VDDI O_EM O_EM I I EMI_ VREF 0 VDDI EMI_ O_EM RASN IQ EMI_ ODT0 R T LCD_ D12 LCD_ D13 LCD_ D16 LCD_ D19 LCD_ D22 GPMI _D07 GPMI _D04 GPMI _D01 EMI_ A13 EMI_ A11 EMI_ A03 EMI_ BA1 EMI_ CKE VSSI O_EM I EMI_ WEN EMI_ BA0 EMI_ ODT1 T U VSS LCD_ D14 LCD_ D15 LCD_ D18 LCD_ D21 GPMI _D06 GPMI _D03 GPMI _D00 EMI_ A08 EMI_ A04 EMI_ A12 EMI_ A01 EMI_ A10 EMI_ A02 EMI_ A00 VSSI EMI_ O_EM CASN I U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 NC NC 16 16 17 17 Figure 46. 289-pin i.MX286 MAPBGA Ball Map i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 66 Freescale Semiconductor 4.6 i.MX283 Ball Map Figure 47 shows the i.MX283 MAPBGA ball map. 1 A B C D E F G H J K L M N P R T U 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 SSP2_S SSP0_C SSP0_D SSP0_S VDDIO3 USB0D PSWITC BATTER DCDC_L DCDC_ USB1DP VSS XTALI VDD4P2 RESETN CK MD ATA3 CK 3 M H Y P GND SSP2_M SSP0_D SSP0_D SSP0_D USB1D DCDC_BDCDC_V DCDC_L NC NC VSS DEBUG USB0DP VSSA2 XTALO VSSA1 HSADC0 ISO ATA7 ATA4 ATA0 M ATT DDA N1 SSP2_M SSP2_S SSP0_D SSP0_D I2C0_SC TESTM RTC_XT VDDXT DCDC_V NC NC LRADC2 LRADC1 VDDA1 LRADC6 LRADC0 VSS OSI S0 ATA5 ATA1 L ODE ALO AL DDIO SSP2_S SSP2_S SSP0_D SSP0_D I2C0_SD SSP0_D RTC_XT JTAG_T JTAG_T DCDC_V NC NC NC LRADC3 LRADC4 LRADC5VDD1P5 S1 S2 ATA6 ATA2 A ETECT ALI MS RST DDD ENET_C ENET0_ VDDIO3 SAIF0_S SAIF1_S JTAG_T JTAG_T JTAG_T JTAG_R VDDIO3 NC NC VSS PWM3 PWM4 VSS VDD5V LK RX_EN 3 DATA0 DATA0 CK DI DO TCK 3 ENET0_ ENET0_ ENET0_ SAIF0_B VDDIO1 VDDIO1 EMI_D1 VSSIO_ EMI_D VSSIO_ EMI_D1 NC NC NC VDDD VDDD VDDD TXD0 TXD1 TX_EN ITCLK 8 8 4 EMI QM1 EMI 5 VDDIO3 ENET0_ AUART SAIF0_L SAIF0_ VDDIO1 VDDIO1 VDDIO_ EMI_D1 VDDIO_ EMI_D0 VDDIO_ NC NC VDDD VDDD VDDD 3 MDC 0_RX RCLK MCLK 8 8 EMI 0 EMI 8 EMI ENET0_ ENET0_ ENET0_ AUART VDDIO3 EMI_D1 VSSIO_ EMI_D0 EMI_D1 VSS NC NC VSS VSS VSS VSS VSS RXD0 RXD1 MDIO 0_TX 3 2 EMI 9 3 AUART AUART VDDIO3 VDDIO3 VDDIO3 VDDIO_ EMI_D1 EMI_D EMI_D NC NC NC NC NC VSS VSS VSS 0_CTS 0_RTS 3 3 3 EMIQ 1 QS1N QS1 LCD_W LCD_D0 LCD_D0 AUART EMI_VR EMI_DD VDDIO_ EMI_D EMI_D NC NC PWM0 PWM2 VSS VSS VSS VDDD R_RWN 0 1 1_TX EF1 R_OPE EMIQ QS0N QS0 LCD_D0 LCD_D0 AUART GPMI_R VSSIO_ VDDIO_ EMI_D0 EMI_DD EMI_CL EMI_CL NC NC NC PWM1 NC VSS VSS R_OPE KN 2 3 1_RX ESETN EMI EMI 6 K LCD_D0 LCD_D0 LCD_RE VDDIO_ VDDIO_ VDDIO_ EMI_D0 EMI_D VSSIO_ EMI_D0 NC LCD_RS NC NC NC NC VSS 4 5 SET EMI EMI EMI 1 QM0 EMI 7 LCD_D0 VDDIO3 GPMI_R GPMI_C GPMI_R GPMI_C EMI_A1 EMI_A0 EMI_BA VDDIO_ EMI_D0 VDDIO_ EMI_D0 VDDIO3 NC VSS NC 6 3 DY0 E0N DY1 E1N 4 7 2 EMI 3 EMI 0 3_EMI LCD_D0 LCD_D0 LCD_D0 LCD_RD GPMI_A GPMI_C GPMI_ EMI_CE EMI_A0 VDDIO_ EMI_CE EMI_D0 VSSIO_ EMI_D0 VSSIO_ EMI_D0 LCD_CS 7 8 9 _E LE LE WRN 1N 9 EMI 0N 4 EMI 2 EMI 5 LCD_D1 LCD_D1 LCD_D1 LCD_D2 LCD_D2 GPMI_R GPMI_ GPMI_ EMI_A0 VSSIO_ EMI_A0 VSSIO_ VDDIO_ EMI_VR VDDIO_ EMI_RA EMI_O 0 1 7 0 3 DN D05 D02 6 EMI 5 EMI EMI EF0 EMIQ SN DT0 LCD_D1 LCD_D1 LCD_D1 LCD_D1 LCD_D2 GPMI_ GPMI_ GPMI_ EMI_A1 EMI_A1 EMI_A0 EMI_BA EMI_CK VSSIO_ EMI_W EMI_BA EMI_O 2 3 6 9 2 D07 D04 D01 3 1 3 1 E EMI EN 0 DT1 LCD_D1 LCD_D1 LCD_D1 LCD_D2 GPMI_ GPMI_ GPMI_ EMI_A0 EMI_A0 EMI_A1 EMI_A0 EMI_A1 EMI_A0 EMI_A0 EMI_CA VSSIO_ VSS 4 5 8 1 D06 D03 D00 8 4 2 1 0 2 0 SN EMI VSS 1 NC 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E F G H J K L M N P R T U 17 Figure 47. 289-pin i.MX283 MAPBGA Ball Map i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 67 4.7 i.MX280 Ball Map Figure 48 shows the i.MX280 MAPBGA ball map. 1 2 A VSS NC SSP2_S SSP0_C SSP0_D SSP0_S VDDIO3 USB1D CK MD ATA3 CK 3 P B NC NC SSP2_ SSP0_D SSP0_D SSP0_D VSS MISO ATA7 ATA4 ATA0 C NC NC SSP2_ SSP2_S SSP0_D SSP0_D I2C0_SC TESTM RTC_XT VDDXT LRADC2LRADC1 VDDA1 LRADC6LRADC0 VSS MOSI S0 ATA5 ATA1 L ODE ALO AL D NC NC SSP2_S SSP2_S SSP0_D SSP0_D S1 S2 ATA6 ATA2 E NC ENET_C LK ENET0_ ENET0_ TXD0 TXD1 F G H J K NC NC 3 4 5 NC 7 8 9 10 11 12 13 14 15 16 17 USB0D PSWITC VDD4P BATTER DCDC_L DCDC_ XTALI RESETN M H 2 Y P GND A USB1D USB0D HSADC DCDC_ DCDC_ DCDC_L DEBUG VSSA2 XTALO VSSA1 M P 0 BATT VDDA N1 B VSS DCDC_ VDDIO C I2C0_S SSP0_D RTC_XT JTAG_T JTAG_T VDD1P DCDC_ LRADC3 LRADC4 LRADC5 DA ETECT ALI MS RST 5 VDDD D NC ENET0_ VDDIO3SAIF0_S SAIF1_S JTAG_T JTAG_T JTAG_T JTAG_R VDDIO3 VSS PWM3 PWM4 VSS VDD5V RX_EN 3 DATA0 DATA0 CK DI DO TCK 3 E NC ENET0_ TX_EN SAIF0_ VDDIO1VDDIO1 EMI_D1 VSSIO_ EMI_D VSSIO_ EMI_D1 VDDD VDDD VDDD BITCLK 8 8 4 EMI QM1 EMI 5 F VDDIO3 ENET0_ AUART SAIF0_L SAIF0_ VDDIO1VDDIO1 VDDIO_ EMI_D1 VDDIO_ EMI_D0 VDDIO_ VDDD VDDD VDDD 3 MDC 0_RX RCLK MCLK 8 8 EMI 0 EMI 8 EMI G NC ENET0_ ENET0_ ENET0_ AUART VSS RXD0 RXD1 MDIO 0_TX NC 6 NC NC NC NC NC VSS VSS EMI_D1 VSSIO_ EMI_D0 EMI_D1 VSS 2 EMI 9 3 H AUART AUART VDDIO3VDDIO3VDDIO3 VSS 0_CTS 0_RTS 3 3 3 VSS VDDIO_ EMI_D1 VSS EMIQ 1 J NC NC VDDIO3 VSS 3 ETM_T ETM_D ETM_D AUART CLK A0 A1 1_TX NC NC PWM0 PWM2 L NC ETM_D ETM_D AUART A2 A3 1_RX NC NC PWM1 NC M NC ETM_D ETM_D GPIO_B A4 A5 1P26 NC NC NC NC N NC ETM_D VDDIO3 VSS A6 3 P ETM_D A7 NC NC R NC NC T NC U VSS VSS VSS VSS GPMI_ VSS RESETN VSS EMI_D EMI_D QS1N QS1 EMI_D EMI_VR VDDIO_ EMI_D EMI_D DR_OP EF1 EMIQ QS0N QS0 EN EMI_D VSSIO_ VDDIO_ EMI_D0 EMI_CL EMI_CL DR_OP EMI EMI 6 KN K EN_FB VDDD L EMI_D VSSIO_ EMI_D0 QM0 EMI 7 M NC GPMI_ GPMI_ GPMI_ GPMI_ EMI_A1 EMI_A0 EMI_BAVDDIO_ EMI_D0 VDDIO_ EMI_D0 VDDIO3 RDY0 CE0N RDY1 CE1N 4 7 2 EMI 3 EMI 0 3_EMI N ETM_T CTL NC GPMI_ GPMI_ GPMI_ EMI_CE EMI_A0 VDDIO_ EMI_CE EMI_D0 VSSIO_ EMI_D0 VSSIO_ EMI_D0 ALE CLE WRN 1N 9 EMI 0N 4 EMI 2 EMI 5 P NC NC NC GPMI_ GPMI_ GPMI_ EMI_A0 VSSIO_ EMI_A0 VSSIO_ VDDIO_ EMI_VRVDDIO_EMI_RA EMI_O RDN D05 D02 6 EMI 5 EMI EMI EF0 EMIQ SN DT0 R NC NC NC NC GPMI_ GPMI_ GPMI_ EMI_A1 EMI_A1 EMI_A0 EMI_BA EMI_CK VSSIO_ EMI_W EMI_BA EMI_O D07 D04 D01 3 1 3 1 E EMI EN 0 DT1 T VSS NC NC NC NC GPMI_ GPMI_ GPMI_ EMI_A0 EMI_A0 EMI_A1 EMI_A0 EMI_A1 EMI_A0 EMI_A0 EMI_CA VSSIO_ D06 D03 D00 8 4 2 1 0 2 0 SN EMI U 1 2 3 4 5 6 7 8 NC 9 VDDIO_VDDIO_ VDDIO_ EMI_D0 VSS EMI EMI EMI 1 K 10 11 12 13 14 15 16 17 Figure 48. 289-pin i.MX280 MAPBGA Ball Map i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 68 Freescale Semiconductor 5 Revision History Table 67 summarizes revisions to this document. Table 67. Revision History Rev. # Rev. 1 Date Revision 04/2011 • • • • • • • • • • • • • • Rev. 0 Updated Section 1.1, “Device Features.” Added Section 3.2, “Thermal Characteristics.” In Table 1, "Ordering Information," on page 3, added two rows. Updated Table 2, "i.MX28 Functional Differences," on page 3. Updated Table 4, "i.MX28 Digital and Analog Modules," on page 6. In Table 8, "Recommended Power Supply Operating Conditions," on page 13, updated BATT row. Updated Table 9, "Operating Temperature Conditions," on page 13. Replaced the term “DC Characteristics” with “Power Consumption” in the title and introduction of Table 12, "Power Consumption," on page 14. Also changed Dissipation to Consumption in first row. Updated Table 26, "Digital Pin DC Characteristics for GPIO in 3.3-V Mode," on page 21. Updated Table 27, "Digital Pin DC Characteristics for GPIO in 1.8 V Mode," on page 23. Updated and added a footnote to Table 34, "Ethernet PLL Specifications," on page 30. Updated DDR1 row of Table 35, "EMI Command/Address AC Timing," on page 31. In Section 4.6, “i.MX283 Ball Map,” replaced Figure 47. Added Section 4.7, “i.MX280 Ball Map.” 09/2010 Initial release. i.MX28 Applications Processors Data Sheet for Consumer Products, Rev. 1 Freescale Semiconductor 69 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Document Number: IMX28CEC Rev. 1 04/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM926EJ-S, CoreSight, and ETM9 are trademarks of ARM Limited. IEEE 1588 and IEEE 1149 are trademarks and IEEE 802.3 is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. © Freescale Semiconductor, Inc., 2011. All rights reserved.