MAXIM MAX8903

19-4410; Rev 5; 9/11
19-4410; Rev 5; 9/11
评 估 板
可 提 供
评估板
可提供
概述
概述
M A X8903A - M A X8903E / M A X8903G/ M A X8903H /
MAX8903J/MAX8903N/MAX8903Y是集成的单节Li+电池
MAX8903A/MAX8903E/MAX8903G/MAX8903H/MAX8
充电器和Smart Power SelectorTM (智能电源选择器),提
903J/MAX8903N/MAX8903Y是集成的单节Li+电池充
供双电源输入(交流适配器和USB)。开关模式充电器工作
电器和Smart
Power SelectorTM(智能电源选择器),提
在较高的开关频率,可以省去散热器并允许使用小尺寸
供双电源输入(交流适配器和USB)。开关模式充电器工
外部元件。该器件可采用独立的USB电源或交流适配器供
作在较高的开关频率,可以省去散热器并允许使用小
电,也可以用一个输入端接收两路电源输入。芯片集成了
尺寸外部元件。该器件可采用独立的USB电源或交流
所有充电功能和用于切换电池、外部电源、负载的功率开
适配器供电,也可以用一个输入端接收两路电源输入。芯片
关。无需外部MOSFET、反向保护二极管和检流电阻。
集成了所有充电功能和用于切换电池、外部电源、负
MAX8903_优化工作于智能化电源管理模式,可充分利用
载的功率开关。无需外部MOSFET、反向保护二极管
有限的USB或适配器电源的供电能力。电池充电电流和
和检流电阻。
SYS输出限流均可独立设置。在保证系统供电的前提下
为电池充电。充电电流和SYS输出限流可设置在最高2A,
MAX8903_优化工作于智能化电源管理模式,可充
USB输入限流可设置在100mA或500mA。输入选择电路
分利用有限的USB或适配器电源的供电能力。电池
能够自动地将系统供电电源从电池切换至外部电源。器件
充电电流和SYS输出限流均可独立设置。在保证系
工作在4.15V至16V直流输入电压范围,输入端具有高达
统供电的前提下为电池充电。充电电流和SYS输出
20V的保护;USB输入范围为4.1V至6.3V,输入端具有最
限流可设置在最高2A,USB输入限流可设置在
高8V保护。
100mA或500mA。输人选择电路能够自动地将系
未接输入电源时,MAX8903_内部电路可以阻止电流从电
统供电电源从电池切换至外部电源。器件工作在
池、系统倒灌到直流电源、USB输入。其它功能包括:预
4.15V至16V直流输入电压范围,输入端具有高达
充检测及定时器、快充定时器、过压保护、充电状态指
20V的保护;USB输入范围为4.1V至6.3V,输入端
示和故障指示输出、电源就绪监视器以及电池热敏电阻
具有最高8V保护。
检测等。此外,片内热管理电路可以根据需要降低电池
未接输入电源时,MAX8903_内部电路可以阻止电
充电速率或交流适配器的充电电流,以防止充电器过热。
流从电池、系统倒灌到直流电源、USB输入。其它
MAX8903_采用4mm x 4mm、28引脚薄型QFN封装。
功能包括:预充检测及定时器、快充定时器、过压
不同版本的MAX8903_提高了设计灵活性,便于选择不
保护、充电状态指示和故障指示输出、电源就绪监
同的系统电源电压、电池预检验门限和电池满充电压。
视器以及电池热敏电阻检测等。此外,片内热管理
MAX8903B/MAX8903E/MAX8903G的电池检测功能还包
电路可以根据需要降低电池充电速率或交流适配器
选型指南 部分。
含供电使能控制,详细信息请参考
的充电电流,以防止充电器过热。MAX8903_采用
4mm x 4mm、28引脚薄型QFN封装。
应用
不同版本的MAX8903_提高了设计灵活性,便于选
PDA、掌上电脑和
便携式多媒体播放器
择不同的系统电源电压、电池预检验门限和电池满
无线手持装置
充电压。MAX8903B/MAX8903E/MAX8903G的电
移动互联网设备
池检测功能还包含供电使能控制,详细信息请参考
个人导航设备
超便携移动PC
选型指南
部分。
智能蜂窝电话
S 高效DC-DC转换器,无需散热器
S Efficient
4MHz开关频率,允许使用小尺寸外部元件
'
DC-DC Converter Eliminates Heat
'
Switching for Tiny External Components
S 4MHz
立即开启—能够在无电池/低电池电压下工作
'
On—Works with No/Low Battery
S Instant
两路限流输入—交流适配器或USB
' Dual
Current-Limiting Inputs—AC Adapter or USB
适配器/USB/电池供电自动切换,支持瞬变负载
Automatic Adapter/USB/Battery Switchover to
50mΩ系统至电池开关导通电阻
Support Load Transients
支持USB规范
50m System-to-Battery Switch
Supports USB Spec
S 热敏电阻检测
'
Thermistor
Monitor
S 集成检流电阻
' Integrated Current-Sense Resistor
S 无需外部MOSFET或二极管
' No External MOSFETs or Diodes
S 4.1V至16V输入工作电压范围
定购信息
Ordering Information
TEMP RANGE
PIN-PACKAGE
MAX8903AETI+T
PART
-40°C to +85°C
28 Thin QFN-EP*
MAX8903BETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903CETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903DETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903EETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903GETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903HETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903JETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903NETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903YETI+T
-40°C to +85°C
28 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
+
'表示无铅(Pb)/符合RoHS标准的封装。
4.1V
to 16V Input Operating Voltage Range
**EP
EP =
= Exposed
裸焊盘。pad.
T = 卷带包装。
Typical Operating
典型工作电路
AC AC
LX LX
ADAPTER
ADAPTER
OR USBOR USB
DC DC
应用
PDA、掌上电脑和
无线手持装置
个人导航设备
智能蜂窝电话
SYSSYS
CURRENT
PWM
STEP-DOWN
PWM
移动互联网设备
超便携移动PC
USB
LOAD
LOAD
CURRENT
CURRENT
CHARGE
CHARGE
AND
SYSAND
LOAD
SYS LOAD
SWITCH
SYSTEM
SYSTEM
LOAD
LOAD
SWITCH
STEP-DOWN
USB
Selector Guide appears at end of data sheet.
Smart Power Selector是Maxim Integrated Products, Inc.的商标。
Smart Power Selector is a trademark of Maxim Integrated
Products, Inc.
CSCS
CHARGE
CHARGE
CURRENT
便携式多媒体播放器
选型指南在数据资料的最后给出。
特性
Features
BAT
USB
BAT
USB
MAX8903_
MAX8903_
BATTERY
BATTERY
GND
GND
引脚配置在数据资料的最后给出。
����������������������������������������������������������������� Maxim Integrated Products 1
1
________________________________________________________________ Maxim Integrated Products
本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800
852 1249 (北中国区),10800 152 1249 (南中国区),
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),或访
或访问Maxim的中文网站:china.maxim-ic.com。
问Maxim的中文网站:china.maxim-ic.com。
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
ABSOLUTE MAXIMUM RATINGS
DC, LX to GND .......................................................-0.3V to +20V
DC, LX
GND
.......................................................-0.3V
0.3V)
DCM
to to
GND
.............................................-0.3V
to (VDCto+ +20V
+ 0.3V)
DCM
GND
..............................................-0.3V to (VDC to
DC
to to
SYS
.................................................................-6V
+20V
DC to
BST
toSYS
GND.................................................................-6V
...........................................................-0.3V to
to +20V
+26V
to GND
...........................................................-0.3V toto+26V
BST TO
LX................................................................-0.3V
+6V
BST TO
LX ................................................................-0.3V
USB
to GND
.............................................................-0.3V to
to +6V
+9V
GND .............................................................-0.3V to
USB to SYS..................................................................-6V
to +9V
+9V
USB
SYS..................................................................-6V
VL
to to
GND
................................................................-0.3V to
to +9V
+6V
VL to GND
................................................................-0.3V
+6V
THM,
IDC, ISET,
CT to GND........................-0.3V to (VVL +to0.3V)
THM, IDC,
to GND........................-0.3V
to (VVL + 0.3V)
DOK,
FLT, ISET,
CEN, CT
UOK,
CHG, USUS,
CEN,
UOK,
USUS,
DOK,
BAT,FLT,
SYS,
IUSB,
CS CHG,
to GND
................................-0.3V to +6V
BAT,
SYS,..............................................................-0.3V
IUSB, CS to GND ................................-0.3V to
SYS
to BAT
to +6V
+6V
SYSEP
to BAT
...............................................................-0.3V
+6V
PG,
(exposed
pad) to GND .............................-0.3V toto+0.3V
PG,Continuous
EP (exposed
pad) to(total
GNDin.............................-0.3V
to +0.3V
DC
Current
two pins).....................2.4A
RMS
DC Continuous
(total in two pins)......................2.4ARMS
USB
ContinuousCurrent
Current......................................................1.6A
LX Continuous Current (total in two pins)......................2.4ARMS
USBContinuous
ContinuousCurrent
Current.......................................................1.6A
CS
(total in two pins) ......................2.4ARMS
LX Continuous
SYS
ContinuousCurrent
Current(total
(totalinintwo
twopins).......................2.4A
pins) .......................3ARMS
RMS
CS Continuous
BAT
ContinuousCurrent
Current(total
(totalinintwo
twopins)
pins)......................2.4A
.......................3ARMS
RMS
SYSShort
Continuous
Current
(total in two pins) .......................3ARMS
VL
Circuit to
GND .............................................Continuous
BAT Continuous
Current
(total in
.......................3ARMS
+70NC)
Continuous
Power
Dissipation
(Ttwo
A = pins)
Short Circuit
to GND .............................................Continuous
VL28-Pin
Thin QFN-EP
= +70°C)
Dissipation
(TAabove
Continuous
MultilayerPower
(derate
28.6mW/°C
+70NC) ..........2286mW
28-Pin Thin QFN-EP
QFN-EP
Multilayer (derate
28.6mW/°C
above
+70°C)
..........2286mW
Single-Layer
(derate
20.8mW/°C
above
+70NC)...1666.7mW
28-Pin Thin
QFN-EP Range ...........................-40NC to +85NC
Operating
Temperature
Single-Layer
(derate
20.8mW/°C
above +70°C)...1666.7mW
Junction
Temperature
Range
............................-40NC
to +150NC
Operating
Temperature
Range
...........................-40°Ctoto+150NC
+85°C
Storage
Temperature
Range
.............................-65NC
Junction
Temperature
Range ............................-40°C
to +150°C
Lead
Temperature
(soldering,
10s) ................................+300NC
Storage Temperature
Range
.............................-65°C
to +150°C
Soldering
Temperature
(reflow)
......................................+260NC
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
Stresses beyond
thoseat
listed
under
“Absolute
Maximum
Ratings”
may
cause permanent
damage
to the device.
These are stress
only,
and functional
operation
of the device
these
or any
other conditions
beyond
those
indicated
in the operational
sections
of the specifications
is notratings
implied.
Exposure
to
absolute
ratingatconditions
for extended
periods beyond
may affect
device
reliability.
operationmaximum
of the device
these or any
other conditions
those
indicated
in the operational sections of the specifications is not implied. Exposure to
ELECTRICAL CHARACTERISTICS
ELECTRICAL
(V
=V
= 5V, VCHARACTERISTICS
= 4V, circuit of Figure 2, T
DC
USB
BAT
A = -40NC to +85NC, unless otherwise noted. Typical values are at TA = +25NC.)
(VDC =1)VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
16
V
DC INPUT
DC Operating Range
4.15
No valid USB input
Valid USB input
3.9
4.0
4.0
4.3
4.1
4.4
V
16.5
17
17.5
V
Charger enabled, no switching, VSYS = 5V
2.3
4
Charger enabled, f = 3MHz, VDC = 5V
15
Charger enabled, VCEN = 0V, 100mA USB mode (Note 2)
1
2
Charger enabled, VCEN = 5V, 100mA USB mode (Note 2)
VDCM = 0V, VUSUS = 5V
1
0.10
2
0.25
DC Undervoltage Threshold
When VDOK goes low, VDC
rising, 500mV typical hysteresis
DC Overvoltage Threshold
When VDOK goes high, VDC rising, 500mV typical
hysteresis
DC Supply Current
mA
DC High-Side Resistance
0.15
Ω
DC Low-Side Resistance
0.15
Ω
0.31
Ω
DC-to-BAT Dropout Resistance
Assumes a 40mΩ inductor resistance (RL)
DC-to-BAT Dropout Voltage
When SYS regulation and charging stops, VDC falling,
200mV hysteresis
0
Minimum Off Time (tOFFMIN)
MAX8903A/B/C/D/E/H/J/Y
MAX8903G
70
4
ns
VDC = 8V, VBAT = 4V
VDC = 5V, VBAT = 3V
3
VDC = 9V, VBAT = 4V
1
VDC = 9V, VBAT = 3V
1
2
0.5
VDC = 6V, VSYS = 4V
mV
ns
DC Step-Down Output CurrentLimit Step Range
DC Step-Down Output Current
Limit (ISDLIM)
30
100
Minimum On Time (tONMIN)
Switching Frequency (fSW)
15
MHz
2
RIDC = 3kΩ
1900
2000
2100
RIDC = 6kΩ
RIDC = 12kΩ
950
450
1000
500
1050
550
_______________________________________________________________________________________
A
mA
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
DC
USB
BAT
A
A = +25NC.)
(VDC =
(Note
1)VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
DC Soft-Start Time
DC Output Current
500mA USB Mode (Note 3)
DC Output Current
100mA USB Mode (Note 2)
SYS to DC Reverse Current
Blocking
CONDITIONS
MIN
TYP
MAX
UNITS
No valid USB input
1
ms
Valid USB input before soft-start
20
µs
VDCM = 0V, VIUSB = 5V
450
475
500
mA
VDCM = 0V, VIUSB = 0V
90
95
100
mA
VSYS = 5.5V, VDC = 0V
0.01
µA
USB INPUT
USB Operating Range
4.1
6.3
USB Standoff Voltage
V
8
V
USB Undervoltage Threshold
When VUOK goes low, VUSB rising, 500mV hysteresis
3.95
4.0
4.05
V
USB Overvoltage Threshold
When VUOK goes high, VUSB rising, 500mV hysteresis
6.8
6.9
7.0
V
USB Current Limit
VIUSB = 0V (100mA setting)
90
95
100
VIUSB = 5V (500mA setting)
450
475
500
1.3
3
ISYS = IBAT = 0mA, VCEN = 0V
USB Supply Current
ISYS = IBAT = 0mA, VCEN = 5V
VUSUS = 5V (USB suspend mode)
Minimum USB to BAT Headroom
0
USB to SYS Dropout Resistance
USB Soft-Start Time
0.8
2
0.115
0.25
15
30
0.2
0.35
mA
mA
mV
Ω
VUSB rising
1
ms
VDC falling below DC UVLO to initiate USB soft-start
20
µs
SYS OUTPUT
Minimum SYS Regulation Voltage
(VSYSMIN)
ISYS = 1A,
VBAT < VSYSMIN
Regulation Voltage
ISYS = 0A
MAX8903A/B/E/G/Y
3.0
MAX8903C/D/H/J/N
3.4
MAX8903A/C/D/H/N/Y
MAX8903B/E/G
MAX8903J
V
4.3
4.4
4.5
4.265
4.325
4.395
4.4
4.5
4.55
MAX8903A/C/D/H
40
MAX8903B/E/G/J/N/Y
25
V
Load Regulation
ISYS = 0 to 2A
mV/A
CS to SYS Resistance
VDC = 6V, VDCM = 5V, VSYS = 4V, ICS = 1A
0.07
Ω
SYS to CS Leakage
VSYS = 5.5V, VDC = VCS = 0V
0.01
µA
BAT to SYS Resistance
VDC = VUSB = 0V, VBAT = 4.2V, ISYS = 1A
0.05
0.1
Ω
BAT to SYS Reverse Regulation
Voltage
VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA
50
75
100
mV
SYS Undervoltage Threshold
SYS falling, 200mV hysteresis (Note 4)
1.8
1.9
2.0
V
_______________________________________________________________________________________
33
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
ELECTRICAL CHARACTERISTICS (continued)
ELECTRICAL
CHARACTERISTICS
(continued)
(V
=V
= 5V, V
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
ELECTRICAL CHARACTERISTICS (continued)
ELECTRICAL
CHARACTERISTICS
(continued)
(V
=V
= 5V, V
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T
DC
USB
BAT
A
A = +25NC.)
(VDC = VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
CONDITIONS
MIN
TYP
MAX
4.179
4.200
4.221
UNITS
BATTERY CHARGER
MAX8903A/B/C/G/H
BAT Regulation Voltage
(VBATREG)
MAX8903D/E
IBAT = 0mA
MAX8903J
TA = -40°C to +85°C
4.158
4.200
4.242
TA = +25°C
4.079
4.100
4.121
TA = -40°C to +85°C
4.059
4.100
4.141
TA = +25°C
4.328
4.350
4.372
TA = -40°C to +85°C
4.307
4.350
4.394
TA = +25°C
4.129
4.150
4.171
TA = -40°C to +85°C
4.109
4.150
4.192
-150
-100
-60
MAX8903A/C/D/H/J/N/Y
2.9
3.0
3.1
MAX8903B/E/G
2.4
2.5
2.6
RISET = 600Ω
1800
2000
2200
RISET = 1.2kΩ (MAX8903A/C/D)
900
1000
1100
RISET = 2.4kΩ
450
500
550
MAX8903Y/N
Charger Restart Threshold
TA = +25°C
Change in VBAT from DONE to fast-charge
BAT Prequal Threshold (VBATPQ)
VBAT rising 180mV
hystersis
Prequal Charge Current
Percentage of fast-charge current set at ISET
Fast-Charge Current
DONE Threshold (ITERM)
10
Percentage of fast-charge, IBAT decreasing
RISET Resistor Range
mV
V
%
10
0.6
V
mA
%
2.4
kΩ
ISET Output Voltage
1.5
V
ISET Current Monitor Gain
1.25
mA/A
BAT Leakage Current
No DC or USB input
With valid input power, VCEN = 5V
0.05
4
3
6
µA
Charger Soft-Start Time
1.0
ms
Charger Thermal Limit
Temperature
100
°C
Charge current = 0 at +120°C
5
%/°C
Prequalification Time
CCT = 0.15µF
33
min
Fast-Charge Time
CCT = 0.15µF
660
min
MAX8903A/C/D/H/J/N/Y (fixed)
15
s
Charger Thermal Limit Gain
CHARGER TIMER
Top-Off Timer (tTOP-OFF)
MAX8903B/E/G, CCT = 0.15µF
Timer Accuracy
132
-15
min
+15
%
Timer Extend Current Threshold
Percentage of fast-charge current below which the timer
clock operates at half-speed
40
50
60
%
Timer Suspend Current Threshold
Percentage of fast-charge current below which timer
clock pauses
16
20
24
%
4
4
_______________________________________________________________________________________
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
DC
USB
BAT
A
A = +25NC.)
(VDC =
(Note
1)VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
THERMISTOR MONITOR
THM Threshold, Hot
When charging is suspended, 1% hysteresis
0.27 x
VVL
0.28 x
VVL
0.29 x
VVL
V
THM Threshold, Cold
When charging is suspended, 1% hysteresis
0.73 x
VVL
0.74 x
VVL
0.75 x
VVL
V
THM Threshold, Disabled
THM function is disabled below this voltage
0.0254
x VVL
0.03 x
VVL
0.036 x
VVL
V
THM Threshold DC, USB Enable
MAX8903B/MAX8903E/MAX8903G
0.83 x
VVL
0.87 x
VVL
0.91 x
VVL
V
-0.100
±0.001
+0.200
MAX8903A/C/D/H/J/N/Y
THM Input Leakage
MAX8903B/E/G
THM = GND or VL;
TA = +25°C
THM = GND or VL;
TA = +85°C
THM = GND or VL;
TA = -40°C to +85°C
µA
±0.010
-0.200
±0.001
+0.200
THERMAL SHUTDOWN, VL, AND LOGIC I/O: CHG, FLT, DOK, UOK, DCM, CEN, USUS, IUSB
Logic-Input Thresholds
(DCM, CEN, USUS, IUSB)
Logic-Input Leakage Current
(CEN, USUS, IUSB)
High level
1.3
Low level
0.4
Hysteresis
VINPUT = 0V to 5.5V
(MAX8903A/C/D/H/J/N/Y)
VINPUT = 0V to 5.5V
(MAX8903B/E/G)
50
TA = +25°C
-1.000
TA = +85°C
TA = -40°C to +85°C
±0.001
µA
±0.001
+0.200
TA = +25°C
0.001
1
TA = +85°C
0.01
Logic-Input Leakage Current
(DCM)
VDCM = 0V to 16V
VDC = 16V
Logic Output Voltage, Low
(CHG, FLT, DOK, UOK)
Sinking 1mA
8
Sinking 10mA
80
Open-Drain Output Leakage
VOUT = 5.5V
Current, High (CHG, FLT, DOK, UOK)
mV
+1.000
±0.010
-0.200
TA = +25°C
0.001
TA = +85°C
0.01
V
50
1
µA
mV
µA
_______________________________________________________________________________________
5
5
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
ELECTRICAL CHARACTERISTICS (continued)
ELECTRICAL
CHARACTERISTICS
(continued)
(V
=V
= 5V, V
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T
Low level
(DCM, CEN, USUS, IUSB)
0.4
50
Hysteresis
TA = +25°C
VINPUT = 0V to 5.5V
(MAX8903A/C/D/H/J/N/Y)
Logic-Input Leakage Current
(CEN, USUS, IUSB)
Logic-Input Leakage Current
-1.000
TA = +85°C
TA = -40°C to +85°C
VDCM = 0V to 16V
TA = +25°C
-0.200
+0.200
0.001
1
µA
0.01
A
8
50
mV
80
TA = +25°C
0.001
1
µA
VOUT = 5.5V
ELECTRICAL
CHARACTERISTICS
(continued)
Current, High (CHG, FLT,
DOK, UOK)
0.01
TA = +85°C
ELECTRICAL
CHARACTERISTICS
(continued)
(V
=V
= 5V, V
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T
DC
USB
BAT
A
A = +25NC.)
(VDC = VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
CONDITIONS
VL Output Voltage
VDC = VUSB = 6V
VL UVLO Threshold
MIN
TYP
MAX
IVL = 0 to 1mA
(MAX8903A/C/D/H/J/N/Y)
4.6
5.0
5.4
IVL = 0 to 10mA
(MAX8903B/E/G)
4.6
5.0
5.4
UNITS
V
3.2
V
Thermal Shutdown Temperature
160
°C
Thermal Shutdown Hysteresis
15
°C
VVL falling; 200mV hysteresis
Limits
100% production
production tested
tested at
at TTA == +25°C.
+25°C.Limits
Limitsover
overthe
theoperating
operatingtemperature
temperaturerange
rangeare
areguaranteed
guaranteedby
bydesign.
design.
Limits are
are 100%
A
For the 100mA USB mode using the DC input, the step-down regulator is turned off and its high-side switch operates as a
For the 100mA USB mode using the DC input, the step-down regulator is turned off and its high-side switch operates as a
linear regulator with a 100mA current limit. The linear regulator’s output is connected to LX and its output current flows
with ainto
100mA
current
limit.
The linear regulator’s output is connected to LX and its output current flows
linear regulator
through
the inductor
CS and
finally
to SYS.
through
the inductor
into CSthe
and
finallycurrent
to SYS.
Note 3: For
the 500mA
USB mode,
actual
drawn from USB is less than the output current due to the input/output current
of the
DC-DC
Note 3: ratio
For the
500mA
USBconverter.
mode, the actual current drawn from USB is less than the output current due to the input/output current
Note 4: For
protection,
SYS sources 25mA below VSYS = 400mV, and 50mA for VSYS between 400mV and 2V.
ratioshort-circuit
of the DC-DC
converter.
Note 4: For short-circuit protection, SYS sources 25mA below VSYS = 400mV, and 50mA for VSYS between 400mV and 2V.
Note 1:
1:
Note
Note 2:
Note 2:
MAX8903A/B/C/D/E/H/J/N/Y
BATTERY CHARGER EFFICIENCY
vs. BATTERY VOLTAGE
EFFICIENCY (%)
VDC = 8V
60
50
VDC = 12V
40
30
70
VDC = 9V
60
50
VDC = 12V
40
30
IBAT = 0.15A
20
IBAT = 1.5A
IBATT = 0.15A
20
10
IBATT = 1.5A
1.0
1.5
2.0
2.5
3.0
3.5
4.0
BATTERY VOLTAGE (V)
4.5
5.0
4.0
3.5
VBAT = 3V
3.0
2.5
VBAT = 4V
2.0
1.5
1.0
RISET = 1.2kΩ
VCEN = 0V
0.5
10
0
66
VDC = 6V
80
4.5
MAX8903A toc02
VDC = 5V
70
90
SWITCHING FREQUENCY (MHz)
80
100
MAX8903A toc01a
90
MAX8903A/B/C/D/E/H/J/N/Y
SWITCHING FREQUENCY vs. VDC
MAX8903G BATTERY CHARGER
EFFICIENCY vs. BATTERY VOLTAGE
MAX8903A toc01
100
典型工作特性
Typical Operating
(TA = +25°C, unless otherwise noted.)
EFFICIENCY (%)
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
µA
±0.001
= 16V
V
(DCM)
T = +85°C
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
Sinking
1mA
Logic Output Voltage, Low
用于USB和适配器供电系统
(CHG, FLT, DOK, UOK)
USB和适配器供电系统
Sinking 10mA
Open-Drain Output Leakage
+1.000
±0.010
VINPUT = 0V to 5.5V
(MAX8903B/E/G)
DC
mV
±0.001
0.0
0
1.0
1.5
2.0
2.5
3.0
3.5
4.0
BATTERY VOLTAGE (V)
4.5
5.0
4
6
8
10
12
DC VOLTAGE (V)
_______________________________________________________________________________________
14
16
2A单节Li+电池DC-DC充电器,用于
2A单节Li+电池DC-DC充电器,
USB和适配器供电系统
用于USB和适配器供电系统
MAX8903A/B/C/D/E/H/J/N/Y
MAX8 9 0 3 A/ B/ C/ D/ E / H/ J / N/ Y
SYS
SYSEFFICIENCY
EFFI CI ENCY
v s SYS
. S YS
OUTCURRENT
PUT CURRE NT
vs.
OUTPUT
VBAT = 4V
VBAT = 3V
0.4
MAX8903A toc03
60
VDC = 11V
50
VDC = 16V
40
30
RISET = 1.2kI
VCEN = 0V
0
6
8
10
12
14
10
30
VDC = 6V
1000
0
10000
10
1
100
1000
10,000
USB SUPPLY CURRENT
vs. USB VOLTAGE
USB SUPPLY CURRENT
vs. USB VOLTAGE (SUSPEND)
BATTERY LEAKAGE CURRENT
vs. BATTERY VOLTAGE
0.6
CHARGER
DISABLED
0.4
140
120
100
80
60
40
0.2
20
0
0
80
2
3
4
5
6
7
70
60
50
40
30
20
10
USB SUSPEND
1
MAX8903A toc06
MAX8903A toc04
0.8
NO DC OR USB INPUT
0
0
1
2
3
4
5
6
0
7
1
2
3
4
5
USB VOLTAGE (V)
BATTERY VOLTAGE (V)
BATTERY LEAKAGE CURRENT
vs. AMBIENT TEMPERATURE
CHARGE CURRENT
vs. BATTERY VOLTAGE—USB MODE
CHARGE CURRENT
vs. BATTERY VOLTAGE—DC MODE
400
CHARGE CURRENT (mA)
70
60
50
40
30
20
350
300
VIUSB = VUSB
250
200
VIUSB = 0V
150
100
10
NO DC OR USB INPUT
0
-15
10
35
TEMPERATURE (°C)
60
85
1000
CHARGE CURRENT (mA)
80
CHARGE ENABLED
IBAT SET TO 1.5A
MAX8903D
VBAT RISING
450
1200
MAX8903A toc08
MAX8903A toc07
500
800
6
MAX8903A toc09
USB VOLTAGE (V)
90
-40
VDC = 9V
SYS OUTPUT CURRENT (mA)
1.0
0
VDC = 12V
40
SYS OUTPUT CURRENT (mA)
CHARGER
ENABLED
1.2
100
VDC = 16V
50
DC VOLTAGE (V)
1.6
1.4
10
1
60
10
0
16
70
20
VDC = 4.5V
MAX8903A toc05
4
80
VDC = 6V
20
0.2
USB SUPPLY CURRENT (mA)
70
VCEN = 1
90
BATTERY LEAKAGE CURRENT (nA)
0.6
100
SYS EFFICIENCY (%)
1.0
0.8
80
SYS EFFICIENCY (%)
1.2
VCEN = 1V
VSYS = 4.4V
90
USB QUIESCENT CURRENT (µA)
SWITCHING FREQUENCY (MHz)
1.4
BATTERY LEAKAGE CURRENT (nA)
100
MAX8903A toc02a
1.6
MAX8903G SYS EFFICIENCY
vs. SYS OUTPUT CURRENT
MAX8903A toc03a
MAX8903G SWITCHING
FREQUENCY vs. VDC
CHARGER ENABLED
IBAT SET TO 1A
IDC SET TO 2A
MAX8903A/C/H
VBAT RISING
600
400
200
50
0
1.5
2.0
2.5
3.0
3.5
BATTERY VOLTAGE (V)
4.0
4.5
0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
BATTERY VOLTAGE (V)
_______________________________________________________________________________________
7
7
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
Typical Operating Characteristics
(continued)
典型工作特性(续)
(TA = +25°C, unless otherwise noted.)
典型工作特性(续)
Typical Operating Characteristics
(continued)
NORMALIZED BATTERY
REGULATION VOLTAGE
vs. AMBIENT TEMPERATURE
1.005
1.000
0.995
0.990
0.985
-40
-15
10
35
60
100.4
100.3
100.2
100.1
100.0
99.9
3.5
2.5
2.0
99.7
1.0
-40
-15
10
35
60
VUSB RISING
0.5
22ppm/°C
99.5
VUSB FALLING
3.0
RSYS = 1MΩ
0
1
0
85
2
3
4
5
6
7
USB VOLTAGE (V)
MAX8903A/C/D/H/N/Y
SYS VOLTAGE vs. DC VOLTAGE
SYS VOLTAGE
vs. SYS OUTPUT CURRENT, DC INPUT
SYS VOLTAGE
vs. SYS OUTPUT CURRENT, USB INPUT
2.0
VDC FALLING
1.5
VCEN = 5V
VBAT = 0V
VUSB = 0V
0.5
2
4
6
8
10
12
14
16
4.3
MAX8903A/C/D/H, MAX8903N/Y,
VDC = 5.75V
VDC = 5.75V
4.2
MAX8903B/E/G,
VDC = 5.75V
4.1
0
0.5
1.0
VL WITH
NO LOAD AND
DCDC OFF
(VUSUS = 5V)
VL AND DCDC
WITH
FULL LOAD
(VUSUS = 0V)
2
1
VBAT = 3.6V
VUSB = 0V
0
4
6
8
0
100
10 12 14 16 18 20
DC VOLTAGE (V)
200
300
400
SYS OUTPUT CURRENT (mA)
CHARGE PROFILE—1400mAh BATTERY
ADAPTER INPUT—1A CHARGE
MAX8903A toc17
6.0
IDC SET TO 1A
IBAT SET TO 2A
5.5
5.0
4.5
VBAT (V)
5
2
MAX8903_, VUSB = 0V
3.8
2.0
1.5
MAX8903A toc16
6
0
MAX8903B/E/G,
VUSB = 5V
4.1
SYS OUTPUT CURRENT (A)
VL VOLTAGE vs. DC VOLTAGE
3
MAX8903A/C/D/H, MAX8903N/Y,
VUSB = 5V
VUSB = 5V
4.2
3.9
MAX8903_, VDC = 0V
3.8
DC VOLTAGE (V)
4
4.3
4.0
3.9
18
MAX8903J, VUSB = 5V
4.4
4.0
1.0
VDC = 0V, VBATT = 4V
4.5
VBAT
4.0
3.5
3.0
1.2
1.0
0.8
0.6
2.5
2.0
1.5
IBAT
1.0
0.5
0
0.4
0.2
MAX8903A/B/C/G/H
0
20
40
60
80
100
TIME (min)
8 _______________________________________________________________________________________
8
0.0
120 140
IBAT (A)
2.5
4.6
SYS VOLTAGE (V)
VDC RISING
3.0
MAX8903J, VDC = 5.75V
4.4
SYS VOLTAGE (V)
3.5
VUSB = 0V
4.5
MAX8903A toc14
MAX8903A toc13
4.6
MAX8903A toc15
TEMPERATURE (°C)
4.0
VL VOLTAGE (V)
4.0
1.5
99.6
VCEN = 5V
VBAT = 0V
VDC = 0V
4.5
99.8
85
4.5
0
5.0
TEMPERATURE (°C)
5.0
0
100.5
SYS VOLTAGE (V)
1.010
MAX8903A/C/D/H/N/Y
SYS VOLTAGE vs. USB VOLTAGE
MAX8903A toc11
VUSB = 5V, VBAT = 4V
NORMALIZED BATTERY REGULATION VOLTAGE (%)
NORMALIZED CHARGE CURRENT
1.015
MAX8903A toc10
NORMALIZED CHARGE CURRENT
vs. AMBIENT TEMPERATURE
MAX8903A toc12
(TA = +25°C, unless otherwise noted.)
SYS VOLTAGE (V)
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,用于
2A单节Li+电池DC-DC充电器,
USB和适配器供电系统
用于USB和适配器供电系统
500
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
MAX8903A/B/C/G/H
CHARGE PROFILE—1400mAh BATTERY
USB INPUT—500mA CHARGE
MAX8903A toc18
5.0
0.45
4.0
0.40
0.25
IBAT
2.0
0.20
1.5
0.15
MAX8903A/MAX8903B/MAX8903C
IUSB SET TO 500mA
IBAT SET TO 2A
0.5
0
0
IBAT (A)
0.30
2.5
1.0
20mV/div
AC-COUPLED
VOUT
0.35
VBAT
3.0
MAX8903A toc19
0.50
4.5
3.5
VBAT (V)
MAX8903A/B/C/D/E/H/J/N/Y DC SWITCHING
WAVEFORMS—LIGHT LOAD
0.10
5V/div
VLX
0V
ILX
0.05
RSYS = 44Ω
0
20 40 60 80 100 120 140 160 180 200
500mA/div
0A
200ns/div
TIME (min)
MAX8903A/B/C/D/E/H/J/N/Y DC SWITCHING
WAVEFORMS—HEAVY LOAD
MAX8903G DC SWITCHING
WAVEFORMS—LIGHT LOAD
MAX8903A toc20
MAX8903A toc19a
50mV/div
AC-COUPLED
VSYS
VLX
VDC = 9V, L = 2.2µH
CSYS = 22µF,
RSYS = 44I
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
典型工作特性(续)
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
10V/div
20mV/div
AC-COUPLED
VOUT
5V/div
0V
VLX
0V
1A/div
ILX
0A
ILX
500mA/div
RSYS = 5Ω
DC CONNECT WITH
USB CONNECTED (RSYS = 25Ω)
MAX8903G DC SWITCHING
WAVEFORMS—HEAVY LOAD
MAX8903A toc21
MAX8903A toc20a
VSYS
VDC = 9V, L = 2.2µH
CSYS = 22µF, RSYS = 5I
CEN = 1
50mV/div
AC-COUPLED
VSYS
0V
IUSB
2V/div
347mA
475mA
500mA/div
500mA/div
-IBAT = CHARGING
IBAT
ILX
3.6V
IDC
10V/div
VLX
0A
200ns/div
1µs/div
0A
500mA/div
-335mA
1A/div
0A
1µs/div
200µs/div
_______________________________________________________________________________________
9
9
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,用于
2A单节Li+电池DC-DC充电器,
USB和适配器供电系统
用于USB和适配器供电系统
Typical Operating Characteristics (continued)
典型工作特性(续)
(TA = +25°C, unless otherwise noted.)
DC CONNECT WITH NO USB
(RSYS = 25Ω)
DC DISCONNECT WITH NO USB
(RSYS = 25Ω)
MAX8903A toc22
3.84V
3.6V
VSYS
3.6V
VBAT
IBAT
2V/div
3.44V
5V/div
CDC
CHARGING
IDC
MAX8903A toc23
CSYS
CHARGING 850mA
0A
1A/div
3.68V
VSYS
5V/div
-IBAT = CHARGING
IBAT
144mA BATTERY
CHARGER
SOFT-START
-1A
144mA
-1A
1A/div
40µs/div
MAX8903B/E SYS LOAD TRANSIENT
MAX8903A toc24a
MAX8903A toc24b
4.400V
MAX8903A
VDC = 10.5V
L = 2.2µH
CSYS = 10µF
RIDC = 3kI (2A)
DCM = HIGH
CEN = 1
20mV/div
AC-COUPLED
4.360V
4.325V
VSYS
500mA/div
0A
0A
ISYS
500mA/div
0A
0A
100µs/div
100µs/div
MAX8903G SYS LOAD TRANSIENT
USB CONNECT WITH NO DC
(RSYS = 25Ω)
4.305V
1A
ISYS
MAX8903A toc25
VSYS
50mV/div
VDC = 9V
L = 2.2µH
CSYS = 22µF
RIDC = 3kI (2A)
DCM = 1
CEN = 1
0A
100µs/div
10
20mV/div
1A
4.325V
10
MAX8903B
VDC = 10.5V
L = 2.2µH
CSYS = 22µF
RIDC = 3kI (2A)
DCM = HIGH
CEN = 1 4.305V
1A
MAX8903A toc24c
VSYS
1A/div
-IBAT = CHARGING
MAX8903A/C/D/H SYS LOAD TRANSIENT
ISYS
1A/div
0A
850mA
400µs/div
VSYS
2V/div
3.6V
VBAT
IDC
3.6V
3.6V
3.75V
3.5V
5V
5V/div
VUSB
CUSB
CHARGING
2V/div
475mA
500mA/div
IUSB
500mA/div
0A
IBAT
144mA
BATTERY
CHARGER
SOFT-START
500mA/div
-330mA
400µs/div
______________________________________________________________________________________
2A单节Li+电池DC-DC充电器,用于
2A单节Li+电池DC-DC充电器,
USB和适配器供电系统
用于USB和适配器供电系统
(TA = +25°C, unless otherwise noted.)
USB DISCONNECT WITH NO DC
(RSYS = 25Ω)
USB SUSPEND
MAX8903A toc26
3.6V
VSYS
VUSB
2V/div
5V/div
5V
475mA
IUSB
500mA/div VSYS
IUSB
IBAT
VUSUS
-330mA
144mA
100µs/div
0V
475mA
3V
5V/div
VUSUS
500mA/div
0A
IUSB
2V/div
3.7V
500mA/div IBAT -475mA
USB RESUME
MAX8903A toc27
500mA/div
3V
5V/div
CUSB
CHARGING
475mA
0A
3.6V
VSYS
IBAT
0A
MAX8903A toc28
0V
3.8V
500mA/div
3.6V
2V/div
0A
200µs/div
BATTERY
CHARGER
SOFT-START
-475mA
500mA/div
200µs/div
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
Typical Operating Characteristics
(continued)
典型工作特性(续)
引脚说明
Pin Description
引脚
PIN
1, 2
1, 2
3, 4
名称
NAME
PG
降压低边同步n沟道MOSFET的功率地,两个PG引脚必须在外部连接在一起。
Power Ground for Step-Down Low-Side Synchronous n-Channel MOSFET. Both PG pins must be
PG
直流电源输入。DC能够向SYS提供高达2A的电流。DC支持交流适配器和USB输入,DC限流根据所使用的输入
connected together externally.
电源通过DCM、IUSB或IDC设置,请参考表2。两个DC引脚必须在外部连接在一起。请在DC和PG之间连接一
DC Power Input. DC is capable of delivering up to 2A to SYS. DC supports both AC adapter and USB
个至少4.7μF的陶瓷电容。
inputs. The DC current limit is set through DCM, IUSB, or IDC depending on the input source used. See
DC
3, 4
功能
FUNCTION
DC
Table 2. Both DC pins must be connected together externally. Connect at least a 4.7µF ceramic capacitor
直流电源输入的限流模式设置。置于逻辑高电平时,直流输入电流门限由IDC与GND之间的电阻设置;置于逻
from DC to PG.
辑低电平时,直流输入电流门限在内部设置为500mA或100mA,由IUSB的逻辑输入设置。DCM (阳极)与DC Current-Limit Mode Setting for the DC Power Input. When logic-high, the DC input current limit is set by
(阴极)之间接有一个内部二极管,如图1所示。
5
DCM
6 5
DCM 高边MOSFET驱动电源。用一个0.1μF陶瓷电容将BST旁路至LX。
BST
7
IUSB
the resistance from IDC to GND. When logic-low, the DC input current limit is internally programmed to
500mA or 100mA, as set by the IUSB logic input. There is an internal diode from DCM (anode) to DC
USB限流设置输入。将IUSB驱动至逻辑低电平时,USB电流门限为100mA;将IUSB驱动至逻辑高电平
(cathode) as shown in Figure 1.
CT
充电定时器设置输入。CT和GND之间的电容(CCT)用于设置快充和预充故障定时器,该引脚接GND时禁用定时器。
6
8
7
9
8
10
11 9
1210
时,USB电流门限为500mA。
High-Side MOSFET Driver Supply. Bypass BST to LX with a 0.1µF ceramic capacitor.
直流电源就绪输出。当在DC上检测到有效输入时,将低电平有效的开漏输出拉至低电平。当充电器被禁用
DOK
USB Current-Limit Set Input. Drive IUSB logic-low to set the USB current limit to 100mA. Drive IUSB logicIUSB (CEN为逻辑高电平)时,DOK仍然保持有效输出。
high to set the USB current limit to 500mA.
逻辑电路LDO输出。VL为LDO输出,该输出向MAX8903_内部电路供电并向BST电容充电。在VL和GND之间连
VL
DC Power-OK Output. Active-low open-drain output pulls low when a valid input is detected at DC. DOK
DOK 接一个1μF的陶瓷电容。
BST
is still valid when the charger is disabled (CEN high).
Logic LDO Output. VL is the output of an LDO that powers the
MAX8903_ internal circuitry and charges
直流电源限流设置输入。在IDC和GND之间连接一个电阻(R
IDC),当DCM为逻辑高电平时,降压调节器的电流
the BST capacitor. Connect a 1µF ceramic capacitor from VL to GND.
门限设置为0.5A至2A。
Charge Timer Set Input. A capacitor (CCT) from CT to GND sets the fast-charge and prequal fault timers.
GNDCT 地,GND是内部电路的低噪声接地端。
IDC VL
Connect to GND to disable the timer.
11
IDC
DC Current-Limit Set Input. Connect a resistor (RIDC) from IDC to GND to program the current limit of the
step-down regulator from 0.5A to 2A when DCM is logic-high.
12
GND
Ground. GND is the low-noise ground connection for the internal circuitry.
______________________________________________________________________________________
11
11
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,
用于USB和适配器供电系统
引脚说明(续)
引脚
名称
功能
13
ISET
充电电流设置输入。ISET和GND之间的电阻(RISET)用于设置快充电流,最大值为2A。预充电流为快充电流的10%。
14
CEN
充电器使能输入。CEN接GND时,如果DC或USB连接到有效电源则使能电池充电;接VL时,或将其驱动至逻
辑高电平,则禁止电池充电。
15
USUS
USB挂起输入。USUS驱动至逻辑高电平时进入USB挂起模式,USB电流降低至115μA,并在内部将SYS短路
至BAT。
16
THM
热敏电阻输入。将一个负温度系数(NTC)热敏电阻连接在THM和GND之间。将一个阻值等于+25°C时热敏电阻
阻值的电阻连接在THM和VL之间。当热敏电阻超出高温、低温门限时,充电器被挂起。将THM连接至GND
时,禁用热敏电阻温度检测。
17
USB
USB电源输入。USB能够向SYS提供100mA或500mA电流,取决于IUSB逻辑输入的设置。在USB和GND之间
连接一个4.7μF的陶瓷电容。
18
FLT
19
UOK
20, 21
BAT
22
CHG
充电器状态输出。当电池处于快充或预充电状态时,低电平有效的开漏输出被拉至低电平;否则,CHG为高阻态。
23, 24
SYS
系统电源输出。当DC或USB无效,或者SYS负载超过输入电流门限时,SYS通过内部50mΩ系统负载开关连接
至BAT。
当DC或USB连接有效电源时,SYS电压限制在VSYSREG。系统负载(ISYS)超过DC或USB电流门限时,SYS被调
节到低于BAT 50mV,输入电源和电池都向SYS供电。
利用X5R或X7R陶瓷电容将SYS旁路至GND,SYS电容(CSYS)的最小推荐值参见表6。两个SYS引脚必须在外部
连接到一起。
25, 26
CS
70mΩ电流检测输入。降压电感连接在LX和CS之间。当降压调节器开启时,CS和SYS之间有一个70mΩ电流
检测MOSFET;当降压调节器关闭时,内部CS MOSFET断开,防止电流从SYS倒灌至DC。
27, 28
LX
电感连接端,将电感连接在LX和CS之间。两个LX引脚必须从外部连接在一起。
—
EP
裸焊盘,将裸焊盘连接至GND。裸焊盘连接并不能替代相应引脚的接地要求。
12
故障指示输出。若电池定时器在快充或预充完成之前超时,低电平有效的开漏输出将被拉至低电平。
USB电源就绪输出。当在USB上检测到有效输入时,低电平有效的开漏输出被拉至低电平。充电器禁用(CEN
为逻辑高)时,UOK仍然保持有效。
电池连接端,连接到单节Li+电池。当DC或USB存在有效电源时,电池通过SYS充电。当DC和USB均不存在有效
电源时,或当SYS负载超过输入电流门限时,BAT向SYS供电。两个BAT引脚必须在外部连接到一起。
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
AC
ADAPTER
DC
LX
BST
CS
MAX8903_
DC POWER
MANAGEMENT
PWR
OK
SYS
Li+ BATTERY
CHARGER
AND SYS LOAD SWITCH
PWM
STEP-DOWN
REGULATOR
DOK
MAX8903A-E/G/H/J/N/Y
PG
CHARGER
CURRENTVOLTAGE
CONTROL
SET
INPUT
LIMIT
TO
SYSTEM
LOAD
ISET
BATTERY
CONNECTOR
BAT
BAT+
+
BAT-
USB
USB POWER
MANAGEMENT
USB
PWR
OK
THERMISTOR
MONITOR
(SEE FIGURE 7)
CURRENTLIMITED
VOLTAGE
REGULATOR
UOK
IC
THERMAL
REGULATION
NTC
VL
CHARGE
TERMINATION
AND MONITOR
SET
INPUT
LIMIT
T
THM
CHG
DC
DC MODE
USB
LIMIT
500mA
DCM
IUSB
100mA
USB
SUSPEND
USUS
FLT
CHARGE
TIMER
INPUT AND
CHARGER
CURRENT-LIMIT
SET LOGIC
CT
CEN
IDC
GND
DC
LIMIT
EP
图1.
功能框图
Figure
1. Functional Block Diagram
______________________________________________________________________________________
13
13
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
USB和适配器供电系统
用于USB和适配器供电系统
RPU
4 x 100kΩ
1
2
PG
PG
MAX8903_
CDC
4.7µF
DOK
4 DC
6
CBST
0.1µF
FLT
UOK
3 DC
ADAPTER
TO VL
CHG
BST
27 LX
ISET
18
19
25
CS
(SEE TABLE 5 FOR
INDUCTOR SELECTION)
26
CS
IDC
USB PWR OK
8
DC PWR OK
22
CHARGE
INDICATOR
13
RISET
11
RIDC
28 LX
L1
1µH
FAULT
OUTPUT
SYS
24
SYS
23
BAT
21
BAT
20
TO SYSTEM
LOAD
CSYS
(SEE TABLE 6 FOR CSYS SELECTION)
USB
17
VBUS
USB
CUSB
4.7µF
GND
TO DC
5
OFF
CHARGE ON
14
500mA
100mA
7
USB SUSPEND
15
10
CCT
0.15µF
CBAT
10µF
1-CELL
LI+
DCM
VL
9
CVL
1µF
CEN
THM
IUSB
RT
10kΩ
16
NTC
10kΩ
USUS
CT
GND
12
EP
Figure 2. Typical Application Circuit Using a Separate DC and USB Connector
图2.典型应用电路,使用独立的DC和USB连接器
Circuit Description
The MAX8903_ is a dual input charger with 电路说明
a 16V input
for a wide range of DC sources and USB inputs. The IC
MAX8903_为双输入充电器,输入为16V宽范围直流电源和
includes a high-voltage (16V) input DC-DC step-down
USB电源。IC内部包括一路高压(16V)输入DC-DC降压转
converter that reduces charger power dissipation while
换器,在保证系统负载供电的同时有效降低充电器功耗。
also supplying power to the system load. The step降压转换器可向系统、电池或两者组合提供高达2A的电流。
down converter supplies up to 2A to the system, the
battery, or a combination of both.
14
14
A USB charge input can charge the battery and power
the system from a USB power source. When powered
USB充电输入可以通过USB电源向电池充电并向系统供电。
from USB or the DC input, system load current peaks
当由USB或DC输入供电时,如果系统负载电流峰值超出了
that exceed what can be supplied by the input are sup输入电源的供电能力,不足部分可由电池补充。
plemented by the battery.
MAX8903_还利用一个片上50mΩ MOSFET管理负载与电
The MAX8903_ also manages load switching from the
池和外部电源之间的切换。该开关在输入电源过载时,能
battery to and from an external power source with an
够通过电池支持负载的峰值电流。
on-chip 50m MOSFET. This switch also helps support
______________________________________________________________________________________
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
1
2
CDC
4.7µF
VBUS
CBST
0.1µF
ID
GND
FLT
UOK
3 DC
DOK
CHG
BST
27 LX
ISET
18
499kΩ
25
CS
26
CS
IDC
(SEE TABLE 5 FOR
INDUCTOR VALUE
SELECTION)
17
USB
ADAPTER
5
OFF
CHARGE ON
14
500mA
100mA
7
USB SUSPEND
15
10
CCT
0.15µF
USB
FAULT
OUTPUT
19
USB PWR-OK
8
DC PWR-OK
22
CHARGE
INDICATOR
13
RISET
11
RIDC
28 LX
L1
1µH
DC MODE
PG
MAX8903_
6
D+
TO VL
PG
4 DC
D-
MAX8903A-E/G/H/J/N/Y
RPU
4 x 100kΩ
SYS
24
SYS
23
BAT
21
BAT
20
TO SYSTEM
LOAD
CSYS
(SEE TABLE 6 FOR CSYS SELECTION)
CBAT
10µF
1-CELL
LI+
DCM
VL
9
CVL
1µF
CEN
THM
IUSB
RT
10kΩ
16
NTC
10kΩ
USUS
CT
GND
12
EP
Figure 3. Typical Application Circuit
Using a Mini 5 Style Connector or Other DC/USB Common Connector
图3.典型应用电路,使用Mini
5型连接器或其它DC/USB普通连接器
load peaks using battery power when the input source
is overloaded.
如图1所示,该IC包括完备的充电器功能,具有热敏电阻
监测器、故障定时器、充电状态指示和故障指示输出。还
As shown in Figure 1, the IC includes a full-featured
charger with thermistor monitor, fault timer, charger
包括USB和DC电源就绪指示,可灵活调节充电电流、输入
status, and fault outputs. Also included are power-OK
电流门限和最小系统电压(按比例降低充电电流,以保持系
signals for both USB and DC. Flexibility is maintained
统电压正常)。
with adjustable charge current, input current limit, and
当管芯温度超过+100°C时,MAX8903_会限制充电电流,
a minimum system voltage (when charging is scaled
从而防止高温环境下出现过热。
back to hold the system voltage up).
The MAX8903_ prevents overheating during high ambient temperatures by limiting
charging current when the
DC输入—高速滞回降压调节器
die
temperature
exceeds
+100°C.
如果存在有效的DC输入,则关闭USB电源通路,由高频
降压调节器将DC输入转换成SYS和电池充电的供电电源。
DC Input—Fast Hysteretic
,图4),电
如果电池电压高于最小系统供电电压(V
SYSMIN
Step-Down
Regulator
池充电器将系统供电电压连接至电池,以获得最低功耗。
If a valid DC input is present, the USB power path is
利用三个反馈信号控制降压调节点:IDC设置的最大降压
turned off and power for SYS and battery charging is
supplied by the high-frequency step-down regulator
输出电流、ISET设置的最大充电电流以及最高管芯温度。
from DC. If the battery voltage is above the minimum
反馈信号只需最小的电流控制电感的平均输出电流。这种
system voltage (VSYSMIN, Figure 4), the battery charger
机制使电池充电的总功耗最小,电池能够在保持最小系统
connects the system voltage to the battery for lowest
电压波动的前提下化解负载瞬变的影响。
______________________________________________________________________________________
15
15
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,用于
2A单节Li+电池DC-DC充电器,
USB和适配器供电系统
用于USB和适配器供电系统
表1.图2和图3的外部元件列表
Table 1. External Components List for Figures 2 and 3
COMPONENT
(FIGURES 2 AND 3)
CDC, CUSB
FUNCTION
PART
Input filter capacitor
4.7µF ceramic capacitor
CVL
VL filter capacitor
1.0µF ceramic capacitor
CSYS
SYS output bypass capacitor
10µF (MAX8903A/MAX8903C/MAX8903D/MAX8903H/MAX8903J) or
22µF (MAX8903B/MAX8903E/MAX8903G/MAX8903Y) ceramic capacitor
CBAT
Battery bypass capacitor
10µF ceramic capacitor
CCT
Charger timing capacitor
0.15µF low TC ceramic capacitor
Logic output pullup resistors
100kΩ
Negative TC thermistor
Philips NTC thermistor, P/N 2322-640-63103, 0kΩ ±5% at +25°C
THM pullup resistor
10kΩ
RPU (X4)
THM
RT
RIDC
DC input current-limit programming resistor 3kΩ ±1%, for 2A limit
RISET
Fast-charge current programming resistor 1.2kΩ ±1%, for 1A charging
L1
DC input step-down inductor
1µH inductor with ISAT > 2A
power dissipation. The step-down regulation point is
如果电池电压低于V
then controlled bySYSMIN
three,充电器不直接将系统供电电压
feedback signals: maximum
)略高于VSYSMIN
,如图4所示。
连接至电池,系统电压(V
step-down
output currentSYS
programmed
at IDC,
maximum
电池充电器独立控制电池的充电电流。根据MAX8903_版
charger
current programmed at ISET, and maximum
设置为3.0V或3.4V,参见表6。
本的不同,V
die temperature.
feedback signal requiring the
SYSMINThe
smallest
current
controls
the average output current in
电池充电至VSYSMIN电压以上50mV后,系统供电电压被连
the
inductor.
This
scheme
minimizes total power dissi接至电池。随后,电池快充电流控制降压转换器建立平均
pation for battery charging and allows the battery to
电感电流,以满足输入限流和快充电流限制的要求。
absorb any load transients with minimum system voltage disturbance.
DC-DC降压控制机制
专有的滞回电流PWM控制机制可确保工作在较高的开关
If the battery voltage is below VSYSMIN, the charger does
not directly connect the system voltage to the battery
频率,允许使用小尺寸外部元件。反馈控制信号需要最小
and the system voltage (VSYS) is slightly above VSYSMIN
的输入电流,控制电感的峰值和谷值电流的中点。纹波电
as shown in Figure 4. The battery charger independently
流由内部设置,使转换器工作在4MHz频率。当输入电压
controls the battery charging current. VSYSMIN is set to
降至输出电压附近时,工作在非常高的占空比,由于存在
either
3.0V or 3.4V based on the version of MAX8903_.
最小关断时间,达不到4MHz工作频率。控制器提供最小
See
Table
6.
关断时间、峰值电流调节。类似地,当输入电压较高时,
After
the
battery
charges to 50mV above VSYSMIN, the
由于存在最小导通时间,不能工作在4MHz频率,此时控
system voltage is connected to the battery. The battery
制器采用最小导通时间、谷电流控制。这种情况下,电感
fast-charge current then controls the step-down con的纹波电流始终保持最小,能够在给定电容下有效降低
verter to set the average inductor current so that both
SYS的纹波电压。为了避免工作频率波动,纹波电流随输
the
programmed input current limit and fast-charge cur入电压、输出电压而变化。然而,频率也会随着工作条件
rent
limit are satisfied.
典型工作特性 部分。
的不同而发生变化,请参考
DC-DC Step-Down Control Scheme
A proprietary hysteretic current PWM control scheme
ensures fast switching and physically tiny external components. The feedback control signal that requires the
smallest input current controls the center of the peak
and valley currents in the inductor. The ripple current is
internally set to provide 4MHz operation. When the
input voltage decreases near the output voltage, very
high duty cycle occurs and, due to minimum off-time,
16
16
4MHz operation is not achievable. The controller then
DC模式(DCM)
provides minimum off-time, peak current
regulation.
如表2所示,DC输入可接受交流适配器(最高2A)和USB (最
Similarly,
when the input voltage is too high to allow
高500mA)电源。DCM逻辑输入置为高电平时,DC输入处
4MHz operation due to the minimum on-time, the con于适配器模式,DC输入电流限制由IDC与GND之间的电阻
troller becomes a minimum on-time, valley current regulator.
In this way, ripple current
(R
IDC)设置。根据下式计算R
IDC: in the inductor is always
as small as possible
to
reduce
voltage on SYS for
RIDC = 6000V/Iripple
a given capacitance.
The rippleDC-MAX
current is made to vary
DCM逻辑输入置为低电平时,DC输入电流限制由IUSB逻
with
input voltage and output voltage in a way that
辑输入在内部设置为500mA或100mA。IUSB逻辑输入为
reduces
frequency variation. However, the frequency
高电平时,DC输入电流限制为500mA,DC输入通过降压
still
varies somewhat with operating conditions. See the
Typical
Operating Characteristics.
调节器为SYS供电。IUSB逻辑输入为低电平时,DC输入
电流限制为100mA。在100mA模式下,降压调节器关闭,
DC Mode (DCM)
高边开关将构成线性稳压器,具有100mA的限流。线性稳
As shown in Table 2, the DC input supports both AC
压器的输出连接至LX,输出电流经电感流入CS,最终流
adapters (up to 2A) and USB (up to 500mA). With the
入SYS。
DCM
logic input set high, the DC input is in adapter
DCM引脚具有一个内部连接至DC的二极管,如图1所示。
mode
and the DC input current limit is set by the resisfrom IDC to GND (RIDC). Calculate RIDC accordtance
为防止电流从DCM经内部二极管流至DC输入,DCM的
ing
to the following equation:
驱动电压不能大于DC。图3所示电路中,通过一个简单的
MOSFET和DCM端的外部电阻即可防止电流从DCM经内
RIDC = 6000V/IDC-MAX
部二极管流至DC。图3中的电路允许微处理器在任何时候
With
the DCM logic input set low, the DC input current
将MOSFET的栅极驱动至任何状态。
limit is internally programmed to 500mA or 100mA as
set by the IUSB logic input. With the IUSB logic input
set high, the DC input current limit is 500mA and the
DC input delivers current to SYS through the step-down
regulator. With the IUSB logic input set low, the DC
input current limit is 100mA. In this 100mA mode, the
step-down regulator is turned off and its high-side
switch operates as a linear regulator with a 100mA current limit. The linear regulator’s output is connected to
LX and its output current flows through the inductor into
CS and finally to SYS.
______________________________________________________________________________________
USB和适配器供电系统
the DC power-OK output feature is not required, connect DOK to ground.
UOK is an open-drain, active-low output that indicates
the USB input power status. UOK is low when a valid
source is connected at USB. The source at USB is valid
when 4.1V < VUSB < 6.6V. If the USB power-OK output
feature is not required, connect UOK to ground.
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
The DCM pin has an internal diode to DC as shown in
Figure 1. To prevent current from flowing from DCM
through the internal diode and to the DC input, DCM
cannot be driven to a voltage higher than DC. The
circuit of Figure 3 shows a simple MOSFET and resistor
on DCM to prevent any current from flowing from DCM
through the internal diode to DC. This circuit of Figure 3
allows a microprocessor to drive the gate of the MOSFET to any state at any time.
An alternative to the simple MOSFET and resistor on
DCM
as shown in Figure 3 is to place a 1M resistor in
图3中MOSFET和DCM端电阻的一种替代方案是在DCM输
series
with the DCM input to the microprocessor. The
入与微处理器之间串联一个1MΩ电阻。微处理器监测DOK
microprocessor
can then monitor the DOK output and
输出,确保在DOK为高电平时DCM仍然为低电平。如果
make
sure that whenever DOK is high DCM is also low.
DCM的驱动电压高于DC,1MΩ串联电阻把从DCM经内部
In
the event that DCM is driven to a higher voltage than
二极管流至DC的电流限制在几个μA。
DC, the 1M series resistance limits the current from
DCM through the internal diode
to DC to a few µA.
USB输入—线性稳压器
如果USB输入有效、DC输入无效,SYS和电池充电电流均
USB Input—Linear Regulator
由连接在USB和SYS之间的低压差线性稳压器提供。SYS
If a valid USB input is present with no valid DC input,
的稳压特性与DC输入条件下相同(图4所示)。电池充电器
current
for SYS and battery charging is supplied by a
将从SYS获取所能提供的电流,但不会超出最大允许的
low-dropout
linear regulator connected from USB to
USB电流。如果USB和DC输入均有效,则由DC输入供电。
SYS.
The SYS regulation voltage shows the same char最大USB输入电流由IUSB输入的逻辑状态设置为100mA
acteristic
as when powering from the DC input (see
或500mA。
Figure
4). The battery charger operates from SYS with
any extra available current, while not exceeding the
电源监测器输出(UOK、DOK)
maximum-allowed USB
current. If both USB and DC
DOK为漏极开路、低电平有效输出,指示DC输入电源的
inputs are valid, power is only taken from the DC input.
状态。若USB引脚没有电源,当4.15V < V
DC < 16V时,DC
The
maximum USB input current is set
by the logic
电源被认为有效且DOK驱动至逻辑低电平;若USB电源
state of the IUSB input to either 100mA or 500mA.
也有效,当4.45V < VDC < 16V时,DC电源被认为有效且
Power Monitor Outputs (UOK, DOK)
DOK驱动至逻辑低电平。USB输入有效时,如果最小DC
DOK
is
an
open-drain, active-low output that indicates
电压值较高,则有利于输入电源之间的低噪声转换。如果
the
DC
input
power status. With no source at the USB
不需要DC电源就绪输出,可将DOK连接至地。
pin, the source at DC is considered valid and DOK is
UOK为漏极开路、低电平有效输出,指示USB输入电源的
driven
low when: 4.15V < VDC < 16V. When the USB
状态。USB连接有效电源时,UOK为逻辑低电平;4.1V <
voltage
is also valid, the DC source is considered valid
< 6.6V时,USB电源有效。如果不需要USB电源就绪
VUSBDOK
and
is driven low when: 4.45V < VDC < 16V. The
输出,可将UOK连接至地。
higher
minimum DC voltage with USB present helps
guarantee cleaner transitions between input supplies. If
2A单节Li+电池DC-DC充电器,
Both the UOK and the DOK circuitry remain active in
用于USB和适配器供电系统
thermal overload, USB suspend, and when the charger
VSYSREG
VBATREG
MAX8903_
VSYS
IBAT x RON
VSYSMIN
VBAT
VCEN = 0V
VDC AND/OR VUSB = 5.0V
图4.SYS跟随VBAT至最小系统电压
is disabled. DOK and UOK can also be wire-ORed
UOK和DOK电路在热过载、USB挂起以及充电器被禁止时
together
to generate a single power-OK (POK) output.
均保持有效工作状态。也可以将DOK和UOK“线或”连接,
Thermal Limiting
构成一路电源就绪(POK)输出。
When the die temperature exceeds +100°C, a thermal
limiting circuit reduces the input current limit by 热保护
5%/°C,
bringing
the charge current to 0mA at +120°C. Since
当管芯温度超过+100°C时,热保护电路将按照5%/°C降低
the
system load gets priority over battery charging, the
输入电流门限,温度达到+120°C时充电电流为0mA。由于
battery
charge current is reduced to 0mA before the
系统负载供电的优先级高于电池充电,电池充电电流会在
input
limiter drops the load voltage at SYS. To avoid
输入限制器拉低SYS负载电压之前降至0mA。为避免错误
false
charge termination, the charge termination detect
地结束充电,该模式下的充电终止检测功能被禁用。如果
is disabled in this mode. If the junction temperfunction
结温上升至+120°C以上,不会从DC或USB吸收电流,并
ature
rises
beyond +120°C,
no current is drawn from
且VSYS调节到低于V
BAT 50mV。
DC or USB, and VSYS regulates at 50mV below VBAT.
系统电压切换
System Voltage Switching
DC输入
DC Input
当由DC输入充电时,如果电池电压高于最小系统电压,SYS
When charging from the DC input, if the battery is
则被连接至电池。电流供给SYS和电池,可以达到最大设
above
the minimum system voltage, SYS is connected
置值。降压转换器输出电流检测和充电电流检测所提供的
to
the battery. Current is provided to both SYS and the
反馈确保电流环路需要较低的输入电流。当从DC供电时,
battery,
up to the maximum program value. The step这种方法的优势在于功耗主要取决于降压调节器的效率,
down
output current sense and the charger current
因为SYS和BAT之间的压降非常低。此外,电池能够吸收
sense
provide feedback to ensure the current loop
负载瞬变的影响,使SYS电压波动最小。若DC和USB输入
demanding
the lower input current is satisfied. The
均有效,则DC输入优先级较高,由它提供输入电流,同
advantage
of this approach when powering from DC is
that
power dissipation is dominated by the step-down
时USB输入被关闭。
regulator
efficiency, since there is only a small voltage
电池完成充电后,充电器关闭,SYS负载电流由DC输入提
drop from SYS to BAT. Also, load transients can be
供,SYS电压稳定在VSYSREG。电池电量下降到重新启动
absorbed by the battery
while minimizing the voltage
充电的门限时,再次打开充电器。如果负载电流超出输
disturbance on SYS. If both the DC and USB inputs are
入门限,SYS电压降至电池电压,并且SYS和BAT之间的
valid,
the DC input takes priority and delivers the input
50mΩ PMOS开关导通,以支持更大的负载电流。一旦负
current,
while the USB input is off.
载电流低于输入电流门限,SYS和BAT之间的开关被关闭。
After the battery is done charging, the charger is turned
如果撤除有效的DC电源,则50mΩ PMOS也将导通。
off and the SYS load current is supplied from the DC
input. The SYS voltage is regulated to VSYSREG
. The
USB输入
charger
turns
on
again
after
the
battery
drops
to
the
由USB输入充电时,DC输入降压调节器关闭,连接在USB
restart
threshold.
If
the
load
current
exceeds
the
input
和SYS之间的线性稳压器向系统供电并向电池充电。如果
limiter,
SYS drops down to the battery voltage and the
电池电压高于最小系统电压,SYS供电电压被连接至电池。
50m SYS-to-BAT PMOS switch turns on to supply the
USB输入向SYS负载供电,并利用额外的电流为电池充电,
extra load current. The SYS-to-BAT switch turns off again
总电流不会超过最大允许的USB电流。电池能够吸收负载
once the load is below the input current limit. The 50m
瞬变的影响,使SYS电压波动最小。电池充电结束或充电
PMOS also turns on if valid DC input power is removed.
器被禁止时,SYS电压稳定在VSYSREG。如果USB和DC输
入均有效,则只从DC输入供电。
______________________________________________________________________________________
17
17
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
USB和适配器供电系统
用于USB和适配器供电系统
表2.输入限制器控制逻辑
Table 2. Input Limiter Control Logic
POWER SOURCE
AC Adapter at DC Input
IUSB USUS
DC STEP-DOWN
OUTPUT
CURRENT LIMIT
DOK
UOK
DCM***
L
X
H
X
X
6000V/RIDC
L
X
L
L
L
100mA
L
X
L
H
L
500mA
L
X
L
X
H
USB suspend
USB INPUT
CURRENT LIMIT
Lesser of
1200V/RISET and
6000V/RIDC
USB input off. DC
input has priority.
USB Power at DC Input
USB Power at USB Input,
DC Unconnected
DC and USB Unconnected
MAXIMUM
CHARGE
CURRENT**
Lesser of
1200V/RISET and
100mA
Lesser of
1200V/RISET and
500mA
0
100mA
Lesser of
1200V/RISET and
100mA
H
L
X
L
L
H
L
X
H
L
H
L
X
X
H
USB suspend
Lesser of
1200V/RISET and
500mA
0
H
H
X
X
X
No USB input
0
No DC input
500mA
**Charge
current cannot exceed the input current limit. Charge may be less than the maximum charge current if the total SYS load
**
充电电流不能超过输入电流门限,如果总的SYS负载电流超过输入限流,将控制充电电流低于最大充电电流。
exceeds
the input current limit.
***
DCM (阳极)与DC (阴极)之间接有一个内部二极管,如图1所示。如需通过μP设置DCM电平,需采用一个MOSFET进行隔离,如图3
***There =is 无关。
an internal diode from DCM (anode) to DC (cathode) as shown in Figure 1. If the DCM level needs to be set by a µP, use
所示。X
a MOSFET for isolation as shown in FIgure 3.
USB挂起
驱动USUS为逻辑高电平、DCM为逻辑低电平将关闭充电
USB Input
器和SYS输出,并将输入电流降至170μA,进入USB挂起
When charging from the USB input, the DC input stepdown regulator turns off and a linear regulator from
模式。请参考表2所示的设置。
USB to SYS powers the system and charges the battery. If the battery is greater than the 充电使能(CEN)
minimum system
CEN为逻辑低电平时,充电器开启;CEN为逻辑高电平
voltage,
the SYS voltage is connected to the battery.
时,充电器关闭。CEN不影响SYS输出。许多系统中,不
The USB input then supplies the SYS load and charges
需要系统控制器(通常为微处理器)关闭充电器工作,因为
the
battery with any extra available current, while not
exceeding the maximum-allowed USB current. Load
MAX8903_智能电源选择器能够独立地管理充电和适配器/
transients can be absorbed by the battery while mini电池电源的关断。这种情况下,CEN可以接地。
mizing the voltage disturbance on SYS. When battery
charging is completed, or the charger is disabled, SYS
is regulated to VSYSREG. If both USB and DC inputs are
valid, power is only taken from the DC input.
USB Suspend
Driving USUS high and DCM low turns off charging as
well as the SYS output and reduces input current to
170µA to accommodate USB suspend mode. See
Table 2 for settings.
18
18
软启动
为了防止能够导致USB或交流适配器电源不稳定的输入瞬
Charge Enable (CEN)
变,输入电流和充电电流的变化率均受限。当一路输入电
When
CEN is low, the charger is on. When CEN is high,
源有效时,SYS电流从零开始上升到所设置的电流门限,
the
charger turns off. CEN does not affect the SYS out通常时间为50μs。这也意味着,如果DC在USB之后有效,
put.
In many systems, there is no need for the system
controller (typically a microprocessor) to disable the
SYS电流将在USB切换到DC输入之前降至零。在某个工作
charger, because the MAX8903_ smart power selector
点,SYS可能无法支持负载供电,切换至BAT。当V
SYS <
circuitry
independently manages charging and
V
BAT时,将切换至BAT。该门限具体取决于SYS电容和
adapter/battery power hand-off. In these situations, CEN
SYS负载。SYS电流随后从零上升到所设置的电流,只要
may
be connected to ground.
SYS负载电流小于所设置的电流门限,SYS即可支持负载。
Soft-Start
To prevent input transients that can cause instability in
the USB or AC adapter power source, the rate of change
of the input current and charge current is limited. When
an input source is valid, SYS current is ramped from
zero to the set current-limit value in typically 50µs. This
also means that if DC becomes valid after USB, the
SYS current limit is ramped down to zero before switching from the USB to DC input. At some point, SYS is no
longer able to support the load and may switch over to
______________________________________________________________________________________
USB和适配器供电系统
capabilities of a 100mA or 500mA USB input, or overloads an AC adapter. See Figure 5.
When VBAT is below VBATPQ, the charger enters prequal mode and the battery charges at 10% of the maximum fast-charge rate until the voltage of the deeply
discharged battery recovers. When the battery voltage
reaches VBATREG and the charge current drops to 10%
of the maximum fast-charge current, the charger enters
the DONE state. The charger restarts a fast-charge
cycle if the battery voltage drops by 100mV.
当VBAT低于VBATPQ时,充电器进入预充模式,以最大快
Charge Termination
充速率的10%为电池充电,直到过放电电池恢复正常。当
When the charge current falls to the termination thresh时,充电电流下降到最大快充电流
电池电压达到V
the charger
is in voltage mode, chargold (ITERM) andBATREG
的10%,充电器进入DONE状态。当电池电压跌落100mV
ing is complete. Charging continues for a brief 15s
时,充电器将重新启动快充过程。
top-off period and then enters the DONE state where
charging stops.
充电终止
falls to ITERM as a result of
Note that if charge current
当充电电流降至终止门限(I
TERM)并且充电器处于恒压模式
the input or thermal limiter, the charger does not enter
时,完成充电。充电过程将持续短暂的15s浮充周期,然
DONE. For the charger to enter DONE, charge current
后进入DONE状态,充电结束。
must be less than ITERM, the charger must be in volt注意,若充电电流因为输入限流或热保护下降至I
TERM
age mode, and the input or thermal limiter must
not,充
be
电器不会进入DONE状态。若要充电器进入DONE状态,充
reducing charge current.
电电流必须低于ITERM并且充电器必须处于恒压模式、输入
Charge Status Outputs
限流或热保护电路没有降低充电电流。
Charge Output (CHG )
充电状态指示输出
CHG is an open-drain, active-low output
that indicates
charger status. CHG is low when the充电指示输出(CHG)
battery charger is
in its prequalification and fast-charge states. CHG goes
CHG为漏极开路、低电平有效输出,用于指示充电器状态。
high impedance if the thermistor causes the charger to
当电池充电器处于预充和快充状态时,CHG为低电平。如
go
into temperature suspend mode.
果热敏电阻检测使充电器进入热保护状态,CHG将变为高
阻态。
When used in conjunction with a microprocessor (µP),
connect a pullup resistor between CHG and the logic
与微处理器(μP)配合使用时,在CHG和逻辑I/O电压之间连
I/O voltage to indicate charge status to the µP.
接一个上拉电阻,为μP提供充电状态指示。此外,CHG可
Alternatively, CHG can sink up to 20mA for an LED
吸收最大20mA的电流,能够用于LED充电指示。
charge indicator.
故障指示输出(FLT)
Fault Output (FLT)
FLT为漏极开路、低电平有效输出,用于指示充电器状态。
FLT is an open-drain, active-low output that indicates
电池充电器进入故障状态并且充电定时器超时的情况下,
charger status. FLT is low when the battery charger has
FLT为低电平。当充电器处于预充状态的时间超过33分钟
entered a fault state when the charge timer expires.
或充电器处于快充状态的时间超过660分钟时,可能发生
This can occur when the charger remains in its prequal
这种情况(图6所示)。为了退出故障状态,可以触发CEN或
state for more than 33 minutes or if the charger remains
重新接通输入电源。
in fast-charge state for more than 660 minutes (see
6). To exit this fault state, toggle CEN or remove
Figure
与微处理器(μP)配合使用时,在FLT和逻辑I/O电压之间连
and
reconnect
the input source.
接一个上拉电阻,为μP提供充电状态指示。此外,FLT可吸
When
used
in
conjunction
with a microprocessor (µP),
收最大20mA的电流,能够用于LED充电指示。如果不需要
connect a pullup resistor between FLT and the logic I/O
FLT输出,可将FLT接地或浮空。
voltage to indicate charge status to the µP.
Alternatively, FLT can sink up to 20mA for an充电定时器
LED fault
故障定时器可避免电池无限制地充电。预充和快充故障定
indicator. If the FLT output is not required, connect FLT
to ground or leave unconnected.
时器由CT端的外接电容(C
CT)设置。
2A单节Li+电池DC-DC充电器,
用于USB和适配器供电系统
果RISET通过一个开关突然改变,则没有di/dt限制。
Battery Charger
While a valid input source is present, the battery charg电池充电器
er attempts to charge the battery with a fast-charge
存在有效的输入电源时,电池充电器将尝试以快充电流为
current determined by the resistance from ISET to
电池充电,电流由ISET与GND之间的电阻确定,根据下式
GND. Calculate the RISET resistance according to the
计算R
ISET电阻:
following
equation:
= 1200V/I
CHGMAX
1200V/I
RISET =RISET
CHGMAX
监测充电电流
Monitoring Charge
Current
ISET和GND之间的电压代表电池充电电流,可用于监测电
The voltage from ISET to GND is a representation of the
池的充电电流。1.5V电压对应于最大快充电流。
battery charge current and can be used to monitor the
current charging the battery. A voltage of 1.5V repre必要时,充电器可自动降低充电电流,以防SYS电压跌落。
sents
the maximum fast-charge current.
因此,USB供电时充电器不会以超出100mA或500mA电流
If necessary, the charge current is reduced automati向电池充电,也不会造成交流适配器过载,请参考图5。
cally to prevent the SYS voltage from dropping.
Therefore, a battery never charges at a rate beyond the
MONITORING THE BATTERY
CHARGE CURRENT WITH VISET
1.5
VISET (V)
0
DISCHARGING
0
1200V/RISET
BATTERY CHARGING CURRENT (A)
Figure 5. Monitoring the Battery Charge Current with the
图5.利用ISET和GND之间的电压监测电池充电电流
Voltage from ISET to GND
______________________________________________________________________________________
19
19
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
BAT. The switchover to BAT occurs when VSYS < VBAT.
This threshold is a function of the SYS capacitor size
and SYS load. The SYS current limit then ramps from
zero to the set current level and SYS supports the load
again as long as the SYS load current is less than the
set current limit.
When the charger is turned on, the charge current ramps
from 0A to the ISET current value in typically 1.0ms.
Charge current also soft-starts when transitioning to fastcharge from prequal, when the input power source is
switched between USB and DC, and when changing the
充电器开启时,充电电流从0A上升到ISET设置的电流,通
USB charge current from 100mA to 500mA with the IUSB
常时间为1.0ms。当从预充进入快充状态、输入电源在USB
logic input. There is no di/dt limiting, however, if RISET is
和DC之间切换、IUSB逻辑输入将USB充电电流从100mA
changed
suddenly using a switch.
变为500mA时,充电电流也会进入软启动过程。然而,如
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
电器,用于
USB和适配器供电系统
用于USB和适配器供电系统
NOT READY
DOK = HIGH IMPEDANCE
= HIGH IMPEDANCE
= HIGH IMPEDANCE
ICHG = 0mA
UOK AND/OR DOK = LOW
CEN = 0
RESET TIMER
EQUALIFICATION
AND/OR DOK = LOW
CHG = LOW
= HIGH IMPEDANCE
0 < VBAT < VBATPQ
CHG ≤ ICHGMAX/10
V
0
CEN = HI OR
REMOVE AND RECONNECT
THE INPUT SOURCE(S)
ANY STATE
TOGGLE CEN OR
REMOVE AND RECONNECT
THE INPUT SOURCE(S)
TIMER > tPREQUAL
VBAT < VBATPQ - 180mV
RESET TIMER
TIMER > tTOP-OFF
UOK OR DOK PREVIOUS STATE
CHG = HIGH IMPEDANCE
FLT = HIGH IMPEDANCE
DONE
K AND/OR DOK = 0
= HIGH IMPEDANCE
= HIGH IMPEDANCE
+ VRSTRT < VBAT < VBATREG
ICHG = 0mA
Timer
indefie con-
PREQUALIFICATION
UOK AND/OR DOK = LOW
CHG = LOW
FLT = HIGH IMPEDANCE
0 < VBAT < VBATPQ
ICHG ≤ ICHGMAX/10
ICHG > ITERM
RESET TIMER
TOP-OFF
UOK AND/OR DOK = LOW
CHG = HIGH IMPEDANCE
FLT = HIGH IMPEDANCE
VBAT = VBATREG
ICHG = ITERM
ANY STATE
TOGGLE CEN OR
REMOVE AND RECONNECT
THE INPUT SOURCE(S)
TIMER > tPREQUAL
FAULT
UOK AND/OR DOK = LOW
CHG = HIGH IMPEDANCE
FLT = LOW
ICHG = 0mA
VBAT > VBATPQ
RESET TIMER
FAST-CHARGE
TIMER > tFSTCHG
UOK AND/OR DOK = LOW
(TIMER SLOWED BY 2x IF
CHG = LOW
ICHG < ICHGMAX/2, AND
VBATREG
) IMPEDANCE
PAUSED IF ICHG < ICHGMAX/5 WHILE VBAT < FLT
= HIGH
VBATPQ < VBAT < VBATREG
ICHG ≤ ICHGMAX
ICHG < ITERM
AND VBAT = VBATREG
M
AND THERMAL
ANY CHARGING
R
OR INPUT LIMIT
STATE
NOT EXCEEDED;
RESET TIMER
THM OK
THM NOT OK
TOP-OFF
TIMER RESUME
TIMER SUSPEND
K AND/OR DOK = LOW
G = HIGH IMPEDANCE
VBAT < VBATREG + VRSTRT
RESET TIMER
T = HIGH IMPEDANCE
VBAT = VBATREG
TEMPERATURE SUSPEND
ICHG = ITERM
ICHG = 0mA
CEN = HI OR
REMOVE AND RECONNECT
THE INPUT SOURCE(S)
UOK AND/OR DOK = LOW
CEN = 0
RESET TIMER
FAULT
UOK AND/OR DOK = LOW
CHG = HIGH IMPEDANCE
V <V
- 180mV
FLT = LOW BAT BATPQ
RESET TIMER = 0
ICHG = 0mA
VBAT > VBATPQ
RESET TIMER
FAST-CHARGE
AND/OR DOK = LOW
CHG = LOW
= HIGH IMPEDANCE
TPQ < VBAT < VBATREG
ICHG ≤ ICHGMAX
NOT READY
UOK AND DOK = HIGH IMPEDANCE
CHG = HIGH IMPEDANCE
FLT = HIGH IMPEDANCE
ICHG = 0mA
TIMER > tFSTCHG
(TIMER SLOWED BY 2x IF
ICHG < ICHGMAX/2, AND
PAUSED IF ICHG < ICHGMAX/5 WHILE VBAT < VBATREG)
ICHG < ITERM
AND VBAT = VBATREG
AND THERMAL
OR INPUT LIMIT
NOT EXCEEDED;
RESET TIMER
VBAT < VBATREG + VRSTRT
RESET TIMER
TIMER > tTOP-OFF
DONE
UOK AND/OR DOK = 0
CHG = HIGH IMPEDANCE
FLT = HIGH IMPEDANCE
VBATREG + VRSTRT < VBAT < VBATREG
ICHG = 0mA
图6.MAX8903A充电状态流程图
Figure 6. MAX8903A Charger State Flow Chart
Charge Timer
CCTthe battery from charging indefiA
fault timer
tPREQUAL
= 33prevents
min ×
0.15µFand fast-charge timers are connitely. The fault prequal
trolled by the capacitance
CCT at CT (CCT).
tFST - CHG = 660min ×
0.15µF
tTOP -OFF = 15s (MAX 8903 A/D /H/ J/N / Y)
C
tTOP -OFF = 132min × CT (MAX 8903B/E / G)
0.15µF
CCT
tPREQUAL = 33min ×
快充模式下,较重的系统负载或器件的自发热可能引起
0.15µF
MAX8903_降低充电电流。这种情况下,如果充电电流下
CCT
tFST - CHG = 660min ×
降到所设置的快充电流的50%,快充定时器的计时速率将
0.15µF
降低2倍;如果充电电流下降到所设置的快充电流的20%
tTOP -OFF = 15s (MAX 8903 A/D /H/ J/N / Y)
时,定时器进入挂起状态。如果充电器使BAT电压达到
C
(即充电器进入恒压模式),快充定时器将不受任
VBATREG tTOP -OFF
= 132min × CT (MAX 8903B/E / G)
0.15µF
何电流的影响。
20 ______________________________________________________________________________________
20
_____________________________________________
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
用于USB和适配器供电系统
USB和适配器供电系统
MAX8903A-E/G/H/J/N/Y
CEN
THERMISTOR
CIRCUITRY
VL
VL
MAX8903_
MAX8903B/MAX8903E/
MAX8903G ONLY
0.87 VL
RTB
ALTERNATE
THERMISTOR
CONNECTION
0.74 VL
THERMISTOR
DETECTOR
COLD
THM
RTS
0.28 VL
RTP
RT
0.03 VL
RT
HOT
ENABLE THM
THM
OUT OF
RANGE
DISABLE
CHARGER
ALL COMPARATORS
60mV HYSTERESIS
GND
图7.热敏电阻监测电路
its input power from USB or DC. When input power is
available from both USB and DC, VL热敏电阻输入(THM)
takes power from
THM输入在外部连接一个负温度系数(NTC)的热敏电阻,
MAX8903A DSDC.
C_MAX8903A
DS 2012-6-26
12:56
22
VL is enabled
whenever the
input页voltage
at USB
用于监测电池或系统温度。当热敏电阻温度超过所限制的
DC is greater than ~1.5V. VL does not turn off when
or
3750 4250
范围时,充电器处于挂起模式。充电计时器为挂起状态,
the
input voltage is above the overvoltage threshold.
10
10
并将保持该状态而不产生故障指示。当热敏电阻恢复到限
Similarly,
VL does not turn off when the charger is disabled
(CEN = high). Connect a 1µF ceramic capacitor
定范围时,重新开始充电,充电定时器从停止处重新开始
10
10
from
VL to GND.
计时。将THM接GND则禁用热敏电阻监测功能,表3所示
为不同热敏电阻的故障温度。
3.78 3.316
Table 3. Fault Temperatures for Different
表3.不同热敏电阻对应的故障温度
Thermistor β (K)
3000
3250
3500
RTB (kΩ) (Figure 7)
10
10
10
Resistance at +25°C
(kΩ)
10
10
10
Resistance at +50°C
(kΩ)
4.59
4.30
4.03
Resistance at 0°C (kΩ)
Thermistor Input (THM)
25.14
27.15
Nominal Hot Trip
Temperature (°C)
29.32 31.66 36.91
55
53
50
49
46
Nominal Cold Trip
Temperature (°C)
-3
-1
0
2
4.5
AX8903A-E/G/H/J/N/Y
While in fast-charge mode, a large system load VL稳压器
or device
self-heating
may cause the MAX8903_ to reduce charge
VL是一个5V线性稳压器,为MAX8903的内部电路供电,
current. Under these circumstances, the fast-charge
并为BST电容充电。VL在外部为电池的热敏电阻提供偏
timer
is slowed by 2x if the charge current drops below
置。VL由USB或DC输入电源供电,当USB和DC端均连接
50%
of
the programmed fast-charge level, and suspend电源时,VL由DC电源供电。当USB或DC的输入电压高于
ed if the charge current drops below 20% of the pro1.5V左右时,VL使能。输入电压高于过压门限时,VL不
grammed level. The fast-charge timer
is not affected at
会关断。同样,当充电器关闭(CEN
= 高电平)时,VL也不
any
current
if
the
charger
is
regulating
the BAT voltage
会关断。在VL与GND之间连接一个1μF电容。
at VBATREG (i.e., the charger is in voltage mode).
VL Regulator
VL is a 5V linear regulator that powers the MAX8903’s
internal circuitry and charges the BST capacitor. VL is
used externally to bias the battery’s thermistor. VL takes
由于热敏电阻监测电路在THM和VL之间引入了一个外部
The
THM input connects to an external negative tem偏置电阻(R
TB,图7),热敏电阻无需局限于10kΩ (+25°C时)。
perature
coefficient
(NTC) thermistor to monitor battery
只要偏置电阻等于热敏电阻在+25°C时的阻值,即可使用
or
system temperature. Charging is suspended when
任何阻值的热敏电阻。例如,对于+25°C时10kΩ的热敏电
the
thermistor temperature is out of range. The charge
timers
are
suspended and hold their state but no fault is
阻,在R
TB处使用10kΩ电阻;对于+25°C时100kΩ的热敏
indicated.
When the thermistor comes back into range,
电阻,则使用100kΩ电阻。
charging resumes and the charge timer continues from
对于典型的10kΩ
(+25°C时)热敏电阻和10kΩ
RTB电阻,当
where
off. Connecting
THM
to cold).
GND disables
the
(too
hot)it left
or rises
above 28.7k
(too
This corre热敏电阻下降到3.97kΩ以下(过热)或上升到28.7kΩ以上(过
thermistor
monitoring
function.
Table
3
lists
the
fault
sponds
to a 0°C to +50°C range when using a 10k
冷)时,充电器进入温度挂起状态。相当于使用β为3500的
temperature
of with
different
thermistors.
NTC
thermistor
a beta
of 3500. The general relation
10kΩ NTC热敏电阻,温度处于0°C至+50°C范围。热敏电
Since
the
thermistor
monitoring
circuit employs
an exterof
thermistor
resistance
to
temperature
is defined
by
阻与温度的通用关系式由下式定义:
the
equation:
nal following
bias resistor
from THM to VL (RTB, Figure 7), the thermistor is not limited only to 10k (at +25°C). Any

1 as long1 as the
 used
resistance thermistor canβbe
−
 T + 273°C
  value is
C
298
°

equivalent
the
+25°C resistance.
For
RT to
=R
× e 
25 thermistor’s
example, with a 10k at +25°C thermistor, use 10k at
where:
RTB, and with a 100k at +25°C thermistor, use 100k .
typical
10k (at in
+25°C)
thermistor
andata tempera10k RTB
resistance
of the
thermistor
RFor
T =a The
resistor,
the charger enters a temperature suspend
ture
T in Celsius
the thermistor
falls at
below
3.97k
= when
The resistance
in ofresistance
the thermistor
+25°C
Rstate
2A单节Li+电池DC-DC充电器,用于
USB和适配器供电系统
25
______________________________________________________________________________________
21
b = The material constant of the thermistor, which typi21
cally ranges from 3000K to 5000K
T = The temperature of the thermistor in °C
Table 3 shows the MAX8903_ THM temperature limits
The MAX
power en
mistor de
tery is pr
pull THM
above 87
removed
Continu
Power
Dissipat
θJA
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,用于
USB和适配器供电系统
(too hot) or rises above 28.7k (too cold). This corresponds to a 0°C to +50°C range when using a 10k
NTC thermistor with a beta of 3500. The general relation
of thermistor resistance to temperature is defined by
the following equation:
The MAX8903B/MAX8903E/MAX8903G implement the
power enabled on battery detection function with the thermistor detector comparator as shown in Figure 7. If no battery is present, the absence of the thermistor allows RTB to
pull THM to VL. When the voltage at the THM pin increases
above 87% of VL, it is assumed that the battery has been
removed and the system powers down. However, there is
2A单节Li+电池DC-DC充电器,
用于USB和适配器供电系统
 
1
1 
β
式中:
 
 T + 273°C
RT = R25 × e 
−

298°C  
RT = 温度为T (摄氏度)时,热敏电阻的阻值(Ω)
where:
RT25=
= +25°C时,热敏电阻的阻值(Ω)
The resistance in of the thermistor at temperaR
ture
T in Celsius
β = 热敏电阻的材料常数,典型值处于3000K至5000K
R
25 = The resistance in of the thermistor at +25°C
T = 热敏电阻的检测温度(°C)
b表3给出了不同热敏电阻材料常数对应的MAX8903_
= The material constant of the thermistor, which THM
typically
ranges from 3000K to 5000K
温度限制。
T有些设计可能选择其它热敏电阻温度限值。通过改变R
= The temperature of the thermistor in °C
TB,
3 shows the MAX8903_ THM temperature limits
Table
用一个电阻与热敏电阻串联和/或并联,或使用β值不同
for
different thermistor material constants.
的热敏电阻,都可以调节温度温度门限。例如,使用β值
为4250的热敏电阻,并联一个120kΩ的电阻,可以得到
Some
designs might prefer other thermistor temperature
+45°C的高温门限和0°C的低温门限。由于热敏电阻阻值
limits.
Threshold adjustment can be accommodated by
changing
RTB, connecting a resistor in series and/or in
在0°C左右时远远高于+50°C对应的阻值,并联一个大电
parallel
with the thermistor, or using a thermistor with dif阻可以降低低温门限,而对高温门限的降低很小。相反,
ferent
b. For example, a +45°C hot threshold and 0°C
串联一个小电阻可以提升高温门限,而对低温门限的提升
cold
threshold
can be realized by using a thermistor
很小。加大R
TB可降低低温门限和高温门限,减小RTB则会
with
a
b
of
4250
提高两个门限。 and connecting 120k in parallel. Since
the thermistor resistance near 0°C is much higher than it
值得注意的是只要有效电源连接至DC或USB,即使禁止
is
near +50°C, a large parallel resistance lowers the
充电时(CEN
= 高电平),由于VL有效,热敏电阻将始终流
cold
threshold,
while only slightly lowering the hot
过偏置电流。使用10kΩ热敏电阻,且VL采用10kΩ上拉电
threshold.
Conversely, a small series resistance raises
阻时,会产生额外的250μA负载。如果选择100kΩ热敏电
the
hot threshold, while only slightly raising the cold
阻和100kΩ上拉电阻,该负载可降至25μA。
threshold.
Raising RTB lowers both the cold and hot
thresholds, while lowering RTB raises both thresholds.
电池检测的供电使能控制
Note
that since VL is active whenever valid input power
电池检测功能的供电使能控制允许MAX8903B/MAX8903E/
is
connected at DC or USB, thermistor bias current
MAX8903G在施 加/移除电池时自动使能/禁用USB和DC
flows at all times, even when charging is disabled (CEN
电源输入。该功能采用电池组的集成热敏电阻作为检测
= high). When using a 10k thermistor and a 10k
元 件,to
判断
时 施results
加 或 移in除an
电 池。
利 用 该250µA
功 能,load.
基于
pullup
VL,何this
additional
MAX8903B/MAX8903E/MAX8903G的系统可在电池移除
This load can be reduced to 25µA by instead using a
时关断,而与USB或DC电源输入是否有外部电源无关。
100k
thermistor and 100k pullup resistor.
MAX8903B/MAX8903E/MAX8903G在热敏电阻检测比较
Power Enable on Battery Detection
器上使用电池检测供电使能控制的电路如图7所示。如果
The power enabled on battery detection function allows
没有链接电池,则不存在热敏电阻,THM将通过RTB上拉
the MAX8903B/MAX8903E/MAX8903G to automatically
至VL。当THM的引脚电压上升到VL的87%以上时,则认
enable/disable the USB and DC power inputs when the
为电池已经被移除,系统关断。也可以完全旁路该热敏电
battery
is applied/removed. This function utilizes the
阻检测电路,这种情况下,允许系统在电池移除后继续采
battery
pack’s integrated thermistor as a sensing mech用外部电源供电。如果将THM引脚连接至GND (THM端
anism
to determine when the battery is applied or
的电压低于VL的3%),则禁用热敏电阻检测功能,系统不
removed.
With this function, MAX8903B/MAX8903E/
会响应热敏电阻输入的变化。这种情况下,假定系统自身
MAX8903G-based
systems shut down when the battery
具有温度检测功能,当温度超出安全充电范围时,停止由
is
removed regardless of whether external power is
CEN输入引起的充电状态变化。
available
at the USB or DC power inputs.
22
22
功耗
表4. 封装热特性
28-PIN 4mm x 4mm THIN QFN
SINGLE-LAYER PCB
MULTILAYER PCB
1666.7mW
2286mW
Derate 20.8mW/°C
above +70°C
Derate 28.6mW/°C
above +70°C
θJA
48°C/W
35°C/W
θJC
3°C/W
3°C/W
Continuous
Power
Dissipation
最小SYS输出电容
also the option to bypass this thermistor
sensing option
根据MAX8903_版本的不同,SYS负载调整率为25mV/A或
completely, and so retain the ability to remove the battery
40mV/A。25mV/A版本增大了反馈环路增益,因而具有更
and
let the system continue to operate with external power.
If好的负载调整特性。为确保具有较高增益的反馈环路稳定
the THM pin is tied to GND (voltage at THM is below 3%
工作,需使用一个较大的SYS输出电容。具有25mV/A
SYS
of
VL), the thermistor option is disabled and the system
does
not respond to the thermistor input. In those cases, it
负载调整率的器件需要22μF SYS输出电容,而具有40mV/A
is
assumed that the system has its own temperature sensSYS负载调整率的器件仅需要10μF SYS输出电容。关于
ing,
and halts changing through CEN when the temperaMAX8903_不同版本的更多信息,请参见表6。
ture is outside of the safe charging range.
DC-DC降压调节器的电感选择
Minimum SYS Output Capacitor
MAX8903_的控制架构需使用一个1.0μH至10μH外部电感
Based
on the version of the MAX8903_, the SYS load
(LOUT),以确保正常工作。本节对控制架构和电感选择进
regulation
is either 25mV/A or 40mV/A. The 25mV/A ver行了说明。表5给出了典型应用的推荐电感选择。如在针
achieve
better load regulation by increasing the
sions
对特定应用选择最佳电感的计算过程中需要帮助,请参
feedback loop gain. To ensure feedback stability with
见以下网址的电子表格:china.maxim-ic.com/design/
this higher gain, a larger SYS output capacitor is
tools/calculators/files/MAX8903-INDUCTORrequired. Devices with 25m/V SYS load regulation
DESIGN.xls。
require
22µF SYS output capacitor whereas devices
)的
MAX8903 DC-DC降压调节器采用恒定开关频率(f
with
40m/V only require 10µF. See Table 6 for SW
more
information
about the various versions of the
控制架构,当输入电压降低至接近输出电压时,采用高
MAX8903_.
占空比工作方式,受最小关断时间(tOFFMIN)的限制,器件
可以工作在低于fSW的频率。工作在高占空比条件时,调
Inductor Selection for
节器采用具有最小关断时间tOFFMIN的峰值电流控制架构。
Step-Down DC-DC Regulator
)的
类似地,当输入电压较大时,受最小导通时间(t
The MAX8903_'s control scheme requires an ONMIN
external
,此时调节器采用最小导通
限制,工作频率无法达到f
SW
inductor (LOUT) from 1.0µH to 10µH for proper opera时间固定的谷电流控制架构。
tion.
This section describes the control scheme and the
considerations
for inductor selection. TableOUT
5 ,在输
shows
fSW = 4MHz的MAX8903器件版本具有最小的L
recommended
inductors for typical applications. For
入电压较低(5V或9V)时具有较高效率。对于输入电压较高
assistance
with
calculations needed to select the
= 1MHz的MAX8903G因其更高的效率
(12V)的应用,f
SWthe
optimum
inductor
for
a given application, refer to the
而成为最佳选择。
spreadsheet at: www.maxim-ic.com/tools/other/
______________________________________________________________________________________
((
(
))
)
((
))
((
(
))
)
MAX8903A-E/G/H/J/N/Y
offer the
the
offer
with low
low
with
use high
high
use
= 1MHz
1MHz
=
cy.
cy.
minimum
inimum
lowest
ee lowest
tain ffSW
tain
SW
an offoffss an
ctor ripripctor
enters
rr enters
currentcurrentty factor
factor
ty
current
current
A in
in the
the
A
he
maxie maxiherefore
herefore
))
2A单节Li+电池DC-DC充电器,
用于USB和适配器供电系统 ,,
A单节Li+电池DC-DC充电器,用于
USB和适配器供电系统
ements
ments aa
switchtt switcheases to
to
eases
peration
peration
due
ffSW
SW due
igh
duty
gh duty
and
MIN and
MIN
he input
input
he
minimum
minimum
comes
omes aa
((
-E/G/H/J/N/Y
E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
903A-E/G/H/J/N/Y
03A-E/G/H/J/N/Y
03A-E/G/H/J/N/Y
8903A-E/G/H/J/N/Y
VSYS(MAX
× tOFF
1A)) designs.
from
(0.2
for (2A Ioff-time
SW operation
OFFKis0.45)
(3)
occurs
and
the
device
canfSW
operate
at
less
than
fSW due
voltage
is too
high
to allow
due
tooperation
minimum
where
tOFF
the minimum
obtained
from (1).
SDLIM
a
value
near
the
output
voltage,
high
duty
cycle
to
minimum
off-time
(tONMIN
) the
constraints.
Inbecomes
high dutya
LOUT _ MIN _ TOFF = VSYS(MAX) × tOFF
),
regulator
on-time
constraints
(t
OFFMIN
ONMIN
to
minimum
off-time
(t
)
constraints.
In
high
duty
),
the
regulator
becomes
a
on-time
constraints
(t
L
=
OFFMIN
ONMIN
(3)
occurs
and theon-time
device
can operate
at
less
fSW due
OUT _ MIN _ TOFF
K
ISDLIM
×VSYS
V
tON
and
cycle
operation,
the regulator
operates
withthan
tOFFMIN
VSYS
tOFF
fixed
minimum
valley
regulator.
)) −−(−MAX
((MIN
)) ×
K
ISDLIM
)×
fixed
minimum
on-time
valley current
current
regulator.
VDC
DC=(((MAX
MAX
SYS
MIN
ON
and
cycle
operation,
the regulator
with In
tOFFMIN
DC
MAX
) ×VSYS
(MIN
) × tON
to
minimum
off-time
(tOFFMIN
)operates
constraints.
high
duty
(4)
=
LLOUTL_OUT
(4)
_
MIN
_
T
aVersions
peak
current
regulation.
Similarly,
when
the
input
MIN
t
=
OUT __ MIN
MIN __ ttON
of
the
MAX8903
with
ffSW
=
4MHz
offer
the
OUT
ON OFF
×
K
I
×
I
K
aVersions
peak
current
regulation.
Similarly,
when
the
input
ON
SDLIM
SDLIM
and
cycle
operation,
the
regulator
operates
with
t
SW
of
the
MAX8903
with
=
4MHz
offer
the
OFFMIN
×
I
K
SW
SDLIM from (1).
due to minimum
where tOFF is the minimum off-time obtained
voltage
isLtoo high
to allow
fSW operation
SDLIM
smallest
while
delivering
good
efficiency
with
low
operation
due tothe
minimum
where tOFF is the minimum off-time obtained
from (1).
voltage
high
to allow
fSWSimilarly,
OUT
a
peak iscurrent
regulation.
when
input
smallest
Ltoo
delivering
good
efficiency
with
low
OUT while
on-time
constraints
(t
),
the
regulator
becomes
a
ONMIN
input
voltages
(5V
or
9V).
For
applications
that
use
high
is
maximum
input
voltage,
V
is
where
V
on-time
constraints
(t
),
the
regulator
becomes
a
DC(MAX)
SYS(MIN)
ONMIN
where
V
input
voltages
(5V
or
9V).
For
applications
that
use
high
is
maximum
input
voltage,
V
operation
due to minimum
is the minimum
obtained
from
where tOFF
voltage
is too high
to allow
fSW
DC(MAX)
SYS(MIN)
×
VDCoff-time
t (1). is
DC(MAX)
fixed
minimum
on-time
valley
current
regulator.
) −− V
(MIN
) SYS(MIN)
×istON
VDC((MAX
VSYS
=
1MHz
the
oninput
voltages
(12V),
the
MAX8903G
with
the
minimum
charger
output
voltage,
and
ttON
fixed
on-time
valley
regulator.
MAX
)
SYS
(
MIN
)
ON
(4)
on-time
constraints
(tONMIN
),current
the regulator
becomes
a
=
L
SW
ON
=
1MHz
is
the
oninputminimum
voltages
(12V),
the
MAX8903G
with ffSW
the
minimum
charger
output
voltage,
and
SW
ON
_ MIN _ tON =
(4)
LOUT
Versions
of the
MAX8903
with
fSWregulator.
= 4MHz
offer the
ISDLIM
is
best
because
its
efficiency.
time
high
as
given
by
the
following
OUT
_ MINinput
_ tON voltage,
−×
VDC(MAX
tON
fixed
on-time
valleyof
current
Versions
the
MAX8903
with
offer the
is the
theminimum
bestofchoice
choice
because
of
its fhigher
higher
efficiency.
time at
at
high
input
voltage,
asK
by
(MINthe
) × following
×VSYS
K)given
ISDLIM
SW = 4MHz
smallest
L
while
delivering
good
efficiency
with
low
(4)
equation:
=
L
OUT
equation:
OUT
_
MIN
_
t
For
a
given
maximum
output
voltage,
the
minimum
smallest
L
while
delivering
good
efficiency
with
low
ON
OUT
For
a
given
maximum
output
voltage,
the
minimum
Versions
of the(5V
MAX8903
with
fSW = 4MHz
offer
the
K × voltage,
ISDLIM VSYS(MIN) is
where VDC(MAX) is maximum input
input
voltages
or 9V).condition
For
applications
thatthe
use
high
inductor
current
occurs
at
lowest
where VDC(MAX) is maximum
input
voltages
or delivering
9V).condition
For applications
that
use
high
input voltage,
VSYS(MIN) is
inductor
ripple
current
occurs
at
the
lowest
smallest
Lripple
while
good
efficiency
with
low
 tON
 V
OUT (5V
1
=
1MHz
is the oninput
voltages
(12V),
the
MAX8903G
with
f
the
minimum
charger
output
voltage,
SYS
MIN
(
)
V
SW
SYS((MIN
MIN
1 and
input
voltage
that
allows
the
regulator
to
maintain
ffSW
SYS
)) ×
1
= 1MHz
input
voltages
(12V),
the For
MAX8903G
with
fSW use
the
minimum
charger
output
voltage,
and
t
(5)
t
=
t
if
,the
≤
t
ON


where
V
input
voltages
(5V
or
9V).
applications
that
high
is
maximum
input
voltage,
V
is
ON
ONMIN
ONMIN
SW
(5)
t
=
t
if
×
, t on≤
t
input
voltage
that
allows
the
regulator
to
maintain
DC(MAX)
SYS(MIN)
1is
SW
ON
ONMINvoltage,
ONMIN
is
the
best
choice
because
of
its
higher
efficiency.
time
at
high
input
as
given
by
the
following


ON
ONMIN
ONMIN
V
f


DC
MAX
SW
(
)
operation.
If
the
minimum
input
voltage
dictates
an
offtO
is
the
best
choice
because
of
its
higher
efficiency.
time
at
high
input
voltage,
as
given
by
the
following
O


V
f
DC
MAX
SW
(
)
O
1MHz
is
the
oninput
voltages
(12V),
the MAX8903G
with
fSW = an
the
minimum
charger
output
voltage,
and
t
DC
MAX
SW
(
)
operation.
If the
minimum
input voltage
dictates
offON

(
)
equation:
(( by)) the following
For
given
maximum
output
the
minimum
,, then
minimum
inductor
riptime
than
ttOFFMIN
equation:
then
thevoltage,
minimum
inductor
riptime
less
than
is
thea
best
choice
because
of the
its
higher
efficiency.
time
at high input voltage, as given
OFFMIN
For
aless
given
maximum
output
voltage,
the
minimum
OFFMIN
otherwise,
对于给定的输出电压最大值,若最小输入电压允许调节器
V
inductor
rippleoccurs
currentjust
condition
occurs
at the lowest
otherwise,
ple
condition
before
the
regulator
enters
1
((MIN
))
O
VSYS
equation:
VSYS
SYS
MIN
inductor
ripple
currentjust
condition
occurs
at the
lowest
ple
condition
occurs
before
the regulator
enters
O
(MIN
) ×
SYS
(MIN
) 11 
O
For
a
given
maximum
output
voltage,
minimum
ttON =
工作频率,则输入电压最小时电感纹波电流最小。
保持f
SW
input
voltage
that
allowsoperation.
the regulator
tothe
maintain
fSW
1 ,
minimum
off-time
To
allow
the
currentfixed
) ×f 1  ≤ tONMIN
(5)
tON = tONMIN
ON = ifV VSYS(MIN×
ON
input
voltage
that
allows
the
regulator
to
maintain
f
fixed
minimum
off-time
operation.
To
allow
the
current1 , tO
SW
(5)
t
=
t
if
×
((MAX
)) ) fSW
inductor
ripple
condition
occurs
at OFFMIN
the
lowest
VDC
fSW  ≤ tONMIN
ON
ONMIN VDC
,则
如果输入电压最小值限定的开关关断时间小于t
DC
MAX
SW
(MAX
operation.
If thecurrent
minimum
input
voltage
dictates
an
off(
)
DC
MAX
SW
mode
regulator
to
provide
a
low-jitter,
stable
duty
factor
V
t
f
1
mode
regulator
to
provide
a
low-jitter,
stable
duty
factor
V
SYS
MIN
(
)


DC
MAX
SW
(
operation.
If
the
minimum
input
voltage
dictates
an
off
)
(
)
input
voltage
that
allows
the inductor
regulator
to
maintain
frip1 , O
SW
(5)
tON = tONMIN if 
× (  ≤) tONMIN
调节器在即将进入固定最小关断时间工作模式时具有最小
inductor
, then
the
minimum
inductor
time
less
thanthe
tOFFMIN
operation,
minimum
ripple
current
operation,
the
minimum
inductor
ripple
current
t
The
tion
satura
current
DC
rating
of
the
(I
)
VDC
f  (ISAT
, then
thevoltage
minimum
inductor
riptime
less than
tOFFMIN
otherwise,
O
tion
current DC rating
of (the
The satura
MAX)inductor
operation.
If the
input
dictates
an
offSAT)
否则
VSYS
SAT
的电感纹波电流。为了使工作在电流模式的调节器具有低
ple
condition
occurs
just
before
the
regulator
enters
otherwise,
(I
)) minimum
should
be
greater
than
150mA
in
the
1SW
(MIN
) step-down
O
) output
VSYS
must
be
than
the
DC
current
L_RIPPLE_MIN
ple
condition
occurs
the
regulator
enters
shouldjust
bebefore
greater
than
150mA
in ripthe
(IL_RIPPLE_MIN
1(
L_RIPPLE_MIN
(MIN
) step-down
O greater
t
=
×
,
then
the
minimum
inductor
time
less
than
t
must
be
greater
than
the
DC
output
current
OFFMIN
ON
抖动和稳定的占空比系数,在电感纹波电流处于最小值时
minimum
off-time
operation.
To allow the
currentfixed
minimum
inductor
ripple
current
condition.
The
maxitON one-half
=V
×maximum
otherwise,
fSW
)) plus
the
ripple
limit
minimum
off-time
operation.
To
allow
the
currentfixed
minimum
inductor
ripple
current
condition.
The
maxiDC(MAX
V
limit (I
(ISDLIM
plus
one-half
the
ripple current,
current,
ple
condition
occurs
just
the
regulator
enters
SDLIM
1
VSYS
fSW
(MIN
))) maximum
O
SDLIM
mode
regulatoroutput
to provide
abefore
low-jitter,
stable
duty
factor
(
DC
MAX
)应大于150mA。由
电感的纹波电流最小值(I
mum
allowed
inductance
L
is
therefore
OUT_MAX
L_RIPPLE_MIN
mum
allowed
output
inductance
L
is
therefore
t
=
×
as
given
by
equation
(6).
OUT_MAX
modeminimum
regulator off-time
to provide
a low-jitter,
stablethe
duty
factor
ON
OUT_MAX
as
given
by
equation
(6).
operation.
To
allow
currentfixed
operation,
thethe
minimum
inductor
ripple
current
VDCof
fSW
obtained
using
equations
(1)
below.
。
下面的式(1)和式(2)计算所允许的输出电感最大值L
OUT_MAX
(MAX
tion
current DC rating
the) inductor
(I
The satura
)
operation,
thethe
minimum
inductor
ripple
current
obtained
using
equations
(1) and
and (2)
(2)
below.
mode
regulator
to
provide
a greater
low-jitter,
stable
duty
factor
tion
current DC rating of the
inductor (ISAT
The satura
SAT)
(I
)
should
be
than
150mA
in
the
IL
L_RIPPLE_MIN
RIPPLE
MAX
_
must
be
greater
than
the
DC
step-down
output
current
(1)
(I
)
should
be
greater
than
150mA
in
the
IL
RIPPLE
MAX
_
L_RIPPLE_MIN
operation,
the minimum
inductor
rippleThe
current
RIPPLE
_ MAX
IISAT rating
> IISDLIM
+
must
be greater
than
the
step-down
current
(1)

 V
minimum
inductor
ripple
current
maxiThe
tion
satura
current
DC
of DC
the
inductor
(Ioutput
(6)
1
SAT) current,
((MAX
))condition.
VSYS
+the
SAT >one-half
SDLIM
(6)
)
plus
maximum
ripple
limit
(I
SYS
MAX
SAT
SDLIM
)必须大于直流降压输出限流
电感饱和直流电流额定值(I
SDLIM
2
minimum
inductor
ripple
current
condition.
The
maxi1
SAT
SYS
MAX
(
)
t
t
=
t
if
1
−
×
(
≤
,
(I
)
should
be
greater
than
150mA
in
the
)
plus
one-half
the
maximum
ripple
current,
limit
(I
L_RIPPLE_MIN


OFFMIN
OFFMIN
2
t
tOFF
=
t
if
1
−
×
(
≤
,
(1)
SDLIM
mum
allowed
output
inductance
L
is
therefore
must
be
greater
than
the
DC
step-down
output
current
(
OFF
OFFMIN  − V
OFFMIN
OUT_MAX
,, given
 fSW
OFFMIN
as
by equation (6).
inductance
值(I
DC
MIN
))Lcondition.
mumOFF
allowed
output
isOFFMIN
therefore
SDLIM)与二分之一最大纹波电流值之和,如式(6)所示。
 (2)
fSW

Vcurrent
minimum
inductor
ripple
The
maxiDC((((1)
MINand
SWbelow.
as
given
by )equation
(6). the maximum ripple current,
DC
MIN
) OUT_MAX
obtained using
the equations
plus one-half
limit
(ISDLIM
obtained
using
the
equations
(1)
and
(2)
below.
mum allowed output inductance LOUT_MAX is therefore
where
IL
is
the
of
ripple currents
RIPPLE_MAX
as
given
by
equation
(6).
ILRIPPLE
RIPPLE_MAX
is
the greater
greater
of_the
the
where
IL
RIPPLE_MAX
MAXripple currents
(1)
otherwise,
ILRIPPLE
否则
obtained
using the equations
and
(2)
below.
MAX
_
I
>
I
+
obtained
from
(7)
and
(8).
(1)
otherwise,

 VSYS((1)
SAT
SDLIM
obtained
from
(7)
and
(8).
(6)
1
MAX)
ISAT > ISDLIM +
(6)
2
(6)
== tOFFMIN (((if  1 −V VSYS(MAX)  × (1 ≤ tOFFMIN ,
ILRIPPLE
2 _ MAX
(1) ttOFF
== tOFFMIN if  1 −VSYS
× fSW
(1
≤ tOFFMIN ,
,
O
(
)
MAX

V
OFF

1

O
I
>
I
+
(
SYS
MAX
DC
MIN
(
)


V
,
O
(
)
SYS
MAX
SAT
SDLIM
f
V
(6)
1
ttOFF =
1
−
×
SYS
MAX
(
)
V
×t
−−

DC(MIN) × SW
SYS
V
2
=
1

OFF
SYS(((MAX
MAX))) × tOFF
OFF
tOFF = tOFFMIN
(
≤ tOFFMIN ,
OFF if  1 − VDC(MIN)  ×fSW
(7)
SYS
MAX
OFF
IL
=
where
IL
is
the
greater
of
the
ripple
currents
RIPPLE_MAX
RIPPLE
_
MIN
_
T
(7)
IL
=

f
  VDC
,
(
)
DC
MIN
SW
f
V
(MIN
) )  SW
RIPPLE __ MIN
MIN
为由式(7)和(8)计算得到的纹波电流中
其中,IL
where
ILRIPPLE_MAX
is__ the
ripple currents
DC
(MIN
SW
RIPPLE
TTOFF
OFFgreater ofLthe
RIPPLE_MAX
otherwise,
OFF
OUT
L
obtained
from
(7)
and
(8).
OUT
otherwise,
OUT
数值较大的一个。
obtained
from (7) andis(8).
where
ILRIPPLE_MAX
the greater of the ripple currents
(
where
tOFF
is
V
is
SYS(MAX)
(
= 为关断时间,V
VSYS
OFF
SYS(MAX)
where
is the
the off-time,
off-time,
V
is 1maximum
maximum charger
charger
otherwise,
O tOFF
SYS(MAX)
(MAX ) 为充电器输出电压最大
其中,t

OFF
SYS(MAX)
=
obtained
from
(7)
and
(8).
V
O voltage,
)  × 1 DC
SYS(MAX
is
output
tOFFand
= ( V
1 −DC(MIN)
×t
V
VSYS
× tOFF
is minimum
minimum
DC input
input voltvoltoutput
voltage,
and
((MAX
)) −−− V
SYS
((MIN
(MAX
tOFF
=  1V−DC(MIN)
×
DC(MIN)
V=DC
DC
MAX
SYS
MIN))) × tON
ON
× tOFF
VSYS
为最小直流输入电压。
值,VDC(MIN)
(7)
DC
(MAX
) V))SYS
(MIN
ON
(8)
(MAX
ILRIPPLE
IL
=
) )  ffSW
DC((MIN
age.
VV
_
MIN
_
T
RIPPLE
_
MIN
_
T
1
(7)
VSYS
(8)
MAX
age.O =
(7)
OFF
IL
=
ON

IL
=

RIPPLE
_
MIN
_
T
(
)
DC
MIN
SW
RIPPLE
_
MIN
_
T
L
RIPPLE
_
MIN
_
T
ON
L
ONOFF
tOFF =  1 −
U
VSYS(MAX
tOFF
×
LO
LOUT
UT
)O×
O
U
TT
OUT
(7)
VDC
V
ttOFF
 )isf×SW
ILRIPPLE _ MIN _ TOFF =

(SYS
MIN()MAX
V
×
V
maximum
charger
where tOFF isLthe off-time,
SYS
(
MAX
)
OFF
SYS(MAX)
SYS(MAX )is maximum
OFF
LOUT
=
off-time,
charger
where
tOFF isLthe
(2)
(2)
=VSYS(MAX)
OUT
MAX
PCB
and
Routing
(2)
output
voltage,OUT
and___MAX
VDC(MIN)
minimum
DC input voltOUT
MAX
IIL _is
VDCLayout
tON
PCB
Layout
and
Routing
RIPPLE
__ MIN
(MAX ) −− V
SYS
(MIN
) ×
output tvoltage,
and
V
is
minimum
DC
input
voltL
_
RIPPLE
MIN
DC(MIN)
V
Vand
L
_
RIPPLE
_
MIN
where
is
the
off-time,
V
is
maximum
charger
(8)
DC
(
MAX
)
SYS
(
MIN
) × tON
SYS(MAX)
Good
design
minimizes
ground
bounce
voltage
graIL
=
age. OFF
RIPPLE
_
MIN
_
T
(8)
Good
design
minimizes
ground
bounce
and
voltage
graON
(8)
IL
=
age. voltage, and VDC(MIN) is minimum DC input voltRIPPLE
_ MIN _ Tplane,
output
ON
OSYS
UT (MIN
−L
× tON
Vwhich
V
dients
in
the
ground
can
result
in
instability
DC
(
MAX
)
)
dients
in
the
ground
plane,
which
can
result
in
instability
L
为所允许的最大电感值。
其中,L
O
U
T
OUT_MAX
where
L
is
the
maximum
allowed
inductance.
(8)
OUT_MAX
VSYS(MAX
tOFFinductance.
ILRIPPLEerrors.
=
age.
OUT_MAX is the maximum
where LOUT_MAX
allowed
)×
_ MIN _ The
TON GND
or
connect
VSYS(MAX
) × tOFF
or regulation
regulation
errors.
The
GND and
and PGs
PGsLshould
should
connect to
to
Lsmall-sized
Oand
Uto
T minimize
OUT _ MAX =
为选取一个磁芯损耗符合要求且能够在指定f
(2)
To
obtain
a
inductor
with
acceptable
core
SW工作频率
L
=
PCB
Layout
Routing
the
power-ground
plane
at
only
one
point
the
To
obtain
a
small-sized
inductor
with
acceptable
core
I
OUT
_
MAX
(2)
L
_
RIPPLE
_
MIN
PCB
Layout
and
Routing
the
power-ground
plane
at
only
one
point
to
minimize
the
V
×
t
PCB布局和布线
ISYSRIPPLE
(MAX ) _ MIN
OFF
下保证无抖动稳定工作的小尺寸电感,可以首先设置适当
loss,
while
providing
stable,
operation
at
Good
minimizes ground
bounce
and
voltage
graeffects
of
currents.
Battery
ground
should
Lavailable
= L _jitter-free
effectsdesign
of power-ground
power-ground
currents.
Battery
ground
should
loss,
while
stable,
jitter-free
operation
at the
the
picking
an providing
inductor
in the
the range
range
inductance
OUT _ MAX
Good
design
minimizes ground
bounce
and
voltage
grapicking
an
available
inductor
in
inductance
(2)
良好的布线设计有助于降低地电位的偏差和接地平面的电
PCB
Layout
and
Routing
I
,
the
actual
output
inductance
(L
),
is
advertised
f
的纹波系数K,并在式(2)、(3)和(4)给出的范围内选取电感
dients
in
the
ground
plane,
which
can
result
in
instability
SW
OUT
connect
directly
to
the
power-ground
plane.
The
ISET
L
_
RIPPLE
_
MIN
SW
OUT
connect
directly
to
the
power-ground
plane.
The
ISET
,
the
actual
output
inductance
(L
),
is
advertised
f
SW
OUTalso
should
also
yieldedLOUT_MAX
by equations
equations
(2),
(3), and
andallowed
(4). LLOUT
dients
in the ground
plane,
which
can result
in instability
should
yielded
by
(2),
(3),
(4).
is
the
maximum
inductance.
where
OUT
Good
design
minimizes
ground
bounce
and
voltage
gra压梯度,这些因素会导致系统不稳定或稳压误差。GND和
obtained
by
appropriate
factor
is thean
maximum
allowed
inductance.
where
LOUT_MAX
or
regulation
errors. The GND
andshould
PGs should
connect
to
。Lripple
值,从而确定实际的输出电感L
and
IDC
current-setting
resistors
connect
directly
OUT
OUT不应低于表6列
obtained
by choosing
choosing
appropriate
ripple
factor K,
K, and
and
notobtain
be lower
lower
than the
the an
minimum
allowable
inductance
as
or
regulation
errors.
The
GND
andshould
PGs
should
to
and
IDC
current-setting
resistors
connect
directly
not
be
than
minimum
allowable
inductance
as
dients
in the
ground
plane,
which
can
result
inconnect
instability
PG仅通过一个点连接至功率地,使功率地电流的影响最
To
a small-sized
inductor
with
acceptable
core
the
power-ground
plane
at
only
one
point
to
minimize
the
≥ 1A)的工作条件,
出的最小电感值。对于(2A ≥ I
SDLIM
is
the
maximum
allowed
inductance.
where
L
To
obtain
a small-sized
inductor withripple
acceptable
core
OUT_MAX
shown
in
Table
6.
The
recommended
ripple
factor
ranges
the
power-ground
plane
at
only
one
point
to
minimize
the
shown
in
Table
6.
The
recommended
factor
ranges
or
regulation
errors. The GND
and PGs
should
connect
to
小。电池地应该直接连接到功率地。ISET和IDC电流设置
loss,
while providing
stable, jitter-free operation at the
effects
of power-ground
currents.
Battery
ground
should
推荐的纹波系数范围为(0.2 ≤ K ≤ 0.45)。
______________________________________________________________________________________
23
loss,
while
providing
stable,
jitter-free
operation
at the
1A)acceptable
designs.
from
(0.2 afK
Ksmall-sized
0.45)
for
(2Ainductor
effects
of power-ground
currents.
ground
should
1A)
designs.
from
(0.2
0.45)
for
(2A
IISDLIM
______________________________________________________________________________________
23
SDLIM
To
obtain
with
23
the
power-ground
plane
at
only oneBattery
pointplane.
to
minimize
the
, the______________________________________________________________________________________
actual
output
inductance
(LOUTcore
), is
advertised
电阻应直接连接到GND,避免电流误差。将GND直接连
SW
connect
directly
to
the
power-ground
The
ISET
advertised
fSW, the actual
output
inductance
(LOUT
is
connectofdirectly
to the power-ground
plane.
Theshould
ISET
loss,
jitter-free
operation
at ),
the
effects
power-ground
currents.should
Battery
ground
(3) while
(3)
obtained
byproviding
choosing stable,
an appropriate
ripple
factor
K,
and
接到IC下方的裸焊盘。在裸焊盘下方使用多个过孔接地,
and
IDC current-setting
resistors
connect
directly
VVSYS
SYSinductance
MAX
OFF(LOUT
obtained byfSW
choosing
an appropriate
ripple
factor
K, ),
and
((MAX
)) ×× ttOFF
and IDC directly
current-setting
resistors
shouldplane.
connect
directly
advertised
,
the
actual
output
is
connect
to
the
power-ground
The
ISET
=
LLOUT
=
(3)
有助于IC散热。DC、SYS、BAT及USB至功率地的输入电
OUT __MIN
MIN__TTOFF
OFF
K ×× ripple
obtained by choosing an
appropriate
K
IISDLIM
and
IDC current-setting resistors should connect directly
SDLIMfactor K, and
容应尽量靠近IC放置。尽可能采用短而宽的布线作为大电
______________________________________________________________________________________ 23
______________________________________________________________________________________ 23
流引线,例如DC、SYS和BAT的连线。关于PCB布局实例,
其中,t
where ttOFF
is the
the minimum
minimum
off-time obtained
obtained from
from (1).
(1).
OFF
where
is
off-time
OFF是由式(1)得到的最小关断时间。
______________________________________________________________________________________
23
请参考MAX8903A评估板的数据资料。
(4) LLOUT
(4)
==
OUT __MIN
MIN__ ttON
ON
VSYS
( VVDC
DC((MAX
MAX)) −− V
SYS((MIN
MIN))) ×× ttON
ON
K ×× IISDLIM
K
SDLIM
where VVDC(MAX)
is maximum
maximum input
inputSYS(MIN)
voltage,
is
where
is
voltage,
VVSYS(MIN)
DC(MAX)
SYS(MIN) is
为最大输入电压,V
为充电器输出
其中,V
DC(MAX)
is the
the ononthe minimum
minimum charger
charger
output voltage,
voltage, and
and ttON
the
output
ON is
电压最小值,t
ON为输入电压较大时的导通时间,可由下
time at
at high
high input
input voltage,
voltage, as
as given
given by
by the
the following
following
time
式计算得出:
equation:
equation:
(5)
(5)
 VVSYS
11 
SYS((MIN
MIN))
11 ,,
ttON
××
ON == ttONMIN
ONMIN ifif 
ONMIN
 ≤≤ ttONMIN
ttO
O
 VVDC
DC((MAX
MAX)) ffSW
SW 
otherwise,
otherwise,
O
O

ttON
ON ==
VVSYS
SYS((MIN
MIN))
VVDC
DC((MAX
MAX))
××
((
))
,,
11
ffSW
SW
tion
satura
current DC
DC rating
rating of
of the
the inductor
inductor (I(ISAT
The satura
tion
current
The
SAT))
must be
be greater
greater than
than the
the DC
DC step-down
step-down output
output current
current
must
limit (I(ISDLIM
plus one-half
one-half the
the maximum
maximum ripple
ripple current,
current,
limit
SDLIM)) plus
as given
given by
by equation
equation (6).
(6).
as
ILRIPPLE
IL
RIPPLE__MAX
MAX
23
,
,
,
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,用于
USB和适配器供电系统
to GND to avoid current errors. Connect GND to the
exposed pad directly under the IC. Use multiple tightly
spaced vias to the ground plane under the exposed pad
to help cool the IC. Position input capacitors from DC,
SYS, BAT, and USB to the power-ground plane as close
as possible to the IC. Keep high current traces such as
those to DC, SYS, and BAT as short and wide as possible. Refer to the MAX8903A Evaluation Kit for a suitable
2A单节Li+电池DC-DC充电器,
用于USB和适配器供电系统
表5. 推荐电感示例
DC INPUT
VOLTAGE
RANGE
5V ±10%
5V ±10%
5V ±10%
5V ±10%
9V ±10%
9V ±10%
24
24
DC STEP-DOWN
OUTPUT
CURRENT LIMIT
(ISDMAX)
PART NUMBER,
SWITCHING
FREQUENCY*
RECOMMENDED INDUCTOR
MAX8903H/J/N/Y, 4MHz
1.0µH, IFSC1008ABER1R0M01, Vishay
2.5mm x 2mm x 1.2mm, 43mΩ (max), 2.6A
or 1.0µH, LQH32PN1R0-NN0, Murata,
3.2mm x 2.5mm x 1.55mm, 54mΩ (max), 2.3A
1A
MAX8903H/J/N/Y, 4MHz
1.5µH inductor, MDT2520-CN1R5M, TOKO
2.5mm x 2.0mm x 1.2mm, 123.5mΩ (max), 1.25A
or 1.5uH Inductor, IFSC1008ABER1R5M01, Vishay
2.5mm x 2mm x 1.2mm, 72mΩ (max), 2.2A
2A
MAX8903A/B/C/D/E,
4MHz
2.2µH inductor, DFE322512C-2R2N, TOKO
3.2mm x 2.5mm x 1.2mm, 91mΩ (max), 2.4A
or 2.2µH inductor, IFSC1515AHER2R2M01, Vishay
3.8mm x 3.8mm x 1.8mm, 45mΩ (max), 3A
1A
MAX8903A/B/C/D/E,
4MHz
2.2µH inductor, IFSC1008ABER2R2M01, Vishay
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A
or 2.2µH Inductor, LQH32PN2R2-NN0, Murata
3.2mm x 2.5mm x 1.55mm, 91mΩ (max), 1.55A
MAX8903H/J/N/Y, 4MHz
1.5uH inductor, IFSC1008ABER1R5M01, Vishay
2.5mm x 2mm x 1.2mm, 72mW (max), 2.2A
or 1.5µH Inductor, VLS4012ET-1R5N, TDK
4mm x 4mm x 1.2mm, 72mW (max), 2.1A
MAX8903H/J/N/Y, 4MHz
2.2µH inductor, IFSC1008ABER2R2M01, Vishay
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A
or 2.2µH inductor, LQH3NPN2R2NJ0, Murata
3mm x 3mm x 1.1mm, 83mΩ (max), 1.15A
2A
2A
1A
______________________________________________________________________________________
5V ±10%
9V ±10%
9V ±10%
1A
2A
1A
4MHz
or 2.2µH Inductor, LQH32PN2R2-NN0, Murata
3.2mm x 2.5mm x 1.55mm, 91mΩ (max), 1.55A
MAX8903H/J/N/Y, 4MHz
1.5uH inductor, IFSC1008ABER1R5M01, Vishay
2.5mm x 2mm x 1.2mm, 72mW (max), 2.2A
or 1.5µH Inductor, VLS4012ET-1R5N, TDK
4mm x 4mm x 1.2mm, 72mW (max), 2.1A
MAX8903H/J/N/Y, 4MHz
2.2µH inductor, IFSC1008ABER2R2M01, Vishay
2A单节Li+电池DC-DC充电器,
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A
or 2.2µH inductor, LQH3NPN2R2NJ0, Murata
用于USB和适配器供电系统
3mm x 3mm
x 1.1mm, 83mΩ (max), 1.15A
DC INPUT
VOLTAGE
RANGE
9V ±10%
9V ±10%
9V ±10%
9V ±10%
12V ±10%
12V ±10%
DC STEP-DOWN
OUTPUT
CURRENT LIMIT
(ISDMAX )
PART NUMBER,
SWITCHING
FREQUENCY*
2A
MAX8903A/B/C/D/E,
4MHz
2.2µH inductor, DFE322512C-2R2N, TOKO
3.2mm x 2.5mm x 1.2mm, 91mΩ (max), 2.4A
or 2.2µH Inductor, IFSC1515AHER2R2M01, Vishay
3.8mm x 3.8mm x 1.8mm, 45mΩ (max), 3A
1A
MAX8903A/B/C/D/E,
4MHz
2.2µH Inductor, IFSC1008ABER2R2M01, Vishay
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A
or 2.2µH Inductor, LQH3NPN2R2NJ0, Murata
3mm x 3mm x 1.1mm, 83mΩ (max), 1.15A
2A
1A
2A
1A
MAX8903A-E/G/H/J/N/Y
表5. 推荐电感示例(续)
RECOMMENDED INDUCTOR
MAX8903G, 1MHz
4.3uH Inductor, DEM4518C (1235AS-H-4R3M), TOKO
4.7mm x 4.5mm x 1.8mm, 84mΩ (max), 2.0A
or 4.7µH Inductor, IFSC1515AHER4R7M01, Vishay
3.8mm x 3.8mm x 1.8mm, 90mΩ (max), 2.0A
MAX8903G, 1MHz
4.7µH inductor, DEM2818C (1227AS-H-4R7M), TOKO
3.2mm x 2.8mm x 1.8mm, 92mΩ (max), 1.1A
or 4.7µH inductor, IFSC1008ABER4R7M01, Vishay
2.5mm x 2mm x 1.2mm, 212mΩ (max), 1.2A
MAX8903G, 1MHz
4.3µH inductor, DEM4518C (1235AS-H-4R3M), TOKO
4.7mm x 4.5mm x 1.8mm, 84mΩ (max), 2.0A
or 4.7µH inductor, IFSC1515AHER4R7M01, Vishay
3.8mm x 3.8mm x 1.8mm, 90mΩ (max), 2.0A
MAX8903G, 1MHz
6.8µH, IFSC1515AHER6R8M01, Vishay
3.8mm x 3.8mm x 1.8mm, 115mΩ (max), 1.5A
or 6.8µH, LQH44PN6R8MP0, Murata
4mm x 4mm x 1.65mm, 144mΩ (max), 1.34A
*关于器件型号的更多信息,请参见选型指南。
25
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,用于
2A单节Li+电池DC-DC充电器,
USB和适配器供电系统
用于USB和适配器供电系统
Selector Guide
The MAX8903_ is available in several options选型指南
designated
by
the
first
letter
following
the
root
part
number.
The
MAX8903_提供不同版本的器件,采用固定器件型号后的第
basic
architecture
and
functionality
of
the
一个字母进行区分。MAX8903A-MAX8903E/MAX8903G/
MAX8903A–MAX8903E/MAX8903G/MAX8903Y are the
same. Their differences lie in certain electrical and
MAX8903H/MAX8903J/MAX8903N/MAX8903Y的基本架
operational
parameters. Table 6 outlines these differ构和功能是相同的,不同之处在于具体的电气参数和工作
ences.
参数。表6列出了各器件版本之间的不同之处。
表6. 选型指南
PARAMETER MAX8903A MAX8903B MAX8903C MAX8903D MAX8903E MAX8903G MAX8903H MAX8903J MAX8903N MAX8903Y
Minimum SYS
Regulation
Voltage
(VSYSMIN)
3.0V
3.0V
3.4V
3.4V
3.0V
3.0V
3.4V
3.4V
3.4V
3.0V
SYS Regulation
Voltage
(VSYSREG)
4.4V
4.325V
4.4V
4.4V
4.325V
4.325V
4.4V
4.5V
4.4V
4.4V
Minimum
Allowable
Inductor
2.2µH
2.2µH
2.2µH
2.2µH
2.2µH
2.2µH
1µH
1µH
1µH
1µH
Switching
Frequency
4MHz
4MHz
4MHz
4MHz
4MHz
1MHz
4MHz
4MHz
4MHz
4MHz
SYS Load
Regulation
40mV/A
25mV/A
40mV/A
40mV/A
25mV/A
25mV/A
40mV/A
25mV/A
25mV/A
25mV/A
Minimum SYS
Output
Capacitor (CSYS)
10µF
22µF
10µF
10µF
22µF
22µF
10µF
10µF
22µF
22µF
BAT Regulation
Voltage
(VBATREG)
(Note 5)
4.2V
4.2V
4.2V
4.1V
4.1V
4.2V
4.2V
4.35V
4.15V
4.15V
BAT Prequal
Threshold
(VBATPQ)
(Note 5)
3V
2.5V
3V
3V
2.5V
2.5V
3V
3V
3V
3V
Top-Off Timer
(Note 6)
15s (fixed)
132min
15s (fixed)
15s (fixed)
132min
132min
VL Output
Current Rating
1mA
10mA
1mA
1mA
10mA
10mA
1mA
1mA
1mA
1mA
Power-Enable
On Battery
Detection
(Note 7)
No
Yes
No
No
Yes
Yes
No
No
No
No
Comments
—
—
—
—
—
—
(Note 8)
—
—
—
15s (fixed) 15s (fixed) 15s (fixed) 15s (fixed)
Note 5: Typical values. See the电气特性
Electrical
Characteristics table for min/max values.
注5:典型值,最小/最大值参见
表。
注6:该变化也会更改预均衡和快充定时器的时间设置。
Note 6: Note that this also changes the timing for the prequal and fast-charge timers.
注7:详细信息请参见
电池检测的供电使能控制
部分。section for details.
Note 7: See the Power
Enable on Battery Detection
注8:MAX8903H是MAX8903C的新版本,推荐用于新设计。
26
26
______________________________________________________________________________________
2A单节Li+电池DC-DC充电器,
2A单节Li+电池DC-DC充电器,用于
USB和适配器供电系统
用于USB和适配器供电系统
BAT
BAT
UOK
FLT
USB
THM
USUS
TOP VIEW
21
20
19
18
17
16
15
CHG 22
14
CEN
SYS 23
13
ISET
SYS 24
12
GND
11
IDC
10
CT
MAX8903_
CS 25
CS 26
LX 27
EP
5
6
7
IUSB
DC
4
BST
3
DCM
2
DC
1
PG
+
PG
LX 28
9
VL
8
DOK
PROCESS:
PROCESS: BiCMOS
BiCMOS
芯片信息
Chip Information
TQFN
______________________________________________________________________________________
27
27
MAX8903A-E/G/H/J/N/Y
引脚配置
Pin Configuration
MAX8903A-E/G/H/J/N/Y
2A单节Li+电池DC-DC充电器,用于
2A单节Li+电池DC-DC充电器,
USB和适配器供电系统
用于USB和适配器供电系统
封装信息
Package Information
如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中的
“+”
“#”或
“-”
For
the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note
that、
a "+", "#",
or
仅表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per封装类型
PACKAGE TYPE
28 TQFN-EP
28 TQFN-EP
28
28
封装编码
PACKAGE CODE
T2844-1
T2844-1
外形编号
OUTLINE NO.
21-0139
21-0139
LAND
焊盘布局编号
PATTERN NO.
90-0035
90-0035
______________________________________________________________________________________
2A单节Li+电池DC-DC充电器,用于
2A单节Li+电池DC-DC充电器,
USB和适配器供电系统
用于USB和适配器供电系统
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or
如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中的“+”、“#”或“-”
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per仅表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。
______________________________________________________________________________________
29
29
MAX8903A-E/G/H/J/N/Y
MAX8903A-E/G/H/J/N/Y
Package Information (continued)
封装信息(续)
2A单节Li+电池DC-DC充电器,
用于USB和适配器供电系统
MAX8903A-E/G/H/J/N/Y
修订历史
修订号
修订日期
0
12/08
最初版本。
说明
修改页
1
8/09
在数据资料中增加了MAX8903C/MAX8903D。
2
11/09
做了多处修正。
3
10/10
增加了MAX8903B、MAX8903E、MAX8903G和MAX8903Y。
1–29
4
5/11
增加了MAX8903H和MAX8903J,更新了元件值。
1–29
5
9/11
增加了MAX8903N,删除了MAX8903J的未来产品标识。
1–29
—
1–20
1–7, 9, 11–21
Maxim北京办事处
北京8328信箱 邮政编码100083
免费电话:800 810 0310
电话:010-6211 5199
传真:010-6211 5299
Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。电气
特性表中列出的参数值(最小值和最大值)均经过设计验证,数据资料其它章节引用的参数值供设计人员参考。
30
© Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
2011 Maxim Integrated Products Maxim是Maxim Integrated Products,Inc.的注册商标。
MAX8903A, MAX8903B, MAX8903C, MAX8903D, MAX8903E, MAX8903G, MAX8903H, MAX8903J, MAX8903N, MAX8903Y 2A 1节Li+电池DC-DC充电器,用于USB和适配器供电系统 - 概述
Login Register
产品
方案
设计
销售联络
技术支持
公司简介
简体中文 (cn)
简体中文 (cn)
我的Maxim
Maxim > 产品 > 电源和电池管理 > MAX8903A, MAX8903B, MAX8903C, ...
MAX8903A, MAX8903B, MAX8903C, MAX8903D, MAX8903E, MAX8903G, MAX8903H, MAX8903J,
MAX8903N, MAX8903Y
2A 1节Li+电池DC-DC充电器,用于USB和适配器供电系统
工作在4MHz开关频率
概述 技术文档 定购信息 相关产品 用户说明 (0) 所有内容 状况
状况:生产中。
数据资料
英文
概述
MAX8903A–MAX8903E/MAX8903G/MAX8903H/MAX8903J/MAX8903Y是一款集成的单节Li+电池充电器
和Smart Power Selector™ (智能电源选择器),工作于双电源输入(交流适配器和USB)。开关模式充电器工作在高
开关频率,可省去散热器并允许使用小尺寸外部元件。该器件可采用独立的USB电源或交流适配器供电,也可以
用一个输入端接收两路电源输入。芯片集成了所有充电功能和用于切换电池、外部电源、负载的功率开关。无需外
部MOSFET、反向保护二极管和检流电阻。
MAX8903_具有经过优化的智能功率控制功能,可充分利用有限的USB或适配器电源的供电能力。电池充电电流
和SYS输出限流均可独立设置。在保证系统供电的前提下为电池充电。充电电流和SYS输出限流可设置在最
高2A,USB输入限流可设置在100mA或500mA。输入选择电路可自动地将系统供电电源从电池切换至外部电源。
器件工作在4.15V至16V直流输入电压范围,输入端具有高达20V的保护;USB输入范围为4.1V至6.3V,输入端具
有最高8V的保护。
未接输入电源时,MAX8903_内部电路可以阻止电流从电池、系统向直流电源、USB输入倒灌。其它功能还包括
预充检测及定时器、快充定时器、过压保护、充电状态指示和故障指示输出、电源就绪监视器以及电池热敏电阻检
测。此外,片内热管理电路可以根据需要降低电池充电速率或交流适配器的充电电流,以防止充电器过
热。MAX8903_采用4mm x 4mm、28引脚薄型QFN封装。
不同版本的MAX8903_提高了设计灵活性,便于选择不同的系统电源电压、电池预检验门限和电池满充电
压。MAX8903B/MAX8903E/MAX8903G的电池检测功能还包含供电使能控制,详细信息请参考完整数据资料中
的选型指南部分。
http://china.maxim-ic.com/datasheet/index.mvp/id/6019[2012-07-09 8:43:44]
中文
下载 Rev. 5 (PDF, 1.3MB)
E-Mail
下载 Rev. 5 (PDF, 3MB)
E-Mail
MAX8903A, MAX8903B, MAX8903C, MAX8903D, MAX8903E, MAX8903G, MAX8903H, MAX8903J, MAX8903N, MAX8903Y 2A 1节Li+电池DC-DC充电器,用于USB和适配器供电系统 - 概述
MAX8903支持低温、快速充电
现备有评估板:MAX8903AEVKIT
关键特性
应用/使用
高效DC-DC转换器,无需散热器
4MHz开关频率,允许使用小尺寸外部元件
立即开启—可在无电池或低电池电压下工作
两路限流输入—交流适配器或USB
适配器/USB/电池供电自动切换,支持瞬变负载
50mΩ系统至电池开关导通电阻
支持USB规范
热敏电阻检测
集成检流电阻
无需外部MOSFET或二极管
4.1V至16V输入工作电压范围
移动互联网设备
PDA、掌上电脑和无线手持装置
个人导航设备
便携式多媒体播放器
智能蜂窝电话
超便携移动PC
关键特性:
Battery Chargers
Part
Number
Cell
Chemistry
Lithium
Ion
Cells
Protected
V IN
(V)
Charging
V IN
(V)
max
max
Charge
Rate
Set by
Max.
I CHG
(A)
Charge
Termination
Charge
Regulation
EV
Kit
Oper. Temp.
(°C)
≥
MAX8903A MAX8903B MAX8903C Li-Ion
Li-Polymer
1
20
16
Preset
Resistor
2
Min. Charge
Current
Switchmode
MAX8903D 查看所有Battery Chargers (70)
Pricing Notes:
This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may
differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized
distributor.
图表
http://china.maxim-ic.com/datasheet/index.mvp/id/6019[2012-07-09 8:43:44]
Package/Pins
Yes
-40 to +85
Smallest
Available
Pckg.
(mm 2 )
Budgetary Price
max
w/pins
See Notes
TQFN/28
$2.74 @1k
TQFN/28
$2.74 @1k
TQFN/28
TQFN/28
16.8
$2.74 @1k
$2.74 @1k
MAX8903A, MAX8903B, MAX8903C, MAX8903D, MAX8903E, MAX8903G, MAX8903H, MAX8903J, MAX8903N, MAX8903Y 2A 1节Li+电池DC-DC充电器,用于USB和适配器供电系统 - 概述
典型工作电路
更多信息
新品发布
[ 2009-06-29 ]
没有找到你需要的产品吗?
应用工程师帮助选型,下个工作日回复
参数搜索
应用帮助
信息索引
概述
技术文档
定购信息
相关产品
概述
关键特性
应用/使用
关键指标
图表
注释、注解
数据资料
技术文档
评估板
可靠性报告
软件/模型
价格与供货
样品
在线订购
封装信息
无铅信息
类似功能器件
类似应用器件
评估板
类似型号器件
配合该器件使用的产品
参考文献: 19- 4410 Rev. 5; 2011- 10- 04
本页最后一次更新: 2011- 10- 04
联络我们:信息反馈、提出问题 | 隐私权政策 | 法律声明 | Distributor Portal
© 2012 Maxim Integrated Products版权所有
http://china.maxim-ic.com/datasheet/index.mvp/id/6019[2012-07-09 8:43:44]
19-4410; Rev 5; 9/11
KIT
ATION
EVALU
E
L
B
AVAILA
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
The MAX8903A–MAX8903E/MAX8903G/MAX8903H/
MAX8903J/MAX8903N/MAX8903Y are integrated 1-cell
Li+ chargers and Smart Power Selectors™ with dual
(AC adapter and USB) power inputs. The switch mode
charger uses a high switching frequency to eliminate
heat and allow tiny external components. It can operate
with either separate inputs for USB and AC adapter
power, or from a single input that accepts both. All
power switches for charging and switching the load
between battery and external power are included onchip. No external MOSFETs, blocking diodes, or current-sense resistors are required.
The MAX8903_ features optimized smart power control
to make the best use of limited USB or adapter power.
Battery charge current and SYS output current limit are
independently set. Power not used by the system
charges the battery. Charge current and SYS output current limit can be set up to 2A while USB input current can
be set to 100mA or 500mA. Automatic input selection
switches the system from battery to external power. The
DC input operates from 4.15V to 16V with up to 20V protection, while the USB input has a range of 4.1V to 6.3V
with up to 8V protection.
The MAX8903_ internally blocks current from the battery and system back to the DC and USB inputs when
no input supply is present. Other features include prequal charging and timer, fast charge timer, overvoltage
protection, charge status and fault outputs, power-OK
monitors, and a battery thermistor monitor. In addition,
on-chip thermal limiting reduces battery charge rate
and AC adapter current to prevent charger overheating. The MAX8903_ is available in a 4mm x 4mm, 28-pin
thin QFN package.
The various versions of the MAX8903_ allow for design
flexibility to choose key parameters such as system
regulation voltage, battery prequalification threshold,
and battery regulation voltage. The MAX8903B/
MAX8903E/MAX8903G also includes power-enable on
battery detection. See the Selector Guide section for
complete details.
Features
o
o
o
o
o
o
o
o
Efficient DC-DC Converter Eliminates Heat
4MHz Switching for Tiny External Components
Instant On—Works with No/Low Battery
Dual Current-Limiting Inputs—AC Adapter or USB
Automatic Adapter/USB/Battery Switchover to
Support Load Transients
50mΩ System-to-Battery Switch
Supports USB Spec
Thermistor Monitor
Integrated Current-Sense Resistor
No External MOSFETs or Diodes
4.1V to 16V Input Operating Voltage Range
Ordering Information
PART
TEMP RANGE
PIN-PACKAGE
MAX8903AETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903BETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903CETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903DETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903EETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903GETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903HETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903JETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903NETI+T
-40°C to +85°C
28 Thin QFN-EP*
MAX8903YETI+T
-40°C to +85°C
28 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
Typical Operating Circuit
AC
ADAPTER
OR USB
LX
SYS
CHARGE
CURRENT
Applications
PDAs, Palmtops, and
Wireless Handhelds
Personal Navigation
Devices
Smart Cell Phones
Portable Multimedia
Players
Mobile Internet Devices
Ultra Mobile PCs
Selector Guide appears at end of data sheet.
Smart Power Selector is a trademark of Maxim Integrated
Products, Inc.
CS
DC
PWM
STEP-DOWN
USB
LOAD
CURRENT
CHARGE
AND
SYS LOAD
SWITCH
BAT
USB
MAX8903_
SYSTEM
LOAD
BATTERY
GND
Pin Configuration appears at end of data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX8903A–E/G/H/J/N/Y
General Description
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
ABSOLUTE MAXIMUM RATINGS
DC, LX to GND .......................................................-0.3V to +20V
DCM to GND ..............................................-0.3V to (VDC + 0.3V)
DC to SYS .................................................................-6V to +20V
BST to GND ...........................................................-0.3V to +26V
BST TO LX ................................................................-0.3V to +6V
USB to GND .............................................................-0.3V to +9V
USB to SYS..................................................................-6V to +9V
VL to GND ................................................................-0.3V to +6V
THM, IDC, ISET, CT to GND........................-0.3V to (VVL + 0.3V)
DOK, FLT, CEN, UOK, CHG, USUS,
BAT, SYS, IUSB, CS to GND ................................-0.3V to +6V
SYS to BAT ...............................................................-0.3V to +6V
PG, EP (exposed pad) to GND .............................-0.3V to +0.3V
DC Continuous Current (total in two pins)......................2.4ARMS
USB Continuous Current.......................................................1.6A
LX Continuous Current (total in two pins).......................2.4ARMS
CS Continuous Current (total in two pins) ......................2.4ARMS
SYS Continuous Current (total in two pins) .......................3ARMS
BAT Continuous Current (total in two pins) .......................3ARMS
VL Short Circuit to GND .............................................Continuous
Continuous Power Dissipation (TA = +70°C)
28-Pin Thin QFN-EP
Multilayer (derate 28.6mW/°C above +70°C) ..........2286mW
28-Pin Thin QFN-EP
Single-Layer (derate 20.8mW/°C above +70°C)...1666.7mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature Range ............................-40°C to +150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VDC = VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
16
V
3.9
4.0
4.0
4.3
4.1
4.4
V
16.5
17
17.5
V
Charger enabled, no switching, VSYS = 5V
2.3
4
Charger enabled, f = 3MHz, VDC = 5V
15
Charger enabled, VCEN = 0V, 100mA USB mode (Note 2)
1
2
Charger enabled, VCEN = 5V, 100mA USB mode (Note 2)
VDCM = 0V, VUSUS = 5V
1
0.10
2
0.25
DC INPUT
DC Operating Range
4.15
No valid USB input
Valid USB input
DC Undervoltage Threshold
When VDOK goes low, VDC
rising, 500mV typical hysteresis
DC Overvoltage Threshold
When VDOK goes high, VDC rising, 500mV typical
hysteresis
DC Supply Current
DC High-Side Resistance
Ω
0.15
DC Low-Side Resistance
DC-to-BAT Dropout Resistance
Assumes a 40mΩ inductor resistance (RL)
DC-to-BAT Dropout Voltage
When SYS regulation and charging stops, VDC falling,
200mV hysteresis
0
mA
0.15
Ω
0.31
Ω
15
30
mV
Minimum Off Time (tOFFMIN)
100
ns
Minimum On Time (tONMIN)
ns
VDC = 8V, VBAT = 4V
70
4
MAX8903A/B/C/D/E/H/J/Y
Switching Frequency (fSW)
MAX8903G
VDC = 5V, VBAT = 3V
3
VDC = 9V, VBAT = 4V
1
VDC = 9V, VBAT = 3V
1
DC Step-Down Output CurrentLimit Step Range
DC Step-Down Output Current
Limit (ISDLIM)
2
0.5
VDC = 6V, VSYS = 4V
MHz
2
RIDC = 3kΩ
1900
2000
2100
RIDC = 6kΩ
RIDC = 12kΩ
950
450
1000
500
1050
550
_______________________________________________________________________________________
A
mA
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
(VDC = VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
DC Soft-Start Time
DC Output Current
500mA USB Mode (Note 3)
DC Output Current
100mA USB Mode (Note 2)
SYS to DC Reverse Current
Blocking
CONDITIONS
MIN
TYP
MAX
UNITS
No valid USB input
1
ms
Valid USB input before soft-start
20
μs
VDCM = 0V, VIUSB = 5V
450
475
500
mA
VDCM = 0V, VIUSB = 0V
90
95
100
mA
VSYS = 5.5V, VDC = 0V
0.01
μA
USB INPUT
USB Operating Range
4.1
6.3
USB Standoff Voltage
USB Undervoltage Threshold
USB Overvoltage Threshold
USB Current Limit
USB Supply Current
When VUOK goes low, VUSB rising, 500mV hysteresis
3.95
4.0
V
V
When VUOK goes high, VUSB rising, 500mV hysteresis
6.8
6.9
7.0
90
95
100
VIUSB = 5V (500mA setting)
450
475
500
ISYS = IBAT = 0mA, VCEN = 0V
1.3
3
ISYS = IBAT = 0mA, VCEN = 5V
0.8
2
0.115
0.25
Minimum USB to BAT Headroom
0
USB to SYS Dropout Resistance
USB Soft-Start Time
V
4.05
VIUSB = 0V (100mA setting)
VUSUS = 5V (USB suspend mode)
V
8
mA
mA
15
30
mV
0.2
0.35
Ω
VUSB rising
1
ms
VDC falling below DC UVLO to initiate USB soft-start
20
μs
SYS OUTPUT
Minimum SYS Regulation Voltage
(VSYSMIN)
ISYS = 1A,
VBAT < VSYSMIN
MAX8903A/B/E/G/Y
3.0
MAX8903C/D/H/J/N
3.4
MAX8903A/C/D/H/N/Y
Regulation Voltage
ISYS = 0A
MAX8903B/E/G
MAX8903J
V
4.3
4.4
4.5
4.265
4.325
4.395
4.4
4.5
4.55
MAX8903A/C/D/H
40
MAX8903B/E/G/J/N/Y
25
V
Load Regulation
ISYS = 0 to 2A
mV/A
CS to SYS Resistance
VDC = 6V, VDCM = 5V, VSYS = 4V, ICS = 1A
0.07
Ω
SYS to CS Leakage
VSYS = 5.5V, VDC = VCS = 0V
0.01
μA
BAT to SYS Resistance
VDC = VUSB = 0V, VBAT = 4.2V, ISYS = 1A
0.05
0.1
Ω
BAT to SYS Reverse Regulation
Voltage
VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA
50
75
100
mV
SYS Undervoltage Threshold
SYS falling, 200mV hysteresis (Note 4)
1.8
1.9
2.0
V
_______________________________________________________________________________________
3
MAX8903A–E/G/H/J/N/Y
ELECTRICAL CHARACTERISTICS (continued)
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
ELECTRICAL CHARACTERISTICS (continued)
(VDC = VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
CONDITIONS
MIN
TYP
MAX
4.221
UNITS
BATTERY CHARGER
MAX8903A/B/C/G/H
MAX8903D/E
BAT Regulation Voltage
(VBATREG)
IBAT = 0mA
MAX8903J
MAX8903Y/N
TA = +25°C
4.179
4.200
TA = -40°C to +85°C
4.158
4.200
4.242
TA = +25°C
4.079
4.100
4.121
TA = -40°C to +85°C
4.059
4.100
4.141
TA = +25°C
4.328
4.350
4.372
TA = -40°C to +85°C
4.307
4.350
4.394
TA = +25°C
4.129
4.150
4.171
TA = -40°C to +85°C
4.109
4.150
4.192
Charger Restart Threshold
Change in VBAT from DONE to fast-charge
BAT Prequal Threshold (VBATPQ)
VBAT rising 180mV
hystersis
-150
-100
-60
MAX8903A/C/D/H/J/N/Y
2.9
3.0
3.1
MAX8903B/E/G
2.4
2.5
2.6
RISET = 600Ω
1800
2000
2200
Fast-Charge Current
RISET = 1.2kΩ (MAX8903A/C/D)
900
1000
1100
RISET = 2.4kΩ
450
500
550
DONE Threshold (ITERM)
Percentage of fast-charge, IBAT decreasing
Prequal Charge Current
Percentage of fast-charge current set at ISET
RISET Resistor Range
10
mV
V
%
10
0.6
V
mA
%
2.4
kΩ
ISET Output Voltage
1.5
V
ISET Current Monitor Gain
1.25
mA/A
BAT Leakage Current
No DC or USB input
With valid input power, VCEN = 5V
0.05
4
3
6
μA
Charger Soft-Start Time
1.0
ms
Charger Thermal Limit
Temperature
100
°C
5
%/°C
Charger Thermal Limit Gain
Charge current = 0 at +120°C
CHARGER TIMER
Prequalification Time
CCT = 0.15μF
33
min
Fast-Charge Time
CCT = 0.15μF
660
min
Top-Off Timer (tTOP-OFF)
MAX8903A/C/D/H/J/N/Y (fixed)
15
s
MAX8903B/E/G, CCT = 0.15μF
132
min
Timer Accuracy
-15
+15
%
Timer Extend Current Threshold
Percentage of fast-charge current below which the timer
clock operates at half-speed
40
50
60
%
Timer Suspend Current Threshold
Percentage of fast-charge current below which timer
clock pauses
16
20
24
%
4
_______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
(VDC = VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
THERMISTOR MONITOR
THM Threshold, Hot
When charging is suspended, 1% hysteresis
0.27 x
VVL
0.28 x
VVL
0.29 x
VVL
V
THM Threshold, Cold
When charging is suspended, 1% hysteresis
0.73 x
VVL
0.74 x
VVL
0.75 x
VVL
V
THM Threshold, Disabled
THM function is disabled below this voltage
0.0254
x VVL
0.03 x
VVL
0.036 x
VVL
V
THM Threshold DC, USB Enable
MAX8903B/MAX8903E/MAX8903G
0.83 x
VVL
0.87 x
VVL
0.91 x
VVL
V
-0.100
±0.001
+0.200
MAX8903A/C/D/H/J/N/Y
THM = GND or VL;
TA = +25°C
THM = GND or VL;
TA = +85°C
THM Input Leakage
MAX8903B/E/G
THM = GND or VL;
TA = -40°C to +85°C
μA
±0.010
-0.200
±0.001
+0.200
THERMAL SHUTDOWN, VL, AND LOGIC I/O: CHG, FLT, DOK, UOK, DCM, CEN, USUS, IUSB
High level
Logic-Input Thresholds
(DCM, CEN, USUS, IUSB)
Logic-Input Leakage Current
(CEN, USUS, IUSB)
1.3
Low level
0.4
Hysteresis
VINPUT = 0V to 5.5V
(MAX8903A/C/D/H/J/N/Y)
VINPUT = 0V to 5.5V
(MAX8903B/E/G)
50
TA = +25°C
-1.000
TA = +85°C
TA = -40°C to +85°C
±0.001
μA
±0.001
+0.200
TA = +25°C
0.001
1
TA = +85°C
0.01
Logic-Input Leakage Current
(DCM)
VDCM = 0V to 16V
VDC = 16V
Logic Output Voltage, Low
(CHG, FLT, DOK, UOK)
Sinking 1mA
8
Sinking 10mA
80
Open-Drain Output Leakage
VOUT = 5.5V
Current, High (CHG, FLT, DOK, UOK)
mV
+1.000
±0.010
-0.200
TA = +25°C
0.001
TA = +85°C
0.01
V
50
1
μA
mV
μA
_______________________________________________________________________________________
5
MAX8903A–E/G/H/J/N/Y
ELECTRICAL CHARACTERISTICS (continued)
ELECTRICAL CHARACTERISTICS (continued)
(VDC = VUSB = 5V, VBAT = 4V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
CONDITIONS
VL Output Voltage
MIN
TYP
MAX
IVL = 0 to 1mA
(MAX8903A/C/D/H/J/N/Y)
4.6
5.0
5.4
IVL = 0 to 10mA
(MAX8903B/E/G)
4.6
5.0
5.4
UNITS
V
VDC = VUSB = 6V
VL UVLO Threshold
VVL falling; 200mV hysteresis
3.2
V
Thermal Shutdown Temperature
160
°C
Thermal Shutdown Hysteresis
15
°C
Note 1: Limits are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design.
Note 2: For the 100mA USB mode using the DC input, the step-down regulator is turned off and its high-side switch operates as a
linear regulator with a 100mA current limit. The linear regulator’s output is connected to LX and its output current flows
through the inductor into CS and finally to SYS.
Note 3: For the 500mA USB mode, the actual current drawn from USB is less than the output current due to the input/output current
ratio of the DC-DC converter.
Note 4: For short-circuit protection, SYS sources 25mA below VSYS = 400mV, and 50mA for VSYS between 400mV and 2V.
Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
MAX8903A/B/C/D/E/H/J/N/Y
BATTERY CHARGER EFFICIENCY
vs. BATTERY VOLTAGE
VDC = 8V
50
VDC = 12V
40
30
70
VDC = 9V
60
50
VDC = 12V
40
30
IBAT = 0.15A
20
IBAT = 1.5A
IBATT = 0.15A
20
10
IBATT = 1.5A
1.5
2.0
2.5
3.0
3.5
4.0
BATTERY VOLTAGE (V)
4.5
5.0
MAX8903A toc02
4.0
3.5
VBAT = 3V
3.0
2.5
VBAT = 4V
2.0
1.5
1.0
RISET = 1.2kΩ
VCEN = 0V
0.0
0
1.0
4.5
0.5
10
0
6
VDC = 6V
80
EFFICIENCY (%)
70
90
SWITCHING FREQUENCY (MHz)
VDC = 5V
60
100
MAX8903A/B/C/D/E/H/J/N/Y
SWITCHING FREQUENCY vs. VDC
MAX8903A toc01a
90
80
MAX8903G BATTERY CHARGER
EFFICIENCY vs. BATTERY VOLTAGE
MAX8903A toc01
100
EFFICIENCY (%)
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
1.0
1.5
2.0
2.5
3.0
3.5
4.0
BATTERY VOLTAGE (V)
4.5
5.0
4
6
8
10
12
DC VOLTAGE (V)
_______________________________________________________________________________________
14
16
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
MAX8903A/B/C/D/E/H/J/N/Y
SYS EFFICIENCY
vs. SYS OUTPUT CURRENT
VBAT = 4V
VBAT = 3V
0.4
VDC = 11V
50
VDC = 16V
40
30
VDC = 6V
20
RISET = 1.2kI
VCEN = 0V
0.2
10
6
8
10
12
14
VDC = 12V
40
VDC = 9V
30
VDC = 6V
0
10
100
1000
10000
10
1
100
USB SUPPLY CURRENT
vs. USB VOLTAGE
USB SUPPLY CURRENT
vs. USB VOLTAGE (SUSPEND)
BATTERY LEAKAGE CURRENT
vs. BATTERY VOLTAGE
0.6
CHARGER
DISABLED
0.4
120
100
80
60
40
80
20
0.2
MAX8903A toc06
140
MAX8903A toc05
MAX8903A toc04
0.8
70
60
50
40
30
20
10
NO DC OR USB INPUT
USB SUSPEND
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0
7
1
2
3
4
5
BATTERY VOLTAGE (V)
BATTERY LEAKAGE CURRENT
vs. AMBIENT TEMPERATURE
CHARGE CURRENT
vs. BATTERY VOLTAGE—USB MODE
CHARGE CURRENT
vs. BATTERY VOLTAGE—DC MODE
500
60
50
40
30
20
350
300
VIUSB = VUSB
250
200
VIUSB = 0V
150
100
10
NO DC OR USB INPUT
0
-15
10
35
TEMPERATURE (°C)
60
85
1000
CHARGE CURRENT (mA)
400
CHARGE CURRENT (mA)
70
CHARGE ENABLED
IBAT SET TO 1.5A
MAX8903D
VBAT RISING
450
1200
MAX8903A toc08
80
800
6
MAX8903A toc09
USB VOLTAGE (V)
MAX8903A toc07
BATTERY LEAKAGE CURRENT (nA)
0
0
USB VOLTAGE (V)
90
-40
10,000
SYS OUTPUT CURRENT (mA)
1.0
0
1000
SYS OUTPUT CURRENT (mA)
CHARGER
ENABLED
1.2
VDC = 16V
50
DC VOLTAGE (V)
1.6
1.4
60
10
VDC = 4.5V
1
16
USB QUIESCENT CURRENT (μA)
4
70
20
0
0
USB SUPPLY CURRENT (mA)
60
80
BATTERY LEAKAGE CURRENT (nA)
0.6
70
VCEN = 1
90
SYS EFFICIENCY (%)
1.0
0.8
80
SYS EFFICIENCY (%)
1.2
VCEN = 1V
VSYS = 4.4V
90
100
MAX8903A toc03
1.4
SWITCHING FREQUENCY (MHz)
100
MAX8903A toc02a
1.6
MAX8903G SYS EFFICIENCY
vs. SYS OUTPUT CURRENT
MAX8903A toc03a
MAX8903G SWITCHING
FREQUENCY vs. VDC
CHARGER ENABLED
IBAT SET TO 1A
IDC SET TO 2A
MAX8903A/C/H
VBAT RISING
600
400
200
50
0
0
1.5
2.0
2.5
3.0
3.5
BATTERY VOLTAGE (V)
4.0
4.5
1.5
2.0
2.5
3.0
3.5
4.0
4.5
BATTERY VOLTAGE (V)
_______________________________________________________________________________________
7
MAX8903A–E/G/H/J/N/Y
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
NORMALIZED BATTERY
REGULATION VOLTAGE
vs. AMBIENT TEMPERATURE
1.005
1.000
0.995
0.990
0.985
-40
-15
10
35
60
100.3
100.2
100.1
100.0
99.9
4.0
2.5
2.0
1.5
1.0
-40
-15
10
35
60
VUSB RISING
0.5
22ppm/°C
99.5
VUSB FALLING
3.0
RSYS = 1MΩ
0
0
85
1
2
3
4
5
6
7
TEMPERATURE (°C)
USB VOLTAGE (V)
MAX8903A/C/D/H/N/Y
SYS VOLTAGE vs. DC VOLTAGE
SYS VOLTAGE
vs. SYS OUTPUT CURRENT, DC INPUT
SYS VOLTAGE
vs. SYS OUTPUT CURRENT, USB INPUT
2.0
VDC FALLING
1.5
VCEN = 5V
VBAT = 0V
VUSB = 0V
0.5
2
4
6
8
10
12
14
16
4.3
MAX8903A/C/D/H, MAX8903N/Y,
VDC = 5.75V
VDC = 5.75V
4.2
MAX8903B/E/G,
VDC = 5.75V
4.1
0
0.5
1.0
1.5
VL WITH
NO LOAD AND
DCDC OFF
(VUSUS = 5V)
VL AND DCDC
WITH
FULL LOAD
(VUSUS = 0V)
2
1
VBAT = 3.6V
VUSB = 0V
0
4
6
8
10 12 14 16 18 20
DC VOLTAGE (V)
VBAT (V)
VL VOLTAGE (V)
5
2
MAX8903_, VUSB = 0V
3.8
2.0
0
100
200
300
400
SYS OUTPUT CURRENT (mA)
CHARGE PROFILE—1400mAh BATTERY
ADAPTER INPUT—1A CHARGE
MAX8903A toc16
6
0
MAX8903B/E/G,
VUSB = 5V
4.1
SYS OUTPUT CURRENT (A)
VL VOLTAGE vs. DC VOLTAGE
3
MAX8903A/C/D/H, MAX8903N/Y,
VUSB = 5V
VUSB = 5V
4.2
3.9
MAX8903_, VDC = 0V
3.8
DC VOLTAGE (V)
4
4.3
4.0
3.9
18
MAX8903J, VUSB = 5V
4.4
4.0
1.0
VDC = 0V, VBATT = 4V
4.5
4.4
MAX8903A toc15
4.6
MAX8903A toc17
6.0
5.5
5.0
4.5
4.0
3.5
3.0
IDC SET TO 1A
IBAT SET TO 2A
VBAT
1.2
1.0
0.8
0.6
2.5
2.0
1.5
1.0
0.5
0
IBAT
0.4
0.2
MAX8903A/B/C/G/H
0
20
40
60
80
100
TIME (min)
_______________________________________________________________________________________
0.0
120 140
IBAT (A)
2.5
MAX8903J, VDC = 5.75V
SYS VOLTAGE (V)
VDC RISING
3.0
4.5
SYS VOLTAGE (V)
3.5
VUSB = 0V
MAX8903A toc14
4.6
MAX8903A toc13
4.0
0
3.5
99.7
99.6
VCEN = 5V
VBAT = 0V
VDC = 0V
4.5
99.8
85
4.5
8
5.0
MAX8903A toc12
100.4
TEMPERATURE (°C)
5.0
0
100.5
SYS VOLTAGE (V)
1.010
MAX8903A/C/D/H/N/Y
SYS VOLTAGE vs. USB VOLTAGE
MAX8903A toc11
VUSB = 5V, VBAT = 4V
NORMALIZED BATTERY REGULATION VOLTAGE (%)
NORMALIZED CHARGE CURRENT
1.015
MAX8903A toc10
NORMALIZED CHARGE CURRENT
vs. AMBIENT TEMPERATURE
SYS VOLTAGE (V)
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
500
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
MAX8903A/B/C/G/H
CHARGE PROFILE—1400mAh BATTERY
USB INPUT—500mA CHARGE
MAX8903A toc18
5.0
0.45
4.0
0.40
0.25
IBAT
2.0
0.20
1.5
0.15
MAX8903A/MAX8903B/MAX8903C
IUSB SET TO 500mA
IBAT SET TO 2A
0.5
0
0
IBAT (A)
0.30
2.5
1.0
20mV/div
AC-COUPLED
VOUT
0.35
VBAT
3.0
MAX8903A toc19
0.50
4.5
3.5
VBAT (V)
MAX8903A/B/C/D/E/H/J/N/Y DC SWITCHING
WAVEFORMS—LIGHT LOAD
0.10
5V/div
VLX
0V
ILX
0.05
RSYS = 44Ω
0
20 40 60 80 100 120 140 160 180 200
500mA/div
0A
200ns/div
TIME (min)
MAX8903A/B/C/D/E/H/J/N/Y DC SWITCHING
WAVEFORMS—HEAVY LOAD
MAX8903G DC SWITCHING
WAVEFORMS—LIGHT LOAD
MAX8903A toc20
MAX8903A toc19a
50mV/div
AC-COUPLED
VSYS
VLX
VDC = 9V, L = 2.2μH
CSYS = 22μF,
RSYS = 44I
10V/div
20mV/div
AC-COUPLED
VOUT
5V/div
0V
VLX
0V
1A/div
ILX
0A
ILX
500mA/div
RSYS = 5Ω
1μs/div
200ns/div
MAX8903G DC SWITCHING
WAVEFORMS—HEAVY LOAD
DC CONNECT WITH
USB CONNECTED (RSYS = 25Ω)
MAX8903A toc21
MAX8903A toc20a
VSYS
VDC = 9V, L = 2.2μH
CSYS = 22μF, RSYS = 5I
CEN = 1
50mV/div
AC-COUPLED
VSYS
0V
IUSB
2V/div
347mA
475mA
500mA/div
500mA/div
-IBAT = CHARGING
IBAT
ILX
3.6V
IDC
10V/div
VLX
0A
0A
500mA/div
-335mA
1A/div
0A
1μs/div
200μs/div
_______________________________________________________________________________________
9
MAX8903A–E/G/H/J/N/Y
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
DC CONNECT WITH NO USB
(RSYS = 25Ω)
DC DISCONNECT WITH NO USB
(RSYS = 25Ω)
MAX8903A toc22
3.84V
3.6V
VSYS
3.6V
VBAT
IBAT
2V/div
3.44V
5V/div
CDC
CHARGING
IDC
MAX8903A toc23
CSYS
CHARGING 850mA
0A
1A/div
3.68V
VSYS
5V/div
-IBAT = CHARGING
IBAT
144mA BATTERY
CHARGER
SOFT-START
-1A
144mA
-1A
1A/div
40μs/div
MAX8903B/E SYS LOAD TRANSIENT
MAX8903A toc24a
MAX8903A toc24b
4.400V
MAX8903A
VDC = 10.5V
L = 2.2μH
CSYS = 10μF
RIDC = 3kI (2A)
DCM = HIGH
CEN = 1
20mV/div
AC-COUPLED
4.360V
4.325V
VSYS
MAX8903B
VDC = 10.5V
L = 2.2μH
CSYS = 22μF
RIDC = 3kI (2A)
DCM = HIGH
CEN = 1 4.305V
1A
20mV/div
1A
500mA/div
0A
0A
ISYS
500mA/div
0A
0A
100μs/div
100μs/div
MAX8903G SYS LOAD TRANSIENT
USB CONNECT WITH NO DC
(RSYS = 25Ω)
MAX8903A toc25
MAX8903A toc24c
VSYS
4.325V
VSYS
4.305V
1A
ISYS
50mV/div
VDC = 9V
L = 2.2μH
CSYS = 22μF
RIDC = 3kI (2A)
DCM = 1
CEN = 1
0A
100μs/div
10
1A/div
-IBAT = CHARGING
MAX8903A/C/D/H SYS LOAD TRANSIENT
ISYS
1A/div
0A
850mA
400μs/div
VSYS
2V/div
3.6V
VBAT
IDC
3.6V
3.6V
3.75V
3.5V
5V
5V/div
VUSB
CUSB
CHARGING
2V/div
475mA
500mA/div
IUSB
500mA/div
0A
IBAT
144mA
BATTERY
CHARGER
SOFT-START
500mA/div
-330mA
400μs/div
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
USB DISCONNECT WITH NO DC
(RSYS = 25Ω)
USB SUSPEND
MAX8903A toc26
VSYS
3.6V
VUSB
2V/div
5V/div
5V
475mA
IUSB
500mA/div VSYS
IUSB
IBAT
VUSUS
-330mA
144mA
100μs/div
0V
475mA
3V
5V/div
0A
0A
VUSUS
500mA/div
IUSB
2V/div
3.7V
500mA/div IBAT -475mA
USB RESUME
MAX8903A toc27
3V
5V/div
CUSB
CHARGING
475mA
0A
3.6V
VSYS
IBAT
500mA/div
MAX8903A toc28
0V
3.8V
500mA/div
3.6V
2V/div
0A
200μs/div
BATTERY
CHARGER
SOFT-START
-475mA
500mA/div
200μs/div
Pin Description
PIN
NAME
1, 2
PG
FUNCTION
Power Ground for Step-Down Low-Side Synchronous n-Channel MOSFET. Both PG pins must be
connected together externally.
DC Power Input. DC is capable of delivering up to 2A to SYS. DC supports both AC adapter and USB
inputs. The DC current limit is set through DCM, IUSB, or IDC depending on the input source used. See
Table 2. Both DC pins must be connected together externally. Connect at least a 4.7μF ceramic capacitor
from DC to PG.
Current-Limit Mode Setting for the DC Power Input. When logic-high, the DC input current limit is set by
the resistance from IDC to GND. When logic-low, the DC input current limit is internally programmed to
500mA or 100mA, as set by the IUSB logic input. There is an internal diode from DCM (anode) to DC
(cathode) as shown in Figure 1.
3, 4
DC
5
DCM
6
BST
High-Side MOSFET Driver Supply. Bypass BST to LX with a 0.1μF ceramic capacitor.
7
IUSB
USB Current-Limit Set Input. Drive IUSB logic-low to set the USB current limit to 100mA. Drive IUSB logichigh to set the USB current limit to 500mA.
8
DOK
DC Power-OK Output. Active-low open-drain output pulls low when a valid input is detected at DC. DOK
is still valid when the charger is disabled (CEN high).
9
VL
Logic LDO Output. VL is the output of an LDO that powers the MAX8903_ internal circuitry and charges
the BST capacitor. Connect a 1μF ceramic capacitor from VL to GND.
10
CT
Charge Timer Set Input. A capacitor (CCT) from CT to GND sets the fast-charge and prequal fault timers.
Connect to GND to disable the timer.
11
IDC
DC Current-Limit Set Input. Connect a resistor (RIDC) from IDC to GND to program the current limit of the
step-down regulator from 0.5A to 2A when DCM is logic-high.
12
GND
Ground. GND is the low-noise ground connection for the internal circuitry.
______________________________________________________________________________________
11
MAX8903A–E/G/H/J/N/Y
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
MAX8903A–E/G/H/J/N/Y
Pin Description (continued)
PIN
NAME
13
ISET
Charge Current Set Input. A resistor (RISET) from ISET to GND programs the fast-charge current up to 2A.
The prequal charge current is 10% of the fast-charge current.
14
CEN
Charger Enable Input. Connect CEN to GND to enable battery charging when a valid source is connected
at DC or USB. Connect to VL, or drive high to disable battery charging.
15
USUS
USB Suspend Input. Drive USUS logic-high to enter USB suspend mode, lowering USB current to 115µA,
and internally shorting SYS to BAT.
16
THM
Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor from THM to GND.
Connect a resistor equal to the thermistor +25°C resistance from THM to VL. Charging is suspended
when the thermistor is outside the hot and cold limits. Connect THM to GND to disable the thermistor
temperature sensor.
17
USB
USB Power Input. USB is capable of delivering 100mA or 500mA to SYS as set by the IUSB logic input.
Connect a 4.7µF ceramic capacitor from USB to GND.
18
FLT
Fault Output. Active-low, open-drain output pulls low when the battery timer expires before prequal or
fast-charge completes.
19
UOK
USB Power-OK Output. Active-low, open-drain output pulls low when a valid input is detected at USB.
UOK is still valid when the charger is disabled (CEN high).
20, 21
BAT
Battery Connection. Connect to a single-cell Li+ battery. The battery charges from SYS when a valid
source is present at DC or USB. BAT powers SYS when neither DC nor USB power is present, or when the
SYS load exceeds the input current limit. Both BAT pins must be connected together externally.
22
CHG
Charger Status Output. Active-low, open-drain output pulls low when the battery is in fast-charge or
prequal. Otherwise, CHG is high impedance.
23, 24
SYS
System Supply Output. SYS connects to BAT through an internal 50mΩ system load switch when DC or
USB are invalid, or when the SYS load is greater than the input current limit.
When a valid voltage is present at DC or USB, SYS is limited to VSYSREG. When the system load (ISYS)
exceeds the DC or USB current limit, SYS is regulated to 50mV below BAT, and both the powered input
and the battery service SYS.
Bypass SYS to GND with an X5R or X7R ceramic capacitor. See Table 6 for the minimum recommended
SYS capacitor (CSYS). Both SYS pins must be connected together externally.
25, 26
CS
70mΩ Current-Sense Input. Connect the step-down inductor from LX to CS. When the step-down
regulator is on, there is a 70mΩ current-sense MOSFET from CS to SYS. When the step-down regulator is
off, the internal CS MOSFET turns off to block current from SYS back to DC.
27, 28
LX
Inductor Connection. Connect the inductor between LX and CS. Both LX pins must be connected together
externally.
—
EP
Exposed Pad. Connect the exposed pad to GND. Connecting the exposed pad does not remove the
requirement for proper ground connections to the appropriate pins.
12
FUNCTION
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
AC
ADAPTER
DC
LX
BST
CS
MAX8903_
DC POWER
MANAGEMENT
PWR
OK
SYS
Li+ BATTERY
CHARGER
AND SYS LOAD SWITCH
PWM
STEP-DOWN
REGULATOR
DOK
MAX8903A–E/G/H/J/N/Y
PG
CHARGER
CURRENTVOLTAGE
CONTROL
SET
INPUT
LIMIT
TO
SYSTEM
LOAD
ISET
BATTERY
CONNECTOR
BAT
BAT+
+
BAT-
USB
USB POWER
MANAGEMENT
USB
PWR
OK
THERMISTOR
MONITOR
(SEE FIGURE 7)
CURRENTLIMITED
VOLTAGE
REGULATOR
UOK
IC
THERMAL
REGULATION
NTC
VL
CHARGE
TERMINATION
AND MONITOR
SET
INPUT
LIMIT
T
THM
CHG
DC
DC MODE
USB
LIMIT
500mA
DCM
IUSB
100mA
USB
SUSPEND
USUS
FLT
CHARGE
TIMER
INPUT AND
CHARGER
CURRENT-LIMIT
SET LOGIC
CT
CEN
IDC
GND
DC
LIMIT
EP
Figure 1. Functional Block Diagram
______________________________________________________________________________________
13
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
RPU
4 x 100kΩ
1
2
PG
PG
MAX8903_
CDC
4.7μF
DOK
4 DC
6
CBST
0.1μF
FLT
UOK
3 DC
ADAPTER
TO VL
CHG
BST
27 LX
ISET
18
19
25
CS
(SEE TABLE 5 FOR
INDUCTOR SELECTION)
26
CS
IDC
USB PWR OK
8
DC PWR OK
22
CHARGE
INDICATOR
13
RISET
11
RIDC
28 LX
L1
1μH
FAULT
OUTPUT
SYS
24
SYS
23
BAT
21
BAT
20
TO SYSTEM
LOAD
CSYS
(SEE TABLE 6 FOR CSYS SELECTION)
USB
17
VBUS
USB
CUSB
4.7μF
GND
TO DC
5
OFF
CHARGE ON
14
500mA
100mA
7
USB SUSPEND
15
10
CCT
0.15μF
CBAT
10μF
1-CELL
LI+
DCM
VL
9
CVL
1μF
CEN
THM
IUSB
RT
10kΩ
16
NTC
10kΩ
USUS
CT
GND
12
EP
Figure 2. Typical Application Circuit Using a Separate DC and USB Connector
Circuit Description
The MAX8903_ is a dual input charger with a 16V input
for a wide range of DC sources and USB inputs. The IC
includes a high-voltage (16V) input DC-DC step-down
converter that reduces charger power dissipation while
also supplying power to the system load. The stepdown converter supplies up to 2A to the system, the
battery, or a combination of both.
14
A USB charge input can charge the battery and power
the system from a USB power source. When powered
from USB or the DC input, system load current peaks
that exceed what can be supplied by the input are supplemented by the battery.
The MAX8903_ also manages load switching from the
battery to and from an external power source with an
on-chip 50mΩ MOSFET. This switch also helps support
load peaks using battery power when the input source
is overloaded.
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
1
2
CDC
4.7μF
VBUS
CBST
0.1μF
ID
GND
FLT
UOK
3 DC
DOK
CHG
BST
27 LX
ISET
18
499kΩ
25
CS
26
CS
IDC
(SEE TABLE 5 FOR
INDUCTOR VALUE
SELECTION)
17
USB
ADAPTER
5
OFF
CHARGE ON
14
500mA
100mA
7
USB SUSPEND
15
10
CCT
0.15μF
USB
FAULT
OUTPUT
19
USB PWR-OK
8
DC PWR-OK
22
CHARGE
INDICATOR
13
RISET
11
RIDC
28 LX
L1
1μH
DC MODE
PG
MAX8903_
6
D+
TO VL
PG
4 DC
D-
MAX8903A–E/G/H/J/N/Y
RPU
4 x 100kΩ
SYS
24
SYS
23
BAT
21
BAT
20
TO SYSTEM
LOAD
CSYS
(SEE TABLE 6 FOR CSYS SELECTION)
CBAT
10μF
1-CELL
LI+
DCM
VL
9
CVL
1μF
CEN
THM
IUSB
RT
10kΩ
16
NTC
10kΩ
USUS
CT
GND
12
EP
Figure 3. Typical Application Circuit Using a Mini 5 Style Connector or Other DC/USB Common Connector
As shown in Figure 1, the IC includes a full-featured
charger with thermistor monitor, fault timer, charger
status, and fault outputs. Also included are power-OK
signals for both USB and DC. Flexibility is maintained
with adjustable charge current, input current limit, and
a minimum system voltage (when charging is scaled
back to hold the system voltage up).
The MAX8903_ prevents overheating during high ambient temperatures by limiting charging current when the
die temperature exceeds +100°C.
DC Input—Fast Hysteretic
Step-Down Regulator
If a valid DC input is present, the USB power path is
turned off and power for SYS and battery charging is
supplied by the high-frequency step-down regulator
from DC. If the battery voltage is above the minimum
system voltage (VSYSMIN, Figure 4), the battery charger
connects the system voltage to the battery for lowest
power dissipation. The step-down regulation point is
then controlled by three feedback signals: maximum
step-down output current programmed at IDC, maximum
charger current programmed at ISET, and maximum
______________________________________________________________________________________
15
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Table 1. External Components List for Figures 2 and 3
COMPONENT
(FIGURES 2 AND 3)
CDC, CUSB
FUNCTION
PART
Input filter capacitor
4.7µF ceramic capacitor
CVL
VL filter capacitor
1.0µF ceramic capacitor
CSYS
SYS output bypass capacitor
10µF (MAX8903A/MAX8903C/MAX8903D/MAX8903H/MAX8903J) or
22µF (MAX8903B/MAX8903E/MAX8903G/MAX8903Y) ceramic capacitor
CBAT
Battery bypass capacitor
10µF ceramic capacitor
CCT
Charger timing capacitor
0.15µF low TC ceramic capacitor
Logic output pullup resistors
100kΩ
RPU (X4)
THM
Negative TC thermistor
Philips NTC thermistor, P/N 2322-640-63103, 0kΩ ±5% at +25°C
10kΩ
RIDC
THM pullup resistor
DC input current-limit programming
RISET
Fast-charge current programming
1.2kΩ ±1%, for 1A charging
DC input step-down inductor
1µH inductor with ISAT > 2A
RT
L1
3kΩ ±1%, for 2A limit
die temperature. The feedback signal requiring the
smallest current controls the average output current in
the inductor. This scheme minimizes total power dissipation for battery charging and allows the battery to
absorb any load transients with minimum system voltage disturbance.
If the battery voltage is below VSYSMIN, the charger does
not directly connect the system voltage to the battery
and the system voltage (VSYS) is slightly above VSYSMIN
as shown in Figure 4. The battery charger independently
controls the battery charging current. VSYSMIN is set to
either 3.0V or 3.4V based on the version of MAX8903_.
See Table 6.
After the battery charges to 50mV above VSYSMIN, the
system voltage is connected to the battery. The battery
fast-charge current then controls the step-down converter to set the average inductor current so that both
the programmed input current limit and fast-charge current limit are satisfied.
DC-DC Step-Down Control Scheme
A proprietary hysteretic current PWM control scheme
ensures fast switching and physically tiny external components. The feedback control signal that requires the
smallest input current controls the center of the peak
and valley currents in the inductor. The ripple current is
internally set to provide 4MHz operation. When the
input voltage decreases near the output voltage, very
high duty cycle occurs and, due to minimum off-time,
4MHz operation is not achievable. The controller then
provides minimum off-time, peak current regulation.
Similarly, when the input voltage is too high to allow
4MHz operation due to the minimum on-time, the con16
troller becomes a minimum on-time, valley current regulator. In this way, ripple current in the inductor is always
as small as possible to reduce ripple voltage on SYS for
a given capacitance. The ripple current is made to vary
with input voltage and output voltage in a way that
reduces frequency variation. However, the frequency
still varies somewhat with operating conditions. See the
Typical Operating Characteristics.
DC Mode (DCM)
As shown in Table 2, the DC input supports both AC
adapters (up to 2A) and USB (up to 500mA). With the
DCM logic input set high, the DC input is in adapter
mode and the DC input current limit is set by the resistance from IDC to GND (RIDC). Calculate RIDC according to the following equation:
RIDC = 6000V/IDC-MAX
With the DCM logic input set low, the DC input current
limit is internally programmed to 500mA or 100mA as
set by the IUSB logic input. With the IUSB logic input
set high, the DC input current limit is 500mA and the
DC input delivers current to SYS through the step-down
regulator. With the IUSB logic input set low, the DC
input current limit is 100mA. In this 100mA mode, the
step-down regulator is turned off and its high-side
switch operates as a linear regulator with a 100mA current limit. The linear regulator’s output is connected to
LX and its output current flows through the inductor into
CS and finally to SYS.
The DCM pin has an internal diode to DC as shown in
Figure 1. To prevent current from flowing from DCM
through the internal diode and to the DC input, DCM
cannot be driven to a voltage higher than DC. The
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
USB Input—Linear Regulator
If a valid USB input is present with no valid DC input,
current for SYS and battery charging is supplied by a
low-dropout linear regulator connected from USB to
SYS. The SYS regulation voltage shows the same characteristic as when powering from the DC input (see
Figure 4). The battery charger operates from SYS with
any extra available current, while not exceeding the
maximum-allowed USB current. If both USB and DC
inputs are valid, power is only taken from the DC input.
The maximum USB input current is set by the logic
state of the IUSB input to either 100mA or 500mA.
Power Monitor Outputs (UOK, DOK)
DOK is an open-drain, active-low output that indicates
the DC input power status. With no source at the USB
pin, the source at DC is considered valid and DOK is
driven low when: 4.15V < VDC < 16V. When the USB
voltage is also valid, the DC source is considered valid
and DOK is driven low when: 4.45V < VDC < 16V. The
higher minimum DC voltage with USB present helps
guarantee cleaner transitions between input supplies. If
the DC power-OK output feature is not required, connect DOK to ground.
UOK is an open-drain, active-low output that indicates
the USB input power status. UOK is low when a valid
source is connected at USB. The source at USB is valid
VSYSREG
VBATREG
MAX8903_
VSYS
when 4.1V < VUSB < 6.6V. If the USB power-OK output
feature is not required, connect UOK to ground.
Both the UOK and the DOK circuitry remain active in
thermal overload, USB suspend, and when the charger
is disabled. DOK and UOK can also be wire-ORed
together to generate a single power-OK (POK) output.
Thermal Limiting
When the die temperature exceeds +100°C, a thermal
limiting circuit reduces the input current limit by 5%/°C,
bringing the charge current to 0mA at +120°C. Since
the system load gets priority over battery charging, the
battery charge current is reduced to 0mA before the
input limiter drops the load voltage at SYS. To avoid
false charge termination, the charge termination detect
function is disabled in this mode. If the junction temperature rises beyond +120°C, no current is drawn from
DC or USB, and VSYS regulates at 50mV below VBAT.
System Voltage Switching
DC Input
When charging from the DC input, if the battery is
above the minimum system voltage, SYS is connected
to the battery. Current is provided to both SYS and the
battery, up to the maximum program value. The stepdown output current sense and the charger current
sense provide feedback to ensure the current loop
demanding the lower input current is satisfied. The
advantage of this approach when powering from DC is
that power dissipation is dominated by the step-down
regulator efficiency, since there is only a small voltage
drop from SYS to BAT. Also, load transients can be
absorbed by the battery while minimizing the voltage
disturbance on SYS. If both the DC and USB inputs are
valid, the DC input takes priority and delivers the input
current, while the USB input is off.
After the battery is done charging, the charger is turned
off and the SYS load current is supplied from the DC
input. The SYS voltage is regulated to VSYSREG. The
charger turns on again after the battery drops to the
restart threshold. If the load current exceeds the input
limiter, SYS drops down to the battery voltage and the
50mΩ SYS-to-BAT PMOS switch turns on to supply the
extra load current. The SYS-to-BAT switch turns off again
once the load is below the input current limit. The 50mΩ
PMOS also turns on if valid DC input power is removed.
IBAT x RON
VSYSMIN
VBAT
VCEN = 0V
VDC AND/OR VUSB = 5.0V
Figure 4. SYS Tracking VBAT to the Minimum System Voltage
USB Input
When charging from the USB input, the DC input stepdown regulator turns off and a linear regulator from
USB to SYS powers the system and charges the battery. If the battery is greater than the minimum system
voltage, the SYS voltage is connected to the battery.
______________________________________________________________________________________
17
MAX8903A–E/G/H/J/N/Y
through the internal diode to DC. This circuit of Figure 3
allows a microprocessor to drive the gate of the MOSFET to any state at any time.
An alternative to the simple MOSFET and resistor on
DCM as shown in Figure 3 is to place a 1MΩ resistor in
series with the DCM input to the microprocessor. The
microprocessor can then monitor the DOK output and
make sure that whenever DOK is high DCM is also low.
In the event that DCM is driven to a higher voltage than
DC, the 1MΩ series resistance limits the current from
DCM through the internal diode to DC to a few μA.
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Table 2. Input Limiter Control Logic
POWER SOURCE
AC Adapter at DC Input
DC STEP-DOWN
OUTPUT
CURRENT LIMIT
DOK
UOK
DCM***
L
X
H
X
X
6000V/RIDC
L
X
L
L
L
100mA
L
X
L
H
L
500mA
L
X
L
X
H
USB suspend
IUSB USUS
USB INPUT
CURRENT LIMIT
Lesser of
1200V/RISET and
6000V/RIDC
USB input off. DC
input has priority.
USB Power at DC Input
Lesser of
1200V/RISET and
100mA
Lesser of
1200V/RISET and
500mA
0
100mA
Lesser of
1200V/RISET and
100mA
H
L
X
L
L
H
L
X
H
L
H
L
X
X
H
USB suspend
Lesser of
1200V/RISET and
500mA
0
H
H
X
X
X
No USB input
0
USB Power at USB Input,
DC Unconnected
DC and USB Unconnected
MAXIMUM
CHARGE
CURRENT**
No DC input
500mA
**Charge current cannot exceed the input current limit. Charge may be less than the maximum charge current if the total SYS load
exceeds the input current limit.
***There is an internal diode from DCM (anode) to DC (cathode) as shown in Figure 1. If the DCM level needs to be set by a μP, use
a MOSFET for isolation as shown in FIgure 3.
X = Don’t care.
The USB input then supplies the SYS load and charges
the battery with any extra available current, while not
exceeding the maximum-allowed USB current. Load
transients can be absorbed by the battery while minimizing the voltage disturbance on SYS. When battery
charging is completed, or the charger is disabled, SYS
is regulated to VSYSREG. If both USB and DC inputs are
valid, power is only taken from the DC input.
USB Suspend
Driving USUS high and DCM low turns off charging as
well as the SYS output and reduces input current to
170μA to accommodate USB suspend mode. See
Table 2 for settings.
Charge Enable (CEN)
When CEN is low, the charger is on. When CEN is high,
the charger turns off. CEN does not affect the SYS output. In many systems, there is no need for the system
controller (typically a microprocessor) to disable the
charger, because the MAX8903_ smart power selector
18
circuitry independently manages charging and
adapter/battery power hand-off. In these situations, CEN
may be connected to ground.
Soft-Start
To prevent input transients that can cause instability in
the USB or AC adapter power source, the rate of change
of the input current and charge current is limited. When
an input source is valid, SYS current is ramped from
zero to the set current-limit value in typically 50μs. This
also means that if DC becomes valid after USB, the
SYS current limit is ramped down to zero before switching from the USB to DC input. At some point, SYS is no
longer able to support the load and may switch over to
BAT. The switchover to BAT occurs when VSYS < VBAT.
This threshold is a function of the SYS capacitor size
and SYS load. The SYS current limit then ramps from
zero to the set current level and SYS supports the load
again as long as the SYS load current is less than the
set current limit.
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Battery Charger
While a valid input source is present, the battery charger attempts to charge the battery with a fast-charge
current determined by the resistance from ISET to
GND. Calculate the RISET resistance according to the
following equation:
RISET = 1200V/ICHGMAX
Monitoring Charge Current
The voltage from ISET to GND is a representation of the
battery charge current and can be used to monitor the
current charging the battery. A voltage of 1.5V represents the maximum fast-charge current.
If necessary, the charge current is reduced automatically to prevent the SYS voltage from dropping.
Therefore, a battery never charges at a rate beyond the
capabilities of a 100mA or 500mA USB input, or overloads an AC adapter. See Figure 5.
When VBAT is below VBATPQ, the charger enters prequal mode and the battery charges at 10% of the maximum fast-charge rate until the voltage of the deeply
discharged battery recovers. When the battery voltage
MONITORING THE BATTERY
CHARGE CURRENT WITH VISET
1.5
VISET (V)
0
DISCHARGING
0
1200V/RISET
BATTERY CHARGING CURRENT (A)
reaches VBATREG and the charge current drops to 10%
of the maximum fast-charge current, the charger enters
the DONE state. The charger restarts a fast-charge
cycle if the battery voltage drops by 100mV.
Charge Termination
When the charge current falls to the termination threshold (ITERM) and the charger is in voltage mode, charging is complete. Charging continues for a brief 15s
top-off period and then enters the DONE state where
charging stops.
Note that if charge current falls to ITERM as a result of
the input or thermal limiter, the charger does not enter
DONE. For the charger to enter DONE, charge current
must be less than ITERM, the charger must be in voltage mode, and the input or thermal limiter must not be
reducing charge current.
Charge Status Outputs
Charge Output (CHG)
CHG is an open-drain, active-low output that indicates
charger status. CHG is low when the battery charger is
in its prequalification and fast-charge states. CHG goes
high impedance if the thermistor causes the charger to
go into temperature suspend mode.
When used in conjunction with a microprocessor (μP),
connect a pullup resistor between CHG and the logic
I/O voltage to indicate charge status to the μP.
Alternatively, CHG can sink up to 20mA for an LED
charge indicator.
Fault Output (FLT)
FLT is an open-drain, active-low output that indicates
charger status. FLT is low when the battery charger has
entered a fault state when the charge timer expires.
This can occur when the charger remains in its prequal
state for more than 33 minutes or if the charger remains
in fast-charge state for more than 660 minutes (see
Figure 6). To exit this fault state, toggle CEN or remove
and reconnect the input source.
When used in conjunction with a microprocessor (μP),
connect a pullup resistor between FLT and the logic I/O
voltage to indicate charge status to the μP.
Alternatively, FLT can sink up to 20mA for an LED fault
indicator. If the FLT output is not required, connect FLT
to ground or leave unconnected.
Charge Timer
A fault timer prevents the battery from charging indefinitely. The fault prequal and fast-charge timers are controlled by the capacitance at CT (CCT).
Figure 5. Monitoring the Battery Charge Current with the
Voltage from ISET to GND
______________________________________________________________________________________
19
MAX8903A–E/G/H/J/N/Y
When the charger is turned on, the charge current ramps
from 0A to the ISET current value in typically 1.0ms.
Charge current also soft-starts when transitioning to fastcharge from prequal, when the input power source is
switched between USB and DC, and when changing the
USB charge current from 100mA to 500mA with the IUSB
logic input. There is no di/dt limiting, however, if RISET is
changed suddenly using a switch.
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
NOT READY
UOK AND DOK = HIGH IMPEDANCE
CHG = HIGH IMPEDANCE
FLT = HIGH IMPEDANCE
ICHG = 0mA
CEN = HI OR
REMOVE AND RECONNECT
THE INPUT SOURCE(S)
UOK AND/OR DOK = LOW
CEN = 0
RESET TIMER
PREQUALIFICATION
UOK AND/OR DOK = LOW
CHG = LOW
FLT = HIGH IMPEDANCE
0 < VBAT < VBATPQ
ICHG ≤ ICHGMAX/10
VBAT < VBATPQ - 180mV
RESET TIMER = 0
VBAT < VBATPQ - 180mV
RESET TIMER
ICHG > ITERM
RESET TIMER
ANY CHARGING
STATE
THM OK
TIMER RESUME
THM NOT OK
TIMER SUSPEND
TEMPERATURE SUSPEND
ICHG = 0mA
UOK OR DOK PREVIOUS STATE
CHG = HIGH IMPEDANCE
FLT = HIGH IMPEDANCE
TOGGLE CEN OR
REMOVE AND RECONNECT
THE INPUT SOURCE(S)
TIMER > tPREQUAL
FAULT
UOK AND/OR DOK = LOW
CHG = HIGH IMPEDANCE
FLT = LOW
ICHG = 0mA
VBAT > VBATPQ
RESET TIMER
FAST-CHARGE
UOK AND/OR DOK = LOW
CHG = LOW
FLT = HIGH IMPEDANCE
VBATPQ < VBAT < VBATREG
ICHG ≤ ICHGMAX
ANY STATE
TIMER > tFSTCHG
(TIMER SLOWED BY 2x IF
ICHG < ICHGMAX/2, AND
PAUSED IF ICHG < ICHGMAX/5 WHILE VBAT < VBATREG)
ICHG < ITERM
AND VBAT = VBATREG
AND THERMAL
OR INPUT LIMIT
NOT EXCEEDED;
RESET TIMER
TOP-OFF
UOK AND/OR DOK = LOW
CHG = HIGH IMPEDANCE
FLT = HIGH IMPEDANCE
VBAT = VBATREG
ICHG = ITERM
VBAT < VBATREG + VRSTRT
RESET TIMER
TIMER > tTOP-OFF
DONE
UOK AND/OR DOK = 0
CHG = HIGH IMPEDANCE
FLT = HIGH IMPEDANCE
VBATREG + VRSTRT < VBAT < VBATREG
ICHG = 0mA
Figure 6. MAX8903A Charger State Flow Chart
CCT
0.15μF
CCT
tFST -CHG = 660min ×
0.15μF
t TOP -OFF = 15s (MAX 8903 A/D /H/ J/N/ Y)
tPREQUAL = 33min ×
t TOP -OFF = 132min ×
20
CCT
(MAX8903B/E / G)
0.15μF
While in fast-charge mode, a large system load or device
self-heating may cause the MAX8903_ to reduce charge
current. Under these circumstances, the fast-charge
timer is slowed by 2x if the charge current drops below
50% of the programmed fast-charge level, and suspended if the charge current drops below 20% of the programmed level. The fast-charge timer is not affected at
any current if the charger is regulating the BAT voltage
at VBATREG (i.e., the charger is in voltage mode).
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
MAX8903A–E/G/H/J/N/Y
CEN
VL
THERMISTOR
CIRCUITRY
VL
MAX8903_
0.87 VL
RTB
ALTERNATE
THERMISTOR
CONNECTION
0.74 VL
MAX8903B/MAX8903E/
MAX8903G ONLY
THERMISTOR
DETECTOR
COLD
THM
RTS
0.28 VL
RTP
RT
HOT
ENABLE THM
0.03 VL
RT
THM
OUT OF
RANGE
DISABLE
CHARGER
ALL COMPARATORS
60mV HYSTERESIS
GND
Figure 7. Thermistor Monitor Circuitry
Table 3. Fault Temperatures for Different
Thermistors
Thermistor β (K)
3000
3250
3500
3750
4250
RTB (kΩ) (Figure 7)
10
10
10
10
10
Resistance at +25°C
(kΩ)
10
10
10
10
10
Resistance at +50°C
(kΩ)
4.59
4.30
4.03
3.78
3.316
Resistance at 0°C (kΩ)
29.32 31.66
36.91
25.14
27.15
Nominal Hot Trip
Temperature (°C)
55
53
50
49
46
Nominal Cold Trip
Temperature (°C)
-3
-1
0
2
4.5
VL Regulator
VL is a 5V linear regulator that powers the MAX8903’s
internal circuitry and charges the BST capacitor. VL is
used externally to bias the battery’s thermistor. VL takes
its input power from USB or DC. When input power is
available from both USB and DC, VL takes power from
DC. VL is enabled whenever the input voltage at USB
or DC is greater than ~1.5V. VL does not turn off when
the input voltage is above the overvoltage threshold.
Similarly, VL does not turn off when the charger is disabled (CEN = high). Connect a 1μF ceramic capacitor
from VL to GND.
Thermistor Input (THM)
The THM input connects to an external negative temperature coefficient (NTC) thermistor to monitor battery
or system temperature. Charging is suspended when
the thermistor temperature is out of range. The charge
timers are suspended and hold their state but no fault is
indicated. When the thermistor comes back into range,
charging resumes and the charge timer continues from
where it left off. Connecting THM to GND disables the
thermistor monitoring function. Table 3 lists the fault
temperature of different thermistors.
Since the thermistor monitoring circuit employs an external bias resistor from THM to VL (RTB, Figure 7), the thermistor is not limited only to 10kΩ (at +25°C). Any
resistance thermistor can be used as long as the value is
equivalent to the thermistor’s +25°C resistance. For
example, with a 10kΩ at +25°C thermistor, use 10kΩ at
RTB, and with a 100kΩ at +25°C thermistor, use 100kΩ.
For a typical 10kΩ (at +25°C) thermistor and a 10kΩ
RTB resistor, the charger enters a temperature suspend
state when the thermistor resistance falls below 3.97kΩ
(too hot) or rises above 28.7kΩ (too cold). This corresponds to a 0°C to +50°C range when using a 10kΩ
NTC thermistor with a beta of 3500. The general relation
of thermistor resistance to temperature is defined by
the following equation:
⎧ ⎛
1
1 ⎞⎫
−
⎨β ⎜
⎟⎬
⎝
T
C
+
°
°C ⎠ ⎭⎪
273
298
RT = R25 × e ⎩⎪
______________________________________________________________________________________
21
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
where:
RT = The resistance in Ω of the thermistor at temperature T in Celsius
R25 = The resistance in Ω of the thermistor at +25°C
β = The material constant of the thermistor, which typically ranges from 3000K to 5000K
T = The temperature of the thermistor in °C
Table 3 shows the MAX8903_ THM temperature limits
for different thermistor material constants.
and let the system continue to operate with external power.
If the THM pin is tied to GND (voltage at THM is below 3%
of VL), the thermistor option is disabled and the system
does not respond to the thermistor input. In those cases, it
is assumed that the system has its own temperature sensing, and halts changing through CEN when the temperature is outside of the safe charging range.
Some designs might prefer other thermistor temperature
limits. Threshold adjustment can be accommodated by
changing RTB, connecting a resistor in series and/or in
parallel with the thermistor, or using a thermistor with different β. For example, a +45°C hot threshold and 0°C
cold threshold can be realized by using a thermistor
with a β of 4250 and connecting 120kΩ in parallel. Since
the thermistor resistance near 0°C is much higher than it
is near +50°C, a large parallel resistance lowers the
cold threshold, while only slightly lowering the hot
threshold. Conversely, a small series resistance raises
the hot threshold, while only slightly raising the cold
threshold. Raising RTB lowers both the cold and hot
thresholds, while lowering RTB raises both thresholds.
Note that since VL is active whenever valid input power
is connected at DC or USB, thermistor bias current
flows at all times, even when charging is disabled (CEN
= high). When using a 10kΩ thermistor and a 10kΩ
pullup to VL, this results in an additional 250μA load.
This load can be reduced to 25μA by instead using a
100kΩ thermistor and 100kΩ pullup resistor.
28-PIN 4mm x 4mm THIN QFN
Power Enable on Battery Detection
The power enabled on battery detection function allows
the MAX8903B/MAX8903E/MAX8903G to automatically
enable/disable the USB and DC power inputs when the
battery is applied/removed. This function utilizes the
battery pack’s integrated thermistor as a sensing mechanism to determine when the battery is applied or
removed. With this function, MAX8903B/MAX8903E/
MAX8903G-based systems shut down when the battery
is removed regardless of whether external power is
available at the USB or DC power inputs.
The MAX8903B/MAX8903E/MAX8903G implement the
power enabled on battery detection function with the thermistor detector comparator as shown in Figure 7. If no battery is present, the absence of the thermistor allows RTB to
pull THM to VL. When the voltage at the THM pin increases
above 87% of VL, it is assumed that the battery has been
removed and the system powers down. However, there is
also the option to bypass this thermistor sensing option
completely, and so retain the ability to remove the battery
22
Power Dissipation
Table 4. Package Thermal Characteristics
Continuous
Power
Dissipation
SINGLE-LAYER PCB
MULTILAYER PCB
1666.7mW
2286mW
Derate 20.8mW/°C
above +70°C
Derate 28.6mW/°C
above +70°C
θJA
48°C/W
35°C/W
θJC
3°C/W
3°C/W
Minimum SYS Output Capacitor
Based on the version of the MAX8903_, the SYS load
regulation is either 25mV/A or 40mV/A. The 25mV/A versions achieve better load regulation by increasing the
feedback loop gain. To ensure feedback stability with
this higher gain, a larger SYS output capacitor is
required. Devices with 25m/V SYS load regulation
require 22μF SYS output capacitor whereas devices
with 40m/V only require 10μF. See Table 6 for more
information about the various versions of the
MAX8903_.
Inductor Selection for
Step-Down DC-DC Regulator
The MAX8903_'s control scheme requires an external
inductor (LOUT) from 1.0μH to 10μH for proper operation. This section describes the control scheme and the
considerations for inductor selection. Table 5 shows
recommended inductors for typical applications. For
assistance with the calculations needed to select the
optimum inductor for a given application, refer to the
spreadsheet at: www.maxim-ic.com/tools/other/software/MAX8903-inductor-design.xls.
The MAX8903 step-down DC-DC regulator implements a
control scheme that typically results in a constant switching frequency (fSW). When the input voltage decreases to
a value near the output voltage, high duty cycle operation
occurs and the device can operate at less than fSW due
to minimum off-time (tOFFMIN) constraints. In high duty
cycle operation, the regulator operates with tOFFMIN and
a peak current regulation. Similarly, when the input
voltage is too high to allow fSW operation due to minimum
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Versions of the MAX8903 with fSW = 4MHz offer the
smallest LOUT while delivering good efficiency with low
input voltages (5V or 9V). For applications that use high
input voltages (12V), the MAX8903G with fSW = 1MHz
is the best choice because of its higher efficiency.
For a given maximum output voltage, the minimum
inductor ripple current condition occurs at the lowest
input voltage that allows the regulator to maintain fSW
operation. If the minimum input voltage dictates an offtime less than tOFFMIN, then the minimum inductor ripple condition occurs just before the regulator enters
fixed minimum off-time operation. To allow the currentmode regulator to provide a low-jitter, stable duty factor
operation, the minimum inductor ripple current
(IL_RIPPLE_MIN) should be greater than 150mA in the
minimum inductor ripple current condition. The maximum allowed output inductance LOUT_MAX is therefore
obtained using the equations (1) and (2) below.
(1)
⎛ VSYS(MAX) ⎞
1
tOFF = tOFFMIN if ⎜ 1 −
≤ tOFFMIN ,
⎟×
V
f
⎝
DC(MIN) ⎠
SW
( VDC(MAX) − VSYS(MIN) ) × tON
K × ISDLIM
where VDC(MAX) is maximum input voltage, VSYS(MIN) is
the minimum charger output voltage, and tON is the ontime at high input voltage, as given by the following
equation:
(5)
⎛ VSYS(MIN)
1 ⎞
tON = tONMIN if ⎜
×
⎟ ≤ tONMIN ,
⎝ VDC(MAX) fSW ⎠
otherwise,
tON =
VSYS(MIN)
VDC(MAX)
×
1
fSW
The saturation current DC rating of the inductor (ISAT)
must be greater than the DC step-down output current
limit (ISDLIM) plus one-half the maximum ripple current,
as given by equation (6).
(6)
ISAT > ISDLIM +
ILRIPPLE _ MAX
2
where ILRIPPLE_MAX is the greater of the ripple currents
obtained from (7) and (8).
otherwise,
⎛ VSYS(MAX) ⎞
1
tOFF = ⎜ 1 −
⎟×
V
f
⎝
DC(MIN) ⎠
SW
where tOFF is the off-time, VSYS(MAX) is maximum charger
output voltage, and VDC(MIN) is minimum DC input voltage.
(2)
(4) LOUT _ MIN _ t
=
ON
LOUT _ MAX =
VSYS(MAX) × tOFF
IL _ RIPPLE _ MIN
where LOUT_MAX is the maximum allowed inductance.
To obtain a small-sized inductor with acceptable core
loss, while providing stable, jitter-free operation at the
advertised fSW, the actual output inductance (LOUT), is
obtained by choosing an appropriate ripple factor K, and
picking an available inductor in the range inductance
yielded by equations (2), (3), and (4). LOUT should also
not be lower than the minimum allowable inductance as
shown in Table 6. The recommended ripple factor ranges
from (0.2 ≤ K 0.45) for (2A ≥ ISDLIM ≥ 1A) designs.
(3)
VSYS(MAX) × tOFF
LOUT _ MIN _ TOFF =
K × ISDLIM
(7)
(8)
ILRIPPLE _ MIN _ TOFF =
ILRIPPLE _ MIN _ TON =
VSYS(MAX) × tOFF
LOUT
( VDC(MAX) − VSYS(MIN) ) × tON
LOUT
PCB Layout and Routing
Good design minimizes ground bounce and voltage gradients in the ground plane, which can result in instability
or regulation errors. The GND and PGs should connect to
the power-ground plane at only one point to minimize the
effects of power-ground currents. Battery ground should
connect directly to the power-ground plane. The ISET
and IDC current-setting resistors should connect directly
to GND to avoid current errors. Connect GND to the
exposed pad directly under the IC. Use multiple tightly
spaced vias to the ground plane under the exposed pad
to help cool the IC. Position input capacitors from DC,
SYS, BAT, and USB to the power-ground plane as close
as possible to the IC. Keep high current traces such as
those to DC, SYS, and BAT as short and wide as possible. Refer to the MAX8903A Evaluation Kit for a suitable
PCB layout example.
where tOFF is the minimum off-time obtained from (1).
______________________________________________________________________________________
23
MAX8903A–E/G/H/J/N/Y
on-time constraints (tONMIN), the regulator becomes a
fixed minimum on-time valley current regulator.
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Selector Guide
The MAX8903_ is available in several options designated by the first letter following the root part number. The
basic architecture and functionality of the
MAX8903A–MAX8903E/MAX8903G/MAX8903Y are the
same. Their differences lie in certain electrical and operational parameters. Table 6 outlines these differences.
Table 5. Recommended Inductor Examples
DC INPUT
VOLTAGE
RANGE
5V ±10%
5V ±10%
5V ±10%
5V ±10%
9V ±10%
9V ±10%
24
DC STEP-DOWN
OUTPUT
CURRENT LIMIT
(ISDMAX)
PART NUMBER,
SWITCHING
FREQUENCY*
RECOMMENDED INDUCTOR
MAX8903H/J/N/Y, 4MHz
1.0μH, IFSC1008ABER1R0M01, Vishay
2.5mm x 2mm x 1.2mm, 43mΩ (max), 2.6A
or 1.0μH, LQH32PN1R0-NN0, Murata,
3.2mm x 2.5mm x 1.55mm, 54mΩ (max), 2.3A
1A
MAX8903H/J/N/Y, 4MHz
1.5μH inductor, MDT2520-CN1R5M, TOKO
2.5mm x 2.0mm x 1.2mm, 123.5mΩ (max), 1.25A
or 1.5uH Inductor, IFSC1008ABER1R5M01, Vishay
2.5mm x 2mm x 1.2mm, 72mΩ (max), 2.2A
2A
MAX8903A/B/C/D/E,
4MHz
2.2μH inductor, DFE322512C-2R2N, TOKO
3.2mm x 2.5mm x 1.2mm, 91mΩ (max), 2.4A
or 2.2μH inductor, IFSC1515AHER2R2M01, Vishay
3.8mm x 3.8mm x 1.8mm, 45mΩ (max), 3A
1A
MAX8903A/B/C/D/E,
4MHz
2.2μH inductor, IFSC1008ABER2R2M01, Vishay
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A
or 2.2μH Inductor, LQH32PN2R2-NN0, Murata
3.2mm x 2.5mm x 1.55mm, 91mΩ (max), 1.55A
MAX8903H/J/N/Y, 4MHz
1.5uH inductor, IFSC1008ABER1R5M01, Vishay
2.5mm x 2mm x 1.2mm, 72mW (max), 2.2A
or 1.5μH Inductor, VLS4012ET-1R5N, TDK
4mm x 4mm x 1.2mm, 72mW (max), 2.1A
MAX8903H/J/N/Y, 4MHz
2.2μH inductor, IFSC1008ABER2R2M01, Vishay
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A
or 2.2μH inductor, LQH3NPN2R2NJ0, Murata
3mm x 3mm x 1.1mm, 83mΩ (max), 1.15A
2A
2A
1A
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
DC INPUT
VOLTAGE
RANGE
9V ±10%
9V ±10%
9V ±10%
9V ±10%
12V ±10%
12V ±10%
DC STEP-DOWN
OUTPUT
CURRENT LIMIT
(ISDMAX)
PART NUMBER,
SWITCHING
FREQUENCY*
2A
MAX8903A/B/C/D/E,
4MHz
2.2μH inductor, DFE322512C-2R2N, TOKO
3.2mm x 2.5mm x 1.2mm, 91mΩ (max), 2.4A
or 2.2μH Inductor, IFSC1515AHER2R2M01, Vishay
3.8mm x 3.8mm x 1.8mm, 45mΩ (max), 3A
1A
MAX8903A/B/C/D/E,
4MHz
2.2μH Inductor, IFSC1008ABER2R2M01, Vishay
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A
or 2.2μH Inductor, LQH3NPN2R2NJ0, Murata
3mm x 3mm x 1.1mm, 83mΩ (max), 1.15A
2A
1A
2A
1A
MAX8903A–E/G/H/J/N/Y
Table 5. Recommended Inductor Examples (continued)
RECOMMENDED INDUCTOR
MAX8903G, 1MHz
4.3uH Inductor, DEM4518C (1235AS-H-4R3M), TOKO
4.7mm x 4.5mm x 1.8mm, 84mΩ (max), 2.0A
or 4.7μH Inductor, IFSC1515AHER4R7M01, Vishay
3.8mm x 3.8mm x 1.8mm, 90mΩ (max), 2.0A
MAX8903G, 1MHz
4.7μH inductor, DEM2818C (1227AS-H-4R7M), TOKO
3.2mm x 2.8mm x 1.8mm, 92mΩ (max), 1.1A
or 4.7μH inductor, IFSC1008ABER4R7M01, Vishay
2.5mm x 2mm x 1.2mm, 212mΩ (max), 1.2A
MAX8903G, 1MHz
4.3μH inductor, DEM4518C (1235AS-H-4R3M), TOKO
4.7mm x 4.5mm x 1.8mm, 84mΩ (max), 2.0A
or 4.7μH inductor, IFSC1515AHER4R7M01, Vishay
3.8mm x 3.8mm x 1.8mm, 90mΩ (max), 2.0A
MAX8903G, 1MHz
6.8μH, IFSC1515AHER6R8M01, Vishay
3.8mm x 3.8mm x 1.8mm, 115mΩ (max), 1.5A
or 6.8μH, LQH44PN6R8MP0, Murata
4mm x 4mm x 1.65mm, 144mΩ (max), 1.34A
*See the Selector Guide for more information about part numbers.
______________________________________________________________________________________
25
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Selector Guide
The MAX8903_ is available in several options designated by the first letter following the root part number. The
basic architecture and functionality of the
MAX8903A–MAX8903E/MAX8903G/MAX8903Y are the
same. Their differences lie in certain electrical and
operational parameters. Table 6 outlines these differences.
Table 6. Selector Guide
PARAMETER MAX8903A MAX8903B MAX8903C MAX8903D MAX8903E MAX8903G MAX8903H MAX8903J MAX8903N MAX8903Y
Minimum SYS
Regulation
Voltage
(VSYSMIN)
3.0V
3.0V
3.4V
3.4V
3.0V
3.0V
3.4V
3.4V
3.4V
3.0V
SYS Regulation
Voltage
(VSYSREG)
4.4V
4.325V
4.4V
4.4V
4.325V
4.325V
4.4V
4.5V
4.4V
4.4V
Minimum
Allowable
Inductor
2.2µH
2.2µH
2.2µH
2.2µH
2.2µH
2.2µH
1µH
1µH
1µH
1µH
Switching
Frequency
4MHz
4MHz
4MHz
4MHz
4MHz
1MHz
4MHz
4MHz
4MHz
4MHz
SYS Load
Regulation
40mV/A
25mV/A
40mV/A
40mV/A
25mV/A
25mV/A
40mV/A
25mV/A
25mV/A
25mV/A
Minimum SYS
Output
Capacitor (CSYS)
10µF
22µF
10µF
10µF
22µF
22µF
10µF
10µF
22µF
22µF
BAT Regulation
Voltage
(VBATREG)
(Note 5)
4.2V
4.2V
4.2V
4.1V
4.1V
4.2V
4.2V
4.35V
4.15V
4.15V
BAT Prequal
Threshold
(VBATPQ)
(Note 5)
3V
2.5V
3V
3V
2.5V
2.5V
3V
3V
3V
3V
Top-Off Timer
(Note 6)
15s (fixed)
132min
15s (fixed)
15s (fixed)
132min
132min
VL Output
Current Rating
1mA
10mA
1mA
1mA
10mA
10mA
1mA
1mA
1mA
1mA
Power-Enable
On Battery
Detection
(Note 7)
No
Yes
No
No
Yes
Yes
No
No
No
No
Comments
—
—
—
—
—
—
(Note 8)
—
—
—
Note 5:
Note 6:
Note 7:
Note 8:
26
15s (fixed) 15s (fixed) 15s (fixed) 15s (fixed)
Typical values. See the Electrical Characteristics table for min/max values.
Note that this also changes the timing for the prequal and fast-charge timers.
See the Power Enable on Battery Detection section for details.
The MAX8903H is a newer version of the MAX8903C that is a recommended for new designs.
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Chip Information
USB
THM
USUS
20
UOK
21
FLT
BAT
TOP VIEW
BAT
PROCESS: BiCMOS
19
18
17
16
15
CHG 22
14
CEN
SYS 23
13
ISET
SYS 24
12
GND
11
IDC
10
CT
MAX8903_
CS 25
CS 26
LX 27
EP
5
6
7
IUSB
DC
4
BST
3
DCM
2
DC
1
PG
+
PG
LX 28
9
VL
8
DOK
TQFN
______________________________________________________________________________________
27
MAX8903A–E/G/H/J/N/Y
Pin Configuration
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
28
PACKAGE TYPE
PACKAGE CODE
OUTLINE NO.
LAND
PATTERN NO.
28 TQFN-EP
T2844-1
21-0139
90-0035
______________________________________________________________________________________
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
______________________________________________________________________________________
29
MAX8903A–E/G/H/J/N/Y
Package Information (continued)
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
MAX8903A–E/G/H/J/N/Y
2A 1-Cell Li+ DC-DC Chargers
for USB and Adapter Power
Revision History
REVISION
NUMBER
REVISION
DATE
0
12/08
DESCRIPTION
Initial release
PAGES
CHANGED
—
1
8/09
Added MAX8903C/MAX8903D to data sheet
2
11/09
Made various corrections
1–20
3
10/10
Added MAX8903B, MAX8903E, MAX8903G, and MAX8903Y
1–29
4
5/11
Added MAX8903H and MAX8903J and updated components
1–29
5
9/11
Added the MAX8903N, and removed future product designation for MAX8903J
1–29
1–7, 9, 11–21
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
30 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2011 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.
19-4413; Rev 2; 10/10
MAX8903A Evaluation Kit
The MAX8903A evaluation kit (EV kit) is a fully assembled and tested circuit board for evaluating the 2A, 1-cell
Li+ DC-DC battery charger. The EV kit charges a single-cell lithium-ion (Li+) battery from a DC input (AC
adaptor) or a USB 100mA/500mA source and provides
system power from the DC input, USB input, or battery.
Battery charge current and SYS current limit are independently set. Charge current and DC converter output
current limit can be set up to 2A, respectively. The USB
input current can be set to 100mA or 500mA and USB
suspend mode is also supported. Power not used by
the system is available to charge the battery.
The EV kit comes standard with the MAX8903A
installed. However, the EV kit can also be used to evaluate the MAX8903B–MAX8903E and MAX8903Y by
replacing the MAX8903A (U1) with the preferred IC.
Features
♦ DC-DC Converter Output Current-Limit
Adjustment Range of 0.5A to 2A (EV Kit Standard
Configuration: 2A)
♦ Battery Charger Current-Limit Adjustment Range
of 0.5A to 2A (EV Kit Standard Configuration: 1A)
♦ USB Current Limit of 100mA or 500mA
♦ Efficient 4MHz Switching DC-DC Converter
Powers System Load and Charger
♦ Instant On—Works with No Battery or Low
Battery
♦ 28-Pin, 4mm x 4mm Thin QFN Package with
Exposed Pad
♦ Fully Assembled and Tested
Ordering Information
PART
TYPE
MAX8903AEVKIT+
EV Kit
+Denotes lead(Pb)-free and RoHS compliant
Component List
DESIGNATION
C1
C2
C3A, C4
C5, C7
Figure 1. MAX8903A EV Kit Photo
C6
QTY
DESCRIPTION
1
2.2μF ±10%, 16V X5R ceramic
capacitor (0805)
TDK C2012X7R1C225K or
equivalent
1
4.7μF ±10%, 25V X5R ceramic
capacitor (0805)
Murata GRM21BR61E475KA12L or
equivalent
2
10μF ±10%, 10V X5R ceramic
capacitors (0805)
Taiyo Yuden LMK212BJ106KG or
equivalent
2
0.1μF ±10%, 10V X7R ceramic
capacitors (0402)
TDK C1005X5R1A104K or
equivalent
1
2.2μF ±10%, 6.3V X5R ceramic
capacitor (0603)
Taiyo Yuden LMK107BJ225MA or
equivalent
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX8903A–MAX8903E/MAX8903Y
General Description
Evaluates: MAX8903A–MAX8903E/MAX8903Y
MAX8903A Evaluation Kit
Component List (continued)
DESIGNATION
QTY
C8, C9, C11
0
Not installed, capacitors (0402)
1
4.7μF ±10%, 16V X5R ceramic
capacitor (0805)
Taiyo Yuden EMK212BJ475K or
equivalent
C10
D1, D3, D4
D2
J1, J2
DESCRIPTION
DESIGNATION
3
Small green LEDs
Panasonic LNJ308G8PRA
1
Small red LED
Panasonic LNJ208R8ARA
2
USB type-AB right-angle mini jacks
Molex 56579-0576
QTY
DESCRIPTION
L1
1
1μH, 2.8A, 54mΩ inductor
(4.1mm x 4.1mm x 1.2mm)
TOKO A1101AS-1R0 (DEA4012CK
series)
NTC
0
100kΩ NTC thermistor (0402)
Murata NCP15WF104J03RC
R1–R4
4
2.2kΩ ±5% resistors (0402)
R5
1
100kΩ ±1% resistor (0402)
R6, R10, R14,
R17, R18
0
Not installed, resistors (0402)
R7, R8
2
3.01kΩ ±1% resistors (0402)
R9
1
6.04kΩ ±1% resistor (0402)
R11, R12
2
604Ω ±1% resistors (0402)
1
1.21kΩ ±1% resistor (0402)
1
2.1mm male power connector
CUI Inc. PJ-002A-SMT
R13
1
1.25mm (0.049in) surface-mount,
right-angle pitch header, lead-free,
10 circuits
Molex 53261-1071
R15
1
0.56Ω ±1% resistor (0603)
Panasonic ERJ-3RQJR56V
1
1-cell Li+ charger (28 TQFN-EP*)
Maxim MAX8903AETI+
5
3-pin headers
Sullins PEC36SAAN
Digi-Key S1012E-36-ND
U1
JU1, JU2, JU3,
JU8, JU9
—
10
Shunts (see Table 1)
Digi-Key S900-ND or equivalent
JU4–JU7,
JU10, JU11
6
—
1
PCB: MAX8903A EVALUATION KIT+
J3
J4
2-pin headers
Sullins PEC36SAAN
Digi-Key S1012E-36-ND
*EP = Exposed pad.
Component Suppliers
SUPPLIER
PHONE
WEBSITE
CUI Inc.
503-612-2300
www.cui.com
Digi-Key Corp.
800-344-4539
www.digikey.com
Molex
800-768-6539
www.molex.com
Murata Electronics North America, Inc.
770-436-1300
www.murata-northamerica.com
Panasonic Corp.
800-344-2112
www.panasonic.com
Sullins Electronics Corp.
760-744-0125
www.sullinselectronics.com
Taiyo Yuden
800-348-2496
www.t-yuden.com
TDK Corp.
847-803-6100
www.component.tdk.com
TOKO America, Inc.
847-297-0070
www.tokoam.com
Note: Indicate that you are using the MAX8903 when contacting these component suppliers.
2
_______________________________________________________________________________________
MAX8903A Evaluation Kit
7) Remove the shunt from pins 1-2 of jumper JU8 and
place the shunt on pins 2-3 of jumper JU8.
Recommended Equipment
8) If 3V ≤ V BAT ≤ 4.1V for MAX8903A/MAX8903B/
MAX8903C, or 3V ≤ VBAT ≤ 4.0V for MAX8903D/
MAX8903E/MAX8903Y, verify that the current
from BATT into the battery is approximately 1A.
• MAX8903A EV kit
• Adjustable DC power supply capable of greater than
6V at 3A
• Battery or simulated battery
1-cell Li+ or Li-poly battery (Figure 2A)
Simulated battery—preloaded power supply
(Figure 2B)
• Two digital multimeters (DMM)
• Up to 3A adjustable load
• Three 10A ammeters
9) Increase the load current on SYS to 1A.
10) Verify that the voltage on SYS remains approximately equal to VBATT.
11) Verify that the charge current into the battery
remains near 1A.
12) Increase the load current on SYS to 1.5A.
13) Verify that the voltage on SYS remains approximately equal to VBATT.
Procedure
14) Verify that the charge current into the battery
decreased to approximately 0.5A.
The EV kit is fully assembled and tested. Follow the
steps below to verify board operation. Use twisted
wires of appropriate gauge that are as short as possible to connect the battery and power sources.
15) Increase the load current on SYS to 2.5A.
16) Verify that current out of the battery (from the battery to SYS) is near 0.5A.
1) Preset the DC power supply to 6V. Turn off the
power supply. Caution: Do not turn on the power
supply until all connections are completed.
Detailed Description of Hardware
Adjusting the EV Kit for In-Circuit
Evaluation
2) Preset the adjustable load to 0A.
3) Connect the EV kit to the power supply, battery or
preloaded power supply, adjustable load, and
meters, as shown in Figure 3.
Verify that the AC adapter source current limit is higher
than the SYS and BAT current requirements. Note that if
SYS current demand exceeds the DC-DC converter
output current limit, then the battery will help supply the
extra current. The DC-DC converter output current limit
can also be adjusted on the MAX8903A EV kit by
replacing R7 or adjusting JU4 and JU5. Verify that the
USB source supplies at least 500mA. Verify the maximum charge current rating or desired charge current
4) Ensure that the EV kit has the jumper settings
shown in Figure 3 and Table 1.
5) Turn on the power supply.
6) Verify that the voltage at SYS is approximately 4.4V
and that the current from BATT into the battery is 0A.
A. Li+\Li-POLY BATTERY
B. SIMULATED BATTERY (PRELOADED POWER SUPPLY)
BAT
BAT
MAX8903A EV KIT
GND
0 TO 4.2V
≥ 2.5A
2Ω
≥ 10W
MAX8903A EV KIT
GND
Figure 2. Battery Options for Evaluating the MAX8903A EV Kit
_______________________________________________________________________________________
3
Evaluates: MAX8903A–MAX8903E/MAX8903Y
Quick Start
JU11
SYS
A
MAX8903A
EVALUATION KIT
A
1
DC 2
3
JU1
BAT
JU9/USUS
JU8/CEN
JU3/IUSB
ADJUSTABLE
LOAD
BAT
VOLTMETER
BATTERY OR
SIMULATED BATTERY
1
2
3
A
JU10/THM
GND
1
2
3
SYS
VOLTMETER
GND
JU5
JU4
JU6
JU7
POWER
SUPPLY
JU2/DCM
Evaluates: MAX8903A–MAX8903E/MAX8903Y
MAX8903A Evaluation Kit
GND
*ALL AMMETERS NEED TO BE SET FOR 10A READINGS. THIS MINIMIZES THE SERIES IMPEDANCE OF THE AMMETER.
Figure 3. Connection Diagram and Default Jumper Connections
Table 1. Jumper Settings (JU1–JU11)
DESCRIPTION
JUMPER
LABEL
DEFAULT
POSITION
PINS 1-2
PINS 2-3
JU1
—
Pins 2-3 shunted
Use the DC pad or J2 as the DC input
Use the DC pad or J3 as the DC input
JU2
DCM
Pins 1-2 shunted
Configures DC input as adapter source
(see Table 2)
Configures DC input for USB power
(see Table 2)
JU3
IUSB
Pins 1-2 shunted
With DCM pins 1-2 shunted, IUSB sets
500mA USB charge current
With DCM pins 2-3 shunted, IUSB sets
100mA USB charge current
JU4
—
Shunted
JU5
—
Shunted
Shorts out R9 (see Table 3)
JU6
—
Open
Shunting JU6 shorts out R12 (see Table 4)
JU7
—
Shunted
Shorts out R13 (see Table 4)
JU8
CEN
Pins 1-2 shunted
Disables the battery charger
(when the charger is off, SYS remains on)
Enables the battery charger
(when the charger is on, SYS remains on)
JU9
USUS
Pins 2-3
USB suspend mode
USB not suspended
JU10
THM
Shunted
Connects THM to GND to bypass thermistor function
JU11
—
Shunted
Indicator LED anodes connected to SYS
4
Shorts out R8 (see Table 3)
_______________________________________________________________________________________
MAX8903A Evaluation Kit
3) When charging the battery with VBAT > VSYSMIN,
the SYS voltage is regulated at the battery voltage
for lowest power dissipation.
When the input current limit is reached, the first action
taken by the MAX8903 is to reduce battery charge current. This allows the charging current to be programmed for the fastest charge time, without dropping
the SYS load at load currents that would cause the
input supply regulation current to be exceeded.
If, after the charge current is reduced to 0mA, the load
at SYS still exceeds the input current limit, the battery
helps supply power to support the system load.
The MAX8903 features flexible input connections (at the
DC and USB inputs) and current-limit settings (set by
DCM and IUSB) to accommodate nearly any input power
configuration. However, it is expected that most systems
use one of two external power schemes: separate connections for USB and an AC adapter, or a single connector that accepts either USB or the AC adapter output.
Input and charger current limits are shown in Table 2.
Adjusting the DC-DC Converter Output
Current Limit and BAT Fast-Charge
Current Limit
Input and charger current limits are set, as shown in
Table 2. It is often preferable to change the input current limit as the input power source is changed. The
MAX8903A facilitates this by allowing different input
current limits for the DC and USB inputs.
The SYS voltage regulates to three different regulation
points depending on the state of the MAX8903:
1) If CEN is high to disable the charger, or charging is
done, the SYS voltage regulates to 4.4V.
2) When charging the battery with VBAT < VSYSMIN, the
SYS voltage regulates to VSYSMIN + 0.2V and stays
above VSYSMIN during transient loads.
Table 2. Input Limiter Control Logic
POWER SOURCE
AC Adapter at DC Input
DOK
UOK
DCM
IUSB
USUS
DC STEP-DOWN
OUTPUT
CURRENT LIMIT
L
X
H
X
X
6000/RIDC
L
X
L
L
L
100mA
L
X
L
H
L
500mA
L
X
L
X
H
USB suspend
USB INPUT
CURRENT LIMIT
Lesser of
1200/RISET and
6000/RIDC
USB input off. DC
input has priority.
USB Power at DC Input
H
L
X
L
L
H
L
X
H
L
USB Power at USB Input,
DC Unconnected
DC and USB Unconnected
MAXIMUM
CHARGE
CURRENT***
Lesser of
1200/RISET and
100mA
Lesser of
1200/RISET and
500mA
0
100mA
Lesser of
1200/RISET and
100mA
H
L
X
X
H
USB suspend
Lesser of
1200/RISET and
500mA
0
H
H
X
X
X
No USB input
0
No DC input
500mA
***Charge current cannot exceed the input current limit. Charge may be less than the maximum charge current if the total SYS load
exceeds the input current limit.
X = Don’t care.
_______________________________________________________________________________________
5
Evaluates: MAX8903A–MAX8903E/MAX8903Y
rating of the battery. Ensure that the charge current setting of the EV kit does not exceed the battery rating, or
replace resistor R11 (or adjust JU6 and JU7) as
required. See the Adjusting the DC-DC Converter
Output Current Limit and BAT Fast-Charge Current
Limit section for more details.
Evaluates: MAX8903A–MAX8903E/MAX8903Y
MAX8903A Evaluation Kit
EV Kit On-Board Current-Limit Adjustment
The MAX8903’s DC-DC converter output current limit
can be adjusted on the EV kit by shunting JU4, JU5, or
both. See Table 3 for jumper and resistor combinations
and corresponding current limits. The BAT fast-charge
current limit can be adjusted by shunting JU6, JU7, or
both. See Table 4 for jumper and resistor combinations
and corresponding fast-charge current limits.
Thermistor (THM)
The EV kit comes with a thermistor preinstalled on the
NTC footprint. To evaluate the MAX8903A with a battery-pack thermistor, remove the thermistor and connect
to the EV kit using the THM pad. Details of thermistors
are covered in the MAX8903 IC data sheet. To disable
the thermistor function, shunt jumper JU10.
Charge Timers
A fault timer prevents the battery from charging indefinitely. The fault prequalification and fast-charge timers
are controlled by the capacitance at CT (C5).
t PREQUAL = 33 min ×
C5
0. 15μF
(tPREQUAL is when VBATT < 3V).
t FST -CHG = 660 min ×
C5
0. 15μF
t TOP -OFF = 15s (MAX8903 A / C / D / Y )
t TOP -OFF = 132min ×
While in fast-charge mode, a large system load or device
self-heating could cause the MAX8903 to reduce charge
current. Under these circumstances, the fast-charge
timer is slowed by 2x if the charge current drops below
50% of the programmed fast-charge level, and suspended if the charge current drops below 20% of the programmed level. The fast-charge timer is not affected at
any current if the charger is regulating the BAT voltage at
4.2V (i.e., the charger is in voltage mode).
Indicator LEDs
Indicator LEDs are provided for CHG, FLT, DOK, and
UOK. The CHG LED (D3) is on when the battery charger is in its prequalification and fast-charge states. The
FLT LED (D2) is on when the battery charger has
entered a fault state after the charge timer expires. The
DOK LED (D1) is on when 4.15V < VDC < 16V. The
UOK LED (D4) is on when the source at USB is 4.1V <
VUSB < 6.6V. Refer to the MAX8903 IC data sheet for
more details regarding CHG, FLT, DOK, and UOK.
Charge Enable (CEN)
When CEN is low, the charger is on. When CEN is high,
the charger turns off. CEN does not affect the SYS output, which remains on. In many systems, there is no
need for the system controller (typically a microprocessor) to disable the charger, because the MAX8903
Smart Power Selector™ circuitry independently manages charging and adapter/battery power hand-off. In
these situations, CEN may be connected to ground.
C CT
(MAX8903 B/ E)
0. 15μF
Table 3. DC-DC Converter Output Current Limit (JU4, JU5)
JUMPER
JU5
RESISTORS FROM IDC TO
GND
RESISTANCE FROM IDC TO
GND ()
SYS CURRENT LIMIT (A)
Open
Open
R7 + R8 + R9
12k
0.5
Open
Shunt
R7 + R8
6k
1
Shunt
Open
R7 + R9
9k
0.66
Shunt
Shunt
R7
3k
2
RESISTANCE FROM IDC TO
GND ()
BAT FAST-CHARGE CURRENT
LIMIT (A)
0.5
JU4
Table 4. BAT Fast-Charge Current Limit (JU6, JU7)
JUMPER
JU7
RESISTORS FROM IDC TO
GND
Open
Open
R11 + R12 + R13
2.4k
Open
Shunt
R11 + R12
1.2k
1
Shunt
Open
R11 + R13
1.8k
0.66
Shunt
Shunt
R11
604
2
JU6
Smart Power Selector is a trademark of Maxim Integrated Products, Inc.
6
_______________________________________________________________________________________
MAX8903A Evaluation Kit
Evaluates: MAX8903A–MAX8903E/MAX8903Y
DC
DC
1
J2
2
2
3
3
JU1
LX
28
27
GND
L1
1μH
C1
2.2μF
R15
0.56Ω
1%
5
J3
LX
C10
4.7μF
4
1
3
2
3
DC
4
DC
1
1
PG
2
PG
DC
TP3
1
2
3
VL
JU2
5
C7
0.1μF
LX
JU3
7
R1
2.2kΩ
1%
LED
DCM
8
D1
9
C5
0.1μF
R10
OPEN
D3
DOK
21
BAT
20
BAT
R7
3.01kΩ
1%
UOK
R12
604Ω
1%
VL
1
2
3
JU9
R4
2.2kΩ LED
1%
19
FLT
11
R2
2.2kΩ LED
1%
IDC
GND
FLT
18
D2
TP2
USB
R11
604Ω
1%
13
1
USB
17
JU8
14
15
2
3
C2
4.7μF
GND
J1
4
VL
ISET
VL
1
2
3
J4-10
J4-9
J4-8
J4-7
J4-6
J4-5
J4-4
J4-3
J4-2
J4-1
GND
CT
R18
OPEN
R13
1.21kΩ
1%
J4
C3A
10μF
D4
12
JU6
BATT
VL
UOK
R8
3.01kΩ
1%
R14
OPEN
JU7
22
TP1
JU4
R9
6.04kΩ
1%
C9
OPEN
R3
2.2kΩ LED
1%
IUSB
R17
OPEN
JU5
GND
THM
10
C8
OPEN
C4
10μF
MAX8903A
VL
C6
2.2μF
SYS
CHG
BST
CHG
DOK
JU11
24
SYS
23
SYS
U1
6
1
2
3
LED
26
CS
25
CS
CEN
THM
R5
100kΩ
1%
16
NTC
USUS
JU10
R6
OPEN
THM
THM
C11
OPEN
EP
Figure 4. MAX8903A EV Kit Schematic
_______________________________________________________________________________________
7
Evaluates: MAX8903A–MAX8903E/MAX8903Y
MAX8903A Evaluation Kit
Figure 5. MAX8903A EV Kit Component Placement Guide—Top Layer
8
_______________________________________________________________________________________
MAX8903A Evaluation Kit
Evaluates: MAX8903A–MAX8903E/MAX8903Y
Figure 6. MAX8903A EV Kit PCB Layout—Top Layer
_______________________________________________________________________________________
9
Evaluates: MAX8903A–MAX8903E/MAX8903Y
MAX8903A Evaluation Kit
Figure 7. MAX8903A EV Kit PCB Layout—Inner Layer 2
10
______________________________________________________________________________________
MAX8903A Evaluation Kit
Evaluates: MAX8903A–MAX8903E/MAX8903Y
Figure 8. MAX8903A EV Kit PCB Layout—Inner Layer 3
______________________________________________________________________________________
11
Evaluates: MAX8903A–MAX8903E/MAX8903Y
MAX8903A Evaluation Kit
Figure 9. MAX8903A EV Kit PCB Layout—Bottom Layer
12
______________________________________________________________________________________
MAX8903A Evaluation Kit
PAGES
CHANGED
REVISION
NUMBER
REVISION
DATE
0
1/09
Initial release
1
8/09
Added MAX8903C and MAX8903D to parts evaluated
1–12
2
10/10
Added MAX8903B, MAX8903E, and MAX8903Y to parts evaluated
1–12
DESCRIPTION
—
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
© 2010 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.
Evaluates: MAX8903A–MAX8903E/MAX8903Y
Revision History