Freescale Semiconductor Technical Data MPX5010 Rev 11, 01/2007 Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated MPX5010 MPXV5010G SERIES INTEGRATED PRESSURE SENSOR 0 to 10 kPa (0 to 1.45 psi) 0.2 to 4.7 V OUTPUT The MPX5010/MPXV5010G series piezoresistive transducers are state-ofthe-art monolithic silicon pressure sensors designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure. Features • 5.0% Maximum Error over 0° to 85°C • Ideally Suited for Microprocessor or Microcontroller-Based Systems • Durable Epoxy Unibody and Thermoplastic (PPS) Surface Mount Package • Temperature Compensated over –40° to +125°C • Patented Silicon Shear Stress Strain Gauge • Available in Differential and Gauge Configurations • Available in Surface Mount (SMT) or Through-hole (DIP) Configurations Application Examples • Hospital Beds • HVAC • Respiratory Systems • Process Control ORDERING INFORMATION Device Case MPX Series Packing Device Options Type No. Order No. Options Marking SMALL OUTLINE PACKAGE (MPXV5010G SERIES) Basic Gauge, Element Only, SMT 482 MPXV5010G6U Rails MPXV5010G Elements Gauge, Element Only, DIP 482B MPXV5010G7U Rails MPXV5010G Ported Gauge, Axial Port, SMT 482A MPXV5010GC6U Rails MPXV5010G Elements Gauge, Axial Port, DIP 482C MPXV5010GC7U Rails MPXV5010G Gauge, Axial Port, SMT 482A MPXV5010GC6T1 Tape & MPXV5010G Reel Gauge, Side Port, SMT 1369 MPXV5010GP Trays MPXV5010G Gauge, Dual Port, SMT 1351 MPXV5010DP Trays MPXV5010G UNIBODY PACKAGE (MPX2202 SERIES) Basic Differential 867 MPX5010D — MPXV5010D Element Ported Differential, Gauge 867C MPX5010DP — MPXV5010DP Elements Gauge 867B MPX5010GP — MPXV5010GP Gauge, Axial 867E MPX5010GS — MPXV5010D Gauge, Axial PC Mount 867F MPX5010GSX — MPXV5010D SMALL OUTLINE PACKAGE MPXV5010G6U CASE 482-01 MPXV5010GC6U/C6T1 CASE 482A-01 J MPXV5010G7U CASE 482B-03 MPXV5010GP CASE 1369-01 MPXV5010GC7U CASE 482C-03 MPXV5010DP CASE 1351-01 UNIBODY PACKAGE PIN NUMBERS(1) 1 Vout 4 N/C 2 3 Gnd VS 5 6 N/C N/C 1. Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead. SMALL OUTLINE PACKAGE PIN NUMBERS(1) 1 2 N/C VS 5 6 N/C N/C 3 4 Gnd Vout 7 8 N/C N/C 1. Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead. UNIBODY PACKAGES MPX5010D CASE 867-08 MPX5010GP CASE 867B-04 © Freescale Semiconductor, Inc., 2007. All rights reserved. MPX5010DP CASE 867C-05 MPX5010GS CASE 867E-03 MPX5010GSX CASE 867F-03 VS Thin Film Temperature Compensation and Gain Stage #1 Sensing Element GND Gain Stage #2 and Ground Reference Shift Circuitry Vout Pins 1 and 5 through 8 are NO CONNECTS for surface mount package Pins 4, 5, and 6 are NO CONNECTS for unibody package Figure 1. Fully Integrated Pressure Sensor Schematic Table 1. Maximum Ratings(1) Rating Symbol Value Unit Maximum Pressure (P1 > P2) Pmax 75 kPa Storage Temperature Tstg –40 to +125 °C Operating Temperature TA –40 to +125 °C 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device. MPX5010 2 Sensors Freescale Semiconductor Table 2. Operating Characteristics (VS = 5.0 Vdc, TA = 25°C unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 3 required to meet specification.) Characteristic Symbol Min Typ Max Unit Pressure Range(1) POP 0 — 10 kPa Supply Voltage(2) VS 4.75 5.0 5.25 Vdc Supply Current Io — 5.0 10 mAdc Minimum Pressure Offset(3) @ VS = 5.0 Volts (0 to 85°C) Voff 0 0.2 0.425 Vdc Full Scale Output(4) @ VS = 5.0 Volts (0 to 85°C) VFSO 4.475 4.7 4.925 Vdc Full Scale Span(5) @ VS = 5.0 Volts (0 to 85°C) VFSS 4.275 4.5 4.725 Vdc Accuracy(6) (0 to 85°C) — — — ±5.0 %VFSS V/P — 450 —- mV/kPa Response Time(7) tR — 1.0 —- ms Output Source Current at Full Scale Output IO+ — 0.1 —- mAdc Warm-Up Time(8) — — 20 —- ms Offset Stability(9) — — ±0.5 —- %VFSS Sensitivity 1. 1.0 kPa (kiloPascal) equals 0.145 psi. 2. Device is ratiometric within this specified excitation range. 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure. 4. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure. 5. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure. 6. Accuracy (error budget) consists of the following: • Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range. • Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. • Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C. • TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C. • TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C. • Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C. 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure. 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized. 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test. Table 3. Mechanical Characteristics Characteristics Typ Unit Weight, Basic Element (Case 867) 4.0 grams Weight, Basic Element (Case 482) 1.5 grams MPX5010 Sensors Freescale Semiconductor 3 ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip. Figure 2 illustrates the Differential or Gauge configuration in the basic chip carrier (Case 482). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The MPX5010 and MPXV5010G series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on Fluoro Silicone Gel Die Coat sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application. Figure 3 shows the recommended decoupling circuit for interfacing the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended. Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range. Stainless Steel Cap Die +5 V P1 Thermoplastic Case Wire Bond Vout OUTPUT Vs Lead Frame IPS 1.0 µF P2 0.01 µF GND 470 pF Die Bond Differential Sensing Element Figure 2. Cross-Sectional Diagram SOP (not to scale) Figure 3. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646.) 5.0 Transfer Function: Vout = VS*(0.09*P+0.04) ± ERROR VS = 5.0 Vdc TEMP = 0 to 85°C 4.5 4.0 3.5 Output (V) 3.0 2.5 TYPICAL MAX 2.0 MIN 1.5 1.0 0.5 0 0 1 2 3 4 5 6 7 8 9 10 11 Differential Pressure (kPa) Figure 4. Output versus Pressure Differential MPX5010 4 Sensors Freescale Semiconductor Transfer Function (MPX5010, MPXV5010G) Nominal Transfer Value: Vout = VS x (0.09 x P + 0.04) ± (Pressure Error x Temp. Factor x 0.09 x VS) VS = 5.0 V ± 0.25 Vdc Temperature Error Band MPX5010, MPXV5010G SERIES 4.0 3.0 Temperature Error Factor 2.0 Temp Multiplier –40 0 to 85 +125 3 1 3 1.0 0.0 –40 –20 0 20 40 80 60 100 120 140 Temperature in °C NOTE: The Temperature Multiplier is a linear response from 0° to –40°C and from 85° to 125°C. Pressure Error Band 0.5 0.4 0.3 Pressure Error (kPa) 0.2 0.1 0 –0.1 Pressure (kPa) 0 1 2 3 4 5 6 7 8 9 10 –0.2 –0.3 –0.4 –0.5 Pressure 0 to 10 (kPa) Error (Max) ±0.5 (kPa) MPX5010 Sensors Freescale Semiconductor 5 PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The MPX pressure Part Number sensor is designed to operate with positive differential pressure applied, P1 > P2. The Pressure (P1) side may be identified by using the table below: Pressure (P1) Side Identifier Case Type MPX5010D 867 Stainless Steel Cap MPX5010DP 867C Side with Part Marking MPX5010GP 867B Side with Port Attached MPX5010GS 867E Side with Port Attached MPX5010GSX 867F Side with Port Attached MPXV5010G6U 482 Stainless Steel Cap MPXV5010G7U 482B Stainless Steel Cap MPXV5010GC6U/T1 482A Side with Port Attached MPXV5010GC7U 482C Side with Port Attached MPXV5010GP 1369 Side with Port Attached MPXV5010DP 1351 Side with Part Marking MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads. 0.100 TYP 8X 2.54 0.660 16.76 0.060 TYP 8X 1.52 0.300 7.62 0.100 TYP 8X 2.54 inch mm SCALE 2:1 Figure 5. SOP Footprint (Case 482) MPX5010 6 Sensors Freescale Semiconductor PACKAGE DIMENSIONS -A- D 8 PL 0.25 (0.010) 4 5 M T B S A S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT. -BG 8 1 S N H C J -TSEATING PLANE PIN 1 IDENTIFIER K M DIM A B C D G H J K M N S INCHES MIN MAX 0.415 0.425 0.415 0.425 0.212 0.230 0.038 0.042 0.100 BSC 0.002 0.010 0.009 0.011 0.061 0.071 0˚ 7˚ 0.405 0.415 0.709 0.725 MILLIMETERS MIN MAX 10.54 10.79 10.54 10.79 5.38 5.84 0.96 1.07 2.54 BSC 0.05 0.25 0.23 0.28 1.55 1.80 0˚ 7˚ 10.29 10.54 18.01 18.41 CASE 482-01 ISSUE O SMALL OUTLINE PACKAGE -A- D 4 0.25 (0.010) 5 N 8 PL M T B S A S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT. -BG 8 1 S W V C H J -TK M PIN 1 IDENTIFIER DIM A B C D G H J K M N S V W INCHES MIN MAX 0.415 0.425 0.415 0.425 0.500 0.520 0.038 0.042 0.100 BSC 0.002 0.010 0.009 0.011 0.061 0.071 0˚ 7˚ 0.444 0.448 0.709 0.725 0.245 0.255 0.115 0.125 MILLIMETERS MIN MAX 10.54 10.79 10.54 10.79 12.70 13.21 0.96 1.07 2.54 BSC 0.05 0.25 0.23 0.28 1.55 1.80 0˚ 7˚ 11.28 11.38 18.01 18.41 6.22 6.48 2.92 3.17 SEATING PLANE CASE 482A-01 ISSUE A SMALL OUTLINE PACKAGE MPX5010 Sensors Freescale Semiconductor 7 PACKAGE DIMENSIONS -ANOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT. 6. DIMENSION S TO CENTER OF LEAD WHEN FORMED PARALLEL. 4 5 -BG 8 1 0.25 (0.010) M T B D 8 PL S A S DETAIL X S PIN 1 IDENTIFIER N C -T- SEATING PLANE DIM A B C D G J K M N S INCHES MILLIMETERS MIN MAX MIN MAX 0.415 0.425 10.54 10.79 0.415 0.425 10.54 10.79 0.210 0.220 5.33 5.59 0.026 0.034 0.66 0.864 0.100 BSC 2.54 BSC 0.009 0.011 0.23 0.28 0.100 0.120 2.54 3.05 0˚ 15˚ 0˚ 15˚ 0.405 0.415 10.29 10.54 0.540 0.560 13.72 14.22 K M J DETAIL X CASE 482B-03 ISSUE B SMALL OUTLINE PACKAGE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT. 6. DIMENSION S TO CENTER OF LEAD WHEN FORMED PARALLEL. -A4 5 N -BG 0.25 (0.010) 8 1 M T B D 8 PL S A S DIM A B C D G J K M N S V W DETAIL X S W V PIN 1 IDENTIFIER C -T- INCHES MILLIMETERS MAX MAX MIN MIN 10.79 0.425 10.54 0.415 10.79 0.425 10.54 0.415 13.21 0.520 12.70 0.500 0.864 0.66 0.034 0.026 0.100 BSC 2.54 BSC 0.28 0.23 0.011 0.009 3.05 2.54 0.120 0.100 15˚ 0˚ 15˚ 0˚ 11.38 0.448 11.28 0.444 14.22 0.560 13.72 0.540 6.48 6.22 0.255 0.245 3.17 2.92 0.125 0.115 SEATING PLANE K M J DETAIL X CASE 482C-03 ISSUE B SMALL OUTLINE PACKAGE MPX5010 8 Sensors Freescale Semiconductor PACKAGE DIMENSIONS C R POSITIVE PRESSURE (P1) M B -AN PIN 1 SEATING PLANE 1 2 3 4 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION -A- IS INCLUSIVE OF THE MOLD STOP RING. MOLD STOP RING NOT TO EXCEED 16.00 (0.630). DIM A B C D F G J L M N R S L 6 -TG J S F D 6 PL 0.136 (0.005) STYLE 1: PIN 1. 2. 3. 4. 5. 6. VOUT GROUND VCC V1 V2 VEX STYLE 2: PIN 1. 2. 3. 4. 5. 6. OPEN GROUND -VOUT VSUPPLY +VOUT OPEN M T A M STYLE 3: PIN 1. 2. 3. 4. 5. 6. INCHES MILLIMETERS MAX MIN MAX MIN 16.00 0.595 0.630 15.11 13.56 0.514 0.534 13.06 5.59 0.200 0.220 5.08 0.84 0.027 0.033 0.68 1.63 0.048 0.064 1.22 0.100 BSC 2.54 BSC 0.40 0.014 0.016 0.36 18.42 0.695 0.725 17.65 30˚ NOM 30˚ NOM 12.57 0.475 0.495 12.07 11.43 0.430 0.450 10.92 0.090 0.105 2.29 2.66 OPEN GROUND +VOUT +VSUPPLY -VOUT OPEN CASE 867-08 ISSUE N UNIBODY PACKAGE MPX5010 Sensors Freescale Semiconductor 9 PACKAGE DIMENSIONS PAGE 1 OF 2 CASE 867B-04 ISSUE G UNIBODY PACKAGE MPX5010 10 Sensors Freescale Semiconductor PACKAGE DIMENSIONS PAGE 2 OF 2 CASE 867B-04 ISSUE G UNIBODY PACKAGE MPX5010 Sensors Freescale Semiconductor 11 PACKAGE DIMENSIONS P 0.25 (0.010) M T Q -A- M U W X R PORT #1 POSITIVE PRESSURE (P1) NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH. DIM A B C D F G J K L N P Q R S U V W X L V PORT #2 VACUUM (P2) PORT #1 POSITIVE PRESSURE (P1) N -Q- PORT #2 VACUUM (P2) B PIN 1 1 2 3 4 5 K 6 C SEATING PLANE -T- -T- S SEATING PLANE D 6 PL 0.13 (0.005) G J F M A INCHES MIN MAX 1.145 1.175 0.685 0.715 0.405 0.435 0.027 0.033 0.048 0.064 0.100 BSC 0.014 0.016 0.695 0.725 0.290 0.300 0.420 0.440 0.153 0.159 0.153 0.159 0.063 0.083 0.220 0.240 0.910 BSC 0.182 0.194 0.310 0.330 0.248 0.278 STYLE 1: PIN 1. 2. 3. 4. 5. 6. M MILLIMETERS MIN MAX 29.08 29.85 17.40 18.16 10.29 11.05 0.68 0.84 1.22 1.63 2.54 BSC 0.36 0.41 17.65 18.42 7.37 7.62 10.67 11.18 3.89 4.04 3.89 4.04 1.60 2.11 5.59 6.10 23.11 BSC 4.62 4.93 7.87 8.38 6.30 7.06 VOUT GROUND VCC V1 V2 VEX CASE 867C-05 ISSUE F UNIBODY PACKAGE -B- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. A C DIM A B C D E F G J K N S V V PIN 1 PORT #1 POSITIVE PRESSURE (P1) 6 K J N 5 -T- 3 2 1 S G F E 4 D 6 PL 0.13 (0.005) M T B M INCHES MILLIMETERS MAX MAX MIN MIN 18.28 0.720 17.53 0.690 6.48 6.22 0.245 0.255 20.82 0.780 0.820 19.81 0.84 0.69 0.027 0.033 4.72 4.52 0.178 0.186 1.63 1.22 0.048 0.064 0.100 BSC 2.54 BSC 0.41 0.36 0.014 0.016 9.53 8.76 0.345 0.375 7.87 7.62 0.310 0.300 6.10 5.59 0.220 0.240 4.93 4.62 0.182 0.194 STYLE 1: PIN 1. 2. 3. 4. 5. 6. VOUT GROUND VCC V1 V2 VEX CASE 867E-03 ISSUE D UNIBODY PACKAGE MPX5010 12 Sensors Freescale Semiconductor PACKAGE DIMENSIONS -TC A E -Q- U N V B R PIN 1 PORT #1 POSITIVE PRESSURE (P1) -P0.25 (0.010) M T Q 6 M 5 4 3 2 1 S K J 0.13 (0.005) M T P S D 6 PL Q S G F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E F G J K N P Q R S U V INCHES MILLIMETERS MAX MIN MIN MAX 28.45 27.43 1.080 1.120 19.30 18.80 0.740 0.760 16.51 16.00 0.630 0.650 0.84 0.68 0.027 0.033 4.57 4.06 0.160 0.180 1.63 1.22 0.048 0.064 0.100 BSC 2.54 BSC 0.41 0.36 0.014 0.016 6.10 5.59 0.220 0.240 2.03 1.78 0.070 0.080 4.06 3.81 0.150 0.160 4.06 3.81 0.150 0.160 11.68 11.18 0.440 0.460 18.42 17.65 0.695 0.725 21.84 21.34 0.840 0.860 4.93 4.62 0.182 0.194 STYLE 1: PIN 1. 2. 3. 4. 5. 6. VOUT GROUND VCC V1 V2 VEX CASE 867F-03 ISSUE D UNIBODY PACKAGE MPX5010 Sensors Freescale Semiconductor 13 PACKAGE DIMENSIONS PAGE 1 OF 2 CASE 1351-01 ISSUE A SMALL OUTLINE PACKAGE MPX5010 14 Sensors Freescale Semiconductor PACKAGE DIMENSIONS PAGE 2 OF 2 CASE 1351-01 ISSUE A SMALL OUTLINE PACKAGE MPX5010 Sensors Freescale Semiconductor 15 PACKAGE DIMENSIONS PAGE 1 OF 2 CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE MPX5010 16 Sensors Freescale Semiconductor PACKAGE DIMENSIONS PAGE 2 OF 2 CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE MPX5010 Sensors Freescale Semiconductor 17 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] MPX5010 Rev. 11 01/2007 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved.