SCLS323M − MARCH 1996 − REVISED JUNE 2005 D D D D D D Latch-Up Performance Exceeds 250 mA Per Operating Range of 2 V to 5.5 V Max tpd of 8 ns at 5 V Low Power Consumption, 10-µA Max ICC ±8-mA Output Drive at 5 V Schmitt Trigger Action at All Inputs Makes the Circuit Tolerant for Slower Input Rise and Fall Time D DCK PACKAGE (TOP VIEW) DBV PACKAGE (TOP VIEW) A 1 B 2 GND 3 5 4 JESD 17 ESD Protection Exceeds JESD 22 − 2000-V Human-Body Model (A114-A) − 200-V Machine Model (A115-A) − 1000-V Charged-Device Model (C101) A 1 B 2 GND 3 DRL PACKAGE (TOP VIEW) VCC 5 VCC Y 4 A 1 B 2 GND 3 5 VCC 4 Y Y See mechanical drawings for dimensions. description/ordering information The SN74AHC1G86 is a single 2-input exclusive-OR gate. The device performs the Boolean function Y = A ⊕ B or Y = AB + AB in positive logic. A common application is as a true/complement element. If one of the inputs is low, the other input is reproduced in true form at the output. If one of the inputs is high, the signal on the other input is reproduced inverted at the output. ORDERING INFORMATION SOT (SOT-23) − DBV −40°C −40 C to 85 85°C C ORDERABLE PART NUMBER PACKAGE† TA SOT (SC-70) − DCK SOT (SOT-553) − DRL Reel of 3000 SN74AHC1G86DBVR Reel of 250 SN74AHC1G86DBVT Reel of 3000 SN74AHC1G86DCKR Reel of 250 SN74AHC1G86DCKT Reel of 4000 SN74AHC1G86DRLR TOP-SIDE MARKING‡ A86_ AH_ AH_ † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ The actual top-side marking has one additional character that designates the assembly/test site. FUNCTION TABLE INPUTS A B OUTPUT Y L L L L H H H L H H H L Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2005, Texas Instruments Incorporated ! " #$%! " &$'(#! )!%* )$#!" # ! "&%##!" &% !+% !%" %," "!$%!" "!)) -!.* )$#! &#%""/ )%" ! %#%""(. #($)% !%"!/ (( &%!%"* POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCLS323M − MARCH 1996 − REVISED JUNE 2005 exclusive-OR logic An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols. EXCLUSIVE OR =1 These are five equivalent exclusive-OR symbols valid for an SN74AHC1G86 gate in positive logic; negation may be shown at any two ports. LOGIC-IDENTITY ELEMENT = The output is active (low) if all inputs stand at the same logic level (i.e., A = B). EVEN-PARITY ELEMENT 2k The output is active (low) if an even number of inputs (i.e., 0 or 2) are active. ODD-PARITY ELEMENT 2k + 1 The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active. absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA Output clamp current, IOK (VO < 0 or VO > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Package thermal impedance, θJA (see Note 2): DBV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206°C/W DCK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252°C/W DRL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCLS323M − MARCH 1996 − REVISED JUNE 2005 recommended operating conditions (see Note 3) VCC VIH Supply voltage VCC = 2 V VCC = 3 V High-level input voltage 5.5 2.1 ∆t/∆v Input transition rise or fall rate V 1.65 0 5.5 V 0 VCC −50 mA VCC = 2 V VCC = 3.3 V ± 0.3 V Low-level output current V 0.9 V −4 VCC = 5 V ± 0.5 V VCC = 2 V IOL V 0.5 Output voltage High-level output current UNIT 3.85 Input voltage IOH 2 VCC = 3 V VCC = 5.5 V Low-level input voltage VI VO MAX 1.5 VCC = 5.5 V VCC = 2 V VIL MIN −8 50 VCC = 3.3 V ± 0.3 V VCC = 5 V ± 0.5 V 4 VCC = 3.3 V ± 0.3 V VCC = 5 V ± 0.5 V 100 8 20 mA mA mA ns/V TA Operating free-air temperature −40 85 °C NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = −50 mA VCC MIN TA = 25°C TYP MAX MIN 2V 1.9 2 1.9 3V 2.9 3 2.9 4.5 V 4.4 4.5 4.4 IOH = −4 mA 3V 2.58 IOH = −8 mA 4.5 V 3.94 VOH IOL = 50 mA MAX UNIT V 2.48 3.8 2V 0.1 0.1 3V 0.1 0.1 4.5 V 0.1 0.1 IOL = 4 mA 3V 0.36 0.44 IOL = 8 mA 4.5 V 0.36 0.44 0 V to 5.5 V ±0.1 ±1 mA 1 10 mA 10 10 pF VOL II ICC VI = 5.5 V or GND VI = VCC or GND, Ci VI = VCC or GND IO = 0 5.5 V 5V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 4 V 3 SCLS323M − MARCH 1996 − REVISED JUNE 2005 switching characteristics over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) LOAD CAPACITANCE tPLH tPHL A or B Y CL = 15 pF tPLH tPHL A or B Y CL = 50 pF MIN TA = 25°C TYP MAX MIN MAX 7 11 1 13 7 11 1 13 9.5 14.5 1 16.5 9.5 14.5 1 16.5 UNIT ns ns switching characteristics over recommended operating free-air temperature range, VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) LOAD CAPACITANCE tPLH tPHL A or B Y CL = 15 pF tPLH tPHL A or B Y CL = 50 pF MIN TA = 25°C TYP MAX MIN MAX 4.8 6.8 1 8 4.8 6.8 1 8 6.3 8.8 1 10 6.3 8.8 1 10 UNIT ns ns operating characteristics, VCC = 5 V, TA = 25°C PARAMETER Cpd 4 TEST CONDITIONS Power dissipation capacitance No load, POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 f = 1 MHz TYP 18 UNIT pF SCLS323M − MARCH 1996 − REVISED JUNE 2005 PARAMETER MEASUREMENT INFORMATION From Output Under Test RL = 1 kΩ From Output Under Test Test Point VCC Open S1 TEST GND CL (see Note A) CL (see Note A) S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open Drain Open VCC GND VCC LOAD CIRCUIT FOR 3-STATE AND OPEN-DRAIN OUTPUTS LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS VCC 50% VCC Timing Input tw tsu VCC Input 50% VCC 50% VCC 0V th VCC 50% VCC Data Input 50% VCC 0V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VOLTAGE WAVEFORMS PULSE DURATION VCC 50% VCC Input 50% VCC 0V tPLH In-Phase Output tPHL 50% VCC tPHL Out-of-Phase Output VOH 50% VCC VOL Output Waveform 1 S1 at VCC (see Note B) 50% VCC VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS 50% VCC 50% VCC 0V tPZL tPLZ ≈VCC 50% VCC tPZH tPLH VOH 50% VCC VOL VCC Output Control Output Waveform 2 S1 at GND (see Note B) VOL + 0.3 V VOL tPHZ 50% VCC VOH − 0.3 V VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns. D. The outputs are measured one at a time, with one input transition per measurement. Figure 1. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 PACKAGE OPTION ADDENDUM www.ti.com 10-Oct-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty SN74AHC1G86DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DBVRE4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DBVTE4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DCKRE4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DCKT ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DCKTE4 ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DRLR ACTIVE SOP DRL 5 4000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74AHC1G86DRLRG4 ACTIVE SOP DRL 5 4000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MPDS025C – FEBRUARY 1997 – REVISED FEBRUARY 2002 DCK (R-PDSO-G5) PLASTIC SMALL-OUTLINE PACKAGE 0,30 0,15 0,65 5 0,10 M 4 1,40 1,10 1 0,13 NOM 2,40 1,80 3 Gage Plane 2,15 1,85 0,15 0°–8° 0,46 0,26 Seating Plane 1,10 0,80 0,10 0,00 0,10 4093553-2/D 01/02 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion. Falls within JEDEC MO-203 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated