TI SN74LVC1G17YZPR

SCES351N − JUNE 2001 − REVISED OCTOBER 2005
D Available in the Texas Instruments
D
D
D
D
D ±24-mA Output Drive at 3.3 V
D Ioff Supports Partial-Power-Down Mode
NanoStar and NanoFree Packages
Supports 5-V VCC Operation
Inputs Accept Voltages to 5.5 V
Max tpd of 4.6 ns at 3.3 V
Low Power Consumption, 10-µA Max ICC
1
A
2
GND
3
NC
1
A
2
GND
3
VCC
5
D
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
DCK PACKAGE
(TOP VIEW)
DBV PACKAGE
(TOP VIEW)
NC
Operation
D Latch-Up Performance Exceeds 100 mA Per
5
4
DRL PACKAGE
(TOP VIEW)
VCC
Y
NC
1
A
2
GND
3
5
VCC
4
Y
Y
4
YEA, YEP, YZA, OR YZP PACKAGE
(BOTTOM VIEW)
GND
A
DNU
3 4
Y
2
1 5
YZV PACKAGE
(BOTTOM VIEW)
GND
2 3
Y
A
1 4
VCC
VCC
DNU − Do not use
See mechanical drawings for dimensions.
description/ordering information
This single Schmitt-trigger buffer is designed for 1.65-V to 5.5-V VCC operation.
The SN74LVC1G17 contains one buffer and performs the Boolean function Y = A. The device functions as an
independent buffer, but because of Schmitt action, it may have different input threshold levels for positive-going
(VT+) and negative-going (VT−) signals.
NanoStar and NanoFree package technology is a major breakthrough in IC packaging concepts, using the
die as the package.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
NanoStar and NanoFree are trademarks of Texas Instruments.
Copyright  2005, Texas Instruments Incorporated
! "#$ ! %#&'" ($)
(#"! " !%$""! %$ *$ $! $+! !#$!
!(( ,-) (#" %"$!!. ($! $"$!!'- "'#($
$!. '' %$$!)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCES351N − JUNE 2001 − REVISED OCTOBER 2005
ORDERING INFORMATION
PACKAGE†
TA
ORDERABLE PART NUMBER
NanoStar − WCSP (DSBGA)
0.17-mm Small Bump − YEA
SN74LVC1G17YEAR
NanoFree − WCSP (DSBGA)
0.17-mm Small Bump − YZA (Pb-free)
SN74LVC1G17YZAR
Reel of 3000
NanoStar − WCSP (DSBGA)
0.23-mm Large Bump − YEP
−40°C to 85°C
TOP-SIDE MARKING‡
_ _ _C7_
SN74LVC1G17YEPR
NanoFree − WCSP (DSBGA)
0.23-mm Large Bump − YZP (Pb-free)
NanoFree − WCSP (DSBGA)
0.23-mm Large Bump − YZV (Pb-free)
SOT (SOT-23) − DBV
SOT (SC-70) − DCK
SOT (SOT-553) − DRL
SN74LVC1G17YZPR
Reel of 3000
SN74LVC1G17YZVR
Reel of 3000
SN74LVC1G17DBVR
Reel of 250
SN74LVC1G17DBVT
Reel of 3000
SN74LVC1G17DCKR
Reel of 250
SN74LVC1G17DCKT
Reel of 4000
SN74LVC1G17DRLR
____
C7
C17_
C7_
C7_
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
‡ DBV/DCK/DRL: The actual top-side marking has one additional character that designates the assembly/test site.
YEA/YEP, YZA/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following
character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).
YZV: The actual top-side marking is on two lines. Line 1 has four characters to denote year, month, day, and assembly/test site. Line 2 has two
characters which show the family and function code. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).
FUNCTION TABLE
INPUT
A
OUTPUT
Y
H
H
L
L
logic diagram (positive logic)
(DBV, DCK, DRL, YEA, YEP, YZA, and YZP Package)
A
2
4
1
3
Y
logic diagram (positive logic)
(YZV Package)
A
2
POST OFFICE BOX 655303
Y
• DALLAS, TEXAS 75265
SCES351N − JUNE 2001 − REVISED OCTOBER 2005
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, VO
(see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 3): DBV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206°C/W
DCK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252°C/W
DRL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142°C/W
YEA/YZA package . . . . . . . . . . . . . . . . . . . . . . . . . . . 154°C/W
YEP/YZP package . . . . . . . . . . . . . . . . . . . . . . . . . . . 132°C/W
YZV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. The value of VCC is provided in the recommended operating conditions table.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 4)
Operating
MIN
MAX
1.65
5.5
UNIT
VCC
Supply voltage
VI
VO
Input voltage
0
5.5
V
Output voltage
0
VCC
−4
V
Data retention only
VCC = 1.65 V
VCC = 2.3 V
IOH
−8
−16
High-level output current
VCC = 3 V
VCC = 4.5 V
VCC = 1.65 V
VCC = 2.3 V
IOL
V
1.5
−32
4
8
16
Low-level output current
VCC = 3 V
mA
−24
mA
24
VCC = 4.5 V
32
TA
Operating free-air temperature
−40
85
°C
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCES351N − JUNE 2001 − REVISED OCTOBER 2005
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
1.65 V
0.76
1.13
2.3 V
1.08
1.56
VT+
Positive-going input
threshold voltage
3V
1.48
1.92
2.19
2.74
5.5 V
2.65
3.33
1.65 V
0.35
0.59
2.3 V
0.56
0.88
3V
0.89
1.2
4.5 V
1.51
1.97
5.5 V
1.88
2.4
1.65 V
0.36
0.64
2.3 V
0.45
0.78
3V
0.51
0.83
4.5 V
0.58
0.93
0.69
1.04
∆VT
Hysteresis
(VT+ − VT−)
5.5 V
1.65 V to 4.5 V
1.65 V
IOH = −8 mA
IOH = −16 mA
VOH
II
Ioff
A input
ICC
∆ICC
3.8
1.65 V to 4.5 V
0.1
1.65 V
0.45
2.3 V
0.3
0.4
3V
0.55
0 to 5.5 V
0
VI = 5.5 V or GND,
One input at VCC − 0.6 V,
IO = 0
Other inputs at VCC or GND
1.65 V to 5.5 V
3 V to 5.5 V
Ci
VI = VCC or GND
† All typical values are at VCC = 3.3 V, TA = 25°C.
V
0.55
4.5 V
VI = 5.5 V or GND
VI or VO = 5.5 V
V
2.3
4.5 V
IOL = 24 mA
IOL = 32 mA
V
V
2.4
IOL = 8 mA
IOL = 16 mA
V
1.9
3V
IOL = 100 µA
IOL = 4 mA
UNIT
VCC − 0.1
1.2
2.3 V
IOH = −24 mA
IOH = −32 mA
VOL
MAX
4.5 V
VT−
Negative-going input
threshold voltage
IOH = −100 µA
IOH = −4 mA
TYP†
VCC
3.3 V
±5
µA
±10
µA
10
µA
500
mA
4.5
pF
switching characteristics over recommended operating free-air temperature range, CL = 15 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
tpd
4
FROM
(INPUT)
TO
(OUTPUT)
A
Y
POST OFFICE BOX 655303
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.8
9.9
1.6
5.5
1.5
4.6
0.9
4.4
• DALLAS, TEXAS 75265
UNIT
ns
SCES351N − JUNE 2001 − REVISED OCTOBER 2005
switching characteristics over recommended operating free-air temperature range, CL = 30 pF or
50 pF (unless otherwise noted) (see Figure 2)
PARAMETER
tpd
FROM
(INPUT)
TO
(OUTPUT)
A
Y
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.8
11
2
6.5
1.8
5.5
1.2
5
UNIT
ns
operating characteristics, TA = 25°C
PARAMETER
Cpd
Power dissipation capacitance
TEST CONDITIONS
f = 10 MHz
POST OFFICE BOX 655303
VCC = 1.8 V
TYP
VCC = 2.5 V
TYP
20
• DALLAS, TEXAS 75265
21
VCC = 3.3 V
TYP
22
VCC = 5 V
TYP
26
UNIT
pF
5
SCES351N − JUNE 2001 − REVISED OCTOBER 2005
PARAMETER MEASUREMENT INFORMATION
RL
From Output
Under Test
CL
(see Note A)
VLOAD
Open
S1
GND
RL
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUTS
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VI
tr/tf
VCC
VCC
3V
VCC
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
15 pF
15 pF
15 pF
15 pF
1 MΩ
1 MΩ
1 MΩ
1 MΩ
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
tPHL
VOH
VM
Output
VM
VOL
tPHL
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
VM
VM
VM
0V
tPZL
tPLZ
VLOAD/2
VM
tPZH
VOH
Output
VI
Output
Control
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
VM
VOH − V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCES351N − JUNE 2001 − REVISED OCTOBER 2005
PARAMETER MEASUREMENT INFORMATION
RL
From Output
Under Test
CL
(see Note A)
VLOAD
Open
S1
GND
RL
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUTS
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VI
tr/tf
VCC
VCC
3V
VCC
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
tPHL
VOH
VM
Output
VM
VOL
tPHL
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
VM
VM
VM
0V
tPZL
tPLZ
VLOAD/2
VM
tPZH
VOH
Output
VI
Output
Control
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
VM
VOH − V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 2. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
PACKAGE OPTION ADDENDUM
www.ti.com
10-Oct-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LVC1G17DBVR
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DBVRE4
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DBVRG4
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DBVT
ACTIVE
SOT-23
DBV
5
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DBVTE4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DCKR
ACTIVE
SC70
DCK
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DCKRE4
ACTIVE
SC70
DCK
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DCKRG4
ACTIVE
SC70
DCK
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DCKT
ACTIVE
SC70
DCK
5
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DCKTE4
ACTIVE
SC70
DCK
5
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DRLR
ACTIVE
SOP
DRL
5
4000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17DRLRG4
ACTIVE
SOP
DRL
5
4000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17YEAR
ACTIVE
WCSP
YEA
5
3000
TBD
SNPB
Level-1-260C-UNLIM
SN74LVC1G17YEPR
ACTIVE
WCSP
YEP
5
3000
TBD
SNPB
Level-1-260C-UNLIM
SN74LVC1G17YZAR
ACTIVE
WCSP
YZA
5
3000
Pb-Free
(RoHS)
SNAGCU
Level-1-260C-UNLIM
SN74LVC1G17YZPR
ACTIVE
WCSP
YZP
5
3000
Pb-Free
(RoHS)
SNAGCU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
10-Oct-2005
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated