CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Five/Ten Output Clock Generator/Buffer FEATURES APPLICATIONS • • • • • • • • 1 • • • • • • • • • • • • Universal Input Buffers That Accept LVPECL, LVDS, or LVCMOS Level Signaling Fully Configurable Outputs Including Frequency, Output Format, and Output Skew Output Multiplexer That Serves as a Clock Switch Between the Three Reference Inputs and the Outputs Clock Generation Via AT-Cut Crystal Integrated EEPROM Determines Device Configuration at Power-up Low Additive Jitter Performance Universal Output Blocks Support up to 5 Differential, 10 Single-ended, or Combinations of Differential or Single-ended: – Low Additive Jitter – Output Frequency up to 1.5 GHz – LVPECL, LVDS, LVCMOS, and Special High Output Swing Modes – Independent Output Dividers Support Divide Ratios from 1–80 – Independent limited Coarse Skew Control on all Outputs Flexible Inputs: – Two Universal Differential Inputs Accept Frequencies up to 1500 MHz (LVPECL), 800 MHz (LVDS), or 250 MHz (LVCMOS). – One Auxiliary Input Accepts Single Ended Clock Source or Crystal. Auxiliary Input Accepts Crystals in the Range of 2 MHz–42 MHz or an LVCMOS Input up to 75 MHz. – Clock Generator Mode Using Crystal Input. Typical Power Consumption 1.0W at 3.3V (see Table 27) Integrated EEPROM Stores Default Settings; Therefore, The Device Powers up in a Known, Predefined State. Offered in QFN-48 Package ESD Protection Exceeds 2kV HBM Industrial Temperature Range –40°C to 85°C Data Converter and Data Aggregation Clocking Wireless Infrastructure Switches and Routers Medical Electronics Military and Aerospace Industrial Clock Fan-out DESCRIPTION The CDCE18005 is a high performance clock generator and distributor featuring a high degree of configurability via a SPI interface, and programmable start up modes determined by on-board EEPROM. Specifically tailored for buffering clocks for data converters and high-speed digital signals, the CDCE18005 achieves low additive jitter in the 50 fs RMS (1) range. The clock distribution block includes five individually programmable outputs that can be configured to provide different combinations of output formats (LVPECL, LVDS, LVCMOS). Each output can also be programmed to a unique output frequency (up to 1.5 GHz (2) ) and skew relationship via a programmable delay block. If all outputs are configured in single-ended mode (e.g. LVCMOS), the CDCE18005 supports up to ten outputs. Each output can select one of three clock input sources. The input block includes two universal differential inputs which support frequencies up to 1500 MHz and an auxiliary single ended input that can be connected to a CMOS level clock or configured to connect to an external crystal via an on board oscillator block. LVCMOS 25MHz LVCMOS 25MHz LVPECL 1.5GHz / LVDS 800MHz LVPECL 800MHz CDCE18005 Crystal 25MHz LVDS 750MHz LVDS 800MHz LVPECL 1.5GHz Figure 1. CDCE18005 Application Example (1) (2) 12 kHz to 20 MHz integration bandwidth. Maximum output frequency depends on the output format selected 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2008, Texas Instruments Incorporated CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com DEVICE INFORMATION PACKAGE The CDCE18005 is packaged in a 48-Pin Plastic Quad Flatpack Package with enhanced bottom thermal pad for heat dissipation. The Texas Instruments Package Designator is: RGZ (S-PQFP-N48) 36 25 37 24 Top View Not up to Scale 48 13 1 12 Figure 2. 48-Pin QFN Package Outline 2 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 PIN FUNCTIONS PIN NAME QFN TYPE DESCRIPTION VCC_OUT 8, 11, 15, 18, 21, 26, 29, 32 Power 3.3V Supply for the Output Buffers VCC_CORE 5, 39, 42, 34, 35 Power 3.3V Core Voltage Circuitry VCC_IN_PRI 47 A. Power 3.3V References Input Buffer and Circuitry Supply Voltage. VCC_IN_SEC 1 A. Power 3.3V References Input Buffer and Circuitry Supply Voltage. VCC_IN_AUX 44 A. Power 3.3V Crystal Oscillator Input Circuitry. GND 36 Ground Ground (All internal Ground Pins are connected to the PAD) GND PAD Ground Ground is on Thermal PAD. See Layout recommendation SPI_MISO 22 OD SPI_LE 25 I LVCMOS input, control Latch Enable for Serial Programmable Interface (SPI), with Hysteresis in SPI Mode. The input has an internal 150-kΩ pull-up resistor if left unconnected it will default to logic level "1". SPI_CLK 24 I LVCMOS input, serial Control Clock Input for the SPI bus interface, with Hysteresis. The input has an internal 150-kΩ pull-up resistor if left unconnected it will default to logic level "1". SPI_MOSI 23 I LVCMOS input, Master Out Slave In as a serial Control Data Input to CDCE18005 for the SPI bus interface. The input has an internal 150-kΩ pull-up resistor if left unconnected it will default to logic level "1". TEST_MODE 33 I Pull High or leave unconnected TEST_MODE2 31 I Pull High or leave unconnected Power_Down 12 I Active Low. Power down mode can be activated via this pin. See Table 13 for more details. The input has an internal 150-kΩ pull-up resistor if left unconnected it will default to logic level "1". SPI_LE has to be HIGH in order for the rising edge of Power_Down signal to load the EEPROM. SYNC 14 I Active Low. Sync mode can be activated via this pin. See Table 13 for more details. The input has an internal 150-kΩ, pull-up resistor if left unconnected it will default to logic level “1”. AUX IN 43 I Auxiliary Input is a single ended input including an on-board oscillator circuit so that a crystal may be connected. AUX OUT 13 O Auxiliary Output LVCMOS level that can be programmed via SPI interface to be driven by Output 2 or Output 3. PRI REF+ 45 I Universal Input Buffer (LVPECL, LVDS, LVCMOS) positive input for the Primary Reference Clock, PRI REF– 46 I Universal Input Buffer (LVPECL, LVDS) negative input for the Primary Reference Clock. In case of LVCMOS signaling Ground this pin. SEC REF+ 3 I Universal Input Buffer (LVPECL, LVDS, LVCMOS) positive input for the Secondary Reference Clock, SEC REF– 2 I Universal Input Buffer (LVPECL, LVDS,) negative input for the Secondary Reference Clock. In case of LVCMOS signaling Ground this pin. TESTOUTA 30 Analog NC 4 This Pin is not used NC 38 This Pin is not used VBB 48 NC 40 This Pin is not used NC 41 This Pin is not used NC 37 U0P:U0N U1P:U1N: U2P:U2N U3P:U3N U4P:U4N 27, 28 19, 20 16,17 9, 10 6, 7 Analog In SPI Mode it is an Open Drain Output and it functions as a Master In Slave Out as a serial Control Data Output to CDCE18005 . Analog Test Point for Use for TI Internal Testing. Pull Down to GND Via a 1kΩ Resistor. Capacitor for the internal termination Voltage. Connect to a 1µF Capacitor (Y5V) This Pin is not used O The Main outputs of CDCE18005 are user definable and can be any combination of up to 5 LVPECL outputs, 5 LVDS outputs or up to 10 LVCMOS outputs. The outputs are selectable via SPI interface. The power-up setting is EEPROM configurable. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 3 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com FUNCTIONAL DESCRIPTION PRI_IN Output Divider 0 SEC_IN XTAL / AUX_IN Output Divider 1 Output Divider 2 Output Divider 3 Output Divider 4 /Power_Down U0P U0N U1P U1N U2P U2N U3P U3N U4P U4N /SYNC SPI_LE SPI_CLK SPI_MISO SPI_MOSI Interface & Control EEPROM AUX OUT Figure 3. CDCE18005 Block Diagram The CDCE18005 comprises three primary blocks: the interface and control block, the input block and the output block. In order to determine which settings are appropriate for any specific combination of input/output frequencies, a basic understanding of these blocks is required. The interface and control block determines the state of the CDCE18005 at power-up based on the contents of the on-board EEPROM. In addition to the EEPROM, the SPI port is available to configure the CDCE18005 by writing directly to the device registers after power-up. The input block buffers three clock signals, converts them to differential signals, and drives them onto an internal clock distribution bus. The output block provides five separate clock channels that are fully programmable and configurable to select and condition one of four internal clock sources NOTE: This Section of the data sheet provides a high-level description of the features of the CDCE18005 for purpose of understanding its capabilities. For a complete description of device registers and I/O, please refer to the Device Configuration Section. 4 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Interface and Control Block The CDCE18005 is a highly flexible and configurable architecture and as such contains a number of registers so that the user may specify device operation. The contents of nine 28-bit wide registers implemented in static RAM determine device configuration at all times. The CDCE18005 implements the SPI Interface Mode. SPI Interface Mode is used to access the device RAM and EEPROM either during normal operation (if the host system provides a native SPI interface) or during device configuration (i.e. device programming). During power up the EEPROM content gets copied into the registers after the detection of a valid device power-up. The EEPROM can be locked enabling the designer to implement a fault tolerant design. Static RAM (Device Registers) Register 8 Register 7 Register 6 /Power_Down /SYNC SPI_LE SPI_CLK SPI_MISO SPI_MOSI Register 5 Interface & Control Device Hardware Register 4 Register 3 Register 2 Register 1 Register 0 EEPROM (Default Configuration) Register 7 Register 6 Register 5 Register 4 Register 3 Register 2 Register 1 Register 0 Figure 4. CDCE18005 Interface and Control Block Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 5 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Input Block The Input Block includes a pair of Universal Input Buffers and an Auxiliary Input. The Input Block buffers the incoming signals and facilitates signal routing to the Internal Clock Distribution bus. The Internal Clock Distribution Bus connects to all output blocks discussed in the next section. Therefore, a clock signal present on the Internal Clock Distribution bus can appear on any or all of the device outputs. 1500 MHz LVPECL : 1500 MHz LVDS : 800 MHz LVCMOS : 250 MHz SEC_IN Crystal : 2MHz – 42MHz Single Ended : 2MHz – 75MHz 1500 MHz XTAL / AUX_IN Internal Clock Distribution Bus PRI_IN Figure 5. CDCE18005 Input Block 6 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Output Block Each of the five identical output blocks incorporates an output multiplexer, a clock divider module, and a universal output array as shown. Internal Clock Distribution Bus Output MUX Control Sync Pulse Digital Phase Adjust PRI_IN Output Buffer Control Enable (7 -bits ) UxP SEC_IN /1,2,3,4,5Clock Divider /1 - /8 Module 0/2- 4 SMART_MUX LVDS UxN SYNTH LVPECL Figure 6. CDCE18005 Output Block (1 of 5) Clock Divider Module 0–4 The following shows a simplified version of a Clock Divider Module (CDM). If an individual clock output channel is not used, then the user should disable the CDM and Output Buffer for the unused channel to save device power. Each channel includes two 7-bit registers to control the divide ratio used and the clock phase for each output. Enable Sync Pulse (internally generated) From Output MUX Digital Phase Adjust (7-bits) To Output Buffer /1 - /80 Figure 7. CDCE18005 Output Divider Module (1 of 5) Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 7 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) VCC Supply voltage range (2) VI Input voltage range (3) VO Output voltage range (3) V –0.5 to VCC + 0.5 V –0.5 to VCC + 0.5 V ±20 mA Output current for LVPECL/LVCMOS Outputs (0 < VO < VCC) ±50 mA 125 °C –65 to 150 °C Maximum junction temperature Tstg Storage temperature range (2) (3) UNIT Input Current (VI < 0, VI > VCC) TJ (1) VALUE -0.5 to 4.6 Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability. All supply voltages have to be supplied simultaneously. The input and output negative voltage ratings may be exceeded if the input and output clamp–current ratings are observed. THERMAL CHARACTERISTICS Package Thermal Resistance for QFN (RGZ) Package (1) (2) AIRFLOW (LFM) (1) (2) (3) 8 θJP (°C/W) (3) θJA (°C/W) 0 JEDEC Compliant Board (6X6 VIAs on PAD) 2 28.9 100 JEDEC Compliant Board (6X6 VIAs on PAD) 2 20.4 0 Recommended Layout (7X7 VIAs on PAD) 2 27.3 100 Recommended Layout (7X7 VIAs on PAD) 2 20.3 The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board). Connected to GND with 36 thermal vias (0,3 mm diameter). θJP (Junction – Pad) is used for the QFN Package, because the main heat flow is from the Junction to the GND-Pad of the QFN. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS recommended operating conditions for the CDCE18005 device for under the specified Industrial temperature range of –40°C to 85°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT POWER SUPPLY VCC Supply voltage 3 3.3 3.6 VCC_IN & VCore Analog supply voltage 3 3.3 3.6 PLVPECL REF at 491.52 MHz, Outputs are LVPECL PLVDS REF at 491.52 MHz, Outputs are LVDS PLVCMOS REF at 491.52 MHz, Outputs are LVCMOS POFF REF at 491.52 MHz Output MHz) Output Output Output Output 1 = 491.52 MHz (LVCMOS = 245 2 3 4 5 = 245.76 MHz = 122.88 MHz = 61.44 MHz = 30.72 MHz Dividers are disabled. Outputs are disabled. PPD Device is powered down V 1.6 W 1.3 W 1.5 W 0.45 W 20 mW DIFFERENTIAL INPUT MODE (PRI_IN, SEC_IN) VINPP Input amplitude (VIN – VIN) 0.1 1.3 V VIC Common-mode input voltage 1.0 VCC–0.3 V IIH Differential input current high (no internal termination) VI = VCC, VCC = 3.6 V 20 µA IIL Differential input current low (no internal termination) VI = 0 V, VCC = 3.6 V 20 µA –20 Input Capacitance on PRI_IN, SEC_IN 3 pF LVCMOS INPUT MODE (AUX_IN) VIL Low-level input voltage LVCMOS VIH High-level input voltage LVCMOS 0 0.7 VCC VIK LVCMOS input clamp voltage VCC = 3 V, II = –18 mA IIH LVCMOS input current VI = VCC, VCC = 3.6 V IIL LVCMOS input VI = 0 V, VCC = 3.6 V CI Input capacitance (LVCMOS signals) VI = 0 V or VCC 0.3 VCC V VCC V –1.2 –10 V µA 300 10 8 µA pF CRYSTAL INPUT SPECIFICATIONS Crystal shunt capacitance 20 pF Equivalent series resistance (ESR) 50 Ω 0.3 VCC V VCC V LVCMOS INPUT MODE (SPI_CLK,SPI_MOSI,SPI_LE,PD,SYNC,REF_SEL, PRI_IN, SEC_IN ) Low-level input voltage LVCMOS, 0 High-level input voltage LVCMOS 0.7 VCC VIK LVCMOS input clamp voltage VCC = 3 V, II = –18 mA –1.2 IIH LVCMOS input current VI = VCC, VCC = 3.6 V IIL LVCMOS input (Except PRI_IN and SEC_IN) VI = 0 V, VCC = 3.6 V –10 IIL LVCMOS input (PRI_IN and SEC_IN) VI = 0 V, VCC = 3.6 V –10 CI Input capacitance (LVCMOS signals) VI = 0 V or VCC –40 µA 10 µA 3 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 V µA pF 9 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS (Continued) recommended operating conditions for the CDCE18005 device for under the specified Industrial temperature range of –40°C to 85°C PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT SPI OUTPUT (MISO) IOH High-level output current VCC = 3.3 V, VO = 1.65 V –30 mA IOL Low-level output current VCC = 3.3 V, VO = 1.65 V 33 mA VOH High-level output voltage for LVCMOS outputs VCC = 3 V, IOH = −100 µA VOL Low-level output voltage for LVCMOS outputs VCC = 3 V, IOL = 100 µA CO Output capacitance on MISO VCC = 3.3 V; VO = 0 V or VCC 3-state output current VO = VCC , VO = 0 V Termination voltage for reference inputs. IBB = –0.2 mA, Depending on the setting. IOZH IOZL VCC–0.5 V 0.3 3 V pF 5 µA –5 VBB VBB 0.9 1.9 V INPUT BUFFERS INTERNAL TERMINATION RESISTORS (PRI_IN and SEC_IN) Termination resistance (1) 10 Single ended 50 Ω All typical values are at VCC = 3.3 V, temperature = 25 °C Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS (Continued) recommended operating conditions for the CDCE18005 device for under the specified Industrial temperature range of –40°C to 85°C PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT 250 MHz 0.3 V LVCMOS OUTPUT OR AUXILIARY OUTPUT fclk Output frequency, see Figure Below Load = 5 pF to GND VOH High-level output voltage for LVCMOS outputs VCC = min to max IOH = –100 µA VOL Low-level output voltage for LVCMOS outputs VCC = min to max IOL =100 A IOH High-level output current VCC = 3.3 V VO = 1.65 V –30 mA IOL Low-level output current VCC = 3.3 V VO = 1.65 V 33 mA tpd(LH)/ tpd(HL) Propagation delay from PRI_IN or SEC_IN to Outputs (LVCMOS to LVCMOS) VCC/2 to VCC/2 4 ns tsk(o) Skew, output to output For Y0 to Y4 All Outputs set at 200 MHz, Reference = 200 MHz 75 ps CO Output capacitance on Y0 to Y4 VCC = 3.3 V; VO = 0 V or VCC 5 pF VO = VCC 5 µA VO = 0 V –5 µA IOZH 3-State LVCMOS output current IOZL IOPDH IOPDL Power Down output current Duty cycle LVCMOS tslew-rate (1) VCC –0.5 VO = VCC 25 µA VO = 0 V 5 µA 50% to 50% 45% Output rise/fall slew rate 3.6 55% 5.2 V/ns All typical values are at VCC = 3.3 V, temperature = 25°C LVCMOS 5 pF Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 11 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS (Continued) (1) (2) (3) (4) recommended operating conditions for the CDCE18005 device for under the specified Industrial temperature range of –40°C to 85°C PARAMETER MIN TYP (5) TEST CONDITIONS MAX UNIT 0 800 MHz 270 550 mV 50 mV LVDS OUTPUT fclk Output frequency Configuration Load (100 Ω) |VOD| Differential output voltage RL = 100 Ω ΔVOD LVDS VOD magnitude change VOS Offset Voltage ΔVOS VOS magnitude change –40°C to 85°C 1.24 V 40 mV Short circuit Vout+ to ground VOUT = 0 27 mA Short circuit Vout– to ground VOUT = 0 27 mA tpd(LH)/tpd(HL) Propagation delay from PRI_IN or SEC_IN to outputs (LVDS to LVDS) Crosspoint to Crosspoint 3.1 ns tsk(o) (6) Skew, output to output For Y0 to Y4 All Outputs set at 200 MHz Reference = 200 MHz 25 ps CO Output capacitance on Y0 to Y4 VCC = 3.3 V; VO = 0 V or VCC IOPDH Power down output current VO = VCC 25 µA IOPDL Power down output current VO = 0 V 5 µA Duty cycle 50% input Rise and fall time 20% to 80% of VOUT(PP) 110 160 190 ps Crosspoint to VCC/2 0.9 1.4 1.9 ns tr / tf 5 45% pF 55% LVCMOS-TO-LVDS tskP_c (1) (2) (3) (4) (5) (6) (7) Output skew between LVCMOS and LVDS outputs (7) This is valid only for same REF_IN clock and Y output clock frequency VINPP minimum and maximum is required to maintain ac specifications; the actual device function tolerates at a minimum VINPP of 100mV. Lock output has a 80 kΩ pull-down resistor. The phase of LVCMOS is lagging in reference to the phase of LVDS. All typical values are at VCC = 3.3 V, temperature = 25°C The tsk(o) specification is only valid for equal loading of all outputs. Operating the LVCMOS or LVDS output above the maximum frequency will not cause a malfunction to the device, but the output signal swing might no longer meet the output specification LVDS DC Termination Test 100 Ω 12 Submit Documentation Feedback Oscilloscope Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS (Continued) recommended operating conditions for the CDCE18005 device for under the specified Industrial temperature range of –40°C to 85°C PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT MHz LVPECL OUTPUT fclk Output frequency 0 1500 VOH LVPECL high-level output voltage load VCC –1.06 VCC –0.88 VOL LVPECL low-level output voltage load VCC –2.02 VCC –1.58 |VOD| Differential output voltage 610 970 tpd(LH)/ tpd(HL) Propagation delay from PRI_IN or SEC_IN to outputs (LVPECL to LVPECL) Crosspoint to Crosspoint 3.4 ns tsk(o) Skew, output to output For Y0 to Y4 All Outputs set at 200 MHz Reference = 200MHz 25 ps CO Output capacitance on Y0 to Y4 VCC = 3.3 V; VO = 0 V or VCC IOPDH IOPDL tr / tf Configuration load (Figures below) 5 VO = VCC Power Down output current VO = 0 V 45% V V mV pF 25 µA 5 µA Duty Cycle 50% input 55% Rise and fall time 20% to 80% of Voutpp 55 75 135 ps Crosspoint to Crosspoint 0.9 1.1 1.3 ns –150 260 700 ps V LVDS-TO-LVPECL tskP_C Output skew between LVDS and LVPECL outputs LVCMOS-TO-LVPECL tskP_C Output skew between LVCMOS and LVPECL outputs VCC/2 to crosspoint LVPECL HI-PERFORMANCE OUTPUT VOH LVPECL high-level output voltage load VCC –1.11 VCC –0.87 VOL LVPECL low-level output voltage load VCC –2.06 VCC –1.73 |VOD| Differential output voltage 760 1160 mV tr / tf Rise and fall time 135 ps (1) 20% to 80% of Voutpp 55 75 V All typical values are at VCC = 3.3 V, temperature = 25°C LVPECL AC Termination Test LVPECL DC Termination Test 50 Ω Oscilloscope 50 Ω 150 Ω 150 Ω 50 Ω Oscilloscope 50 Ω Vcc-2 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 13 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com LVPECL OUTPUT SWING vs FREQUENCY HI SWING LVPECL OUTPUT SWING vs FREQUENCY V 14 Figure 8. Figure 9. LVDS OUTPUT SWING vs FREQUENCY LVCMOS OUTPUT SWING vs FREQUENCY Figure 10. Figure 11. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 TIMING REQUIREMENTS over recommended ranges of supply voltage, load and operating free air temperature (unless otherwise noted) PARAMETER MIN TYP MAX UNIT 250 MHz 1500 MHz PRI_IN/SEC_IN_IN REQUIREMENTS fmax For Single ended Inputs ( LVCMOS) on PRI_IN and SEC_IN For Differential Inputs on PRI_IN & SEC_IN Single ended clock duty cycle of PRI_IN or SEC_IN at VCC / 2 40% 60% Differential clock duty cycle of PRI_IN or SEC_IN at VCC / 2 40% 60% AUXILARY_IN REQUIREMENTS fREF Single ended Inputs (LVCMOS) on AUX_IN 2 75 MHz fREF Crystal single ended Inputs (AT-Cut Crystal Input) 2 42 MHz 4 ns Power_Down, SYNC, REF_SEL REQUIREMENTS tr/ tf Rise and fall time of the PD, SYNC, REF_SEL signal from 20% to 80% of VCC Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 15 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com PHASE NOISE ANALYSIS Table 1. Output Phase Noise for a 491.52 MHz External Reference Phase Noise Specifications under following configuration: REF = 491.52 MHz Diff, LVPECL Phase Noise Reference 491.52 MHz LVPECL 491.52 MHz LVDS 245.52 MHz LVCMOS 122.88 MHz Unit 10 Hz -86 -84 -90 -96 dBc/Hz 100 Hz -100 -100 -105 -111 dBc/Hz 1 kHz -108 -109 -115 -121 dBc/Hz 10 kHz -130 -130 -136 -140 dBc/Hz 100 kHz -135 -135 -140 -145 dBc/Hz 1 MHz -138 -142 -143 -148 dBc/Hz 10 MHz -150 -148 -150 -153 dBc/Hz 20 MHz -150 -148 -150 -152 dBc/Hz 84 93 150 206 fs Jitter(RMS) 10k~20Mhz Table 2. Output Phase Noise for a 25 MHz Crystal Reference Phase Noise Specifications under following configuration: REF = 25 MHz, SE:LVCMOS Phase Noise Reference 25.00 MHz LVPECL 25 MHz LVDS 25 MHz LVCMOS 25 MHz Unit 10 Hz - -83 -82 -82 dBc/Hz 100 Hz - -115 -116 -115 dBc/Hz 1 kHz - -142 -142 -141 dBc/Hz 10 kHz - -152 -149 -151 dBc/Hz 100 kHz - -155 -151 -155 dBc/Hz 1 MHz - -157 -151 -158 dBc/Hz 5 MHz - -157 -151 -158 dBc/Hz Jitter(RMS) 10k~20 MHz - 275 345 249 fs SPI CONTROL INTERFACE TIMING t1 t4 t5 SPI _ CLK t2 SPI _ MOSI Bit0 t3 Bit1 Bit29 Bit30 Bit31 t7 SPI _ LE t6 Figure 12. Timing Diagram for SPI Write Command 16 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 t4 t5 SPI _ CLK t2 SPI _ MOSI Bit30 t3 Bit31 t9 Bit0 SPI _ MISO Bit1 Bit2 t7 SPI _ LE t6 t8 Figure 13. Timing Diagram for SPI Read Command SPI Bus Timing Characteristics PARAMETER MIN TYP MAX UNIT 20 MHz fClock Clock Frequency for the SPI_CLK t1 SPI_LE to SPI_CLK setup time 10 ns t2 SPI_MOSI to SPI_CLK setup time 10 ns t3 SPI_MOSI to SPI_CLK hold time 10 ns t4 SPI_CLK high duration 25 ns t5 SPI_CLK low duration 25 ns t6 SPI_CLK to SPI_LE Setup time 10 ns t7 SPI_LE Pulse Width 20 ns t8 SPI_MISO to SPI_CLK Data Valid (First Valid Bit after LE) 10 ns DEVICE CONFIGURATION The Functional Description Section described three different functional blocks contained within the CDCE18005. Figure 14 depicts these blocks along with a high-level functional block diagram of the circuit elements comprising each block. The balance of this section focuses on a detailed discussion of each functional block from the perspective of how to configure them. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 17 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Output Blocks Output Channel 0 Output Channel 1 Input Block Interface & Control Device Registers Output Channel 2 Interface & Control Block Output Channel 3 Output Channel 4 EEPROM Figure 14. CDCE18005 Circuit Blocks Throughout this section, references to Device Register memory locations follow the following convention: Register 5 5 Register Number (s) 4 3 RAM Bit Number (s) 2 5.2 Figure 15. Device Register Reference Convention INTERFACE AND CONTROL BLOCK The Interface & Control Block includes a SPI interface, four control pins, a non-volatile memory array in which the device stores default configuration data, and an array of device registers implemented in Static RAM. This RAM, also called the device registers, configures all hardware within the CDCE18005. 18 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Static RAM (Device Registers) Register 8 Register 7 Register 6 /Power_Down /SYNC SPI_LE SPI_CLK SPI_MISO SPI_MOSI Register 5 Interface & Control Device Hardware Register 4 Register 3 Register 2 Register 1 Register 0 EEPROM (Default Configuration) Register 7 Register 6 Register 5 Register 4 Register 3 Register 2 Register 1 Register 0 Figure 16. CDCE18005 Interface and Control Block SPI (Serial Peripheral Interface) The serial interface of CDCE18005 is a simple bidirectional SPI interface for writing and reading to and from the device registers. It implements a low speed serial communications link in a master/slave topology in which the CDCE18005 is a slave. The SPI consists of four signals: • SPI_CLK: Serial Clock (Output from Master) – the CDCE18005 clocks data in and out on the rising edge of SPI_CLK. Data transitions therefore occur on the falling edge of the clock. • SPI_MOSI: Master Output Slave Input (Output from Master). • SPI_MISO: Master Input Slave Output (Output from Slave). • SPI_LE: Latch Enable (Output from Master). The falling edge of SPI_LE initiates a transfer. If SPI_LE is high, no data transfer can take place. The CDCE18005 implements data fields that are 28-bits wide. In addition, it contains 9 registers, each comprising a 28 bit data field. Therefore, accessing the CDCE18005 requires that the host program append a 4-bit address field to the front of the data field as follows: Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 19 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Device Register N 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SPI Register Address Bits (4) Data Bits (28) Last in / Last out SPI Master (Host) First In / First Out 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 3 2 1 0 SPI Slave (CDCE62005) SPI_CLK SPI_LE SPI_CLK SPI_MOSI SPI_MOSI SPI_MISO SPI_MISO SPI_LE SPI_LE SPI_CLK SPI_MOSI 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 3 2 1 0 SPI_MISO Figure 17. CDCE18005 SPI Communications Format CDCE18005 SPI Command Structure The CDCE18005 supports four commands issued by the Master via the SPI: • Write to RAM • Read Command • Copy RAM to EEPROM – unlock • Copy RAM to EEPROM – lock Table 3 provides a summary of the CDCE18005 SPI command structure. The host (master) constructs a Write to RAM command by specifying the appropriate register address in the address field and appends this value to the beginning of the data field. Therefore, a valid command stream must include 32 bits, transmitted LSB first. The host must issue a Read Command to initiate a data transfer from the CDCE18005 back to the host. This command specifies the address of the register of interest in the data field. Table 3. CDCE18005 SPI Command Structure Data Field (28 Bits) Register Addr Field (4 Bits) Operation NVM 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0 3 2 1 0 0 Write to RAM Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0 0 0 0 1 Write to RAM Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0 0 0 1 2 Write to RAM Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0 0 1 0 3 Write to RAM Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0 0 1 1 4 Write to RAM Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0 1 0 0 5 Write to RAM Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0 1 0 1 6 Write to RAM Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0 1 1 0 7 Write to RAM Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0 1 1 1 8 Status/Control No X X X X X X X X X X X X X X X X X X X X X X X X X X X X 1 0 0 0 Instruction Read Command No 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A A A A 1 1 1 0 Instruction RAM EEPROM Unlock (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 Instruction RAM EEPROM Lock 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 (1) 20 CAUTION: After execution of this command, the EEPROM is permanently locked. After locking the EEPROM, device configuration can only be changed via Write to RAM after power-up; however, the EEPROM can no longer be changed Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 The CDCE18005 on-board EEPROM has been factory preset to the default settings listed in the table below. REGISTER DEFAULT SETTING REG0000 8140000 REG0001 8140000 REG0002 8140000 REG0003 8140000 REG0004 8140000 REG0005 0000096 REG0006 0000000 REG0007 9400000 REG0008 (RAM) 8000580 The default configurations programmed in the device is set to: PRI_REF (set to LVPECL) feeding all outputs. Output dividers are set to DIVIDE by 1. All output dividers are set to LVPECL Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 21 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Writing to the CDCE18005 Figure 18 illustrates a Write to RAM operation. Notice that the latching of the first data bit in the data stream (Bit 0) occurs on the first rising edge of SPI_CLK after SPI_LE transitions from a high to a low. For the CDCE18005, data transitions occur on the falling edge of SPI_CLK. A rising edge on SPI_LE signals to the CDCE18005 that the transmission of the last bit in the stream (Bit 31) has occurred. SPI_CLK SPI_MOSI Bit0 Bit1 Bit29 Bit30 Bit31 SPI_LE Figure 18. CDCE18005 SPI Write Operation Reading from the CDCE18005 Figure 19 shows how the CDCE18005 executes a Read Command. The SPI master first issues a Read Command to initiate a data transfer from the CDCE18005 back to the host (see Table 6). This command specifies the address of the register of interest. By transitioning SPI_LE from a low to a high, the CDCE18005 resolves the address specified in the appropriate bits of the data field. The host drives SPI_LE low and the CDCE18005 presents the data present in the register specified in the Read Command on SPI_MISO. SPI_ CLK SPI_ MOSI Bit30 SPI_ MISO Bit31 Bit0 Bit1 Bit2 SPI_LE Figure 19. CDCE18005 Read Operation Writing to EEPROM After the CDCE18005 detects a power-up and completes a reset cycle, it copies the contents of the on-board EEPROM into the Device Registers. Therefore, the CDCE18005 initializes into a known state pre-defined by the user. The host issues one of two special commands shown in Table 6 to copy the contents of Device Registers 0 through 7 (a total of 184 bits) into EERPOM. They include: • Copy RAM to EEPROM – Unlock, Execution of this command can happen many times. • Copy RAM to EEPROM – Lock: Execution of this command can happen only once; after which the EEPROM is permanently locked. After either command is initiated, power must remain stable and the host must not access the CDCE18005 for at least 50 ms to allow the EEPROM to complete the write cycle and to avoid the possibility of EEPROM corruption. 22 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Device Registers: Register 0 Table 4. CDCE18005 Register 0 Bit Definitions SPI BIT RAM BIT BIT NAME RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 0 1 A1 Address 1 0 2 A2 Address 2 0 3 A3 Address 3 0 4 0 RESERVED 5 1 RESERVED 6 2 RESERVED 7 3 RESERVED 8 4 OUTMUX0SELX Output 0 9 5 OUTMUX0SELY Output 0 10 6 PH0ADJC0 Output 0 EEPROM 11 7 PH0ADJC1 Output 0 EEPROM 12 8 PH0ADJC2 Output 0 13 9 PH0ADJC3 Output 0 14 10 PH0ADJC4 Output 0 EEPROM 15 11 PH0ADJC5 Output 0 EEPROM 16 12 PH0ADJC6 Output 0 EEPROM 17 13 OUT0DIVRSEL0 Output 0 EEPROM 18 14 OUT0DIVRSEL1 Output 0 EEPROM 19 15 OUT0DIVRSEL2 Output 0 20 16 OUT0DIVRSEL3 Output 0 21 17 OUT0DIVRSEL4 Output 0 EEPROM 22 18 OUT0DIVRSEL5 Output 0 EEPROM 23 19 OUT0DIVRSEL6 Output 0 24 20 OUT0DIVSEL EEPROM EEPROM EEPROM EEPROM Coarse phase adjust select for output divider “0” EEPROM EEPROM OUTPUT DIVIDER “0” Ratio Select EEPROM EEPROM Output 0 EEPROM High Swing LVPECL When set to “1” and Normal Swing when set to “0” – If LVCMOS or LVDS is selected the Output swing will stay at the same level. – If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1” and Normal LVPECL if it is set to “0”. EEPROM HiSWINGLVPECL0 Output 0 26 22 CMOSMODE0PX Output 0 27 23 CMOSMODE0PY Output 0 28 24 CMOSMODE0NX Output 0 29 25 CMOSMODE0NY Output 0 30 26 OUTBUFSEL0X Output 0 OUTBUFSEL0Y OUTPUT MUX “0” Select. Selects the Signal driving Output Divider ”0” (X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:Reserved When set to “0”, the divider is disabled When set to “1”, the divider is enabled 21 27 EEPROM EEPROM 25 31 EEPROM Always Set to "0" for Proper Operation Output 0 LVCMOS mode select for OUTPUT “0” Positive Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM LVCMOS mode select for OUTPUT “0” Negative Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM OUTPUT TYPE EEPROM EEPROM RAM BITS EEPROM 22 23 24 25 26 27 LVPECL 0 0 0 0 0 1 LVDS 0 1 0 1 1 1 LVCMOS See Settings Above* 0 0 Output Disabled 0 1 0 1 0 1 EEPROM * Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 23 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Device Registers: Register 1 Table 5. CDCE18005 Register 1 Bit Definitions SPI BIT RA M BIT BIT NAME RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 1 1 A1 Address 1 0 2 A2 Address 2 0 3 A3 Address 3 0 4 0 RESERVED 5 1 RESERVED 6 2 RESERVED 7 3 RESERVED 8 4 OUTMUX1SELX Output 1 9 5 OUTMUX1SELY Output 1 10 6 PH1ADJC0 Output 1 EEPROM 11 7 PH1ADJC1 Output 1 EEPROM 12 8 PH1ADJC2 Output 1 13 9 PH1ADJC3 Output 1 14 10 PH1ADJC4 Output 1 EEPROM 15 11 PH1ADJC5 Output 1 EEPROM 16 12 PH1ADJC6 Output 1 EEPROM 17 13 OUT1DIVRSEL0 Output 1 EEPROM 18 14 OUT1DIVRSEL1 Output 1 EEPROM 19 15 OUT1DIVRSEL2 Output 1 20 16 OUT1DIVRSEL3 Output 1 21 17 OUT1DIVRSEL4 Output 1 EEPROM 22 18 OUT1DIVRSEL5 Output 1 EEPROM 23 19 OUT1DIVRSEL6 Output 1 24 20 OUT1DIVSEL EEPROM EEPROM EEPROM EEPROM Coarse phase adjust select for output divider “1” EEPROM EEPROM OUTPUT DIVIDER “1” Ratio Select EEPROM EEPROM Output 1 EEPROM High Swing LVPECL When set to “1” and Normal Swing when set to “0” – If LVCMOS or LVDS is selected the Output swing will stay at the same level. – If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1” and Normal LVPECL if it is set to “0”. EEPROM HiSWINGLVPECL1 Output 1 26 22 CMOSMODE1PX Output 1 27 23 CMOSMODE1PY Output 1 28 24 CMOSMODE1NX Output 1 29 25 CMOSMODE1NY Output 1 30 26 OUTBUFSEL1X Output 1 OUTBUFSEL1Y OUTPUT MUX “1” Select. Selects the Signal driving Output Divider ”1” (X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:Reserved When set to “0”, the divider is disabled When set to “1”, the divider is enabled 21 27 EEPROM EEPROM 25 31 EEPROM Always St "0" for Proper Operation Output 1 LVCMOS mode select for OUTPUT “1” Positive Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM LVCMOS mode select for OUTPUT “1” Negative Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM OUTPUT TYPE EEPROM EEPROM RAM BITS EEPROM 22 23 24 25 26 27 LVPECL 0 0 0 0 0 1 LVDS 0 1 0 1 1 1 LVCMOS See Settings Above* 0 0 Output Disabled 0 1 0 1 0 1 EEPROM * Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs 24 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Device Registers: Register 2 Table 6. CDCE18005 Register 2 Bit Definitions SPI BIT RA M BIT BIT NAME RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 0 1 A1 Address 1 1 2 A2 Address 2 0 3 A3 Address 3 0 4 0 RESERVED 5 1 RESERVED 6 2 RESERVED 7 3 RESERVED 8 4 OUTMUX2SELX Output 2 9 5 OUTMUX2SELY Output 2 10 6 PH2ADJC0 Output 2 EEPROM 11 7 PH2ADJC1 Output 2 EEPROM 12 8 PH2ADJC2 Output 2 13 9 PH2ADJC3 Output 2 14 10 PH2ADJC4 Output 2 EEPROM 15 11 PH2ADJC5 Output 2 EEPROM 16 12 PH2ADJC6 Output 2 EEPROM 17 13 OUT2DIVRSEL0 Output 2 EEPROM 18 14 OUT2DIVRSEL1 Output 2 EEPROM 19 15 OUT2DIVRSEL2 Output 2 20 16 OUT2DIVRSEL3 Output 2 21 17 OUT2DIVRSEL4 Output 2 EEPROM 22 18 OUT2DIVRSEL5 Output 2 EEPROM 23 19 OUT2DIVRSEL6 Output 2 24 20 OUT2DIVSEL EEPROM EEPROM EEPROM EEPROM Coarse phase adjust select for output divider “2” EEPROM EEPROM OUTPUT DIVIDER “2” Ratio Select EEPROM EEPROM Output 2 EEPROM High Swing LVPECL When set to “1” and Normal Swing when set to “0” – If LVCMOS or LVDS is selected the Output swing will stay at the same level. – If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1” and Normal LVPECL if it is set to “0”. EEPROM HiSWINGLVPEC2 Output 2 26 22 CMOSMODE2PX Output 2 27 23 CMOSMODE2PY Output 2 28 24 CMOSMODE2NX Output 2 29 25 CMOSMODE2NY Output 2 30 26 OUTBUFSEL2X Output 2 OUTBUFSEL2Y OUTPUT MUX “2” Select. Selects the Signal driving Output Divider ”2” (X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:Reserved When set to “0”, the divider is disabled When set to “1”, the divider is enabled 21 27 EEPROM EEPROM 25 31 EEPROM Always Set to "0" for Proper Operation LVCMOS mode select for OUTPUT “2” Positive Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM LVCMOS mode select for OUTPUT “2” Negative Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM Output 2 OUTPUT TYPE EEPROM EEPROM RAM BITS EEPROM 22 23 24 25 26 27 LVPECL 0 0 0 0 0 1 LVDS 0 1 0 1 1 1 0 0 1 0 LVCMOS Output Disabled See Settings Above* 0 1 0 1 EEPROM * Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 25 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Device Registers: Register 3 Table 7. CDCE18005 Register 3 Bit Definitions SPI BIT RAM BIT BIT NAME RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 1 1 A1 Address 1 1 2 A2 Address 2 0 3 A3 Address 3 0 4 0 RESERVED 5 1 RESERVED 6 2 RESERVED 7 3 RESERVED 8 4 OUTMUX3SELX Output 3 9 5 OUTMUX3SELY Output 3 10 6 PH3ADJC0 Output 3 EEPROM 11 7 PH3ADJC1 Output 3 EEPROM 12 8 PH3ADJC2 Output 3 13 9 PH3ADJC3 Output 3 14 10 PH3ADJC4 Output 3 EEPROM 15 11 PH3ADJC5 Output 3 EEPROM 16 12 PH3ADJC6 Output 3 EEPROM 17 13 OUT3DIVRSEL0 Output 3 EEPROM 18 14 OUT3DIVRSEL1 Output 3 EEPROM 19 15 OUT3DIVRSEL2 Output 3 20 16 OUT3DIVRSEL3 Output 3 21 17 OUT3DIVRSEL4 Output 3 EEPROM 22 18 OUT3DIVRSEL5 Output 3 EEPROM 23 19 OUT3DIVRSEL6 Output 3 24 20 OUT3DIVSEL EEPROM EEPROM EEPROM EEPROM Coarse phase adjust select for output divider “3” EEPROM EEPROM OUTPUT DIVIDER “3” Ratio Select EEPROM EEPROM Output 3 EEPROM High Swing LVPECL When set to “1” and Normal Swing when set to “0” – If LVCMOS or LVDS is selected the Output swing will stay at the same level. – If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1” and Normal LVPECL if it is set to “0”. EEPROM HiSWINGLVPEC3 Output 3 26 22 CMOSMODE3PX Output 3 27 23 CMOSMODE3PY Output 3 28 24 CMOSMODE3NX Output 3 29 25 CMOSMODE3NY Output 3 30 26 OUTBUFSEL3X Output 3 OUTBUFSEL3Y OUTPUT MUX “3” Select. Selects the Signal driving Output Divider ”3” (X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:Reserved When set to “0”, the divider is disabled When set to “1”, the divider is enabled 21 27 EEPROM EEPROM 25 31 EEPROM Always Set to "0" for Proper Operation Output 3 LVCMOS mode select for OUTPUT “3” Positive Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM LVCMOS mode select for OUTPUT “3” Negative Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM OUTPUT TYPE EEPROM EEPROM RAM BITS EEPROM 22 23 24 25 26 27 LVPECL 0 0 0 0 0 1 LVDS 0 1 0 1 1 1 0 0 1 0 LVCMOS Output Disabled See Settings Above* 0 1 0 1 EEPROM * Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs 26 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Device Registers: Register 4 Table 8. CDCE18005 Register 4 Bit Definitions SPI BIT RAM BIT BIT NAME RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 0 1 A1 Address 1 0 2 A2 Address 2 1 3 A3 Address 3 0 4 0 RESERVED 5 1 RESERVED 6 2 RESERVED 7 3 RESERVED 8 4 OUTMUX4SELX Output 4 9 5 OUTMUX4SELY Output 4 10 6 PH4ADJC0 Output 4 EEPROM 11 7 PH4ADJC1 Output 4 EEPROM 12 8 PH4ADJC2 Output 4 13 9 PH4ADJC3 Output 4 14 10 PH4ADJC4 Output 4 EEPROM 15 11 PH4ADJC5 Output 4 EEPROM 16 12 PH4ADJC6 Output 4 EEPROM 17 13 OUT4DIVRSEL0 Output 4 EEPROM 18 14 OUT4DIVRSEL1 Output 4 EEPROM 19 15 OUT4DIVRSEL2 Output 4 20 16 OUT4DIVRSEL3 Output 4 21 17 OUT4DIVRSEL4 Output 4 EEPROM 22 18 OUT4DIVRSEL5 Output 4 EEPROM 23 19 OUT4DIVRSEL6 Output 4 24 20 OUT4DIVSEL EEPROM EEPROM EEPROM EEPROM Coarse phase adjust select for output divider “4” EEPROM EEPROM OUTPUT DIVIDER “4” Ratio Select EEPROM EEPROM Output 4 EEPROM High Swing LVPECL When set to “1” and Normal Swing when set to “0” – If LVCMOS or LVDS is selected the Output swing will stay at the same level. – If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1” and Normal LVPECL if it is set to “0”. EEPROM HiSWINGLVPEC4 Output 4 26 22 CMOSMODE4PX Output 4 27 23 CMOSMODE4PY Output 4 28 24 CMOSMODE4NX Output 4 29 25 CMOSMODE4NY Output 4 30 26 OUTBUFSEL4X Output 4 OUTBUFSEL4Y OUTPUT MUX “4” Select. Selects the Signal driving Output Divider ”4” (X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:Reserved When set to “0”, the divider is disabled When set to “1”, the divider is enabled 21 27 EEPROM EEPROM 25 31 EEPROM Must be set to "0" for proper operation Output 4 LVCMOS mode select for OUTPUT “4” Positive Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM LVCMOS mode select for OUTPUT “3” Negative Pin. (X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State EEPROM OUTPUT TYPE EEPROM EEPROM RAM BITS EEPROM 22 23 24 25 26 27 LVPECL 0 0 0 0 0 1 LVDS 0 1 0 1 1 1 0 0 1 0 LVCMOS Output Disabled See Settings Above* 0 1 0 1 EEPROM * Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 27 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Device Registers: Register 5 Table 9. CDCE18005 Register 5 Bit Definitions SPI BIT RAM BIT BIT NAME RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 1 1 A1 Address 1 0 2 A2 Address 2 1 3 A3 Address 3 4 0 INBUFSELX INBUFSELX 5 1 INBUFSELY INBUFSELY 6 2 SYNCSEL1 7 3 SYNCSEL2 Output Divider Synchronizati on 8 4 9 5 10 6 ACDCSEL 0 Input Buffer Select (LVPECL,LVDS or LVCMOS) XY(01 ) LVPECL, (11) LVDS, (00) LVCMOS- Input is Positive Pin EEPROM SYNCSEL(1,2)= 10 :Output divider sync to Primary input SYNCSEL(1,2)= 01 :Output divider sync to Secondary input SYNCSEL(1,2)= 00 :Output divider sync to Auxiliary input EEPROM RESERVED Always Set to "1" for Proper Operation EEPROM RESERVED Always Set to "0" for Proper Operation EEPROM Input Buffers If Set to “1” DC Termination, If set to “0” AC Termination EEPROM EEPROM EEPROM EEPROM 11 7 HYSTEN Input Buffers If Set to “1” Input Buffers Hysteresis Enabled. It is not recommended that Hysteresis be disabled. 12 8 PRI_TERMSEL Input Buffers If Set to “0” Primary Input Buffer Internal Termination Enabled If set to “1” Primary Internal Termination circuitry Disabled EEPROM 13 9 PRIINVBB Input Buffers If Set to “1” Primary Input Negative Pin Biased with Internal VBB Voltage. EEPROM 14 10 SECINVBB Input Buffers If Set to “1” Secondary Input Negative Pin Biased with Internal VBB Voltage EEPROM Input Buffers If Set to “1” Fail Safe is Enabled for all Input Buffers configured as LVDS, DC Coupling only. EEPROM 15 11 FAILSAFE 16 12 RESERVED EEPROM 17 13 RESERVED EEPROM 18 14 RESERVED EEPROM 19 15 RESERVED EEPROM 20 16 RESERVED EEPROM 21 17 RESERVED EEPROM 22 18 RESERVED EEPROM 23 19 RESERVED 24 20 RESERVED 25 21 RESERVED EEPROM 26 22 RESERVED EEPROM 27 23 RESERVED EEPROM 28 24 RESERVED EEPROM 29 25 RESERVED EEPROM 30 26 RESERVED EEPROM 31 27 RESERVED EEPROM 28 ---- Must be set to "0" for proper operation Submit Documentation Feedback EEPROM EEPROM Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Device Registers: Register 6 Table 10. CDCE18005 Register 6 Bit Definitions SPI BIT RAM BIT BIT NAME RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 0 1 A1 Address 1 1 2 A2 Address 2 1 3 A3 Address 3 0 4 0 RESERVED EEPROM 5 1 RESERVED EEPROM 6 2 RESERVED EEPROM 7 3 RESERVED EEPROM 8 4 RESERVED EEPROM 9 5 RESERVED 10 6 RESERVED 11 7 RESERVED EEPROM 12 8 RESERVED EEPROM 13 9 RESERVED EEPROM 14 10 RESERVED EEPROM 15 11 RESERVED EEPROM Must be set to "0" EEPROM EEPROM Input Buffers If Set to “0” Secondary Input Buffer Internal Termination Enabled If set to “1” Secondary Internal Termination circuitry Disabled 16 12 SEC_TERMSEL EEPROM 17 13 RESERVED EEPROM 18 14 RESERVED EEPROM 19 15 RESERVED EEPROM 20 16 RESERVED EEPROM 21 17 RESERVED 22 18 RESERVED 23 19 RESERVED EEPROM 24 20 RESERVED EEPROM 25 21 RESERVED EEPROM 26 22 RESERVED EEPROM 27 23 RESERVED 28 24 AUXOUTEN Output AUX Enable Auxiliary Output when set to “1” EEPROM 29 25 AUXFEEDSEL Output AUX Select the Output that will driving the AUX Output; Low for Selecting Output Divider “2” and High for Selecting Output Divider “3” EEPROM 30 26 RESERVED Must be set to "0" EEPROM 31 27 RESERVED Must be set to "0" EEPROM EEPROM Must be set to "0" EEPROM EEPROM Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 29 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Device Registers: Register 7 Table 11. CDCE18005 Register 7 Bit Definitions SPI BIT RAM BIT NAME BIT RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 1 1 A1 Address 1 1 2 A2 Address 2 1 3 A3 Address 3 0 4 0 RESERVED EEPROM 5 1 RESERVED EEPROM 6 2 RESERVED EEPROM 7 3 RESERVED EEPROM 8 4 RESERVED EEPROM 9 5 RESERVED EEPROM 10 6 RESERVED EEPROM 11 7 RESERVED EEPROM 12 8 RESERVED EEPROM 13 9 RESERVED EEPROM 14 10 RESERVED 15 11 RESERVED 16 12 RESERVED EEPROM 17 13 RESERVED EEPROM 18 14 RESERVED EEPROM 19 15 RESERVED EEPROM 20 16 RESERVED EEPROM 21 17 RESERVED EEPROM 22 18 RESERVED EEPROM 23 19 RESERVED EEPROM 24 20 RESERVED EEPROM 25 21 RESERVED 26 22 TESTMUX1 27 23 RESERVED 28 24 TEXTMUX2 29 25 RESERVED 30 26 EPUNLOCK Status EEPROM Unlock RAM 31 27 EPSTATUS Status EEPROM Status RAM 30 Always Set to "0" for Proper Operation EEPROM EEPROM EEPROM Diagnostics Set to “1” Always Set to "0" for Proper Operation Diagnostics Set to “1” Always Set to "0" for Proper Operation Submit Documentation Feedback EEPROM EEPROM EEPROM EEPROM Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Device Registers: Register 8 Table 12. CDCE18005 Register 8 Bit Definitions SPI BIT RAM BIT NAME BIT RELATED BLOCK DESCRIPTION/FUNCTION 0 A0 Address 0 0 1 A1 Address 1 0 2 A2 Address 2 0 3 A3 Address 3 1 4 0 RESERVED RAM 5 1 RESERVED RAM 6 2 RESERVED RAM 7 3 RESERVED 8 4 RESERVED RAM 9 5 RESERVED RAM 10 6 RESERVED 11 7 SLEEP 12 TI Test Registers. For TI Use Only RAM RAM Status Set Device Sleep mode On when set to “0”, Normal Mode when set to “1” RAM Status If set to “0” this bit forces “/SYNC ; Set to “1” to exit the Synchronization State. RAM 8 SYNC 13 9 RESERVED 14 10 VERSION0 Tie off Silicon Revision RAM 15 11 VERSION1 Tie off Silicon Revision RAM 16 12 VERSION2 Tie off Silicon Revision RAM 17 13 RESERVED RAM 18 14 RESERVED RAM 19 15 RESERVED RAM 20 16 RESERVED RAM 21 17 RESERVED RAM 22 18 RESERVED RAM 23 19 RESERVED 24 20 RESERVED 25 21 RESERVED RAM 26 22 RESERVED RAM 27 23 RESERVED RAM 28 24 RESERVED RAM 29 25 RESERVED RAM 30 26 RESERVED RAM 31 27 RESERVED RAM RAM RAM TI Test Registers. For TI Use Only RAM Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 31 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Device Control Figure 20 provides a conceptual explanation of the CDCE18005 Device operation. Table 13 defines how the device behaves in each of the operational states. Device OFF Power Applied Power ON Reset Sleep Sleep = OFF Power Down = OFF Power Down = ON Delay Finished Sleep = ON Sync = ON Power Down = ON Power Down Sync Active Mode Sync = OFF Figure 20. CDCE18005 Device State Control Diagram Table 13. CDCE18005 Device State Definitions Status State Device Behavior Power-On Reset After device power supply reaches approximately 2.35V, the contents of EEPROM are copied into the Device Registers, thereby initializing the device hardware . Active Mode Normal Operation Entered Via Exited Via SPI Port Output Divider Output Buffer Power applied to the device or upon exit from Power Down State via the Power_Down pin set HIGH. Power On Reset and EEPROM loading delays are finished OR the Power_Down pin is set LOW. OFF Disabled OFF Sync = OFF (from Sync State). Sync, Power Down, Sleep, or Manual Recalibration activated. ON Disabled or Enabled Disabled or Enabled Power_Down pin is pulled LOW. Power_Down pin is pulled HIGH. ON Disabled Disabled Power Down Used to shut down all hardware and Resets the device after exiting the Power Down State. Therefore, the EEPROM contents will eventually be copied into RAM after the Power Down State is exited. Identical to the Power Down State except the EEPROM contents are not copied into RAM. SLEEP bit in device register 8 bit 7 is set LOW. SLEEP bit in device register 8 bit 7 is set HIGH. ON Disabled Disabled Sleep 32 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Table 13. CDCE18005 Device State Definitions (continued) Status State Sync Device Behavior Sync synchronizes all output dividers so that they begin counting at the same time. Note: this operation is performed automatically each time a divider register is accessed. Entered Via SYNC Bit in device register 8 bit 8 is set LOW or SYNC pin is pulled LOW Exited Via SYNC Bit in device register 8 bit 8 is set HIGH or SYNC pin is pulled HIGH SPI Port Output Divider Output Buffer ON Disabled Disabled External Control Pins Power_Down The Power_Down pin places the CDCE18005 into the power down state. Additionally, the CDCE18005 loads the contents of the EEPROM into RAM after the Power_Down pin is de-asserted; therefore, it is used to initialize the device after power is applied. SPI_LE signal has to be HIGH in order for EEPROM to load correctly during the rising edge of Power_Down. SYNC The SYNC pin (Active LOW) has a complementary register location located in Device Register 8 bit 8. When enabled, Sync synchronizes all output dividers so that they begin counting simultaneously. Further, SYNC disables all outputs when in the active. State. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 33 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com INPUT BLOCK The Input Block includes two Universal Input Buffers, an Auxiliary Input. The Input Block drives three different clock signals onto the Internal Clock Distribution Bus. Internal Clock Distribution Bus 1500 MHz PRI_IN LVPECL : 1500 MHz LVDS : 800 MHz LVCMOS : 250 MHz 1500 MHz SEC_IN Crystal : 2 MHz – 42 MHz Single Ended : 2 MHz to 75 MHz XTAL / AUX_IN Figure 21. CDCE18005 Input Block With References to Registers Universal Input Buffers (UIB) Figure 22 shows the key elements of a universal input buffer. A UIB supports multiple formats along with different termination and coupling schemes. The CDCE18005 implements the UIB by including on board switched termination, a programmable bias voltage generator, and an output multiplexer. The CDCE18005 provides a high degree of configurability on the UIB to facilitate most existing clock input formats. PRI_IN PINV PN PP 50 Ω 50 Ω 50 Ω 50 Ω SN SP Register 6 12 Vbb 1 mF Settings 5.1 5.0 5.6 Nominal INBUFSELY INBUFSELX ACDCSEL Vbb 1 0 0 1.9V 1 0 1 1.2V 1 1 0 1.2V 1 1 1 1.2V Universal Input Control Vbb Register 5 10 9 8 7 6 1 0 SINV 5.0 INBUFSELX 0 X X X SEC_IN Settings 5.1 5.8, 6.12 INBUFSELY TERMSEL 0 X X 1 1 0 1 0 SWITCH Status 5.9,5.10 INVBB X X 0 1 P OFF OFF ON ON N OFF OFF ON ON INV OFF OFF ON OFF Figure 22. CDCE18005 Universal Input Buffer 34 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Table 14 lists several settings for many possible clock input scenarios. Note that the two universal input buffers share the Vbb generator. Therefore, if both inputs use internal termination, they must use the same configuration mode (LVDS, LVPECL, or LVCMOS). If the application requires different modes (e.g. LVDS and LVPECL) then one of the two inputs must implement external termination. Table 14. CDCE18005 Universal Input Buffer Configuration Matrix PRI_IN CONFIGURATION MATRIX SETTINGS Register.Bit → Bit Name → CONFIGURATION 5.7 5.1 5.0 5.8 5.9 5.6 HYSTEN INBUFSELY INBUFSELX PRI_TERMSEL PRIINVBB ACDCSEL Hysteresis Mode Coupling Termination 1 0 0 X X X ENABLED LVCMOS DC N/A — 1 1 0 0 0 0 ENABLED LVPECL AC Internal 1.9V 1 1 0 0 0 1 ENABLED LVPECL DC Internal 1.2V 1 1 0 1 X X ENABLED LVPECL — External — 1 1 1 0 0 0 ENABLED LVDS AC Internal 1.2V 1 1 1 0 0 1 ENABLED LVDS DC Internal 1.2V 1 1 1 1 X X ENABLED LVDS — External — 0 X X X X X OFF — — — — 1 X X X X X ENABLED — — — — 5.7 5.1 5.0 6.12 5.10 5.6 HYSTEN INBUFSELY INBUFSELX SEC_TERMSEL SECINVBB ACDCSEL Hysteresis Mode Coupling Termination Vbb 1 0 0 X X X ENABLED LVCMOS DC N/A — 1 1 0 0 0 0 ENABLED LVPECL AC Internal 1.9V 1 1 0 0 0 1 ENABLED LVPECL DC Internal 1.2V 1 1 0 1 X X ENABLED LVPECL — External — 1 1 1 0 0 0 ENABLED LVDS AC Internal 1.2V 1 1 1 0 0 1 ENABLED LVDS DC Internal 1.2V 1 1 1 1 X X ENABLED LVDS — External — 0 X X X X X OFF — — — — 1 X X X X X ENABLED — — — — Vbb SEC_IN CONFIGURATION MATRIX SETTINGS Register.Bit → Bit Name → CONFIGURATION LVDS Fail Safe Mode Differential data line receivers can switch on noise in the absence of an input signal. This occurs when the bus driver is turned off or the interconnect is damaged or missing. Traditionally the solution to this problem involves incorporating an external resistor network on the receiver input. This network applies a steady-state bias voltage to the input pins. The additional cost of the external components notwithstanding, the use of such a network lowers input signal magnitude and thus reduces the differential noise margin. The CDCE18005 provides internal failsafe circuitry on all LVDS inputs if enabled as shown in Table 15 for DC termination only. Table 15. LVDS Failsafe Settings Bit Name → Register.Bit → FAILSAFE 5.11 LVDS Failsafe 0 Disabled for all inputs 1 Enabled for all inputs Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 35 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Auxiliary Input Port The auxiliary input on the CDCE18005 is designed to connect to an AT-Cut Crystal with a total load capacitance (CL) of 0 to 10 pF. One side of the crystal connects to Ground while the other side connects to the Auxiliary input of the device. The circuit works optimally between 20 to 40 MHz but it can accept crystals from 2 to 42 MHz. Since the Auxiliary input operates between 0 and 2 V with a crystal, it can accept single-ended signals (e.g. LVCMOS). Electrically, it is equivalent to an LVCMOS input buffer with 10 pF of input capacitance. 8 pF CL Figure 23. CDCE18005 Auxiliary Input Port OUTPUT BLOCK The output block includes five identical output channels. Each output channel comprises an output multiplexer, a clock divider module, and a universal output buffer as shown in Figure 24. Registers 0 - 4 5 4 Output MUX Control Internal Clock Distribution Bus Registers 0 - 4 27 26 25 24 23 22 21 Sync Pulse Output Buffer Control Enable PRI_IN UxP SEC_IN SMART _MUX Clock Divider Module 0 - 4 LVDS UxN SYNTH LVPECL Figure 24. CDCE18005 Output Channel 36 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Output Multiplexer Control The output multiplexer selects which of the four clock sources available on the Internal Clock Distribution Bus will be presented to the Clock Divider Module. For a description of these clock sources, see Figure 21. Table 16. CDCE18005 Output Multiplexer Control Settings OUTPUT MULTIPLEXER CONTROL Register n (n = 0,1,2,3,4) OUTMUXnSELX n.4 OUTMUXnSELY n.5 CLOCK SOURCE SELECTED 0 0 PRI_IN 0 1 SEC_IN 1 0 AUX_IN 1 1 Reserved Output Buffer Control Each of the five output channels includes a programmable output buffer; supporting LVPECL, LVDS, and LVCMOS modes. Table 17 lists the settings required to configure the CDCE18005 for each output type. Registers 0 through 4 correspond to Output Channels 0 through 4 respectively. Table 17. CDCE18005 Output Buffer Control Settings OUTPUT BUFFER CONTROL Register n (n = 0,1,2,3,4) OUTPUT TYPE CMOSMODEnPX CMOSMODEnPY CMOSMODEnNX CMOSMODEnNY OUTBUFSELnX OUTBUFSELnY n.22 n.23 n.24 n.25 n.26 n.27 0 0 0 0 0 1 0 1 0 1 1 1 LVDS 0 0 LVCMOS 1 0 OFF See LVCMOS Output Buffer Configuration Settings 0 1 0 1 LVPECL Output Buffer Control – LVCMOS Configurations A LVCMOS output configuration requires additional configuration data. In the single ended configuration, each Output Channel provides a pair of outputs. The CDCE18005 supports four modes of operation for single ended outputs as listed in Table 18. Table 18. LVCMOS Output Buffer Configuration Settings OUTPUT BUFFER CONTROL – LVCMOS CONFIGURATION Register n (n = 0,1,2,3,4) Output Type Pin 0 LVCMOS Negative Active – Non-inverted 0 LVCMOS Negative Hi-Z 0 0 LVCMOS Negative Active – Non-inverted 1 0 0 LVCMOS Negative Low X X 0 0 LVCMOS Positive Active – Non-inverted 1 X X 0 0 LVCMOS Positive Hi-Z 1 0 X X 0 0 LVCMOS Positive Active – Non-inverted 1 1 X X 0 0 LVCMOS Positive Low CMOSMODEnPX CMOSMODEnPY CMOSMODEnNX CMOSMODEnNY OUTBUFSELnX OUTBUFSELnY n.22 n.23 n.24 n.25 n.26 n.27 X X 0 0 0 X X 0 1 0 X X 1 0 X X 1 0 0 0 Output Mode Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 37 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Output Dividers Figure 25 shows that each output channel provides a 7-bit divider and digital phase adjust block. Table 19 lists the divide ratios supported by the output divider for each output channel. The output divider’s maximum input frequency is limited to 1.175GHz. If the divider is bypassed (divide ratio = 1) then the maximum frequency of the output channel is 1.5GHz. Registers 0 - 4 Register 5 3 12 11 10 9 2 8 7 6 Select Divider Sync PRI_IN SEC_IN AUX_IN From Output MUX Digital Phase Adjust (7-bits) To Output Buffer Output Divider (7-bits) Registers 0 - 4 19 18 17 16 15 14 13 Figure 25. CDCE18005 Output Divider and Phase Adjust 38 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Table19. CDCE18005 Output Divider Settings OUTPUT DIVIDER n SETTINGSRegister n (n = 0,1,2,3,4) Output Phase* n.19 n.18 n.17 n.16 n.15 X X X X X 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 Integer Divider Setting OUTnDIVSEL2 OUTnDIVSEL3 Integer Divider OUTnDIVSEL4 OUTnDIVSEL5 OUTnDIVSEL6 Multiplexer Output Divide Ratio Output Channels Auxiliary Cycles Degree 0-4 Output OFF OFF OFF OFF – 0 0 1 4 0 – 0.5 180 2** 4 0 – 0 0 3** 6 0 0 – 0.5 180 4 8 0 0 0 – 0 0 5 10 0 0 0 0 2 21 7560 6 6 0 0 0 0 2 28.5 10260 8 8 0 0 0 0 0 2 35 12500 10 10 0 0 0 0 1 4 24 8640 12 12 0 0 0 0 1 4 32.5 11700 16 16 0 0 0 0 1 4 40 14400 20 20 0 0 0 1 0 6 27 9720 18 18 0 0 0 1 0 6 36.5 13140 24 24 0 0 0 1 0 6 45 16200 30 30 0 0 0 1 1 8 40.5 14580 32 32 0 0 0 1 1 8 50 18000 40 40 0 0 1 0 0 10 55 19800 50 50 0 0 1 0 1 12 36 12960 36 36 0 0 1 0 1 12 48.5 17460 48 48 0 0 1 0 1 12 60 21600 60 60 0 0 1 1 0 14 25.5 9540 28 28 0 0 1 1 0 14 39 14040 42 42 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 39 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com OUTPUT DIVIDER n SETTINGSRegister n (n = 0,1,2,3,4) Output Phase* n.19 n.18 n.17 n.16 n.15 Integer Divider Setting OUTnDIVSEL2 OUTnDIVSEL3 Integer Divider OUTnDIVSEL4 OUTnDIVSEL5 OUTnDIVSEL6 Multiplexer Output Divide Ratio Cycles Degree 0-4 Output 0 0 1 1 0 14 52.5 18900 56 56 0 0 1 1 0 14 65 23400 70 70 0 0 1 1 1 16 56.5 20340 64 64 0 0 1 1 1 16 70 25200 80 80 Output Channels Auxiliary *These columns show that the output divider generates a unique phase lag in the output clock (relative to the clock from the output multiplexer) determined by the divide ratio used. **Output channel 2 or 3 determine the auxiliary output divide ratio. For example, if the auxiliary output is programmed to drive via output 2 and output 2 divider is programmed to divide by 3, then the divide ratio for the auxiliary output will be 6. 40 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Digital Phase Adjust Figure 26 provides an overview of the Digital Phase Adjust feature. The output divider includes a coarse phase adjust that shifts the divided clock signal that drives the output buffer. Essentially, the Digital Phase Adjust timer delays when the output divider starts dividing; thereby shifting the phase of the output clock. The phase adjust resolution is a function of the divide function. Coarse phase adjust parameters include: • Number of Phase Delay Steps – the number of phase delay steps available is equal to the divide ratio selected. For example, if a Divide by 4 is selected, then the Digital Phase Adjust can be programmed to select when the output divider changes state based upon selecting one of the four counts on the input. Figure 26 shows an example of divide by 16 in which there are 16 rising edges of Clock IN at which the output divider changes state (this particular example shows the fourth edge shifting the output by one fourth of the period of the output). • Phase Delay Step Size – the step size is determined by the number of phase delay steps according to the following equations: 360 degrees Stepsize(deg) = OutputDivideRatio (1) 1 f ClockIN Stepsize (sec ) = OutputDivideRatio Clock IN (from Smart MUX ) (2) Digital Phase Adjust (7-bits) Start Divider To Output Buffer /1 - /80 Clock IN Output Divider (no adjust ) Output Divider (phase adjust ) Figure 26. CDCE18005 Phase Adjust Phase Adjust example Given: Output Frequency: 30.72 MHz Input Frequency: 491.52 MHz Output Divider Setting: 16 360 Stepsize(deg) = = 11.25° / Step 32 (3) The tables that follow provide a list of valid register settings for the digital phase adjust blocks. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 41 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com 42 18 20 24 Phase Delay (radian) 0 0 (2π/2) 0 (2π/3) 2(2π/3) 0 (2π/4) 2(2π/4) 3(2π/4) 0 (2π/5) 2(2π/5) 3(2π/5) 4(2π/5) 0 (2π/6) 2(2π/6) 3(2π/6) 4(2π/6) 5(2π/6) 0 (2π/8) 2(2π/8) 3(2π/8) 4(2π/8) 5(2π/8) 6(2π/8) 7(2π/8) 0 (2π/10) 2(2π/10) 3(2π/10) 4(2π/10) 5(2π/10) 6(2π/10) 7(2π/10) 8(2π/10) 9(2π/10) 0 (2π/12) 2(2π/12) 3(2π/12) 4(2π/12) 5(2π/12) 6(2π/12) 7(2π/12) 8(2π/12) 9(2π/12) 10(2π/12) 11(2π/12) 0 (2π/16) 2(2π/16) 3(2π/16) 4(2π/16) 5(2π/16) 6(2π/16) 7(2π/16) 8(2π/16) 9(2π/16) 10(2π/16) 11(2π/16) 12(2π/16) 13(2π/16) 14(2π/16) 15(2π/16) PHnADGC0 n.6 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 PHnADGC1 n.7 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 PHnADGC2 n.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PHnADGC3 n.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 PHnADGC4 n.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Divide Ratio n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PHnADGC5 16 n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PHnADGC6 12 Phase Delay 10 PHnADGC0 8 PHnADGC1 6 PHnADGC2 5 PHnADGC3 4 PHnADGC4 3 PHnADGC5 1 2 PHnADGC6 Divide Ratio Table 20. CDCE18005 Output Coarse Phase Adjust Settings (1) n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n.11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 n.10 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 n.9 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 n.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n.7 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 n.6 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (radian) 0 (2π/18) 2(2π/18) 3(2π/18) 4(2π/18) 5(2π/18) 6(2π/18) 7(2π/18) 8(2π/18) 9(2π/18) 10(2π/18) 11(2π/18) 12(2π/18) 13(2π/18) 14(2π/18) 15(2π/18) 16(2π/18) 17(2π/18) 0 (2π/20) 2(2π/20) 3(2π/20) 4(2π/20) 5(2π/20) 6(2π/20) 7(2π/20) 8(2π/20) 9(2π/20) 10(2π/20) 11(2π/20) 12(2π/20) 13(2π/20) 14(2π/20) 15(2π/20) 16(2π/20) 17(2π/20) 18(2π/20) 19(2π/20) 0 (2π/24) 2(2π/24) 3(2π/24) 4(2π/24) 5(2π/24) 6(2π/24) 7(2π/24) 8(2π/24) 9(2π/24) 10(2π/24) 11(2π/24) 12(2π/24) 13(2π/24) 14(2π/24) 15(2π/24) 16(2π/24) 17(2π/24) 18(2π/24) 19(2π/24) 20(2π/24) 21(2π/24) 22(2π/24) 23(2π/24) Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 32 36 Phase Delay (radian) 0 (2π/28) 2(2π/28) 3(2π/28) 4(2π/28) 5(2π/28) 6(2π/28) 7(2π/28) 8(2π/28) 9(2π/28) 10(2π/28) 11(2π/28) 12(2π/28) 13(2π/28) 14(2π/28) 15(2π/28) 16(2π/28) 17(2π/28) 18(2π/28) 19(2π/28) 20(2π/28) 21(2π/28) 22(2π/28) 23(2π/28) 24(2π/28) 25(2π/28) 26(2π/28) 27(2π/28) 0 (2π/30) 2(2π/30) 3(2π/30) 4(2π/30) 5(2π/30) 6(2π/30) 7(2π/30) 8(2π/30) 9(2π/30) 10(2π/30) 11(2π/30) 12(2π/30) 13(2π/30) 14(2π/30) 15(2π/30) 16(2π/30) 17(2π/30) 18(2π/30) 19(2π/30) 20(2π/30) 21(2π/30) 22(2π/30) 23(2π/30) 24(2π/30) 25(2π/30) 26(2π/30) 27(2π/30) 28(2π/30) 29(2π/30) PHnADGC0 n.6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 PHnADGC1 n.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 PHnADGC2 Phase Delay n.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 PHnADGC3 PHnADGC0 n.9 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 PHnADGC4 PHnADGC1 n.10 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 PHnADGC5 PHnADGC2 n.11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 PHnADGC6 PHnADGC3 n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Divide Ratio PHnADGC4 30 PHnADGC5 28 PHnADGC6 Divide Ratio Table 21. CDCE18005 Output Coarse Phase Adjust Settings (2) n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 n.10 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 n.9 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 n.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n.7 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 n.6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 (radian) 0 (2π/32) 2(2π/32) 3(2π/32) 4(2π/32) 5(2π/32) 6(2π/32) 7(2π/32) 8(2π/32) 9(2π/32) 10(2π/32) 11(2π/32) 12(2π/32) 13(2π/32) 14(2π/32) 15(2π/32) 16(2π/32) 17(2π/32) 18(2π/32) 19(2π/32) 20(2π/32) 21(2π/32) 22(2π/32) 23(2π/32) 24(2π/32) 25(2π/32) 26(2π/32) 27(2π/32) 28(2π/32) 29(2π/32) 30(2π/32) 31(2π/32) 0 (2π/36) 2(2π/36) 3(2π/36) 4(2π/36) 5(2π/36) 6(2π/36) 7(2π/36) 8(2π/36) 9(2π/36) 10(2π/36) 11(2π/36) 12(2π/36) 13(2π/36) 14(2π/36) 15(2π/36) 16(2π/36) 17(2π/36) 18(2π/36) 19(2π/36) 20(2π/36) 21(2π/36) 22(2π/36) 23(2π/36) 24(2π/36) 25(2π/36) 26(2π/36) 27(2π/36) 28(2π/36) 29(2π/36) 30(2π/36) 31(2π/36) 32(2π/36) 33(2π/36) 34(2π/36) 35(2π/36) Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 43 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com 44 48 Phase Delay (radian) 0 (2π/40) 2(2π/40) 3(2π/40) 4(2π/40) 5(2π/40) 6(2π/40) 7(2π/40) 8(2π/40) 9(2π/40) 10(2π/40) 11(2π/40) 12(2π/40) 13(2π/40) 14(2π/40) 15(2π/40) 16(2π/40) 17(2π/40) 18(2π/40) 19(2π/40) 20(2π/40) 21(2π/40) 22(2π/40) 23(2π/40) 24(2π/40) 25(2π/40) 26(2π/40) 27(2π/40) 28(2π/40) 29(2π/40) 30(2π/40) 31(2π/40) 32(2π/40) 33(2π/40) 34(2π/40) 35(2π/40) 36(2π/40) 37(2π/40) 38(2π/40) 39(2π/40) 0 (2π/42) 2(2π/42) 3(2π/42) 4(2π/42) 5(2π/42) 6(2π/42) 7(2π/42) 8(2π/42) 9(2π/42) 10(2π/42) 11(2π/42) 12(2π/42) 13(2π/42) 14(2π/42) 15(2π/42) 16(2π/42) 17(2π/42) 18(2π/42) 19(2π/42) 20(2π/42) 21(2π/42) 22(2π/42) 23(2π/42) 24(2π/42) 25(2π/42) 26(2π/42) 27(2π/42) 28(2π/42) 29(2π/42) 30(2π/42) 31(2π/42) 32(2π/42) 33(2π/42) 34(2π/42) 35(2π/42) 36(2π/42) 37(2π/42) 38(2π/42) 39(2π/42) 40(2π/42) 41(2π/42) PHnADGC0 n.6 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 PHnADGC1 n.7 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 PHnADGC2 Phase Delay n.8 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PHnADGC3 PHnADGC0 n.9 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 PHnADGC4 PHnADGC1 n.10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 PHnADGC5 PHnADGC2 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 PHnADGC6 PHnADGC3 n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Divide Ratio PHnADGC4 42 PHnADGC5 40 PHnADGC6 Divide Ratio Table 22. CDCE18005 Output Coarse Phase Adjust Settings (3) n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 n.10 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 n.9 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 n.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n.7 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 n.6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (radian) 0 (2π/48) 2(2π/48) 3(2π/48) 4(2π/48) 5(2π/48) 6(2π/48) 7(2π/48) 8(2π/48) 9(2π/48) 10(2π/48) 11(2π/48) 12(2π/48) 13(2π/48) 14(2π/48) 15(2π/48) 16(2π/48) 17(2π/48) 18(2π/48) 19(2π/48) 20(2π/48) 21(2π/48) 22(2π/48) 23(2π/48) 24(2π/48) 25(2π/48) 26(2π/48) 27(2π/48) 28(2π/48) 29(2π/48) 30(2π/48) 31(2π/48) 32(2π/48) 33(2π/48) 34(2π/48) 35(2π/48) 36(2π/48) 37(2π/48) 38(2π/48) 39(2π/48) 40(2π/48) 41(2π/48) 42(2π/48) 43(2π/48) 44(2π/48) 45(2π/48) 46(2π/48) 47(2π/48) Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 56 Phase Delay (radian) 0 (2π/50) 2(2π/50) 3(2π/50) 4(2π/50) 5(2π/50) 6(2π/50) 7(2π/50) 8(2π/50) 9(2π/50) 10(2π/50) 11(2π/50) 12(2π/50) 13(2π/50) 14(2π/50) 15(2π/50) 16(2π/50) 17(2π/50) 18(2π/50) 19(2π/50) 20(2π/50) 21(2π/50) 22(2π/50) 23(2π/50) 24(2π/50) 25(2π/50) 26(2π/50) 27(2π/50) 28(2π/50) 29(2π/50) 30(2π/50) 31(2π/50) 32(2π/50) 33(2π/50) 34(2π/50) 35(2π/50) 36(2π/50) 37(2π/50) 38(2π/50) 39(2π/50) 40(2π/50) 41(2π/50) 42(2π/50) 43(2π/50) 44(2π/50) 45(2π/50) 46(2π/50) 47(2π/50) 48(2π/50) 49(2π/50) PHnADGC0 n.6 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 PHnADGC1 Phase Delay n.7 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 PHnADGC2 PHnADGC0 n.8 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 PHnADGC3 PHnADGC1 n.9 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 PHnADGC4 PHnADGC2 n.10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 PHnADGC5 PHnADGC3 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 PHnADGC6 PHnADGC4 n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Divide Ratio PHnADGC5 50 PHnADGC6 Divide Ratio Table 23. CDCE18005 Output Coarse Phase Adjust Settings (4) n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 n.10 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 n.9 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 n.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n.7 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 n.6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (radian) 0 (2π/56) 2(2π/56) 3(2π/56) 4(2π/56) 5(2π/56) 6(2π/56) 7(2π/56) 8(2π/56) 9(2π/56) 10(2π/56) 11(2π/56) 12(2π/56) 13(2π/56) 14(2π/56) 15(2π/56) 16(2π/56) 17(2π/56) 18(2π/56) 19(2π/56) 20(2π/56) 21(2π/56) 22(2π/56) 23(2π/56) 24(2π/56) 25(2π/56) 26(2π/56) 27(2π/56) 28(2π/56) 29(2π/56) 30(2π/56) 31(2π/56) 32(2π/56) 33(2π/56) 34(2π/56) 35(2π/56) 36(2π/56) 37(2π/56) 38(2π/56) 39(2π/56) 40(2π/56) 41(2π/56) 42(2π/56) 43(2π/56) 44(2π/56) 45(2π/56) 46(2π/56) 47(2π/56) 48(2π/56) 49(2π/56) 50(2π/56) 51(2π/56) 52(2π/56) 53(2π/56) 54(2π/56) 55(2π/56) Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 45 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com 46 64 Phase Delay (radian) 0 (2π/60) 2(2π/60) 3(2π/60) 4(2π/60) 5(2π/60) 6(2π/60) 7(2π/60) 8(2π/60) 9(2π/60) 10(2π/60) 11(2π/60) 12(2π/60) 13(2π/60) 14(2π/60) 15(2π/60) 16(2π/60) 17(2π/60) 18(2π/60) 19(2π/60) 20(2π/60) 21(2π/60) 22(2π/60) 23(2π/60) 24(2π/60) 25(2π/60) 26(2π/60) 27(2π/60) 28(2π/60) 29(2π/60) 30(2π/60) 31(2π/60) 32(2π/60) 33(2π/60) 34(2π/60) 35(2π/60) 36(2π/60) 37(2π/60) 38(2π/60) 39(2π/60) 40(2π/60) 41(2π/60) 42(2π/60) 43(2π/60) 44(2π/60) 45(2π/60) 46(2π/60) 47(2π/60) 48(2π/60) 49(2π/60) 50(2π/60) 51(2π/60) 52(2π/60) 53(2π/60) 54(2π/60) 55(2π/60) 56(2π/60) 57(2π/60) 58(2π/60) 59(2π/60) PHnADGC0 n.6 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 PHnADGC1 Phase Delay n.7 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 PHnADGC2 PHnADGC0 n.8 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 PHnADGC3 PHnADGC1 n.9 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 PHnADGC4 PHnADGC2 n.10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 PHnADGC5 PHnADGC3 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 PHnADGC6 PHnADGC4 n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Divide Ratio PHnADGC5 60 PHnADGC6 Divide Ratio Table 24. CDCE18005 Output Coarse Phase Adjust Settings (5) n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n.10 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 n.9 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 n.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n.7 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 n.6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (radian) 0 (2π/64) 2(2π/64) 3(2π/64) 4(2π/64) 5(2π/64) 6(2π/64) 7(2π/64) 8(2π/64) 9(2π/64) 10(2π/64) 11(2π/64) 12(2π/64) 13(2π/64) 14(2π/64) 15(2π/64) 16(2π/64) 17(2π/64) 18(2π/64) 19(2π/64) 20(2π/64) 21(2π/64) 22(2π/64) 23(2π/64) 24(2π/64) 25(2π/64) 26(2π/64) 27(2π/64) 28(2π/64) 29(2π/64) 30(2π/64) 31(2π/64) 32(2π/64) 33(2π/64) 34(2π/64) 35(2π/64) 36(2π/64) 37(2π/64) 38(2π/64) 39(2π/64) 40(2π/64) 41(2π/64) 42(2π/64) 43(2π/64) 44(2π/64) 45(2π/64) 46(2π/64) 47(2π/64) 48(2π/64) 49(2π/64) 50(2π/64) 51(2π/64) 52(2π/64) 53(2π/64) 54(2π/64) 55(2π/64) 56(2π/64) 57(2π/64) 58(2π/64) 59(2π/64) 60(2π/64) 61(2π/64) 62(2π/64) 63(2π/64) Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 80 Phase Delay (radian) 0 (2π/70) 2(2π/70) 3(2π/70) 4(2π/70) 5(2π/70) 6(2π/70) 7(2π/70) 8(2π/70) 9(2π/70) 10(2π/70) 11(2π/70) 12(2π/70) 13(2π/70) 14(2π/70) 15(2π/70) 16(2π/70) 17(2π/70) 18(2π/70) 19(2π/70) 20(2π/70) 21(2π/70) 22(2π/70) 23(2π/70) 24(2π/70) 25(2π/70) 26(2π/70) 27(2π/70) 28(2π/70) 29(2π/70) 30(2π/70) 31(2π/70) 32(2π/70) 33(2π/70) 34(2π/70) 35(2π/70) 36(2π/70) 37(2π/70) 38(2π/70) 39(2π/70) 40(2π/70) 41(2π/70) 42(2π/70) 43(2π/70) 44(2π/70) 45(2π/70) 46(2π/70) 47(2π/70) 48(2π/70) 49(2π/70) 50(2π/70) 51(2π/70) 52(2π/70) 53(2π/70) 54(2π/70) 55(2π/70) 56(2π/70) 57(2π/70) 58(2π/70) 59(2π/70) 60(2π/70) 61(2π/70) 62(2π/70) 63(2π/70) 64(2π/70) 65(2π/70) 66(2π/70) 67(2π/70) 68(2π/70) 69(2π/70) PHnADGC0 n.6 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 PHnADGC1 Phase Delay n.7 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 PHnADGC2 PHnADGC0 n.8 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 PHnADGC3 PHnADGC1 n.9 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 PHnADGC4 PHnADGC2 n.10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 PHnADGC5 PHnADGC3 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PHnADGC6 PHnADGC4 n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Divide Ratio PHnADGC5 70 PHnADGC6 Divide Ratio Table 25. CDCE18005 Output Coarse Phase Adjust Settings (6) n.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n.10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 n.9 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 n.8 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 n.7 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 n.6 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 (radian) 0 (2π/80) 2(2π/80) 3(2π/80) 4(2π/80) 5(2π/80) 6(2π/80) 7(2π/80) 8(2π/80) 9(2π/80) 10(2π/80) 11(2π/80) 12(2π/80) 13(2π/80) 14(2π/80) 15(2π/80) 16(2π/80) 17(2π/80) 18(2π/80) 19(2π/80) 20(2π/80) 21(2π/80) 22(2π/80) 23(2π/80) 24(2π/80) 25(2π/80) 26(2π/80) 27(2π/80) 28(2π/80) 29(2π/80) 30(2π/80) 31(2π/80) 32(2π/80) 33(2π/80) 34(2π/80) 35(2π/80) 36(2π/80) 37(2π/80) 38(2π/80) 39(2π/80) 40(2π/80) 41(2π/80) 42(2π/80) 43(2π/80) 44(2π/80) 45(2π/80) 46(2π/80) 47(2π/80) 48(2π/80) 49(2π/80) 50(2π/80) 51(2π/80) 52(2π/80) 53(2π/80) 54(2π/80) 55(2π/80) 56(2π/80) 57(2π/80) 58(2π/80) 59(2π/80) 60(2π/80) 61(2π/80) 62(2π/80) 63(2π/80) 64(2π/80) 65(2π/80) 66(2π/80) 67(2π/80) 68(2π/80) 69(2π/80) 70(2π/80) 71(2π/80) 72(2π/80) 73(2π/80) 74(2π/80) 75(2π/80) 76(2π/80) 77(2π/80) 78(2π/80) 79(2π/80) Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 47 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Auxiliary Output Figure 27 shows the auxiliary output port. Table 26 lists how the auxiliary output port is controlled. The output buffer supports a maximum output frequency of 250 MHz and drives at LVCMOS levels. Refer to Table 19 for the list of divider settings that establishes the output frequency. Output Divider 2 AUX OUT Output Divider 3 Register 6 25 Register 6 24 Figure 27. CDCE18005 Auxiliary Output Table 26. CDCE18005 Auxiliary Output Settings Bit Name → AUXFEEDSEL AUXOUTEN Register.Bit → 6.25 6.24 X 0 OFF 0 1 Divider 2 1 1 Divider 3 AUX OUTPUT SOURCE DEVICE POWER CALCULATION AND THERMAL MANAGEMENT The CDCE18005 is a high performance device, therefore careful attention must be paid to device configuration and printed circuit board layout with respect to power consumption. Table 27 provides the power consumption for the individual blocks within the CDCE18005. To estimate total power consumption, calculate the sum of the products of the number of blocks used and the power dissipated of each corresponding block. Provide Sample Calculation Here after numbers become available. Table 27. CDCE18005 Power Consumption Internal Block (Power at 3.3V) Power Dissipated per Block (Typical) Number of Blocks per Device Input Circuit 18 mW 1 Output Divider 185 mW 5 Output Buffer ( LVPECL) 116 mW 5 Output Buffer (LVDS) 76 mW 5 Output Buffer (LVCMOS) 86 mW 10 This power estimate determines the degree of thermal management required for a specific design. Employing the thermally enhanced printed circuit board layout shown in Figure 29 insures that the thermal performance curves shown in Figure 28 apply. Observing good thermal layout practices enables the thermal pad on the backside of the QFN-48 package to provide a good thermal path between the die contained within the package and the ambient air. This thermal pad also serves as the ground connection the device; therefore, a low inductance connection to the ground plane is essential. Figure 29 shows a layout optimized for good thermal performance and a good power supply connection as well. The 7×7 filled via patter facilitates both considerations. Finally, the recommended layout achieves θJA = 27.3°C/W in still air and 20.3°C/W in an environment with 100 LFM airflow if implemented on a JEDEC compliant thermal test board. 48 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 Die Temperature vs Total Device Power RL 0 LFM 85 C 125 JEDEC 0 LFM 25 C JEDEC 100 LFM 25 C RL 0 LFM 25 C JDEC 0 LFM 85 C JEDEC 0 LFM 25 C 100 JEDEC 100 LFM 25 C Die Temp (C) RL 100 LFM 85 C RL 0 LFM 25 C 75 JEDEC 100 LFM 85 C RL 100 LFM 25 C RL 100 LFM 25 C JEDEC 0 LFM 85 C 50 JEDEC 100 LFM 85 C RL 0 LFM 85 C 25 RL 100 LFM 85 C 0 0 1 2 3 4 Power (W) Figure 28. CDCE18005 Die Temperature vs Device Power Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 49 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com Component Side QFN-48 Solder Mask Thermal Slug (package bottom) Internal Ground Plane Internal Power Plane Thermal Dissipation Pad (back side) Thermal Vias No Solder Mask Back Side Figure 29. CDCE18005 Recommended PCB Layout 50 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 CDCE18005 Power Supply Bypassing – Recommended Layout Figure 30 shows two conceptual layouts detailing recommended placement of power supply bypass capacitors. If the capacitors are mounted on the back side, 0402 components can be employed; however, soldering to the Thermal Dissipation Pad can be difficult. For component side mounting, use 0201 body size capacitors to facilitate signal routing. Keep the connections between the bypass capacitors and the power supply on the device as short as possible. Component Side Back Side Figure 30. CDCE18005 Power Supply Bypassing Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 51 CDCE18005 SCAS863 – NOVEMBER 2008........................................................................................................................................................................................... www.ti.com APPLICATION INFORMATION AND GENERAL USAGE HINTS Fan-out Buffer Each output of the CDCE18005 can be configured as a fan-out buffer (divider bypassed) or fan-out buffer with divide and skew control functionality. PRI_IN Divide by 1: Up to 1500 MHz Otherwise : Up to 1175 MHz U0P /1 - /80 U0N SEC_IN Up to 5 Outputs : LVPECL or LVDS Up to 10 Outputs: LVCMOS U4P /1 - /80 U4N Figure 31. CDCE18005 Fan-out Buffer Mode Clock Generator The CDCE18005 can generate 5–10 low noise clocks from a single crystal or crystal oscillator as follows: XTAL / AUX_IN U0P Output Divider 0 U0N U4P Output Divider 4 U4N Figure 32. CDCE18005 Clock Generator Mode Clock Distribution – Mixed Mode The following table presents a common scenario where the CDCE18005 can function as a clock switch that accepts LVDS and crystal inputs and drives LVDS, LVPECL and LVCMOS outputs. CLOCK FREQUENCY INPUT/OUTPUT FORMAT NUMBER CDCE18005 PORT COMMENT 491.52 MHz Input LVDS 1 SEC_IN Reference 125 MHz Input LVDS 1 PRI_IN Reference from backplane 10 MHz Input AT-Cut 1 AUX_IN Low end crystal oscillator 122.88 MHz Output LVDS 1 U0 SerDes Clock 491.52 MHz Output LVPECL 1 U1 ASIC 125 MHz Output LVPECL 1 U2 FPGA 30.72 MHz Outputs LVCMOS 2 U3 ASIC 10 MHz Outputs LVCMOS 2 U4 CPU, DSP 52 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 CDCE18005 www.ti.com........................................................................................................................................................................................... SCAS863 – NOVEMBER 2008 491.52 MHz Output Divider 0 122.88 MHz Output Divider 1 491.52 MHz Output Divider 2 125.00 MHz 125.00 MHz Xtal 10MHz 30.72 MHz Output Divider 3 Output Divider 4 30.72 MHz 10 MHz 10 MHz Figure 33. CDCE18005 Mixed Mode Clock Distribution Example Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s) :CDCE18005 53 PACKAGE OPTION ADDENDUM www.ti.com 25-Nov-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty CDCE18005RGZR ACTIVE QFN RGZ 48 2500 TBD Call TI Call TI CDCE18005RGZT ACTIVE QFN RGZ 48 250 TBD Call TI Call TI Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated