AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 1 AM3517/05 ARM Microprocessor 1.1 Features AM3517/05 ARM Microprocessor: – Software Compatible with OMAPTM 3 Processors** – MPU Subsystem • 500-MHz ARM Cortex-A8 Core • NEON SIMD Coprocessor and Vector floating point (FP) co-processor – Memory Interfaces: • 16/32- bit DDR2 Interface with 1 GByte total addressable space • General Purpose Memory Interface supporting 16-bit Wide Multiplexed Address/Data bus • 64 K-Byte shared SRAM • 3 Removable Removable Media Interfaces [MMC/SD/SDIO] – IO Voltage: DDR2 IOs: 1.8V; Other IOs: 1.8V and 3.3V,1.2V Core Voltage – Commerial and Industrial temperature grade* – 16-bit Video Input Port capable of capturing HD video – 491-pin sBGA package (17x17, .65 mm pitch) – HD resolution Display Subsystem – Serial Communication • High-End CAN Controller • 10/100 Mbit Ethernet MAC • USB OTG subsystem with standard DP/DM interface[HS/FS/LS] • Multiport USB Host Subsystem [HS/FS/LS] – 12-/8-Pin ULPI Interface or 6-/4-/3-Pin • Four Master/Slave Multichannel Serial Port Interface (McSPI) Ports • Five Multichannel Buffered Serial Ports – 512-Byte Transmit/Receive Buffer (McBSP1/3/4/5) – 5K-Byte Transmit/Receive Buffer (McBSP2) – SIDETONE Core Support (McBSP2 and 3 Only) For Filter, Gain, and Mix Operations – 128-Channel Transmit/Receive Mode – Direct Interface to I2S and PCM Device and TDM Buses • • • • • • HDQ/1-Wire Interface 4 UARTs (One with Infrared Data Association [IrDA] and Consumer Infrared [CIR] Modes) • 3 Master/Slave High-Speed Inter-Integrated Circuit (I2C) Controllers • 12 32-bit General Purpose Timers • 1 32-bit Watchdog Timer • 1 32-bit 32-kHz Sync Timer • Up to 186 General-Purpose I/O (GPIO) Pins Display subsystem – Parallel Digital Output – Up to 24-Bit RGB – Supports Up to 2 LCD Panels – Support for Remote Frame Buffer Interface (RFBI) LCD Panels – Two 10-bit Digital-to-Analog Converters (DACs) Supporting – Composite NTSC/PAL Video – Luma/Chroma Separate Video (S-Video) – Serial Digital Output – Rotation 90-, 180-, and 270-degrees – Resize Images From 1/4x to 8x – Color Space Converter – 8-bit Alpha Blending Video Processing Front End (VPFE) 16-bit Video Input Port – RAW Data Interface – 75-MHz Maximum Pixel Clock – Supports REC656/CCIR656 Standard – Supports YCbCr422 Format (8-bit or 16-bit With Discrete Horizontal and Vertical Sync Signals) – Generates Optical Black Clamping Signals – Built-in Digital Clamping and Black Level Compensation – 10-bit to 8-bit A-law Compression Hardware – Supports up to 16K Pixels (Image Size) in Horizontal and Vertical Directions System Direct Memory Access (sDMA) Controller (32 Logical Channels With Configurable Priority) Comprehensive Power, Reset and Clock Management Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document. POWERVR SGX is a trademark of Imagination Technologies Ltd. All other trademarks are the property of their respective owners. PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Copyright © 2009, Texas Instruments Incorporated PRODUCT PREVIEW • AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 • PRODUCT PREVIEW • • • 2 ARM CortexTM-A8 Memory Architecture – ARMv7 Architecture • Trust Zone • Thumb-2 • MMU Enhancements – In-Order, Dual-Issue, Superscalar Microprocessor Core – NEON Multimedia Architecture – Over 2x Performance of ARMv6 SIMD – Supports Both Integer and Floating Point SIMD – JAZELLE RCT Execution Environment Architecture – Dynamic Branch Prediction with Branch Target Address Cache, Global history buffer and 8 entry return stack – Embedded Trace Macrocell [ETM] support for Non_invasive Debug – 16K-Byte instruction Cache (4-Way setassociative) – 16K-Byte Data Cache (4-Way Set-Associative) – 256K-Byte L2 Cache POWERVR SGX™ Graphics Accelerator – Tile Based Architecture Delivering up to 10 MPoly/sec – Universal Scalable Shader Engine: Multi-threaded Engine Incorporating Pixel and Vertex Shader Functionality – Industry Standard API Support: OpenGLES 1.1 and 2.0, OpenVG1.0 – Fine Grained Task Switching, Load Balancing, and Power Management – Programmable, High-Quality Image Anti-Aliasing Endianess – ARM Instructions - Little Endian – ARM Data – Configurable SDRC Memory Controller – 16, 32-bit Memory Controller With 1G-Byte Total Address Space AM3517/05 ARM Microprocessor www.ti.com • • • • – Interfaces to Double Data Rate (DDR2) SRAM – SDRAM Memory Scheduler (SMS) and Rotation Engine General Purpose Memory Controller (GPMC) – 16-bit Wide Multiplexed Address/Data Bus – Up to 8 Chip Select Pins With 128M-Byte Address Space per Chip Select Pin – Glueless Interface to NOR Flash, NAND Flash (With ECC Hamming Code Calculation), SRAM and Pseudo-SRAM – Flexible Asynchronous Protocol Control for Interface to Custom Logic (FPGA, CPLD, ASICs, etc.) – Nonmultiplexed Address/Data Mode (Limited 2K-Byte Address Space) Test Interfaces – IEEE-1149.1 (JTAG) Boundary-Scan Compatible – Embedded Trace Macro Interface (ETM) – Serial Data Transport Interface (SDTI) 65-nm CMOS technology Applications: – Single Board Computers – Industrial and Home Automation – Digital Signage – Point-of-Sale Devices – Portable Media Player – Portable Industrial – Transportation – Navigation – Smart White Goods – Digital TV – Digital Video Camera – Gaming – Notes: *Operating condition restrictions apply. **Different memory controller to support DDR2. New IP support for VPFE, EMAC, and HECC. Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 1.2 Description AM3517/05 high-performance, industrial applications processors with video, image, and graphics processing sufficient to support the following: • Single Board Computers • Home and Industrial automation • Digital Signage The following subsystems are part of the device: • Microprocessor unit (MPU) subsystem based on the ARM Cortex-A8 microprocessor • POWERVR SGX™ Graphics Accelerator (AM3517 Device only) Subsystem for 3D graphics acceleration to support display and gaming effects (3517 only) • Display subsystem with several features for multiple concurrent image manipulation, and a programmable interface supporting a wide variety of displays. The display subsystem also supports NTSC/PAL video out. • High performance interconnects provide high-bandwidth data transfers for multiple initiators to the internal and external memory controllers and to on-chip peripherals. The device also offers a comprehensive clock-management scheme. AM3517/05 devices are available in a 491-pin sBGA package. This AM3517/05 data manual presents the electrical and mechanical specifications for the AM3517/05 ARM Microprocessor. Submit Documentation Feedback AM3517/05 ARM Microprocessor 3 PRODUCT PREVIEW The device supports high-level operating systems (OSs), such as: • Linux • Windows CE AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 1.3 Functional Block Diagram Figure 1-1 shows the functional block diagram of the AM3517/05 ARM Microprocessor. LCD Panel MPU Subsystem ARM CortexA8TM Core 16K/16K L1$ Parallel POWERVR SGXTM Graphics Accelerator (AM3517 only) PRODUCT PREVIEW L2$ 256K 64 64 HECC 32 32 32 Channel System DMA 32 CVBS or S-Video Analog DAC 64 HS/FS/ LS USB Host Dual Output 3-Layer Display Processor (1xGraphics, 2xVideo) Temporal Dithering SDTV → QCIF Support 32 USB PHY USB OTG Controller 32 32 Async EMAC USB transceivers / device ports [3] VPFE 64 L3 Interconnect Network-Hierarchial, Performance, and Power Driven 32 64K On-Chip RAM 64 132K On-Chip BOOT ROM SMS: SDRAM Memory Scheduler/ Rotation SDRC Controller DDR PHY External DDR2 32 32 32 L4 Interconnect GPMC: General Purpose Memory Controller NAND/NOR/ FLASH, SRAM Peripherals: 4xUART, 3xHigh-Speed I2C, 5xMcBSP (2x with Sidetone/Audio Buffer) 4xMcSPI, 186xGPIO, 3xHigh-Speed MMC/SDIO, HDQ/1 Wire, 12xGPTimers, 1xWDT, 32K Sync Timer System Controls PRCM External Peripherals Interfaces Emulation Debug: SDTI, ETM, JTAG, CoresightTM DAP SPRS550-006 Figure 1-1. AM3517/05 Functional Block Diagram 4 AM3517/05 ARM Microprocessor Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Contents 2 3 AM3517/05 ARM Microprocessor ..................... 1 1.1 Features .............................................. 1 1.2 Description ............................................ 3 1.3 Functional Block Diagram ............................ 4 TERMINAL DESCRIPTION.............................. 6 2.1 Pin Assignments ...................................... 6 2.2 Ball Characteristics .................................. 11 2.3 Multiplexing Characteristics ......................... 31 2.4 Signal Description ................................... 38 6 ELECTRICAL CHARACTERISTICS.................. 59 3.1 Absolute Maximum Ratings ......................... 59 3.2 Recommended Operating Conditions ............... 61 3.3 DC Electrical Characteristics ........................ 63 3.4 Core Voltage Decoupling............................ 65 ......................... CLOCK SPECIFICATIONS ............................ 4.1 Oscillator ............................................ 4.2 Input Clock Specifications ........................... 4.3 Output Clock Specifications ......................... 4.4 DPLL Specifications ................................. 3.5 4 5 Power-up and Power-down Submit Documentation Feedback 67 70 72 72 73 7 VIDEO DAC SPECIFICATIONS ....................... 78 5.1 5.2 Interface Description ................................ 79 Electrical Specifications Over Recommended Operating Conditions ................................ 80 5.3 Analog Supply (vdda_dac) Noise Requirements .... 82 5.4 External Component Value Choice ................. 83 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS ................................... 84 6.1 Timing Test Conditions .............................. 84 6.2 Interface Clock Specifications ....................... 84 6.3 Timing Parameters .................................. 85 6.4 External Memory Interfaces ......................... 86 6.5 Video Interfaces .................................... 119 6.6 Serial Communications Interfaces ................. 124 6.7 Removable Media Interfaces 6.8 Test Interfaces ..................................... 174 ...................... 160 PACKAGE CHARACTERISTICS .................... 180 7.1 Package Thermal Resistance ...................... 180 7.2 Device Support..................................... 180 75 Contents 5 PRODUCT PREVIEW 1 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 2 TERMINAL DESCRIPTION 2.1 Pin Assignments 2.1.1 Pin Map (Top View) Figure 2-1 through Figure 2-4 show the top view of the 491-pin sPBGA package [ZCN] package pin assignments in four quadrants (A, B, C, and D). Note: A pin with an "NC" designator indicates No Connection. For proper device operation, these pins must be left unconnected. PRODUCT PREVIEW 6 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 25 24 23 22 21 AE VSS dss_acbias dss_pclk etk_d15 etk_d12 AD dss_data1 dss_data0 dss_vsync dss_hsync AC dss_data4 dss_data3 dss_data2 AB dss_data6 dss_data5 AA dss_data9 dss_data8 dss_data7 Y dss_data13 dss_data12 dss_data11 dss_data10 W dss_data18 dss_data17 dss_data16 dss_data15 20 19 18 17 16 15 14 etk_d8 etk_d5 etk_ctl mcspi2_cs1 mcspi1_cs3 mcspi1_cs2 mcspi1_clk AE etk_d13 etk_d9 etk_d6 etk_d0 etk_clk mcspi2_clk mcspi1_simo mcspi1_cs1 AD etk_d14 etk_d10 etk_d1 mcspi2_simo mcspi1_somi AC etk_d7 etk_d2 mcspi2_somi mcspi1_cs0 AB uart1_tx etk_d3 mcspi2_cs0 VDDS_ DPLL_MPU _USBHOST AA uart1_rts etk_d4 VDDSHV VDDSHV Y VDDS VDDSHV VDDSHV W etk_d11 V dss_data20 U jtag_tck jtag_ntrst dss_data23 T jtag_emu0 jtag_tdo jtag_tdi R mcbsp1_clkr jtag_emu1 P mcbsp_clks mcbsp1_fsx mcbsp1_dr VSS uart1_cts dss_data14 uart1_rx dss_data19 N sys_clkout1 mcbsp1_clkx M sys_clkout2 sys_clkreq 25 24 VSS dss_data22 jtag_tms_tmsc mcbsp1_dx VDDS dss_data21 jtag_rtck mcbsp1_fsr Reserved 22 21 VDD_CORE VDD_CORE VSS V VDD_CORE VDD_CORE VSS U VSS T VDDS VDDSHV VSS VSS VDDSHV VDDSHV VDD_CORE VDD_CORE VDD_CORE VDD_CORE VSS VSS VSS R VSS VSS VSS VSS P VSS N M VDDSHV VDDSHV VSS VDDS_DPLL_ PER_CORE VDDSHV VSS VDD_CORE 23 VSS 20 19 18 VSS VSS 17 VSS VSS VSS 16 15 14 PRODUCT PREVIEW www.ti.com Figure 2-1. ZCN Pin Map [Quadrant A] Submit Documentation Feedback TERMINAL DESCRIPTION 7 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 13 www.ti.com 12 11 10 9 8 7 6 5 3 4 2 AE mmc2_dat7 mmc2_dat3 mmc2_cmd mmc1_dat7 mmc1_dat2 rmii_50mhz _clk rmii_txd1 rmii_mdio _data ccdc_data4 ccdc_data1 ccdc_wen AD mmc2_dat6 mmc2_dat2 mmc2_clk mmc1_dat6 mmc1_dat1 rmii_txen rmii_txd0 rmii_mdio _clk ccdc_data3 ccdc_data0 AC mmc2_dat5 mmc2_dat1 mmc1_dat5 mmc1_dat0 rmii_rxer ccdc_data7 ccdc_data2 mmc2_dat4 mmc2_dat0 mmc1_dat4 mmc1_cmd rmii_crs_dv ccdc_data6 VDDS_SRAM CAP_VDD_ _MPU SRAM_MPU mmc1_dat3 mmc1_clk rmii_rxd1 rmii_rxd0 AB AA PRODUCT PREVIEW Y VDDSHV VDDSHV VDDSHV VDDS W VDDSHV VDDSHV VDDSHV VDDSHV V VSS VSS VDD_CORE VDD_CORE VSS VSS U VSS VSS VDD_CORE VDD_CORE VSS VSS T VSS VSS R VSS VSS VSS VSS P VSS VSS VSS VSS N VSS VSS M VSS VSS 13 12 VSS 11 VSS 10 VDDSHV ccdc_hs VSS AE ccdc_vd ccdc_pclk ccdc_field AD sys_boot8 sys_boot7 sys_boot6 AC sys_boot5 sys_boot4 AB sys_boot2 sys_boot1 AA sys _nrespwron sys_nirq sys_boot3 sys_boot0 ccdc_data5 VDDSHV i2c3_sda i2c3_scl VDDSHV i2c1_sda i2c1_scl 1 sys _nreswarm i2c2_sda hecc1_rxd Y i2c2_scl W hecc1_txd Reserved V Reserved gpmc_wait3 U VDD_CORE VDD_CORE VDDSHV VDDSHV gpmc_wait2 gpmc_wait1 gpmc_wait0 gpmc_nwp gpmc_nbe1 T VDD_CORE VDD_CORE VDDSHV VDDSHV VDDS gpmc_nbe0 _cle gpmc_nwe gpmc_noe gpmc_nadv _ale R uart3_tx _irtx uart3_rx _irrx P VSS VSS VSS VSS VDDSHV VDDSHV gpmc_ncs6 gpmc_ncs7 uart3_cts _sd uart3_cts _rctx gpmc_clk N VSS VDDSHV VDDSHV VDDSHV gpmc_ncs2 gpmc_ncs3 gpmc_ncs4 gpmc_ncs5 M 7 6 5 4 3 2 1 VSS 9 8 Figure 2-2. ZCN Pin Map [Quadrant B] 8 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 25 24 23 22 L hdq_sio NC NC NC K sys_xtalin sys_32k NC NC J VSSOSC H sys_xtalout G usb0_id usb0_vbus F usb0_dp usb0_dm VDDA3P3V _USBPHY E usb0_drvvbus uart2_tx uart2_rx D mcbsp2_fsx mcbsp2_dx C mcbsp2_clkx mcbsp3_dr mcbsp3_fsx B mcbsp2_dr mcbsp3_dx mcbsp4_clkx mcbsp4_dx A VSS mcbsp3_clkx mcbsp4_dr mcbsp4_fsx 22 25 tv_out2 24 tv_vfb2 23 21 NC tv_out1 VSSA_DAC VDDA_DAC VDDA1P8V _USBPHY Reserved CAP_ VDDA1P2LDO _USBPHY 20 19 18 17 16 15 14 VDDSOSC VDDSHV VDD_CORE VSS VSS VSS VSS L tv_vfb1 VDDSHV VDD_CORE VDD_CORE VSS K VSS VSS VDD_CORE VDD_CORE VSS J VDDSHV VDDSHV VDDS VDD_CORE VSS H VDDS VDDS VDDS G Reserved VDDS VREFSSTL F sdrc_ncas E tv_vref NC Reserved uart2_cts uart2_rts VDDS_SRAM CAP_VDD_ _CORE_BG SRAM_CORE sdrc_d4 sdrc_d2 sdrc_d5 sdrc_d9 sdrc_d11 sdrc_cke0 D sdrc_d3 sdrc_d6 sdrc_d10 sdrc_d12 sdrc_nras C sdrc_dqs0p sdrc_d7 sdrc_d8 sdrc_dqs1p sdrc_d13 sdrc_dm1 sdrc_nwe B sdrc_d1 sdrc_dqs0n sdrc_strben0 sdrc_strben _dly0 sdrc_dqs1n sdrc_d14 sdrc_d15 sdrc_ncs1 A 21 20 19 18 17 16 15 14 sdrc_dm0 sdrc_d0 PRODUCT PREVIEW www.ti.com Figure 2-3. ZCN Pin Map [Quadrant C] Submit Documentation Feedback TERMINAL DESCRIPTION 9 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 L K J www.ti.com 13 12 11 VSS VSS VSS VSS VSS 10 VSS VSS 9 8 7 VDD_CORE VDD_CORE VDD_CORE VDD_CORE VSS VSS VSS VDD_CORE VDD_CORE VSS VDDS VDDSHV PRODUCT PREVIEW VSS G VDDS VDDS VDDS VDDS F VDDS VDDS VDDS VDDS E sdrc_ncs0 sdrc_a4 sdrc_a9 sdrc_dm2 sdrc_d19 D sdrc_ba2 sdrc_a3 sdrc_a8 sdrc_a14 sdrc_d18 C sdrc_ba1 sdrc_a2 sdrc_a7 B sdrc_nclk sdrc_a1 sdrc_a6 A sdrc_clk 13 sdrc_a0 12 11 VDDSHV gpmc_a10 gpmc_a4 gpmc_d0 gpmc_a5 4 3 gpmc_d12 gpmc_d13 gpmc_d8 gpmc_d9 gpmc_d1 gpmc_d2 sdrc_a11 sdrc_a13 sdrc_d17 sdrc_dqs2n sdrc_a5 sdrc_a10 sdrc_a12 sdrc_d16 sdrc_dqs2p 10 9 8 7 6 sdrc_strben1 5 1 gpmc_ncs0 gpmc_ncs1 L gpmc_d14 gpmc_d15 K gpmc_d10 gpmc_d11 J gpmc_d5 gpmc_d6 H gpmc_d3 gpmc_d4 G gpmc_a8 gpmc_a9 F gpmc_a1 gpmc_a2 gpmc_a3 E scrc_d29 sdrc_dm3 D sdrc_d27 sdrc_d28 sdrc_d31 C sdrc_24 sdrc_d26 sdrc_dqs3n sdrc_strben _dly1 sdrc_d25 sdrc_dqs3p VSS 2 1 sdrc_d23 sdrc_d22 2 gpmc_a7 gpmc_a6 sdrc_d21 sdrc_d20 sdrc_odt0 VDDSHV gpmc_d7 VDDSHV H sdrc_ba0 5 VDD_CORE VDD_CORE VSS ddr_padref 6 4 3 sdrc_d30 B A Figure 2-4. ZCN Pin Map [Quadrant D] 10 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 2.2 Ball Characteristics Note: The default mode is the mode which is automatically configured on release of the internal GLOBAL_PWRON reset; also see the RESET REL. MODE column. b. Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively used for alternate functions, while some modes are not used and do not correspond to a functional configuration. 4. TYPE: Signal direction – I = Input – O = Output – I/O = Input/Output – D = Open drain – DS = Differential – A = Analog Note: In the safe_mode, the buffer is configured in high-impedance. 5. BALL RESET STATE: The state of the terminal at reset (power up). – 0: The buffer drives VOL (pulldown/pullup resistor not activated) 0(PD): The buffer drives VOL with an active pulldown resistor. – 1: The buffer drives VOH (pulldown/pullup resistor not activated) 1(PU): The buffer drives VOH with an active pullup resistor. – Z: High-impedance – L: High-impedance with an active pulldown resistor – H : High-impedance with an active pullup resistor 6. BALL RESET REL. STATE: The state of the terminal at reset release. – 0: The buffer drives VOL (pulldown/pullup resistor not activated) 0(PD): The buffer drives VOL with an active pulldown resistor. – 1: The buffer drives VOH (pulldown/pullup resistor not activated) 1(PU): The buffer drives VOH with an active pullup resistor. – Z: High-impedance – L: High-impedance with an active pulldown resistor – H : High-impedance with an active pullup resistor 7. RESET REL. MODE: This mode is automatically configured on release of the internal GLOBAL_PWRON reset. 8. POWER: The voltage supply that powers the terminal’s I/O buffers. 9. VOLTAGE: Supply voltage for associated pin. 10. HYS: Indicates if the input buffer is with hysteresis. 11. LOAD: Load capacitance of the associated output buffer. 12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled via software. Submit Documentation Feedback TERMINAL DESCRIPTION 11 PRODUCT PREVIEW Table 2-1 describes the terminal characteristics and the signals multiplexed on each pin for the ZCN package. The following list describes the table column headers. 1. BALL LOCATION: Ball number(s) on the bottom side associated with each signal(s) on the bottom. 2. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the signal name in mode 0). Note: Table 2-1 does not take into account subsystem pin multiplexing options. Subsystem pin multiplexing options are described in Section 2.4, Signal Descriptions. 3. MODE: Multiplexing mode number. a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin corresponds to the name of the pin. There is always a function mapped on the primary mode. Notice that primary mode is not necessarily the default mode. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 13. IO CELL: IO cell information. Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the proper software configuration. Table 2-1. Ball Characteristics (ZCN Pkg.) PRODUCT PREVIEW BALL LOCATION [1] PIN NAME [2] MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] B21 sdrc_d0 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS A21 sdrc_d1 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS D20 sdrc_d2 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C20 sdrc_d3 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS E19 sdrc_d4 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS D19 sdrc_d5 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C19 sdrc_d6 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS B19 sdrc_d7 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS B18 sdrc_d8 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS D17 sdrc_d9 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C17 sdrc_d10 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS D16 sdrc_d11 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C16 sdrc_d12 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS B16 sdrc_d13 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS A16 sdrc_d14 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS A15 sdrc_d15 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS A7 sdrc_d16 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS B7 sdrc_d17 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS D7 sdrc_d18 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS E7 sdrc_d19 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C6 sdrc_d20 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS D6 sdrc_d21 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS B5 sdrc_d22 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C5 sdrc_d23 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS B4 sdrc_d24 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS A3 sdrc_d25 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS B3 sdrc_d26 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C3 sdrc_d27 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C2 sdrc_d28 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS D2 sdrc_d29 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS B1 sdrc_d30 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS C1 sdrc_d31 0 IO L Z 0 VDDS 1.8V Yes 4 PU/ PD LVCMOS A12 sdrc_ba0 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS C13 sdrc_ba1 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS D13 sdrc_ba2 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS A11 sdrc_a0 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS B11 sdrc_a1 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS C11 sdrc_a2 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS D11 sdrc_a3 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS E11 sdrc_a4 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS A10 sdrc_a5 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS B10 sdrc_a6 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS C10 sdrc_a7 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS D10 sdrc_a8 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS E10 sdrc_a9 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS A9 sdrc_a10 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS B9 sdrc_a11 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS A8 sdrc_a12 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS B8 sdrc_a13 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS 12 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] PIN NAME [2] MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] D8 sdrc_a14 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS E13 sdrc_ncs0 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS A14 sdrc_ncs1 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS A13 sdrc_clk 0 IO L Z 0 VDDS 1.8V Yes 8 PU/ PD LVCMOS B13 sdrc_nclk 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS D14 sdrc_cke0 0 O L PD 7 VDDS 1.8V Yes 8 PU/ PD LVCMOS L C14 sdrc_nras 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS E14 sdrc_ncas 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS B14 sdrc_nwe 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS C21 sdrc_dm0 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS B15 sdrc_dm1 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS E8 sdrc_dm2 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS D1 sdrc_dm3 0 O L Z 0 VDDS 1.8V No 8 PU/ PD LVCMOS B20 sdrc_dqs0p 0 IO L Z 0 VDDS 1.8V Yes 8 PU/ PD LVCMOS B17 sdrc_dqs1p 0 IO L Z 0 VDDS 1.8V Yes 8 PU/ PD LVCMOS A6 sdrc_dqs2p 0 IO L Z 0 VDDS 1.8V Yes 8 PU/ PD LVCMOS A2 sdrc_dqs3p 0 IO L Z 0 VDDS 1.8V Yes 8 PU/ PD LVCMOS A20 sdrc_dqs0n 0 IO L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS A17 sdrc_dqs1n 0 IO L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS B6 sdrc_dqs2n 0 IO L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS B2 sdrc_dqs3n 0 IO L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS C8 sdrc_odt0 0 L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS A19 sdrc_strben0 0 L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS A18 sdrc_strben_ 0 dly0 L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS A5 sdrc_strben1 0 L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS A4 sdrc_strben_ 0 dly1 L Z 0 VDDS 1.8V 8 PU/ PD LVCMOS B12 ddr_padref 0 PWR VDDS 1.8V E3 gpmc_a1 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_34 4 IO safe_mode 7 gpmc_a2 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_35 4 IO safe_mode 7 gpmc_a3 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_36 4 IO safe_mode 7 gpmc_a4 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_37 4 IO safe_mode 7 gpmc_a5 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_38 4 IO safe_mode 7 gpmc_a6 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_39 4 IO safe_mode 7 gpmc_a7 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_40 4 IO safe_mode 7 gpmc_a8 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_41 4 IO safe_mode 7 E2 E1 F7 F6 F4 F3 F2 Submit Documentation Feedback TERMINAL DESCRIPTION PRODUCT PREVIEW sdrc_cke0_s 7 afe 13 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] PIN NAME [2] MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] F1 gpmc_a9 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS sys_ ndmareq2 1 I gpio_42 4 IO safe_mode 7 gpmc_a10 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS sys_ ndmareq3 1 I gpio_43 4 IO safe_mode 7 G5 gpmc_d0 0 IO H PU 0 VDDSHV 1.8V/3.3V 30 PU/ PD LVCMOS G4 gpmc_d1 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS G3 gpmc_d2 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS G2 gpmc_d3 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS G1 gpmc_d4 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H2 gpmc_d5 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H1 gpmc_d6 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS J5 gpmc_d7 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS J4 gpmc_d8 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_44 4 IO gpmc_d9 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_45 4 IO gpmc_d10 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_46 4 IO gpmc_d11 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_47 4 IO gpmc_d12 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_48 4 IO gpmc_d13 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_49 4 IO gpmc_d14 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_50 4 IO gpmc_d15 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_51 4 IO L2 gpmc_ncs0 0 O H Z 0 VDDSHV 1.8V/3.3V No 30 NA LVCMOS L1 gpmc_ncs1 0 O H Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_52 4 IO gpmc_ncs2 H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS G6 PRODUCT PREVIEW J3 J2 J1 K4 K3 K2 K1 M4 M3 M2 M1 14 0 O gpt9_pwm_e 2 vt IO gpio_53 4 IO safe_mode 7 gpmc_ncs3 0 O sys_ ndmareq0 1 I gpt10_pwm_ 2 evt IO gpio_54 4 IO safe_mode 7 gpmc_ncs4 0 O sys_ ndmareq1 1 I gpt9_pwm_e 3 vt IO gpio_55 4 IO safe_mode 7 gpmc_ncs5 0 O TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) N5 PIN NAME [2] MODE [3] TYPE [4] sys_ ndmareq2 1 I gpt10_pwm_ 3 evt IO gpio_56 4 IO safe_mode 7 gpmc_ncs6 0 O sys_ ndmareq3 1 I BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpt11_pwm_ 3 evt IO gpio_57 4 IO safe_mode 7 gpmc_ncs7 0 O gpmc_io_dir 1 O gpt8_pwm_e 3 vt IO gpio_58 4 IO safe_mode 7 gpmc_clk 0 O gpio_59 4 IO R1 gpmc_nadv_ 0 ale O L Z 0 VDDSHV 1.8V/3.3V No 30 PU/ PD LVCMOS R2 gpmc_noe 0 O H Z 0 VDDSHV 1.8V/3.3V No 30 PU/ PD LVCMOS R3 gpmc_nwe 0 O H Z 0 VDDSHV 1.8V/3.3V No 30 PU/ PD LVCMOS R4 gpmc_nbe0_ 0 cle O L Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_60 4 IO gpmc_nbe1 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_61 4 IO safe_mode 7 gpmc_nwp 0 O L Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_62 4 IO T3 gpmc_wait0 0 I H PU 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS T4 gpmc_wait1 0 I H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS uart4_tx 1 O gpio_63 4 IO safe_mode 7 gpmc_wait2 0 I H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS uart4_rx 1 I gpio_64 4 IO safe_mode 7 gpmc_wait3 0 I H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS sys_ ndmareq1 1 I uart3_cts_rct 2 x I gpio_65 4 IO safe_mode 7 dss_pclk 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS gpio_66 4 IO safe_mode 7 dss_hsync 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS gpio_67 4 IO safe_mode 7 dss_vsync 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS gpio_68 4 IO safe_mode 7 N4 N1 T1 T2 T5 U1 AE23 AD22 AD23 Submit Documentation Feedback TERMINAL DESCRIPTION PRODUCT PREVIEW BALL LOCATION [1] 15 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] PIN NAME [2] MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] AE24 dss_acbias 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS gpio_69 4 IO safe_mode 7 dss_data0 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS uart1_cts 2 I dssvenc656_ 3 data0 I gpio_70 4 IO safe_mode 7 dss_data1 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS uart1_rts 2 O L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS AD24 AD25 PRODUCT PREVIEW AC23 AC24 AC25 AB24 AB25 AA23 AA24 AA25 Y22 16 dssvenc656_ 3 data1 I gpio_71 4 IO safe_mode 7 dss_data2 0 O dssvenc656_ 3 data2 I gpio_72 4 IO safe_mode 7 dss_data3 0 O dssvenc656_ 3 data3 I gpio_73 4 IO safe_mode 7 dss_data4 0 O uart3_rx_ irrx 2 I dssvenc656_ 3 data4 I gpio_74 4 IO safe_mode 7 dss_data5 0 O uart3_tx_ irtx 2 O dssvenc656_ 3 data5 I gpio_75 4 IO safe_mode 7 dss_data6 0 O uart1_tx 2 O dssvenc656_ 3 data6 I gpio_76 4 IO safe_mode 7 dss_data7 0 O uart1_rx 2 I dssvenc656_ 3 data7 I gpio_77 4 IO safe_mode 7 dss_data8 0 O gpio_78 4 IO safe_mode 7 dss_data9 0 O gpio_79 4 IO safe_mode 7 dss_data10 0 O gpio_80 4 IO TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) PIN NAME [2] MODE [3] safe_mode 7 dss_data11 gpio_81 safe_mode 7 dss_data12 0 O gpio_82 4 IO safe_mode 7 dss_data13 0 O gpio_83 4 IO safe_mode 7 dss_data14 0 O gpio_84 4 IO safe_mode 7 dss_data15 0 O gpio_85 4 IO safe_mode 7 dss_data16 0 O gpio_86 4 IO safe_mode 7 dss_data17 0 O gpio_87 4 IO safe_mode 7 dss_data18 0 O mcspi3_clk 2 IO dss_data4 3 O gpio_88 4 IO safe_mode 7 dss_data19 0 O mcspi3_ simo 2 IO dss_data3 3 O gpio_89 4 IO safe_mode 7 dss_data20 0 O mcspi3_ somi 2 IO dss_data2 3 O gpio_90 4 IO safe_mode 7 dss_data21 0 O mcspi3_cs0 2 IO dss_data1 3 O gpio_91 4 IO safe_mode 7 dss_data22 0 O mcspi3_cs1 2 O dss_data0 3 O gpio_92 4 IO safe_mode 7 dss_data23 0 O dss_data5 3 O gpio_93 4 IO safe_mode 7 H24 tv_out2 0 K21 tv_out1 0 Y23 Y24 Y25 W21 W22 W23 W24 W25 V24 V25 U21 U22 U23 TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS 4 IO L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS O 0 VDDA_DAC 1.8V NA 10-bit DAC O 0 VDDA_DAC 1.8V NA 10-bit DAC Submit Documentation Feedback TERMINAL DESCRIPTION PRODUCT PREVIEW BALL LOCATION [1] 17 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] PIN NAME [2] MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] K20 tv_vfb1 0 O Z NA 0 VDDA_DAC H23 tv_vfb2 0 O Z NA 0 VDDA_DAC H20 tv_vref 0 I Z NA 0 AD2 ccdc_pclk 0 IO L PD gpio_94 4 IO safe_mode 7 ccdc_field 0 IO L ccdc_data8 1 I uart4_tx 2 O i2c3_scl 3 OD gpio_95 4 IO safe_mode 7 ccdc_ hd 0 IO uart4_rts 2 O gpio_96 4 IO safe_mode 7 ccdc_vd 0 IO uart4_cts 2 I gpio_97 4 IO safe_mode 7 ccdc_wen 0 IO ccdc_data9 1 I uart4_rx 2 I gpio_98 4 IO safe_mode 7 ccdc_data0 0 I i2c3_sda 3 IOD gpio_99 4 I safe_mode 7 ccdc_data1 0 I gpio_100 4 I safe_mode 7 ccdc_data2 0 I gpio_101 4 IO safe_mode 7 ccdc_data3 0 I gpio_102 4 IO safe_mode 7 ccdc_data4 0 I gpio_103 4 IO safe_mode 7 ccdc_data5 0 I gpio_104 4 IO safe_mode 7 ccdc_data6 0 I gpio_105 4 IO safe_mode 7 ccdc_data7 0 I gpio_106 4 IO safe_mode 7 AD1 PRODUCT PREVIEW AE2 AD3 AE3 AD4 AE4 AC5 AD5 AE5 Y6 AB6 AC6 AE6 18 rmii_mdio_da 0 ta O ccdc_data8 1 I gpio_107 4 IO safe_mode 7 TERMINAL DESCRIPTION HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] 1.8V NA 10-bit DAC 1.8V NA 10-bit DAC VDDA_DAC 1.8V NA 10-bit DAC 7 VDDSHV 1.8V/3.3V Yes 15 PU/ PD LVCMOS PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 15 PU/PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 25 PU/PD LVCMOS 8 Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) PIN NAME [2] AD6 Y7 AA7 AB7 AC7 AD7 AE7 AD8 AE8 D25 C25 B25 D24 AA9 AB9 MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] rmii_mdio_cl 0 k I H PU 1.8V/3.3V Yes 25 PU/PD LVCMOS ccdc_data9 1 I gpio_108 4 IO safe_mode 7 rmii_rxd0 0 I ccdc_data10 1 I gpio_109 4 IO safe_mode 7 rmii_rxd1 0 I ccdc_data11 1 I gpio_110 4 IO safe_mode 7 rmii_crs_dv 0 I ccdc_data12 1 I gpio_111 4 IO safe_mode 7 rmii_rxer 0 O ccdc_data13 1 I gpio_167 4 IO safe_mode 7 rmii_txd0 0 O ccdc_ data14 1 I gpio_126 4 IO safe_mode 7 rmii_txd1 0 O ccdc_data15 1 I gpio_112 4 I safe_mode 7 rmii_txen 0 O gpio_113 4 I safe_mode 7 rmii_50mhz_ 0 clk I gpio_114 4 I safe_mode 7 mcbsp2_fsx 0 IO gpio_116 4 IO safe_mode 7 mcbsp2_ clkx 0 IO gpio_117 4 IO safe_mode 7 mcbsp2_dr 0 I gpio_118 4 IO safe_mode 7 mcbsp2_dx 0 IO gpio_119 4 IO safe_mode 7 mmc1_clk 0 O gpio_120 4 IO safe_mode 7 mmc1_cmd 0 IO gpio_121 4 IO safe_mode 7 Submit Documentation Feedback 7 VDDSHV 8 H PU 7 VDDSHV 1.8V/3.3V Yes 25 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 25 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 25 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 25 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 25 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 25 PU/PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V 25 PU/PD LVCMOS 25 PU/ PD LVCMOS PRODUCT PREVIEW BALL LOCATION [1] NA H PU 7 VDDSHV 1.8V/3.3V NA L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS TERMINAL DESCRIPTION 19 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] PIN NAME [2] MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] AC9 mmc1_dat0 0 IO L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS mcspi2_clk 1 IO gpio_122 4 IO safe_mode 7 mmc1_dat1 L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V No 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V No 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V No 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V No 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS AD9 AE9 PRODUCT PREVIEW AA10 AB10 AC10 AD10 AE10 AD11 AE11 AB12 AC12 AD12 AE12 20 0 IO mcspi2_simo 1 IO gpio_123 4 IO safe_mode 7 mmc1_dat2 0 IO mcspi2_somi 1 IO gpio_124 4 IO safe_mode 7 mmc1_dat3 0 IO mcspi2_cs0 1 O gpio_125 4 IO safe_mode 7 mmc1_dat4 0 IO gpio_126 4 IO safe_mode 7 mmc1_dat5 0 IO gpio_127 4 IO safe_mode 7 mmc1_dat6 0 IO gpio_128 4 IO safe_mode 7 mmc1_dat7 0 IO gpio_129 4 IO safe_mode 7 mmc2_clk 0 O mcspi3_clk 1 IO uart4_cts 2 I gpio_130 4 IO safe_mode 7 mmc2_ cmd 0 IO mcspi3_ simo 1 IO uart4_rts 2 O gpio_131 4 IO safe_mode 7 mmc2_ dat0 0 IO mcspi3_ somi 1 IO uart4_tx 2 O gpio_132 4 IO safe_mode 7 mmc2_ dat1 0 IO uart4_rx 2 I gpio_133 4 IO safe_mode 7 mmc2_ dat2 0 IO mcspi3_cs1 1 O gpio_134 4 IO safe_mode 7 mmc2_ dat3 0 IO mcspi3_cs0 IO 1 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) AB13 AC13 PIN NAME [2] MODE [3] TYPE [4] gpio_135 4 IO safe_mode 7 mmc2_ dat4 0 IO mmc2_dir_da 1 t0 O mmc3_dat0 3 IO gpio_136 4 IO safe_mode 7 mmc2_ dat5 0 IO mmc2_dir_da 1 t1 O mmc3_dat1 3 IO gpio_137 4 IO mm_fsusb3_r 6 xdp IO safe_mode AD13 AE13 B24 C24 A24 C23 F20 F19 BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS PRODUCT PREVIEW BALL LOCATION [1] 7 mmc2_ dat6 0 IO mmc2_dir_ cmd 1 O mmc3_dat2 3 IO gpio_138 4 IO safe_mode 7 mmc2_ dat7 0 IO mmc2_ clkin 1 I mmc3_dat3 3 IO gpio_139 4 IO mm_fsusb3_r 6 xdm IO safe_mode 7 mcbsp3_dx 0 IO uart2_cts 1 I gpio_140 4 IO safe_mode 7 mcbsp3_dr 0 I uart2_rts 1 O gpio_141 4 IO safe_mode 7 mcbsp3_ clkx 0 IO uart2_tx 1 O gpio_142 4 IO safe_mode 7 mcbsp3_fsx 0 IO uart2_rx 1 I gpio_143 4 IO safe_mode 7 uart2_cts 0 I mcbsp3_dx 1 IO gpt9_pwm_e 2 vt IO gpio_144 4 IO safe_mode 7 uart2_rts 0 O mcbsp3_dr 1 I gpt10_pwm_ 2 evt IO gpio_145 IO 4 Submit Documentation Feedback TERMINAL DESCRIPTION 21 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] E24 E23 PRODUCT PREVIEW AA19 Y19 Y20 W20 B23 A23 B22 A22 PIN NAME [2] MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] safe_mode 7 uart2_tx mcbsp3_ clkx 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS 1 IO gpt11_pwm _evt 2 IO gpio_146 4 IO safe_mode 7 uart2_rx 0 I H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS mcbsp3_fsx 1 IO gpt8_pwm_e 2 vt IO gpio_147 4 IO safe_mode 7 uart1_tx 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_148 4 IO safe_mode 7 uart1_rts 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_149 4 IO safe_mode 7 uart1_cts 0 I L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_150 4 IO safe_mode 7 uart1_rx L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS 0 I mcbsp1_ clkr 2 I mcspi4_clk 3 IO gpio_151 4 IO safe_mode 7 mcbsp4_ clkx 0 IO gpio_152 4 IO mm_fsusb3_t 6 xse0 IO safe_mode 7 mcbsp4_dr 0 I gpio_153 4 IO mm_fsusb3_r 6 xrcv IO safe_mode 7 mcbsp4_dx 0 IO gpio_154 4 IO mm_fsusb3_t 6 xdat IO safe_mode 7 mcbsp4_fsx 0 IO gpio_155 4 IO mm_fsusb3_t 6 xen_ n IO safe_mode R25 P21 P22 22 7 mcbsp1_ clkr 0 IO mcspi4_clk 1 IO gpio_156 4 IO safe_mode 7 mcbsp1_fsr 0 IO gpio_157 4 IO safe_mode 7 mcbsp1_dx 0 IO TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) P23 P25 P24 N24 N2 N3 P1 P2 F25 F24 PIN NAME [2] MODE [3] TYPE [4] mcspi4_ simo 1 IO mcbsp3_dx 2 IO gpio_158 4 IO safe_mode 7 mcbsp1_dr 0 I mcspi4_ somi 1 IO mcbsp3_dr 2 I gpio_159 4 IO safe_mode 7 mcbsp_clks 0 I gpio_160 4 IO uart1_cts 5 I safe_mode 7 mcbsp1_fsx 0 IO mcspi4_cs0 1 IO mcbsp3_fsx 2 IO gpio_161 4 IO safe_mode 7 mcbsp1_ clkx 0 IO mcbsp3_ clkx 2 IO gpio_162 4 IO safe_mode 7 uart3_cts_ rctx 0 IO gpio_163 4 IO safe_mode 7 uart3_rts_ sd 0 O gpio_164 4 IO safe_mode 7 uart3_rx_ irrx 0 I gpio_165 4 IO safe_mode 7 uart3_tx_ irtx 0 O gpio_166 4 IO safe_mode 7 usb0_dp 0 IO uart3_tx_ irtx 1 O usb0_dm IO 0 BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS 5.0V Yes PU/ PD LVCMOS 5.0V Yes PU/ PD LVCMOS uart3_rx_ irrx 1 I G24 usb0_vbus 0 IO VDDA3P3V_ 5.0V USBPHY Yes PU/ PD LVCMOS G25 usb0_id 0 IO VDDA3P3V_ 3.3V USBPHY Yes PU/ PD LVCMOS E25 usb0_drvvbu 0 s O uart3_tx_ irtx 2 O gpio_125 4 IO safe_mode 7 hecc1_ txd 0 V2 V3 IO uart3_rx_ irrx 2 I gpio_130 4 IO safe_mode 7 hecc1_ rxd 0 IO Submit Documentation Feedback L PD 7 VDDSHV 1.8V/3.3V H PU 7 VDDSHV 1.8V/3.3V Yes 24 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 24 PU/ PD LVCMOS PRODUCT PREVIEW BALL LOCATION [1] 30 TERMINAL DESCRIPTION 23 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] PIN NAME [2] MODE [3] TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] uart3_rts_ sd 2 O gpio_131 4 IO safe_mode 7 V4 i2c1_scl 0 OD H PU 0 VDDSHV 1.8V/3.3V Yes 40 PU/ PD Open Drain V5 i2c1_ sda 0 IOD H PU 0 VDDSHV 1.8V/3.3V Yes 40 PU/ PD Open Drain W1 i2c2_scl 0 OD H PU 7 VDDSHV 1.8V/3.3V Yes 40 PU/ PD Open Drain gpio_168 4 IO safe_mode 7 i2c2_sda 0 IOD H PU 7 VDDSHV 1.8V/3.3V Yes 40 PU/ PD Open Drain gpio_183 4 IO safe_mode 7 i2c3_scl 0 OD H PU 7 VDDSHV 1.8V/3.3V Yes 40 PU/ PD Open Drain gpio_184 4 IO safe_mode 7 i2c3_sda 0 IOD H PU 7 VDDSHV 1.8V/3.3V Yes 40 PU/ PD Open Drain gpio_185 4 IO safe_mode 7 hdq_sio 0 IO H PU 7 VDDSHV 1.8V/3.3V Yes 40 PU/ PD LVCMOS sys_altclk 1 I i2c2_sccbe 2 O i2c3_sccbe 3 O gpio_170 4 IO safe_mode 7 mcspi1_clk 0 IO L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS mmc2_dat4 1 IO gpio_171 4 IO safe_mode 7 mcspi1_ simo 0 IO L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS mmc2_dat5 1 IO gpio_172 4 IO safe_mode 7 mcspi1_ somi 0 IO L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS mmc2_dat6 1 IO gpio_173 4 IO safe_mode 7 mcspi1_cs0 0 IO H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS mmc2_dat7 1 IO gpio_174 4 IO safe_mode 7 mcspi1_cs1 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS mmc3_cmd 3 IO gpio_175 4 IO safe_mode 7 mcspi1_cs2 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS mmc3_clk 3 O gpio_176 4 IO safe_mode 7 mcspi1_cs3 0 O H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS hsusb2_tll_ data2 2 IO hsusb2_ data2 3 IO gpio_177 4 IO W2 PRODUCT PREVIEW W4 W5 L25 AE14 AD15 AC15 AB15 AD14 AE15 AE16 24 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) PIN NAME [2] MODE [3] mm_fsusb2_t 5 xdat AD16 AC16 AB16 AA16 AE17 TYPE [4] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS L PD 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS 30 IO safe_mode 7 mcspi2_clk 0 IO hsusb2_tll_ data7 2 IO hsusb2_ data7 3 IO gpio_178 4 IO safe_mode 7 mcspi2_ simo 0 IO gpt9_pwm_e 1 vt IO hsusb2_tll_ data4 2 IO hsusb2_ data4 3 IO gpio_179 4 IO safe_mode 7 mcspi2_ somi 0 IO gpt10_pwm_ 1 evt IO hsusb2_tll_ data5 2 IO hsusb2_ data5 3 IO gpio_180 4 IO safe_mode 7 mcspi2_cs0 0 IO gpt11_pwm_ 1 evt IO hsusb2_tll_ data6 2 IO hsusb2_ data6 3 IO gpio_181 4 IO safe_mode 7 mcspi2_cs1 0 O gpt8_pwm_e 1 vt IO hsusb2_tll_ data3 2 IO hsusb2_ data3 3 IO gpio_182 4 IO mm_fsusb2_t 5 xen_ n IO safe_mode 7 K24 sys_32k 0 I Z Z 0 VDDSHV 1.8V/3.3V Yes PU/ PD LVCMOS K25 sys_xtalin 0 I Z Z 0 VDDSOSC 1.8V NA PU/ PD LVCMOS H25 sys_xtalout 0 O Z Z 0 VDDSOSC 1.8V NA PU/ PD LVCMOS M24 sys_clkreq 0 IO L Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_1 4 IO sys_nirq 0 I H PU 7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_0 4 IO Y1 safe_mode 7 Y2 sys_ nrespwron 0 I Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Y3 sys_ nreswarm 0 IO L PD 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Submit Documentation Feedback TERMINAL DESCRIPTION PRODUCT PREVIEW BALL LOCATION [1] 25 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] Y4 AA1 AA2 AA3 AB1 PRODUCT PREVIEW AB2 PIN NAME [2] MODE [3] TYPE [4] gpio_30 4 IO sys_boot0 0 I gpio_2 4 IO sys_boot1 0 I gpio_3 4 IO sys_boot2 0 I gpio_4 4 IO sys_boot3 0 I gpio_5 4 IO sys_boot4 0 I mmc2_dir_da 1 t2 O gpio_6 4 IO sys_boot5 0 I BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS Open Drain mmc2_dir_da 1 t3 O gpio_7 4 IO sys_boot6 0 I gpio_8 4 IO AC2 sys_boot7 0 I Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/PD LVCMOS AC3 sys_boot8 0 I Z Z 0 VDDSHV 1.8V/3.3V Yes 30 PU/PD LVCMOS N25 sys_clkout1 0 O H PD 0/7 VDDSHV 1.8V/3.3V Yes 30 PU/ PD LVCMOS gpio_10 4 IO safe_mode 7 sys_clkout2 0 O L PD 7 VDDSHV 1.8V/3.3V Yes 10 PU/ PD LVCMOS gpio_186 4 IO AC1 M25 safe_mode 7 U24 jtag_ntrst 0 I L PD 0 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS U25 jtag_tck 0 I L PD 0 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS T21 jtag_rtck 0 O L Z 0 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS T22 jtag_tms_tms 0 c IO H PU 0 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS T23 jtag_tdi 0 I H PU 0 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS T24 jtag_tdo 0 O L Z 0 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS T25 jtag_emu0 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS gpio_11 4 IO jtag_emu1 0 IO H PU 0 VDDSHV 1.8V/3.3V Yes 20 PU/ PD LVCMOS gpio_31 4 IO etk_clk 0 O H PU 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS mcbsp5_ clkx 1 IO mmc3_clk 2 O hsusb1_stp 3 O gpio_12 4 IO H PU 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS H PU 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS R24 AD17 AE18 AD18 26 hsusb1_tll_st 6 p I etk_ctl 0 O mmc3_cmd 2 IO hsusb1_clk 3 O gpio_13 4 IO mm_fsusb1_r 5 xdp IO hsusb1_tll_cl 6 k O etk_d0 0 O mcspi3_ simo 1 IO TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) AC18 AB18 AA18 Y18 AE19 AD19 AB19 PIN NAME [2] MODE [3] TYPE [4] mmc3_dat4 2 IO hsusb1_ data0 3 IO gpio_14 4 IO mm_fsusb1_r 5 xrcv IO hsusb1_tll_ data0 6 IO etk_d1 0 O mcspi3_ somi 1 IO hsusb1_ data1 3 IO gpio_15 4 IO mm_fsusb1_t 5 xse0 IO hsusb1_tll_ data1 6 IO etk_d2 0 O mcspi3_cs0 1 IO hsusb1_ data2 3 IO gpio_16 4 IO mm_fsusb1_t 5 xdat IO hsusb1_tll_d 6 ata2 IO etk_d3 0 O mcspi3_clk 1 IO mmc3_dat3 2 IO hsusb1_ data7 3 IO gpio_17 4 IO hsusb1_tll_ data7 6 IO etk_d4 0 O mcbsp5_dr 1 I mmc3_dat0 2 IO hsusb1_ data4 3 IO gpio_18 4 IO hsusb1_tll_ data4 6 IO etk_d5 0 O mcbsp5_fsx 1 IO mmc3_dat1 2 IO hsusb1_ data5 3 IO gpio_19 4 IO hsusb1_tll_ data5 6 IO etk_d6 0 O mcbsp5_dx 1 IO mmc3_dat2 2 IO hsusb1_ data6 3 IO gpio_20 4 IO hsusb1_tll_ data6 6 IO etk_d7 0 O mcspi3_cs1 1 O Submit Documentation Feedback BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] H PU 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS H PU 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PU 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS TERMINAL DESCRIPTION PRODUCT PREVIEW BALL LOCATION [1] 27 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] AE20 PRODUCT PREVIEW AD20 AC20 AB20 AE21 AD21 AC21 AE22 28 PIN NAME [2] MODE [3] TYPE [4] mmc3_dat7 2 IO hsusb1_ data3 3 IO gpio_21 4 IO mm_fsusb1_t 5 xen_n IO hsusb1_tll_ data3 6 IO etk_d8 0 O sys_drm_ msecure 1 I mmc3_dat6 2 IO hsusb1_dir 3 I gpio_22 4 IO hsusb1_tll_di 6 r O etk_d9 0 O sys_secure_i 1 ndic ator O mmc3_dat5 2 IO hsusb1_nxt 3 I gpio_23 4 IO mm_fsusb1_r 5 xdm IO hsusb1_tll_n 6 xt O etk_d10 0 O uart1_rx 2 I hsusb2_clk 3 O gpio_24 4 IO hsusb2_tll_cl 6 k O etk_d11 0 O mcspi3_clk 1 IO hsusb2_stp 3 O gpio_25 4 IO mm_fsusb2_r 5 xdp IO hsusb2_tll_st 6 p I etk_d12 0 O hsusb2_dir 3 I gpio_26 4 IO hsusb2_tll_di 6 r O etk_d13 0 O hsusb2_nxt 3 I gpio_27 4 IO mm_fsusb2_r 5 xdm IO hsusb2_tll_n 6 xt O etk_d14 0 O hsusb2_ data0 3 IO gpio_28 4 IO mm_fsusb2_r 5 xrcv IO hsusb2_tll_ data0 6 IO etk_d15 0 O TERMINAL DESCRIPTION BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS L PD 4 VDDSHV 1.8V/3.3V Yes 9, 25 PU/ PD LVCMOS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) PIN NAME [2] MODE [3] TYPE [4] hsusb2_ data1 3 IO gpio_29 4 IO mm_fsusb2_t 5 xse0 IO hsusb2_tll_ data1 IO 6 BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] V16, V15, VDD_CORE 0 V11, V10, U16, U15, U11, U10, T18, T17, T9, T8, R18, R17, R9, R8, M18, L18, L9, L8, K18, K17, K9, K8, J16, J15, J11, J10, H15, H11, H10 PWR 1.2V AA13 VDDS_SRA M_MPU 0 PWR 1.8V E17 VDDS_SRA 0 M_CORE_B G0 PWR 1.8V AA12 CAP_VDD_S 0 RAM_MPU PWR 1.8V E16 CAP_VDD_S 0 RAM_CORE PWR 1.2V AA15 VDDS_DPLL 0 _MPU_USB HOST PWR 1.8V N20 VDDS_DPLL 0 _PER_CORE PWR 1.8V H21 VDDA_DAC 0 PWR 1.8V F23 VDDA3P3V_ 0 USBPHY PWR 3.3V G22 VDDA1P8V_ 0 USBPHY PWR 1.8V F22 CAP_VDDA1 0 P2LDO_USB PHY PWR 1.2V Y16, Y15, VDDSHV Y13, Y12, Y10, W16, W15, W13, W12,W10, W9, W6, V7, V6, U19, T20, T19, T7, T6, R7, R6, P20, P19, N19, N7, N6, M7, M6, M5, L19, K19, K7, K6, K5, J7, H18, H17 0 PWR 1.8V/3.3V Y9, W18, VDDS U20, R5, H16, H8, G17, G16, G14, G13, G11, G10, G8, F16, F13, F11, F10, F8, N22 0 PWR 1.8V F14 VREFSSTL 0 PWR L20 VDDSOSC 0 PWR Submit Documentation Feedback HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] PRODUCT PREVIEW BALL LOCATION [1] 1.8V TERMINAL DESCRIPTION 29 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-1. Ball Characteristics (ZCN Pkg.) (continued) BALL LOCATION [1] PRODUCT PREVIEW MODE [3] TYPE [4] AE25, AE1, VSS V18, V17, V14, V13, V12, V9, V8, U18, U17, U14, U13, U12, U9, U8, T14, T13, T12, R16, R15, R14, R13, R12, R11, R10, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, N18, N17, N14, N13, N12, N9, N8, M17, M16, M15, M14, M13,M12, M11, M10, M9, M8, L17, L16, L15, L14, L13, L12, L11, L10, K14, K13, K12, J18, J17, J14, J13, J12, J9, J8, H14, H13, H12, H9, A25, A1, N23 0 GND H22 VSSA_DAC 0 GND L24, L23, L22, L21, L20, K23, K22, H19 NC (1) F17 (2) Reserved U2 (3) Reserved V1 (3) Reserved N21 (4) Reserved G20 (5) Reserved G21 (5) Reserved (1) (2) (3) (4) (5) 30 PIN NAME [2] BALL RESET STATE [5] BALL RESET REL. POWER [8] RESET REL. MODE [7] STATE [6] VOLTAGE [9] HYS [10] LOAD (pF) [11] PULL U/D TYPE [12] IO CELL [13] "NC" indicates "No Connect". For proper device operation, these pins must be left unconnected. For proper device operation, this pin should be left unconnected. For proper device operation, this pin must be pulled up via a 10k-Ω resistor. For proper device operation, this pin must be connected to ground via a 1µF capacitor. For proper device operation, this pin must be tied to VSS. TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 2.3 Multiplexing Characteristics Table Table 2-2 provides descriptions of the AM3517/05 pin multiplexing on the ZCN package. Table 2-2. Multiplexing Characteristics (ZCN Pkg.) PIN MULTIPLEXING CONFIGURATIONS Option 0 B21 sdrc_d0 A21 sdrc_d1 D20 sdrc_d2 C20 sdrc_d3 E19 sdrc_d4 D19 sdrc_d5 C19 sdrc_d6 B19 sdrc_d7 B18 sdrc_d8 D17 sdrc_d9 C17 sdrc_d10 D16 sdrc_d11 C16 sdrc_d12 B16 sdrc_d13 A16 sdrc_d14 A15 sdrc_d15 A7 sdrc_d16 B7 sdrc_d17 D7 sdrc_d18 E7 sdrc_d19 C6 sdrc_d20 D6 sdrc_d21 B5 sdrc_d22 C5 sdrc_d23 B4 sdrc_d24 A3 sdrc_d25 B3 sdrc_d26 C3 sdrc_d27 C2 sdrc_d28 D2 sdrc_d29 B1 sdrc_d30 C1 sdrc_d31 A12 sdrc_ba0 C13 sdrc_ba1 D13 sdrc_ba2 A11 sdrc_a0 B11 sdrc_a1 C11 sdrc_a2 D11 sdrc_a3 E11 sdrc_a4 A10 sdrc_a5 B10 sdrc_a6 C10 sdrc_a7 D10 sdrc_a8 E10 sdrc_a9 A9 sdrc_a10 Submit Documentation Feedback Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 PRODUCT PREVIEW Ball No. TERMINAL DESCRIPTION 31 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-2. Multiplexing Characteristics (ZCN Pkg.) (continued) PIN MULTIPLEXING CONFIGURATIONS PRODUCT PREVIEW 32 Ball No. Option 0 B9 sdrc_a11 A8 sdrc_a12 B8 sdrc_a13 D8 sdrc_a14 E13 sdrc_ncs0 A14 sdrc_ncs1 A13 sdrc_clk B13 sdrc_nclk D14 sdrc_cke0 C14 sdrc_nras E14 sdrc_ncas B14 sdrc_nwe C21 sdrc_dm0 B15 sdrc_dm1 E8 sdrc_dm2 D1 sdrc_dm3 B20 sdrc_dqs0p B17 sdrc_dqs1p A6 sdrc_dqs2p A2 sdrc_dqs3p A20 sdrc_dqs0n A17 sdrc_dqs1n B6 sdrc_dqs2n B2 sdrc_dqs3n C8 sdrc_odt0 A19 sdrc_strben0 A18 sdrc_strben_dly 0 Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 ddr_cke0_safe A5 sdrc_strben1 A4 sdrc_strben_dly 1 E3 gpmc_a1 gpio_34 safe_mode E2 gpmc_a2 gpio_35 safe_mode E1 gpmc_a3 gpio_36 safe_mode F7 gpmc_a4 gpio_37 safe_mode F6 gpmc_a5 gpio_38 safe_mode F4 gpmc_a6 gpio_39 safe_mode F3 gpmc_a7 gpio_40 safe_mode F2 gpmc_a8 gpio_41 safe_mode F1 gpmc_a9 sys_ndmareq2 gpio_42 safe_mode G6 gpmc_a10 sys_ndmareq3 gpio_43 safe_mode G5 gpmc_d0 G4 gpmc_d1 G3 gpmc_d2 G2 gpmc_d3 G1 gpmc_d4 H2 gpmc_d5 H1 gpmc_d6 J5 gpmc_d7 J4 gpmc_d8 gpio_44 J3 gpmc_d9 gpio_45 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-2. Multiplexing Characteristics (ZCN Pkg.) (continued) PIN MULTIPLEXING CONFIGURATIONS Ball No. Option 0 Option 1 Option 2 J2 gpmc_d10 Option 3 gpio_46 Option 4 J1 gpmc_d11 gpio_47 K4 gpmc_d12 gpio_48 K3 gpmc_d13 gpio_49 K2 gpmc_d14 gpio_50 K1 gpmc_d15 gpio_51 L2 gpmc_ncs0 gpmc_ncs1 gpmc_ncs2 M3 gpmc_ncs3 sys_ndmareq0 M2 gpmc_ncs4 sys_ndmareq1 M1 gpmc_ncs5 N5 Option 6 Option 7 gpio_52 gpt9_pwm_evt gpio_53 safe_mode gpt10_pwm_evt gpio_54 safe_mode gpt9_pwm_evt gpio_55 safe_mode sys_ndmareq2 gpt10_pwm_evt gpio_56 safe_mode gpmc_ncs6 sys_ndmareq3 gpt11_pwm_evt gpio_57 safe_mode N4 gpmc_ncs7 gpmc_io_dir gpt8_pwm_evt gpio_58 safe_mode N1 gpmc_clk R1 gpmc_nadv_ale PRODUCT PREVIEW L1 M4 Option 5 gpio_59 R2 gpmc_noe R3 gpmc_nwe R4 gpmc_nbe0_cle gpio_60 T1 gpmc_nbe1 gpio_61 T2 gpmc_nwp gpio_62 T3 gpmc_wait0 T4 gpmc_wait1 uart4_tx gpio_63 safe_mode T5 gpmc_wait2 uart4_rx gpio_64 safe_mode U1 gpmc_wait3 sys_ndmareq1 AE23 dss_pclk gpio_66 hw_dbg12 safe_mode AD22 dss_hsync gpio_67 hw_dbg13 safe_mode AD23 dss_vsync gpio_68 safe_mode AE24 dss_acbias gpio_69 safe_mode AD24 dss_data0 uart1_cts gpio_70 safe_mode AD25 dss_data1 uart1_rts gpio_71 safe_mode AC23 dss_data2 gpio_72 safe_mode AC24 dss_data3 gpio_73 safe_mode AC25 dss_data4 uart3_rx_irrx gpio_74 safe_mode AB24 dss_data5 uart3_tx_irtx gpio_75 AB25 dss_data6 uart1_tx gpio_76 hw_dbg14 safe_mode AA23 dss_data7 uart1_rx gpio_77 hw_dbg15 safe_mode AA24 dss_data8 gpio_78 hw_dbg16 safe_mode AA25 dss_data9 gpio_79 hw_dbg17 safe_mode Y22 dss_data10 gpio_80 safe_mode Y23 dss_data11 gpio_81 safe_mode Y24 dss_data12 gpio_82 safe_mode Y25 dss_data13 gpio_83 safe_mode W21 dss_data14 gpio_84 safe_mode W22 dss_data15 gpio_85 safe_mode W23 dss_data16 gpio_86 safe_mode W24 dss_data17 gpio_87 safe_mode W25 dss_data18 mcspi3_clk dss_data4 gpio_88 safe_mode V24 dss_data19 mcspi3_simo dss_data3 gpio_89 safe_mode V25 dss_data20 mcspi3_somi dss_data2 gpio_90 safe_mode Submit Documentation Feedback uart3_cts_rctx safe_mode gpio_65 safe_mode safe_mode TERMINAL DESCRIPTION 33 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-2. Multiplexing Characteristics (ZCN Pkg.) (continued) PIN MULTIPLEXING CONFIGURATIONS PRODUCT PREVIEW 34 Ball No. Option 0 U21 dss_data21 mcspi3_cs0 dss_data1 gpio_91 safe_mode U22 dss_data22 mcspi3_cs1 dss_data0 gpio_92 safe_mode U23 dss_data23 dss_data5 gpio_93 safe_mode K20 tv_vfb1 K21 tv_out1 H23 tv_vfb2 H24 tv_out2 Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 H20 tv_vref AD2 ccdc_pclk AD1 ccdc_field AE2 ccdc_hd uart4_rts gpio_96 AD3 ccdc_vd uart4_cts gpio_97 hw_dbg2 safe_mode AE3 ccdc_wen uart4_rx gpio_98 hw_dbg3 safe_mode AD4 ccdc_data0 AE4 ccdc_data1 gpio_100 AC5 ccdc_data2 gpio_101 hw_dbg4 safe_mode AD5 ccdc_data3 gpio_102 hw_dbg5 safe_mode AE5 ccdc_data4 gpio_103 hw_dbg6 safe_mode hw_dbg7 safe_mode ccdc_data8 ccdc_data9 uart4_tx i2c3_scl i2c3_sda gpio_94 hw_dbg0 safe_mode gpio_95 hw_dbg1 safe_mode safe_mode gpio_99 safe_mode safe_mode Y6 ccdc_data5 gpio_104 AB6 ccdc_data6 gpio_105 safe_mode AC6 ccdc_data7 gpio_106 safe_mode AE6 rmii_mdio_data ccdc_data8 gpio_107 safe_mode AD6 rmii_mdio_clk ccdc_data9 gpio_108 Y7 rmii_rxd0 ccdc_data10 gpio_109 hw_dbg8 safe_mode AA7 rmii_rxd1 ccdc_data11 gpio_110 hw_dbg9 safe_mode AB7 rmii_crs_dv ccdc_data12 gpio_111 AC7 rmii_rxer ccdc_data13 gpio_167 hw_dbg10 safe_mode AD7 rmii_txd0 ccdc_data14 gpio_126 hw_dbg11 safe_mode AE7 rmii_txd1 ccdc_data15 gpio_112 safe_mode AD8 rmii_txen gpio_113 safe_mode AE8 rmii_50mhz_clk gpio_114 safe_mode D25 mcbsp2_fsx gpio_116 safe_mode C25 mcbsp2_clkx gpio_117 safe_mode B25 mcbsp2_dr gpio_118 safe_mode D24 mcbsp2_dx gpio_119 safe_mode AA9 mmc1_clk gpio_120 safe_mode AB9 mmc1_cmd gpio_121 safe_mode AC9 mmc1_dat0 mcspi2_clk gpio_122 safe_mode AD9 mmc1_dat1 mcspi2_simo gpio_123 safe_mode AE9 mmc1_dat2 mcspi2_somi gpio_124 safe_mode AA10 mmc1_dat3 mcspi2_cs0 gpio_125 safe_mode AB10 mmc1_dat4 gpio_126 safe_mode AC10 mmc1_dat5 gpio_127 safe_mode AD10 mmc1_dat6 gpio_128 safe_mode AE10 mmc1_dat7 gpio_129 safe_mode AD11 mmc2_clk AE11 safe_mode safe_mode mcspi3_clk uart4_cts gpio_130 safe_mode mmc2_cmd mcspi3_simo uart4_rts gpio_131 safe_mode AB12 mmc2_dat0 mcspi3_somi uart4_tx gpio_132 safe_mode AC12 mmc2_dat1 uart4_rx gpio_133 safe_mode AD12 mmc2_dat2 gpio_134 safe_mode mcspi3_cs1 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-2. Multiplexing Characteristics (ZCN Pkg.) (continued) PIN MULTIPLEXING CONFIGURATIONS Option 0 Option 1 AE12 mmc2_dat3 mcspi3_cs0 Option 2 Option 3 Option 4 Option 5 Option 6 gpio_135 Option 7 safe_mode AB13 mmc2_dat4 mmc2_dir_dat0 mmc3_dat0 gpio_136 safe_mode AC13 mmc2_dat5 mmc2_dir_dat1 mmc3_dat1 gpio_137 mm_fsusb3_rxd safe_mode p AD13 mmc2_dat6 mmc2_dir_cmd mmc3_dat2 gpio_138 safe_mode AE13 mmc2_dat7 mmc2_clkin mmc3_dat3 gpio_139 mm_fsusb3_rxd safe_mode m B24 mcbsp3_dx uart2_cts gpio_140 safe_mode C24 mcbsp3_dr uart2_rts gpio_141 safe_mode A24 mcbsp3_clkx uart2_tx gpio_142 safe_mode C23 mcbsp3_fsx uart2_rx gpio_143 safe_mode F20 uart2_cts mcbsp3_dx gpt9_pwm_evt gpio_144 safe_mode F19 uart2_rts mcbsp3_dr gpt10_pwm_evt gpio_145 safe_mode E24 uart2_tx mcbsp3_clkx gpt11_pwm_evt gpio_146 safe_mode E23 uart2_rx mcbsp3_fsx gpt8_pwm_evt gpio_147 safe_mode AA19 uart1_tx gpio_148 safe_mode Y19 uart1_rts gpio_149 safe_mode Y20 uart1_cts gpio_150 safe_mode W20 uart1_rx B23 mcbsp4_clkx gpio_152 mm_fsusb3_txs e0 safe_mode A23 mcbsp4_dr gpio_153 mm_fsusb3_rxr cv safe_mode B22 mcbsp4_dx gpio_154 mm_fsusb3_txd at safe_mode A22 mcbsp4_fsx gpio_155 mm_fsusb3_txe n_n safe_mode R25 mcbsp1_clkr P21 mcbsp1_fsr P22 mcbsp1_dx mcspi4_simo P23 mcbsp1_dr mcspi4_somi P25 mcbsp_clks P24 mcbsp1_fsx N24 mcbsp1_clkx N2 mcbsp1_clkr mcspi4_clk mcspi4_clk gpio_151 mcspi4_cs0 safe_mode gpio_156 safe_mode gpio_157 safe_mode mcbsp3_dx gpio_158 safe_mode mcbsp3_dr gpio_159 gpio_160 safe_mode uart1_cts safe_mode mcbsp3_fsx gpio_161 safe_mode mcbsp3_clkx gpio_162 safe_mode uart3_cts_rctx gpio_163 safe_mode N3 uart3_rts_sd gpio_164 safe_mode P1 uart3_rx_irrx gpio_165 safe_mode P2 uart3_tx_irtx gpio_166 F25 usb0_dp uart3_rx_irrx F24 usb0_dm uart3_tx_irtx G24 usb0_vbus G25 usb0_id E25 usb0_drvvbus uart3_tx_irtx V2 hecc1_txd uart3_rx_irrx gpio_130 safe_mode V3 hecc1_rxd uart3_rts_sd gpio_131 safe_mode V4 i2c1_scl V5 i2c1_sda safe_mode W1 i2c2_scl gpio_168 safe_mode W2 i2c2_sda gpio_183 safe_mode W4 i2c3_scl gpio_184 safe_mode W5 i2c3_sda gpio_185 safe_mode L25 hdq_sio gpio_170 safe_mode sys_altclk Submit Documentation Feedback i2c2_sccbe PRODUCT PREVIEW Ball No. i2c3_sccbe TERMINAL DESCRIPTION 35 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-2. Multiplexing Characteristics (ZCN Pkg.) (continued) PIN MULTIPLEXING CONFIGURATIONS PRODUCT PREVIEW 36 Ball No. Option 0 Option 1 AE14 mcspi1_clk mmc2_dat4 gpio_171 safe_mode AD15 mcspi1_simo mmc2_dat5 gpio_172 safe_mode AC15 mcspi1_somi mmc2_dat6 gpio_173 safe_mode AB15 mcspi1_cs0 mmc2_dat7 gpio_174 safe_mode AD14 mcspi1_cs1 mmc3_cmd gpio_175 safe_mode AE15 mcspi1_cs2 mmc3_clk gpio_176 AE16 mcspi1_cs3 hsusb2_tll_data 2 hsusb2_data2 gpio_177 AD16 mcspi2_clk hsusb2_tll_data 7 hsusb2_data7 gpio_178 safe_mode AC16 mcspi2_simo gpt9_pwm_evt hsusb2_tll_data 4 hsusb2_data4 gpio_179 safe_mode AB16 mcspi2_somi gpt10_pwm_evt hsusb2_tll_data 5 hsusb2_data5 gpio_180 safe_mode AA16 mcspi2_cs0 gpt11_pwm_evt hsusb2_tll_data 6 hsusb2_data6 gpio_181 safe_mode AE17 mcspi2_cs1 gpt8_pwm_evt hsusb2_tll_data 3 hsusb2_data3 gpio_182 Y1 sys_nirq M25 sys_clkout2 AD17 etk_clk AE18 etk_ctl AD18 etk_d0 mcspi3_simo AC18 etk_d1 AB18 Option 2 Option 3 Option 4 Option 5 Option 6 safe_mode mm_fsusb2_txd at safe_mode mm_fsusb2_txe n_n safe_mode gpio_0 safe_mode gpio_186 mcbsp5_clkx Option 7 safe_mode mmc3_clk hsusb1_stp gpio_12 hsusb1_tll_stp hw_dbg0 mmc3_cmd hsusb1_clk gpio_13 mm_fsusb1_rxd hsusb1_tll_clk p hw_dbg1 mmc3_dat4 hsusb1_data0 gpio_14 mm_fsusb1_rxr cv hsusb1_tll_data 0 hw_dbg2 mcspi3_somi hsusb1_data1 gpio_15 mm_fsusb1_txs e0 hsusb1_tll_data 1 hw_dbg3 etk_d2 mcspi3_cs0 hsusb1_data2 gpio_16 mm_fsusb1_txd at hsusb1_tll_data 2 hw_dbg4 AA18 etk_d3 mcspi3_clk mmc3_dat3 hsusb1_data7 gpio_17 hsusb1_tll_data 7 hw_dbg5 Y18 etk_d4 mcbsp5_dr mmc3_dat0 hsusb1_data4 gpio_18 hsusb1_tll_data 4 hw_dbg6 AE19 etk_d5 mcbsp5_fsx mmc3_dat1 hsusb1_data5 gpio_19 hsusb1_tll_data 5 hw_dbg7 AD19 etk_d6 mcbsp5_dx mmc3_dat2 hsusb1_data6 gpio_20 hsusb1_tll_data 6 hw_dbg8 AB19 etk_d7 mcspi3_cs1 mmc3_dat7 hsusb1_data3 gpio_21 hsusb1_tll_data 3 hw_dbg9 AE20 etk_d8 sys_drm_msec ure mmc3_dat6 hsusb1_dir gpio_22 hsusb1_tll_dir hw_dbg10 AD20 etk_d9 sys_secure_indi mmc3_dat5 cator hsusb1_nxt gpio_23 mm_fsusb1_rxd hsusb1_tll_nxt m hw_dbg11 AC20 etk_d10 hsusb2_clk gpio_24 hsusb2_tll_clk hw_dbg12 AB20 etk_d11 hsusb2_stp gpio_25 mm_fsusb2_rxd hsusb2_tll_stp p hw_dbg13 uart1_rx mcspi3_clk mm_fsusb1_txe n_n AE21 etk_d12 hsusb2_dir gpio_26 hsusb2_tll_dir hw_dbg14 AD21 etk_d13 hsusb2_nxt gpio_27 mm_fsusb2_rxd hsusb2_tll_nxt m hw_dbg15 AC21 etk_d14 hsusb2_data0 gpio_28 mm_fsusb2_rxr cv hsusb2_tll_data 0 hw_dbg16 AE22 etk_d15 hsusb2_data1 gpio_29 mm_fsusb2_txs e0 hsusb2_tll_data 1 hw_dbg17 K24 sys_32k K25 sys_xtalin H25 sys_xtalout M24 sys_clkreq TERMINAL DESCRIPTION gpio_1 Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-2. Multiplexing Characteristics (ZCN Pkg.) (continued) PIN MULTIPLEXING CONFIGURATIONS Ball No. Option 0 Y2 sys_nrespwron Y3 sys_nreswarm gpio_30 Y4 sys_boot0 gpio_2 AA1 sys_boot1 gpio_3 AA2 sys_boot2 gpio_4 AA3 sys_boot3 AB1 sys_boot4 mmc2_dir_dat2 gpio_6 AB2 sys_boot5 mmc2_dir_dat3 gpio_7 AC1 sys_boot6 AC2 sys_boot7 sys_boot8 N25 sys_clkout1 U24 jtag_ntrst U25 jtag_tck T21 jtag_rtck T22 jtag_tms_tmsc T23 jtag_tdi T24 jtag_tdo Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 gpio_5 gpio_8 gpio_10 T25 jtag_emu0 gpio_11 R24 jtag_emu1 gpio_31 B12 ddr_padref Submit Documentation Feedback PRODUCT PREVIEW AC3 Option 1 safe_mode TERMINAL DESCRIPTION 37 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 2.4 Signal Description PRODUCT PREVIEW Many signals are available on multiple pins according to the software configuration of the pin multiplexing options. 1. SIGNAL NAME: The signal name 2. DESCRIPTION: Description of the signal 3. TYPE: Type = Ball type for this specific function: – I = Input – O = Output – Z = High-impedance – D = Open Drain – DS = Differential – A = Analog 4. BALL: Associated ball location 5. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the module/subsystem level. The pin function is selected at the module/system level. Note: The Subsystem Multiplexing Signals are not described in Table 2-1 through . 2.4.1 External Memory Interfaces Table 2-3. External Memory Interfaces – GPMC Signals Description (ZCN Pkg.) SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL (ZCN Pkg.) [4] SUBSYSTEM PIN MULTIPLEXING [5] gpmc_a1 General-purpose memory address bit 1 O E3/ G5 gpmc_a17/ gpmc_d0 gpmc_a2 General-purpose memory address bit 2 O E2/ G4 gpmc_a18/ gpmc_d1 gpmc_a3 General-purpose memory address bit 3 O E1/ G3 gpmc_a19/ gpmc_d2 gpmc_a4 General-purpose memory address bit 4 O F7/ G2 gpmc_a20/ gpmc_d3 gpmc_a5 General-purpose memory address bit 5 O F6/ G1 gpmc_a21/ gpmc_d4 gpmc_a6 General-purpose memory address bit 6 O F4/ H2 gpmc_a22/ gpmc_d5 gpmc_a7 General-purpose memory address bit 7 O F3/ H1 gpmc_a23/ gpmc_d6 gpmc_a8 General-purpose memory address bit 8 O F2/ J5 gpmc_a24/ gpmc_d7 gpmc_a9 General-purpose memory address bit 9 O F1/ J4 gpmc_a25/ gpmc_d8 gpmc_a10 General-purpose memory address bit 10 O G6/ J3 gpmc_a26/ gpmc_d9 gpmc_a11 General-purpose memory address bit 11 O J2 / gpmc_d10 gpmc_a12 General-purpose memory address bit 12 O J1 / gpmc_d11 gpmc_a13 General-purpose memory address bit 13 O K4 / gpmc_d12 gpmc_a14 General-purpose memory address bit 14 O K3 / gpmc_d13 gpmc_a15 General-purpose memory address bit 15 O K2 / gpmc_d14 gpmc_a16 General-purpose memory address bit 16 O K1 / gpmc_d15 gpmc_a17 General-purpose memory address bit 17 O E3 / gpmc_d16 gpmc_a18 General-purpose memory address bit 18 O E2 / gpmc_a1 gpmc_a19 General-purpose memory address bit 19 O E1 / gpmc_a2 gpmc_a20 General-purpose memory address bit 20 O F7 / gpmc_a3 gpmc_a21 General-purpose memory address bit 21 O F6 / gpmc_a4 gpmc_a22 General-purpose memory address bit 22 O F4 / gpmc_a5 gpmc_a23 General-purpose memory address bit 23 O F3 / gpmc_a6 gpmc_a24 General-purpose memory address bit 24 O F2 / gpmc_a7 gpmc_a25 General-purpose memory address bit 25 O F1 / gpmc_a8 gpmc_a26 General-purpose memory address bit 26 O G6 / gpmc_a9 38 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL (ZCN Pkg.) [4] SUBSYSTEM PIN MULTIPLEXING [5] gpmc_d0 GPMC Data bit 0 IO G5 gpmc_a1/ gpmc_d0 gpmc_d1 GPMC Data bit 1 IO G4 gpmc_a2/ gpmc_d1 gpmc_d2 GPMC Data bit 2 IO G3 gpmc_a3/ gpmc_d2 gpmc_d3 GPMC Data bit 3 IO G2 gpmc_a4/ gpmc_d3 gpmc_d4 GPMC Data bit 4 IO G1 gpmc_a5/ gpmc_d4 gpmc_d5 GPMC Data bit 5 IO H2 gpmc_a6/ gpmc_d5 gpmc_d6 GPMC Data bit 6 IO H1 gpmc_a7 /gpmc_d6 gpmc_d7 GPMC Data bit 7 IO J5 gpmc_a8/ gpmc_d7 gpmc_d8 GPMC Data bit 8 IO J4 gpmc_a9/ gpmc_d8 gpmc_d9 GPMC Data bit 9 IO J3 gpmc_a10/ gpmc_d9 gpmc_d10 GPMC Data bit 10 IO J2 gpmc_a11/ gpmc_d10 gpmc_d11 GPMC Data bit 11 IO J1 gpmc_a12/ gpmc_d11 gpmc_d12 GPMC Data bit 12 IO K4 gpmc_a13/ gpmc_d12 gpmc_d13 GPMC Data bit 13 IO K3 gpmc_a14/ gpmc_d13 gpmc_d14 GPMC Data bit 14 IO K2 gpmc_a15/ gpmc_d14 gpmc_d15 GPMC Data bit 15 IO K1 gpmc_a16/ gpmc_d15 gpmc_ncs0 GPMC Chip Select 0 O L2 NA gpmc_ncs1 GPMC Chip Select 1 O L1 NA gpmc_ncs2 GPMC Chip Select 2 O M4 NA gpmc_ncs3 GPMC Chip Select 3 O M3 NA gpmc_ncs4 GPMC Chip Select 4 O M2 NA gpmc_ncs5 GPMC Chip Select 5 O M1 NA gpmc_ncs6 GPMC Chip Select 6 O N5 NA gpmc_ncs7 GPMC Chip Select 7 O N4 NA gpmc_clk GPMC clock O N1 NA gpmc_nadv_ale Address Valid or Address Latch Enable O R1 NA gpmc_noe Output Enable O R2 NA gpmc_nwe Write Enable O R3 NA gpmc_nbe0_cle Lower Byte Enable. Also used for Command Latch Enable O R4 NA gpmc_nbe1 Upper Byte Enable O T1 NA gpmc_nwp Flash Write Protect O T2 NA gpmc_wait0 External indication of wait I T3 NA gpmc_wait1 External indication of wait I T4 NA gpmc_wait2 External indication of wait I T5 NA gpmc_wait3 External indication of wait I U1 NA PRODUCT PREVIEW Table 2-3. External Memory Interfaces – GPMC Signals Description (ZCN Pkg.) (continued) Table 2-4. External Memory Interfaces – SDRC Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] B21 sdrc_d0 SDRAM data bit 0 IO sdrc_d1 SDRAM data bit 1 IO A21 sdrc_d2 SDRAM data bit 2 IO D20 sdrc_d3 SDRAM data bit 3 IO C20 sdrc_d4 SDRAM data bit 4 IO E19 sdrc_d5 SDRAM data bit 5 IO D19 Submit Documentation Feedback TERMINAL DESCRIPTION 39 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-4. External Memory Interfaces – SDRC Signals Description (ZCN Pkg.) (continued) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] PRODUCT PREVIEW sdrc_d6 SDRAM data bit 6 IO C19 sdrc_d7 SDRAM data bit 7 IO B19 sdrc_d8 SDRAM data bit 8 IO B18 sdrc_d9 SDRAM data bit 9 IO D17 sdrc_d10 SDRAM data bit 10 IO C17 sdrc_d11 SDRAM data bit 11 IO D16 sdrc_d12 SDRAM data bit 12 IO C16 sdrc_d13 SDRAM data bit 13 IO B16 sdrc_d14 SDRAM data bit 14 IO A16 sdrc_d15 SDRAM data bit 15 IO A15 sdrc_d16 SDRAM data bit 16 IO A7 sdrc_d17 SDRAM data bit 17 IO B7 sdrc_d18 SDRAM data bit 18 IO D7 sdrc_d19 SDRAM data bit 19 IO E7 sdrc_d20 SDRAM data bit 20 IO C6 sdrc_d21 SDRAM data bit 21 IO D6 sdrc_d22 SDRAM data bit 22 IO B5 sdrc_d23 SDRAM data bit 23 IO C5 sdrc_d24 SDRAM data bit 24 IO B4 sdrc_d25 SDRAM data bit 25 IO A3 sdrc_d26 SDRAM data bit 26 IO B3 sdrc_d27 SDRAM data bit 27 IO C3 sdrc_d28 SDRAM data bit 28 IO C2 sdrc_d29 SDRAM data bit 29 IO D2 sdrc_d30 SDRAM data bit 30 IO B1 sdrc_d31 SDRAM data bit 31 IO C1 sdrc_ba0 SDRAM bank select 0 O A12 sdrc_ba1 SDRAM bank select 1 O C13 sdrc_ba2 SDRAM bank select 1 O D13 sdrc_a0 SDRAM address bit 0 O A11 sdrc_a1 SDRAM address bit 1 O B11 sdrc_a2 SDRAM address bit 2 O C11 sdrc_a3 SDRAM address bit 3 O D11 sdrc_a4 SDRAM address bit 4 O E11 sdrc_a5 SDRAM address bit 5 O A10 sdrc_a6 SDRAM address bit 6 O B10 sdrc_a7 SDRAM address bit 7 O C10 sdrc_a8 SDRAM address bit 8 O D10 sdrc_a9 SDRAM address bit 9 O E10 sdrc_a10 SDRAM address bit 10 O A9 sdrc_a11 SDRAM address bit 11 O B9 sdrc_a12 SDRAM address bit 12 O A8 sdrc_a13 SDRAM address bit 13 O B8 sdrc_a14 SDRAM address bit 14 O D8 sdrc_ncs0 Chip select 0 O E13 sdrc_ncs1 Chip select 1 O A14 40 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] A13 sdrc_clk Clock IO sdrc_nclk Clock Invert O B13 sdrc_cke0 Clock Enable 0 O D14 sdrc_nras SDRAM Row Access O C14 sdrc_ncas SDRAM column address strobe O E14 sdrc_nwe SDRAM write enable O B14 sdrc_dm0 Data Mask 0 O C21 sdrc_dm1 Data Mask 1 O B15 sdrc_dm2 Data Mask 2 O E8 sdrc_dm3 Data Mask 3 O D1 sdrc_strben0 PCB layout trace loop 0 pin 0 A A19 sdrc_strben_dly0 PCB layout trace loop 0 pin 1 A A18 sdrc_strben1 PCB layout trace loop 1 pin 0 A A5 sdrc_strben_dly1 PCB layout trace loop 1 pin 1 A A4 sdrc_odt0 On-die termination output O C8 sdrc_dqs0p Data Strobe 0 IO B20 sdrc_dqs0n Data Strobe 0 IO A20 sdrc_dqs1p Data Strobe 1 IO B17 sdrc_dqs1n Data Strobe 1 IO A17 sdrc_dqs2p Data Strobe 2 IO A6 sdrc_dqs2n Data Strobe 2 IO B6 sdrc_dqs3p Data Strobe 3 IO A2 sdrc_dqs3n Data Strobe 3 IO B2 ddr_padref Impedance control for DDR2 output. This pin must be connected to ground via a 50-ohm (± 1%) resistor. IO B12 2.4.2 PRODUCT PREVIEW Table 2-4. External Memory Interfaces – SDRC Signals Description (ZCN Pkg.) (continued) Video Interfaces Table 2-5. Video Interfaces – CCDC Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] ccdc_pclk CCDC pixel clock IO AD2 ccdc_field CCDC field ID signal IO AD1 ccdc_hd CCDC horizontal sync IO AE2 ccdc_vd CCDC vertical sync IO AD3 ccdc_wen CCDC write enable I AE3 ccdc_data0 CCDC data bit 0 I AD4 ccdc_data1 CCDC data bit 1 I AE4 ccdc_data2 CCDC data bit 2 I AC5 ccdc_data3 CCDC data bit 3 I AD5 ccdc_data4 CCDC data bit 4 I AE5 ccdc_data5 CCDC data bit 5 I Y6 ccdc_data6 CCDC data bit 6 I AB6 ccdc_data7 CCDC data bit 7 I AC6 Submit Documentation Feedback TERMINAL DESCRIPTION 41 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-6. Video Interfaces – DSS Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] PRODUCT PREVIEW dss_pclk LCD Pixel Clock O AE23 dss_hsync LCD Horizontal Synchronization O AD22 dss_vsync LCD Vertical Synchronization O AD23 dss_acbias AC bias control (STN) or pixel data enable (TFT) output O AE24 dss_data0 LCD Pixel Data bit 0 IO AD24 dss_data1 LCD Pixel Data bit 1 IO AD25 dss_data2 LCD Pixel Data bit 2 IO AC23 dss_data3 LCD Pixel Data bit 3 IO AC24 dss_data4 LCD Pixel Data bit 4 IO AC25 dss_data5 LCD Pixel Data bit 5 IO AB24 dss_data6 LCD Pixel Data bit 6 IO AB25 dss_data7 LCD Pixel Data bit 7 IO AA23 dss_data8 LCD Pixel Data bit 8 IO AA24 dss_data9 LCD Pixel Data bit 9 IO AA25 dss_data10 LCD Pixel Data bit 10 IO Y22 dss_data11 LCD Pixel Data bit 11 IO Y23 dss_data12 LCD Pixel Data bit 12 IO Y24 dss_data13 LCD Pixel Data bit 13 IO Y25 dss_data14 LCD Pixel Data bit 14 IO W21 dss_data15 LCD Pixel Data bit 15 IO W22 dss_data16 LCD Pixel Data bit 16 IO W23 dss_data17 LCD Pixel Data bit 17 IO W24 dss_data18 LCD Pixel Data bit 18 IO W25 dss_data19 LCD Pixel Data bit 19 IO V24 dss_data20 LCD Pixel Data bit 20 O V25 dss_data21 LCD Pixel Data bit 21 O U21 dss_data22 LCD Pixel Data bit 22 O U22 dss_data23 LCD Pixel Data bit 23 O U23 Table 2-7. Video Interfaces – RFBI Signals Description SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL BOTTOM (ZCN Pkg.) [4] SUBSYSTEM PIN MULTIPLEXING [5] O AE24 dss_acbias rfbi_a0 RFBI command/data control rfbi_cs0 1st LCD chip select O AD22 dss_hsync rfbi_da0 RFBI data bus 0 IO AD24 dss_data0 rfbi_da1 RFBI data bus 1 IO AD25 dss_data1 rfbi_da2 RFBI data bus 2 IO AC23 dss_data2 rfbi_da3 RFBI data bus 3 IO AC24 dss_data3 rfbi_da4 RFBI data bus 4 IO AC25 dss_data4 rfbi_da5 RFBI data bus 5 IO AB24 dss_data5 rfbi_da6 RFBI data bus 6 IO AB25 dss_data6 rfbi_da7 RFBI data bus 7 IO AA23 dss_data7 rfbi_da8 RFBI data bus 8 IO AA24 dss_data8 rfbi_da9 RFBI data bus 9 IO AA25 dss_data9 rfbi_da10 RFBI data bus 10 IO Y22 dss_data10 42 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL BOTTOM (ZCN Pkg.) [4] SUBSYSTEM PIN MULTIPLEXING [5] rfbi_da11 RFBI data bus 11 IO Y23 dss_data11 rfbi_da12 RFBI data bus 12 IO Y24 dss_data12 rfbi_da13 RFBI data bus 13 IO Y25 dss_data13 rfbi_da14 RFBI data bus 14 IO W21 dss_data14 rfbi_da15 RFBI data bus 15 IO W22 dss_data15 rfbi_rd Read enable for RFBI O AE23 dss_pclk rfbi_wr Write Enable for RFBI O AD23 dss_vsync rfbi_te_vsync0 tearing effect removal and Vsync input from 1st LCD I W23 dss_data16 rfbi_hsync0 Hsync for 1st LCD I W24 dss_data17 rfbi_te_vsync1 tearing effect removal and Vsync input from 2nd LCD I W25 dss_data18 rfbi_hsync1 Hsync for 2nd LCD I V24 dss_data19 rfbi_cs1 2nd LCD chip select O V25 dss_data20 PRODUCT PREVIEW Table 2-7. Video Interfaces – RFBI Signals Description (continued) Table 2-8. Video Interfaces – TV Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] tv_out1 TV analog output Composite: tv_out1 O K21 tv_out2 TV analog output S-VIDEO: tv_out2 O H24 tv_vfb1 tv_vfb1: Feedback through external resistorto composite O K20 tv_vfb2 tv_vfb2: Feedback through external resistorto S-VIDEO O H23 tv_vref External capacitor I H20 2.4.3 Serial Communication Interfaces Table 2-9. Serial Communication Interfaces – HDQ/1-Wire Signals Description (ZCN Pkg.) SIGNAL NAME[1] hdq_sio DESCRIPTION[2] Bidirectional HDQ 1-Wire control and data Interface. Output is open drain. TYPE[3] BALL (ZCN Pkg.) [4] IOD L25 Table 2-10. Serial Communication Interfaces – I2C Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] INTER-INTEGRATED CIRCUIT INTERFACE (I2C1) i2c1_scl I2C Master Serial clock. Output is open drain. IOD V4 i2c1_sda I2C Serial Bidirectional Data. Output is open drain. IOD V5 INTER-INTEGRATED CIRCUIT INTERFACE (I2C2) i2c2_scl I2C Master Serial clock. Output is open drain. IOD W1 i2c2_sda I2C Serial Bidirectional Data. Output is open drain. IOD W2 INTER-INTEGRATED CIRCUIT INTERFACE (I2C3) i2c3_scl I2C Master Serial clock. Output is open drain. IOD W4 i2c3_sda I2C Serial Bidirectional Data. Output is open drain. IOD W5 Submit Documentation Feedback TERMINAL DESCRIPTION 43 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-11. Serial Communication Interfaces – McBSP LP Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 1) PRODUCT PREVIEW mcbsp1_dr Received serial data I P23 mcbsp1_clkr Receive Clock IO R25 mcbsp1_fsr Receive frame synchronization IO P21 mcbsp1_dx Transmitted serial data IO P22 mcbsp1_clkx Transmit clock IO N24 mcbsp1_fsx Transmit frame synchronization IO P24 mcbsp_clks External clock input (shared by McBSP1, 2, 3, 4, and 5) I P25 I B25 MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 2) mcbsp2_dr Received serial data mcbsp2_dx Transmitted serial data IO D24 mcbsp2_clkx Combined serial clock IO C25 mcbsp2_fsx Combined frame synchronization IO D25 MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 3) mcbsp3_dr Received serial data I C24 mcbsp3_dx Transmitted serial data IO B24 mcbsp3_clkx Combined serial clock IO A24 mcbsp3_fsx Combined frame synchronization IO C23 I A23 MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 4) mcbsp4_dr Received serial data mcbsp4_dx Transmitted serial data IO B22 mcbsp4_clkx Combined serial clock IO B23 mcbsp4_fsx Combined frame synchronization IO A22 MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 5) mcbsp5_dr Received serial data I Y18 mcbsp5_dx Transmitted serial data IO AD19 mcbsp5_clkx Combined serial clock IO AD17 mcbsp5_fsx Combined frame synchronization IO AE19 Table 2-12. Serial Communication Interfaces – McSPI Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] MULTICHANNEL SERIAL PORT INTERFACE (McSPI1) mcspi1_clk SPI Clock IO AE14 mcspi1_simo Slave data in, master data out IO AD15 mcspi1_somi Slave data out, master data in IO AC15 mcspi1_cs0 SPI Enable 0, polarity configured by software IO AB15 mcspi1_cs1 SPI Enable 1, polarity configured by software O AD14 mcspi1_cs2 SPI Enable 2, polarity configured by software O AE15 mcspi1_cs3 SPI Enable 3, polarity configured by software O AE16 MULTICHANNEL SERIAL PORT INTERFACE (McSPI2) mcspi2_clk SPI Clock IO AD16,AC9 mcspi2_simo Slave data in, master data out IO AC16,AD9 mcspi2_somi Slave data out, master data in IO AB16,AE9 mcspi2_cs0 SPI Enable 0, polarity configured by software IO AA16,AA10 44 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-12. Serial Communication Interfaces – McSPI Signals Description (ZCN Pkg.) (continued) SIGNAL NAME[1] mcspi2_cs1 DESCRIPTION[2] SPI Enable 1, polarity configured by software TYPE[3] BALL (ZCN Pkg.) [4] O AE17 MULTICHANNEL SERIAL PORT INTERFACE (McSPI3) mcspi3_clk SPI Clock IO W25,AD11,AA18 mcspi3_simo Slave data in, master data out IO V24,AE11,AD18 mcspi3_somi Slave data out, master data in IO V25, AB12, AC18 mcspi3_cs0 SPI Enable 0, polarity configured by software IO U21,AE12,AB18 mcspi3_cs1 SPI Enable 1, polarity configured by software O U22, AD12, AB19 mcspi4_clk SPI Clock IO W20, R25 mcspi4_simo Slave data in, master data out IO P22 mcspi4_somi Slave data out, master data in IO P23 mcspi4_cs0 SPI Enable 0, polarity configured by software IO P24 PRODUCT PREVIEW MULTICHANNEL SERIAL PORT INTERFACE (McSPI4) Table 2-13. Serial Communication Interfaces – HECC Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] HIGH-END CONTROLLER AREA NETWORK CONTROLLER (HECC) hecc1_txd Transmit serial data pin IO V2 hecc1_rxd Receive serial data pin IO V3 Table 2-14. Serial Communication Interfaces – EMAC (RMII) Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] Management data I/O IO AE6 rmii_mdio_clk Management data clock IO AD6 rmii_rxd0 EMAC receive data pin 0 I Y7 rmii_rxd1 EMAC receive data pin 1 I AA7 EMAC carrier sense/receive data valid I AB7 EMAC (RMII) rmii_mdio_data rmii_crs_dv rmii_rxer EMAC receive error I AC7 rmii_txd0 EMAC transmit data pin 0 O AD7 rmii_txd1 EMAC transmit data pin 1 O AE7 rmii_txen EMAC transmit enable O AD8 EMAC RMII 50 MHz clock I AE8 rmii_50mhz_clk Table 2-15. Serial Communication Interfaces – UARTs Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] AD24,Y20,P25 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1) uart1_cts UART1 Clear To Send I uart1_rts UART1 Request To Send O AD25,Y19 uart1_rx UART1 Receive data I AA23,W20,AC20 uart1_tx UART1 Transmit data O AB25,AA19 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2) uart2_cts UART2 Clear To Send I B24,F20 uart2_rts UART2 Request To Send O C24,F19 Submit Documentation Feedback TERMINAL DESCRIPTION 45 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-15. Serial Communication Interfaces – UARTs Signals Description (ZCN Pkg.) (continued) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] uart2_rx UART2 Receive data I C23,E23 uart2_tx UART2 Transmit data O A24,E24 U1,N2 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA uart3_cts_rctx UART3 Clear To Send (input), Remote TX (output) IO uart3_rts_sd UART3 Request To Send, IR enable O N3,V3 uart3_rx_irrx UART3 Receive data, IR and Remote RX I AC25,P1,F25,V2 uart3_tx_irtx UART3 Transmit data, IR TX O AB24,P2,F24,E25 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2) PRODUCT PREVIEW uart4_cts UART4 Clear To Send I AD3,AD11 uart4_rts UART4 Request To Send O AE2,AE11 uart4_rx UART4 Receive data I T5,AE3,AC12 uart4_tx UART4 Transmit data O T4,AD1,AB12 Table 2-16. Serial Communication Interfaces – USB Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] F25 UNIVERSAL SERIAL BUS INTERFACE (USB0) usb0_dp USB D+ (differential signal pair) A I/O/Z usb0_dm USB D- (differential signal pair) A I/O/Z F24 usb0_drvvbus Digital output to control external supply O/Z E25 usb0_id USB operating mode identification pin A I/O/Z G25 usb0_vbus For host or device mode operation, tie the VBUS/USB power signal to the USB connector. When used in OTG mode operation, tie VBUS to the external charge pump and to the VBUS signal on the USB connector. A I/O/Z G24 MM_FSUSB3 mm_fsusb3_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AE13 mm_fsusb3_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AC13 mm_fsusb3_rxrcv Differential receiver signal input (not used in 3-pin mode) IO A23 mm_fsusb3_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO B23 mm_fsusb3_txdat USB data. Used as VP in 4-pin VP_VM mode. IO B22 mm_fsusb3_txen_n Transmit enable IO A22 mm_fsusb2_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AD21 mm_fsusb2_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AB20 mm_fsusb2_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AC21 mm_fsusb2_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AE22 mm_fsusb2_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AE16 mm_fsusb2_txen_n Transmit enable IO AE17 mm_fsusb1_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AD20 mm_fsusb1_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AE18 mm_fsusb1_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AD18 mm_fsusb1_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AC18 mm_fsusb1_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AB18 mm_fsusb1_txen_n Transmit enable IO AB19 MM_FSUSB2 MM_FSUSB1 HSUSB2 46 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] hsusb2_clk Dedicated for external transceiver 60-MHz clock input from PHY O AC20 hsusb2_stp Dedicated for external transceiver Stop signal O AB20 hsusb2_dir Dedicated for external transceiver Data direction control from PHY I AE21 hsusb2_nxt Dedicated for external transceiver Next signal from PHY I AD21 hsusb2_data0 Dedicated for external transceiver Bidirectional data bus IO AC21 hsusb2_data1 Dedicated for external transceiver Bidirectional data bus IO AE22 hsusb2_data2 Dedicated for external transceiver Bidirectional data bus IO AE16 hsusb2_data3 Dedicated for external transceiver Bidirectional data bus IO AE17 hsusb2_data4 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AC16 hsusb2_data5 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AB16 hsusb2_data6 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AA16 hsusb2_data7 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AD16 hsusb2_tll_clk Dedicated for external transceiver 60-MHz clock input from PHY O AC20 hsusb2_tll_stp Dedicated for external transceiver Stop signal I AB20 hsusb2_tll_dir Dedicated for external transceiver data direction control from PHY O AE21 hsusb2_tll_nxt Dedicated for external transceiver Next signal from PHY O AD21 hsusb2_tll_data0 Dedicated for external transceiver Bidirectional data bus IO AC21 hsusb2_tll_data1 Dedicated for external transceiver Bidirectional data bus IO AE22 hsusb2_tll_data2 Dedicated for external transceiver Bidirectional data bus IO AE16 hsusb2_tll_data3 Dedicated for external transceiver Bidirectional data bus IO AE17 hsusb2_tll_data4 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AC16 hsusb2_tll_data5 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AB16 hsusb2_tll_data6 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AA16 hsusb2_tll_data7 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AD16 hsusb1_clk Dedicated for external transceiver 60-MHz clock input from PHY O AE18 hsusb1_stp Dedicated for external transceiver Stop signal O AD17 hsusb1_dir Dedicated for external transceiver data direction control from PHY I AE20 hsusb1_nxt Dedicated for external transceiver Next signal from PHY I AD20 hsusb1_data0 Dedicated for external transceiver Bidirectional data bus IO AD18 hsusb1_data1 Dedicated for external transceiver Bidirectional data bus IO AC18 hsusb1_data2 Dedicated for external transceiver Bidirectional data bus IO AB18 hsusb1_data3 Dedicated for external transceiver Bidirectional data bus IO AB19 hsusb1_data4 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO Y18 hsusb1_data5 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AE19 hsusb1_data6 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AD19 hsusb1_data7 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AA18 PRODUCT PREVIEW Table 2-16. Serial Communication Interfaces – USB Signals Description (ZCN Pkg.) (continued) HSUSB2_TLL HSUSB1 Submit Documentation Feedback TERMINAL DESCRIPTION 47 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-16. Serial Communication Interfaces – USB Signals Description (ZCN Pkg.) (continued) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] HSUSB1_TLL PRODUCT PREVIEW hsusb1_tll_clk Dedicated for external transceiver 60-MHz clock input from PHY O AE18 hsusb1_tll_stp Dedicated for external transceiver Stop signal I AD17 hsusb1_tll_dir Dedicated for external transceiver data direction control from PHY O AE20 hsusb1_tll_nxt Dedicated for external transceiver Next signal from PHY O AD20 hsusb1_tll_data0 Dedicated for external transceiver Bidirectional data bus IO AD18 hsusb1_tll_data1 Dedicated for external transceiver Bidirectional data bus IO AC18 hsusb1_tll_data2 Dedicated for external transceiver Bidirectional data bus IO AB18 hsusb1_tll_data3 Dedicated for external transceiver Bidirectional data bus IO AB19 hsusb1_tll_data4 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO Y18 hsusb1_tll_data5 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AE19 hsusb1_tll_data6 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AD19 hsusb1_tll_data7 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AA18 2.4.4 Removable Media Interfaces Table 2-17. Removable Media Interfaces – MMC/SDIO Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] AA9 MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1) mmc1_clk MMC/SD Output Clock O mmc1_cmd MMC/SD command signal IO AB9 mmc1_dat0 MMC/SD Card Data bit 0 / SPI Serial Input IO AC9 mmc1_dat1 MMC/SD Card Data bit 1 IO AD9 mmc1_dat2 MMC/SD Card Data bit 2 IO AE9 mmc1_dat3 MMC/SD Card Data bit 3 IO AA10 mmc1_dat4 MMC/SD Card Data bit 4 IO AB10 mmc1_dat5 MMC/SD Card Data bit 5 IO AC10 mmc1_dat6 MMC/SD Card Data bit 6 IO AD10 mmc1_dat7 MMC/SD Card Data bit 7 IO AE10 AD11 MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2) mmc2_clk MMC/SD Output Clock O mmc2_dir_dat0 Direction control for DAT0 signal case an external transceiver used O AB13 mmc2_dir_dat1 Direction control for DAT1 and DAT3 signals case an external transceiver used O AC13 mmc2_dir_dat2 Direction control for DAT2 signal case an external transceiver used O AB1 mmc2_dir_dat3 Direction control for DAT4, DAT5, DAT6, and DAT7 signals case an external transceiver used O AB2 mmc2_clkin MMC/SD input Clock I AE13 mmc2_dat0 MMC/SD Card Data bit 0 IO AB12 mmc2_dat1 MMC/SD Card Data bit 1 IO AC12 mmc2_dat2 MMC/SD Card Data bit 2 IO AD12 mmc2_dat3 MMC/SD Card Data bit 3 IO AE12 mmc2_dat4 MMC/SD Card Data bit 4 IO AB13 48 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-17. Removable Media Interfaces – MMC/SDIO Signals Description (ZCN Pkg.) (continued) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] mmc2_dat5 MMC/SD Card Data bit 5 IO AC13 mmc2_dat6 MMC/SD Card Data bit 6 IO AD13 mmc2_dat7 MMC/SD Card Data bit 7 IO AE13 mmc2_dir_cmd Direction control for CMD signal case an external transceiver is used O AD13 mmc2_cmd MMC/SD command signal IO AE11 mmc3_clk MMC/SD Output Clock O AD15,AE17 mmc3_cmd MMC/SD command signal IO AD14,AE18 mmc3_dat0 MMC/SD Card Data bit 0 / SPI Serial Input IO AB13,Y18 mmc3_dat1 MMC/SD Card Data bit 1 IO AC13,AE19 mmc3_dat2 MMC/SD Card Data bit 2 IO AD13,AD19 mmc3_dat3 MMC/SD Card Data bit 3 IO AE13,AA18 mmc3_dat4 MMC/SD Card Data bit 4 IO AD18 mmc3_dat5 MMC/SD Card Data bit 5 IO AD20 mmc3_dat6 MMC/SD Card Data bit 6 IO AE20 mmc3_dat7 MMC/SD Card Data bit 7 IO AB19 Submit Documentation Feedback TERMINAL DESCRIPTION PRODUCT PREVIEW MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3) 49 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 2.4.5 www.ti.com Test Interfaces Table 2-18. Test Interfaces – ETK Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] PRODUCT PREVIEW etk_ctl ETK trace ctl O AE18 etk_clk ETK trace clock O AD17 etk_d0 ETK data 0 O AD18 etk_d1 ETK data 1 O AC18 etk_d2 ETK data 2 O AB18 etk_d3 ETK data 3 O AA18 etk_d4 ETK data 4 O Y18 etk_d5 ETK data 5 O AE19 etk_d6 ETK data 6 O AD19 etk_d7 ETK data 7 O AB19 etk_d8 ETK data 8 O AE20 etk_d9 ETK data 9 O AD20 etk_d10 ETK data 10 O AC20 etk_d11 ETK data 11 O AB20 etk_d12 ETK data 12 O AE21 etk_d13 ETK data 13 O AD21 etk_d14 ETK data 14 O AC21 etk_d15 ETK data 15 O AE22 Table 2-19. Test Interfaces – JTAG Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] jtag_ntrst Test Reset I U24 jtag_tck Test Clock I U25 jtag_rtck ARM Clock Emulation O T21 jtag_tms_tmsc Test Mode Select IO T22 jtag_tdi Test Data Input I T23 jtag_tdo Test Data Output O T24 jtag_emu0 Test emulation 0 IO T25 jtag_emu1 Test emulation 1 IO R24 Table 2-20. Test Interfaces – HWDBG Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] hw_dbg0 Debug signal 0 O AD2,AD17 hw_dbg1 Debug signal 1 O AD1,AE18 hw_dbg2 Debug signal 2 O AD3,AD18 hw_dbg3 Debug signal 3 O AE3,AC18 hw_dbg4 Debug signal 4 O AC5,AC18 hw_dbg5 Debug signal 5 O AD5,AA18 hw_dbg6 Debug signal 6 O Y18,AE5 hw_dbg7 Debug signal 7 O Y6,AE19 hw_dbg8 Debug signal 8 O Y7,AD19 hw_dbg9 Debug signal 9 O AA7,AB19 50 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 2-20. Test Interfaces – HWDBG Signals Description (ZCN Pkg.) (continued) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] AC7,AE20 hw_dbg10 Debug signal 10 O hw_dbg11 Debug signal 11 O AD7,AD20 hw_dbg12 Debug signal 12 O AE23,AC20 hw_dbg13 Debug signal 13 O AD22,AB20 hw_dbg14 Debug signal 14 O AB25,AE21 hw_dbg15 Debug signal 15 O AA23,AD21 hw_dbg16 Debug signal 16 O AA24,AC21 hw_dbg17 Debug signal 17 O AA25,AE22 Miscellaneous PRODUCT PREVIEW 2.4.6 Table 2-21. Miscellaneous – GP Timer Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] gpt8_pwm_evt PWM or event for GP timer 8 IO N4,E23,AE17 gpt9_pwm_evt PWM or event for GP timer 9 IO M4,M2,F20,AC16 gpt10_pwm_evt PWM or event for GP timer 10 IO M3,M1,F19,AB16 gpt11_pwm_evt PWM or event for GP timer 11 IO N5,E24,AA16,AA12 Submit Documentation Feedback TERMINAL DESCRIPTION 51 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 2.4.7 www.ti.com General-Purpose IOs Table 2-22. General-Purpose IOs Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] PRODUCT PREVIEW gpio_0 General-purpose IO 0 IO Y1 gpio_1 General-purpose IO 1 IO M24 gpio_2 General-purpose IO 2 IO Y4 gpio_3 General-purpose IO 3 IO AA1 gpio_4 General-purpose IO 4 IO AA2 gpio_5 General-purpose IO 5 IO AA3 gpio_6 General-purpose IO 6 IO AB1 gpio_7 General-purpose IO 7 IO AB2 gpio_8 General-purpose IO 8 IO AC1 gpio_10 General-purpose IO 10 IO N25 gpio_11 General-purpose IO 11 IO T25 gpio_12 General-purpose IO 12 IO AD17 gpio_13 General-purpose IO 13 IO AE18 gpio_14 General-purpose IO 14 IO AD18 gpio_15 General-purpose IO 15 IO AC18 gpio_16 General-purpose IO 16 IO AB18 gpio_17 General-purpose IO 17 IO AA18 gpio_18 General-purpose IO 18 IO Y18 gpio_19 General-purpose IO 19 IO AE19 gpio_20 General-purpose IO 20 IO AD19 gpio_21 General-purpose IO 21 IO AB19 gpio_22 General-purpose IO 22 IO AE20 gpio_23 General-purpose IO 23 IO AD20 gpio_24 General-purpose IO 24 IO AC20 gpio_25 General-purpose IO 25 IO AB20 gpio_26 General-purpose IO 26 IO AE21 gpio_27 General-purpose IO 27 IO AD21 gpio_28 General-purpose IO 28 IO AC21 gpio_29 General-purpose IO 29 IO AE22 gpio_30 General-purpose IO 30 IO Y3 gpio_31 General-purpose IO 31 IO R24 gpio_34 General-purpose IO 34 IO E3 gpio_35 General-purpose IO 35 IO E2 gpio_36 General-purpose IO 36 IO E1 gpio_37 General-purpose IO 37 IO F7 gpio_38 General-purpose IO 38 IO F6 gpio_39 General-purpose IO 39 IO F4 gpio_40 General-purpose IO 40 IO F3 gpio_41 General-purpose IO 41 IO F2 gpio_42 General-purpose IO 42 IO F1 gpio_43 General-purpose IO 43 IO G6 gpio_44 General-purpose IO 44 IO J4 gpio_45 General-purpose IO 45 IO J3 gpio_46 General-purpose IO 46 IO J2 52 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] gpio_47 General-purpose IO 47 IO J1 gpio_48 General-purpose IO 48 IO K4 gpio_49 General-purpose IO 49 IO K3 gpio_50 General-purpose IO 50 IO K2 gpio_51 General-purpose IO 51 IO K1 gpio_52 General-purpose IO 52 IO L1 gpio_53 General-purpose IO 53 IO M4 gpio_54 General-purpose IO 54 IO M3 gpio_55 General-purpose IO 55 IO M2 gpio_56 General-purpose IO 56 IO M1 gpio_57 General-purpose IO 57 IO N5 gpio_58 General-purpose IO 58 IO N4 gpio_59 General-purpose IO 59 IO N1 gpio_60 General-purpose IO 60 IO R4 gpio_61 General-purpose IO 61 IO T1 gpio_62 General-purpose IO 62 IO T2 gpio_63 General-purpose IO 63 IO T4 gpio_64 General-purpose IO 64 IO T5 gpio_65 General-purpose IO 65 IO U1 gpio_66 General-purpose IO 66 IO AE23 gpio_67 General-purpose IO 67 IO AD22 gpio_68 General-purpose IO 68 IO AD23 gpio_69 General-purpose IO 69 IO AE24 gpio_70 General-purpose IO 70 IO AD24 gpio_71 General-purpose IO 71 IO AD25 gpio_72 General-purpose IO 72 IO AC23 gpio_73 General-purpose IO 73 IO AC24 gpio_74 General-purpose IO 74 IO AC25 gpio_75 General-purpose IO 75 IO AB24 gpio_76 General-purpose IO 76 IO AB25 gpio_77 General-purpose IO 77 IO AA23 gpio_78 General-purpose IO 78 IO AA24 gpio_79 General-purpose IO 79 IO AA25 gpio_80 General-purpose IO 80 IO Y22 gpio_81 General-purpose IO 81 IO Y23 gpio_82 General-purpose IO 82 IO Y24 gpio_83 General-purpose IO 83 IO Y25 gpio_84 General-purpose IO 84 IO W21 gpio_85 General-purpose IO 85 IO W22 gpio_86 General-purpose IO 86 IO W23 gpio_87 General-purpose IO 87 IO W24 gpio_88 General-purpose IO 88 IO W25 gpio_89 General-purpose IO 89 IO V24 gpio_90 General-purpose IO 90 IO V25 gpio_91 General-purpose IO 91 IO U21 gpio_92 General-purpose IO 92 IO U22 Submit Documentation Feedback TERMINAL DESCRIPTION PRODUCT PREVIEW Table 2-22. General-Purpose IOs Signals Description (ZCN Pkg.) (continued) 53 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-22. General-Purpose IOs Signals Description (ZCN Pkg.) (continued) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] PRODUCT PREVIEW gpio_93 General-purpose IO 93 IO U23 gpio_94 General-purpose IO 94 IO AD2 gpio_95 General-purpose IO 95 IO AD1 gpio_96 General-purpose IO 96 IO AE2 gpio_97 General-purpose IO 97 IO AD3 gpio_98 General-purpose IO 98 IO AE3 gpio_99 General-purpose IO 99 I AD4 gpio_100 General-purpose IO 100 I AE4 gpio_101 General-purpose IO 101 IO AC5 gpio_102 General-purpose IO 102 IO AD5 gpio_103 General-purpose IO 103 IO AE5 gpio_104 General-purpose IO 104 IO Y6 gpio_105 General-purpose IO 105 IO AB6 gpio_106 General-purpose IO 106 IO AC6 gpio_107 General-purpose IO 107 IO AE6 gpio_108 General-purpose IO 108 IO AD6 gpio_109 General-purpose IO 109 IO Y7 gpio_110 General-purpose IO 110 IO AA7 gpio_111 General-purpose IO 111 IO AB7 gpio_112 General-purpose IO 112 I AE7 gpio_113 General-purpose IO 113 I AD8 gpio_114 General-purpose IO 114 I AE8 gpio_116 General-purpose IO 116 IO D25 gpio_117 General-purpose IO 117 IO C25 gpio_118 General-purpose IO 118 IO B25 gpio_119 General-purpose IO 119 IO D24 gpio_120 General-purpose IO 120 IO AA9 gpio_121 General-purpose IO 121 IO AB9 gpio_122 General-purpose IO 122 IO AC9 gpio_123 General-purpose IO 123 IO AD9 gpio_124 General-purpose IO 124 IO AE9 gpio_125 General-purpose IO 125 IO AA10 gpio_126 General-purpose IO 126 IO AB10 gpio_127 General-purpose IO 127 IO AC10 gpio_128 General-purpose IO 128 IO AD10 gpio_129 General-purpose IO 129 IO AE10 gpio_130 General-purpose IO 130 IO AD11 gpio_131 General-purpose IO 131 IO AE11 gpio_132 General-purpose IO 132 IO AB12 gpio_133 General-purpose IO 133 IO AC12 gpio_134 General-purpose IO 134 IO AD12 gpio_135 General-purpose IO 135 IO AE12 gpio_136 General-purpose IO 136 IO AB13 gpio_137 General-purpose IO 137 IO AC13 gpio_138 General-purpose IO 138 IO AD13 gpio_139 General-purpose IO 139 IO AE13 54 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] gpio_140 General-purpose IO 140 IO B24 gpio_141 General-purpose IO 141 IO C24 gpio_142 General-purpose IO 142 IO A24 gpio_143 General-purpose IO 143 IO C23 gpio_144 General-purpose IO 144 IO F20 gpio_145 General-purpose IO 145 IO F19 gpio_146 General-purpose IO 146 IO E24 gpio_147 General-purpose IO 147 IO E23 gpio_148 General-purpose IO 148 IO AA19 gpio_149 General-purpose IO 149 IO Y19 gpio_150 General-purpose IO 150 IO Y20 gpio_151 General-purpose IO 151 IO W20 gpio_152 General-purpose IO 152 IO B23 gpio_153 General-purpose IO 153 IO A23 gpio_154 General-purpose IO 154 IO B22 gpio_155 General-purpose IO 155 IO A22 gpio_156 General-purpose IO 156 IO R25 gpio_157 General-purpose IO 157 IO P21 gpio_158 General-purpose IO 158 IO P22 gpio_159 General-purpose IO 159 IO P23 gpio_160 General-purpose IO 160 IO P25 gpio_161 General-purpose IO 161 IO P24 gpio_162 General-purpose IO 162 IO N24 gpio_163 General-purpose IO 163 IO N2 gpio_164 General-purpose IO 164 IO N3 gpio_165 General-purpose IO 165 IO P1 gpio_166 General-purpose IO 166 IO P2 gpio_167 General-purpose IO 167 IO AC7 gpio_168 General-purpose IO 168 IO W1 gpio_170 General-purpose IO 170 IO L25 gpio_171 General-purpose IO 171 IO AE14 gpio_172 General-purpose IO 172 IO AD15 gpio_173 General-purpose IO 173 IO AC15 gpio_174 General-purpose IO 174 IO AB15 gpio_175 General-purpose IO 175 IO AD14 gpio_176 General-purpose IO 176 IO AE15 gpio_177 General-purpose IO 177 IO AE16 gpio_178 General-purpose IO 178 IO AD16 gpio_179 General-purpose IO 179 IO AC16 gpio_180 General-purpose IO 180 IO AB16 gpio_181 General-purpose IO 181 IO AA16 gpio_182 General-purpose IO 182 IO AE17 gpio_183 General-purpose IO 183 IO W2 gpio_184 General-purpose IO 184 IO W4 gpio_185 General-purpose IO 185 IO W5 gpio_186 General-purpose IO 186 IO M25 Submit Documentation Feedback TERMINAL DESCRIPTION PRODUCT PREVIEW Table 2-22. General-Purpose IOs Signals Description (ZCN Pkg.) (continued) 55 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 2.4.8 www.ti.com System and Miscellaneous Terminals Table 2-23. System and Miscellaneous Signals Description (ZCN Pkg.) SIGNAL NAME[1] DESCRIPTION[2] TYPE[3] BALL (ZCN Pkg.) [4] I K24 PRODUCT PREVIEW sys_32k 32-kHz clock input sys_xtalin Main input clock. Oscillator input or LVCMOS at 19.2, 13, or 12 MHz. I K25 sys_xtalout Output of oscillator O H25 sys_altclk Alternate clock source selectable for GPTIMERs (maximum 54 MHz), USB (48 MHz), or NTSC/PAL (54 MHz) I L25 sys_clkreq Request from device for system clock (open source type) IO M24 sys_clkout1 Configurable output clock1 O N25 sys_clkout2 Configurable output clock2 O M25 sys_boot0 Boot configuration mode bit 0 I Y4 sys_boot1 Boot configuration mode bit 1 I AA1 sys_boot2 Boot configuration mode bit 2 I AA2 sys_boot3 Boot configuration mode bit 3 I AA3 sys_boot4 Boot configuration mode bit 4 I AB1 sys_boot5 Boot configuration mode bit 5 I AB2 sys_boot6 Boot configuration mode bit 6 I AC1 sys_boot7 Boot configuration mode bit 7 I AC2 sys_boot8 Boot configuration mode bit 8 I AC3 sys_nrespwron Power On Reset I Y2 sys_nreswarm Warm Boot Reset (open drain output) IOD Y3 sys_nirq External FIQ input I Y1 sys_ndmareq0 External DMA request 0 (system expansion). Level (active low) or edge (falling) selectable. I M3 sys_ndmareq1 External DMA request 1 (system expansion). Level (active low) or edge (falling) selectable. I M2,U1 sys_ndmareq2 External DMA request 2 (system expansion). Level (active low) or edge (falling) selectable. I F1,M1 sys_ndmareq3 External DMA request 3 (system expansion). Level (active low) or edge (falling) selectable. I G6,N5 56 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com 2.4.9 SPRS550 – OCTOBER 2009 Power Supplies Table 2-24. Power Supplies Description BALL (ZCN Pkg.) [4] DESCRIPTION[2] 1.2-V core and oscillator macros power supply. V16, V15, V11, V10, U16, U15, U11, U10, T18, T17, T9, T8, R18, R17, R9, R8, M18, L18, L9, L8, K18, K17, K9, K8, J16, J15, J11, J10, H15, H11, H10 VSS Core and I/O common ground. AE25, AE1, V18, V17, V14, V13, V12, V9, V8, U18, U17, U14, U13, U12, U9, U8, T14, T13, T12, R16, R15, R14, R13, R12, R11, R10, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, N18, N17, N14, N13, N12, N9, N8, M17, M16, M15, M14, M13,M12, M11, M10, M9, M8, L17, L16, L15, L14, L13, L12, L11, L10, K14, K13, K12, J18, J17, J14, J13, J12, J9, J8, H14, H13, H12, H9, A25, A1, N23, G20, G21 VDDS_SRAM_MPU 1.8-V MPU SLDO analog power supply. AA13 VDDS_SRAM_CORE_BG 1.8-V Core SLDO and VDDA of BandGap analog power supply. E17 CAP_VDD_SRAM_MPU 1.2-V SRAMOUT for MPU SLDO. For proper device operation, connect to a 1µF decoupling capacitor. AA12 CAP_VDD_SRAM_CORE 1.2-V SRAMOUT for Core SLDO. For proper device operation, connect to a 1µF decoupling capacitor. E16 VDDS_DPLL_MPU_USBHOST 1.8-V MPUSS DPLL and USBHOST DPLL analog power supply. AA15 VDDS_DPLL_PER_CORE 1.8-V DPLL and HSDIVIDER/ CORE and HSDIVIDER analog power supply. N20 VDDA_DAC 1.8-V DAC analog power supply. H21 VSSA_DAC DAC analog ground. H22 VDDA3P3V_USBPHY 3.3-V USB transceiver analog power supply. F23 VDDA1P8V_USBPHY 1.8-V USB transceiver power supply. G22 CAP_VDDA1P2LDO_USBPHY Output of the 1.2-V internal LDO. For proper device operation, connect a 0.22uF capacitor between this pin and VSSA. F22 1.8/3.3-V power supply. Y16, Y15, Y13, Y12, Y10, W16, W15, W13, W12,W10, W9, W6, V7, V6, U19, T20, T19, T7, T6, R7, R6, P20, P19, N19, N7, N6, M7, M6, M5, L19, K19, K7, K6, K5, J7, H18, H17 1.8-V power supply. Y9, W18, U20, R5, H16, H8, G17, G16, G14, G13, G11, G10, G8, F16, F13, F11, F10, F8, N22 VDD_CORE VDDSHV VDDS Submit Documentation Feedback TERMINAL DESCRIPTION 57 PRODUCT PREVIEW SIGNAL NAME[1] AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 2-24. Power Supplies Description (continued) SIGNAL NAME[1] BALL (ZCN Pkg.) [4] DESCRIPTION[2] VREFSSTL 0.9-V DDR data PHY0 reference voltage input. F14 VDDSOSC 1.8-V oscillator power supply. L20 PRODUCT PREVIEW 58 TERMINAL DESCRIPTION Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 3 ELECTRICAL CHARACTERISTICS 3.1 Absolute Maximum Ratings Notes: • Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. • The AM3517/05 device adheres to EIA/JESD22–A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). Minimum pass level for HBM is 2 kV. Table 3-1. Absolute Maximum Ratings Over Operating Junction Temperature Range MIN MAX UNIT VDD_CORE Supply voltage range for core macros PARAMETER 0.5 1.6 V VDDS Second supply voltage range for 1.8-V I/O macros 0.5 2.25 V VDDSHV Supply voltage range for 1.8/3.3V I/O macros TBD TBD V VDDS_SRAM_MP U Analog Supply voltage range for 1.8-V MPU SLDO TBD TBD V VDDS_SRAM_CO RE_BG Analog Supply voltage range for 1.8-V Core SLDO and VDDA of BandGap TBD TBD V VDDS_DPLL_MPU Analog power supply for 1.8-V MPUSS DPLL and USBHOST _USBHOST DPLL TBD TBD V VDDS_DPLL_PER _CORE Analog power supply for 1.8-V DPLL and HSDIVIDER/ CORE and HSDIVIDER TBD TBD V VDDA_DAC Analog Power Supply for 1.8-V DAC TBD TBD V VDDA3P3V_USBP HY Analog power supply for 3.3-V USB transceiver TBD TBD V VDDA1P8V_USBP HY Power Supply for 1.8-V USB transceiver TBD TBD V VDDSOSC Power Supply for 1.8-V oscillator TBD TBD V VPAD Voltage range at PAD 0.5 Vdds + 0.5 V vdda Supply voltage range for analog macros 0.5 2.43 V VESD ESD stress voltage (1) TBD V HBM (human body model) (2) CDM (charged device model) IIOI Current-pulse injection on each I/O pin (4) Iclamp Clamp current for an input or output Tstg (1) (2) (3) (4) (5) Storage temperature range (3) (5) TBD 200 mA 20 20 mA 65 150 C Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. JEDEC JESD22–A114 D with the following exception-no connect pins are not stressed. 2000V Human Body Model (HBM) JEDEC JESD22–C101C with the following exception-split out pin groupings to eliminate cumulative stress effect Each device is tested with I/O pin injection of 200 mA with a stress voltage of 1.5 times maximum vdd at room temperature. These temperatures extreme do not simulate actual operating conditions but exaggerate any faults that might exist. The supply voltages and power consumption estimates are detailed in Table 3-2. Table 3-2. Estimated Power Consumption at Ball Level SIGNAL NAME VDD_CORE Submit Documentation Feedback DESCRIPTION 1.2-V core and oscillator macros power supply MAX CURRENT (mA) 1500 mA ELECTRICAL CHARACTERISTICS 59 PRODUCT PREVIEW The following table specifies the absolute maximum ratings over the operating junction temperature range of commercial and extended temperature devices. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 3-2. Estimated Power Consumption at Ball Level (continued) VDDS_SRAM_MPU 1.8-V MPU SLDO analog power supply 40 mA VDDS_SRAM_CORE_BG 1.8-V Core SLDO and VDDA of BandGap analog power supply 40 mA VDDS_DPLL_MPU_USBHOST 1.8-V MPUSS DPLL and USBHOST DPLL analog power supply 25 mA VDDS_DPLL_PER_CORE 1.8-V DPLL and HSDIVIDER/ CORE and HSDIVIDER analog power supply 25 mA VDDA_DAC 1.8-V DAC analog power supply 65 mA VDDA3P3V_USBPHY 3.3-V USB transceiver analog power supply 10 mA VDDA1P8V_USBPHY 1.8-V USB transceiver power supply 50 mA VDDSHV 3.3-/1.8-V power supply 300 mA VDDS 1.8-V power supply 200 mA VDDSOSC 1.8-V oscillator power supply 20 mA PRODUCT PREVIEW 60 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 3.2 Recommended Operating Conditions All AM3517/05 modules are used under the operating conditions contained in Table 3-3. Note: Logic functions and parameter values are not assured if the device is operated out of the range specified in the recommended operating conditions. PARAMETER DESCRIPTION NOM UNIT 1.2 V 0 V MPU SLDO analog power supply. 1.8 V Core SLDO and VDDA of BandGap analog power supply. 1.8 V VDDS_DPLL_MPU_USBHOST MPUSS DPLL and USBHOST DPLL analog power supply. 1.8 V VDDS_DPLL_PER_CORE DPLL and HSDIVIDER/ CORE and HSDIVIDER analog power supply 1.8 V VDDA_DAC DAC analog power supply. 1.8 V VSSA_DAC DAC analog ground. 0 V VDDA3P3V_USBPHY USB transceiver analog power supply. 3.3 V VDDSHV 3.3-/1.8-V power supply. 3.3/1.8 V VDDS 1.8-V power supply. TJ Operating junction temperature range TJ Operating junction temperature range VDD_CORE Core and oscillator macros power supply. VSS Core and I/O common ground. VDDS_SRAM_MPU VDDS_SRAM_CORE_BG Submit Documentation Feedback 1.8 V Commercial Temperature TBD °C Extended Temperature TBD °C Commercial Temperature TBD °C Extended Temperature TBD °C ELECTRICAL CHARACTERISTICS PRODUCT PREVIEW Table 3-3. Recommended Operating Conditions 61 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Figure 3-1 illustrates the power domains: vdds_dpll_mpu_usbhost DLL/DCDL BandGap PRODUCT PREVIEW vdds BCK MEM LDO in 1.8 V out 1.2 V VDDS vddshv VDDSHV LDO3 1.0 V/1.2 V MPU DPLL_MPU LDO in 1.8 V out 1.2 V vdd_core Core DPLL_CORE SRAM 1 LDO 0 V/1.0 V/1.2 V SRAM1 ARRAY LDO tv_ref HSDIVIDER (for capacitor) vdds_dpll_per_core SRAM 2 LDO 0 V/1.0 V/1.2 V vdda_dac SRAM2 ARRAY cap_vdd_sram_core Dual Video DAC LDO in 1.8 V out 1.2 V Periph1 DPLL4 LDO vss HSDIVIDER vssa_dac LDO in 1.8 V out 1.2 V Periph2 DPLL5 vdd_core domain Device 030-003 Figure 3-1. AM3517/05 Voltage Domains 62 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 3.3 DC Electrical Characteristics Table 3-4 summarizes the dc electrical characteristics. Table 3-4. DC Electrical Characteristics (1) PARAMETER MIN NOM MAX UNIT V LVCMOS Pin Buffers High-level input voltage VIL Low-level input voltage VOH High-level output voltage (2) VOL Low-level output voltage (2) vddshv = 1.8 V 0.6 x vddshv vddshv + 0.3 vddshv = 3.3 V 0.6 x vddshv vddshv + 0.3 vddshv = 1.8 V TBD 0.3 x vddshv vddshv = 3.3 V TBD 0.6 vddshv = 1.8 V vddshv x 0.2 vddshv = 3.3 V 0.75 x vddshv 0.2 vddshv = 3.3 V 0.125 x vddshv Input transition time (rise time, tR or fall time, tF evaluated between 10% and 90% at PAD) II Input current with VI = VI max Off-state output current for output in high impedance with driver only, driver disabled IOZ IZ V vddshv = 1.8 V tT V 10 ns TBD TBD A TBD TBD A TBD A Off-state output current for output in high impedance with driver/receiver/pullup only, driver disabled, pullup not inhibited TBD Off-state output current for output in high impedance with driver/receiver/pulldown only, driver disabled, pulldown not inhibited TBD Total leakage current through the PAD connection of a driver/receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited. V TBD PRODUCT PREVIEW VIH LVCMOS Open-Drain Pin Buffers Dedicated to I2C IOs VIH High level input voltage TBD TBD V VIL Low level input voltage TBD 0.6 V VOL Low-level output voltage open-drain at 3-mA sink current TBD TBD V II Input current at each I/O pin with an input voltage between 0.1 x vddshv to 0.9 x vddshv TBD TBD A CI Capacitance for each I/O pin TBD pF TBD ns TOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 400 pF Fast mode TBD Standard mode TBD Output fall time with a capacitive load from 10 High-speed mode pF to 100 pF at 3-mA sink current TBD TBD Output fall time with a capacitive load of 400 pF at 3-mA sink current TBD TBD Output fall time with a capacitive load of 40 pF (for CBUS compatibility) TBD Complex IO Dedicated to USB (1) (2) VIH High-level input voltage TBD TBD V VIL Low-level input voltage TBD 0.6 V VOH High-level output voltage at 4-mA sink current TBD VOL Low-level output voltage at 4-mA sink current II Input current at each I/O pin with an input voltage between 0.1 x vddshv to 0.9 x vddshv CI Capacitance for each I/O pin TBD V TBD V TBD A TBD pF Values are subject to change after characterization. With 100 A sink / source current at vddsxmin. Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 63 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 3-4. DC Electrical Characteristics (continued) PARAMETER TOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 400 pF MIN Fast mode TBD Standard mode NOM MAX UNIT TBD ns TBD Output fall time with a capacitive load from 10 High-speed mode pF to 100 pF at 3-mA sink current TBD TBD Output fall time with a capacitive load of 400 pF at 3-mA sink current TBD TBD Output fall time with a capacitive load of 40 pF (for CBUS compatibility) TBD PRODUCT PREVIEW 64 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 3.4 Core Voltage Decoupling For module performance, decoupling capacitors are required to suppress the switching noise generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is close to the device because this minimizes the inductance of the circuit board wiring and interconnects. Table 3-5 summarizes the power supplies decoupling characteristics. PARAMETER Cvdd_core (1) MIN TYP MAX UNIT 50 100 120 nF Ccap_vdd_sram_core 100 nF Cvdds_dpll_mpu_usbhost 100 nF Cvdds_dpll_per_core 100 nF Cvdda_dac 100 nF Cvdd_sram_core 100 nF Cvdd_sram_core_bg 100 nF Cvdds_mmc1 100 nF Cvdds_sram_mpu 100 nF (1) PRODUCT PREVIEW Table 3-5. Core Voltage Decoupling Characteristics 1 capacitor per 2 to 4 balls Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 65 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Figure 3-2 illustrates an example of power supply decoupling. Device vdda_dac Cvdda_dac vdds_sram_mpu vdda_dac vssa_dac vdds_sram_mpu Cvdds_sram_mpu Video DAC SRAM_LDO1 cap_vdd_sram_mpu Ccap_vdd_sram_mpu vdds_sram_core_bg vdds_sram_core_bg Cvdds_sram_core_bg PRODUCT PREVIEW SRAM_LDO2 WKUP_LDO vdd_sram_core vdd_sram_core Cvdd_sram_core cap_vdd_sram _core Ccap_vdd_sram_core BG DPLL_MPU vdds_dpll_mpu _usbhost vdds_dpll_mpu_usbhost Cvdds_dpll_mpu_usbhost DPLL_CORE DPLL5 vdds_dpll_per_core vdds_dpll_per_core Cvdds_dpll_per_core DPLL4 Vdd_core Core vdd_core MPU Cvdd_core VSS 030-004 (1) Decoupling capacitors must be placed as closed as possible to the power ball. Choose the ground located closest to the power pin for each decoupling capacitor. Place the decoupling capacitor Ci in a group of 1, 2, or 3 balls; the total must be equal to the decoupling requirement. In case you interconnect powers, first insert the decoupling capacitor and then interconnect the powers. (2) The decoupling capacitor value depends on the board characteristics. Figure 3-2. Power Supply Decoupling 66 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 3.5 Power-up and Power-down This section provides the timing requirements for the AM3517/05 hardware signals. 3.5.1 Power-up Sequence 3.3-V Operation Sequence: 1. IO 1.8V (VDDS) supply should come up first. This is required to bias the circuitry for the 3.3V IO’s. 2. IO 3.3V (VDDSHV) supply should be ramped up next. 3. Band-gap, LDO supplies (VDDS_SRAM_CORE_BG, VDDS_SRAM_MPU) should be ramped up next. 4. Core supply follows next. 5. All the PLL supplies (VDDS_DPLL_PER_CORE, VDDS_DPLL_MPU_USBHOST) should be ramped up next. Ensure PLL is powered-up in OFFMODE=1 to control any transients. 6. All the other complex IO power supplies should be ramped up next (DAC, USB). 7. sys_nrespwron must be held low at the time the power supplies are ramped up till the time the sys_32k and sys_xtalin clocks are stable. 1.8-V Operation Sequence: 1. IO 1.8V (VDDS and VDDSHV) supply should come up first. This is required to bias the circuitry for the 3.3V IO’s. 2. Band-gap, LDO supplies (VDDS_SRAM_CORE_BG, VDDS_SRAM_MPU) should be ramped up next. 3. Core supply follows next. 4. All the PLL supplies (VDDS_DPLL_PER_CORE, VDDS_DPLL_MPU_USBHOST) should be ramped up next. Ensure PLL is powered-up in OFFMODE=1 to control any transients. 5. All the other complex IO power supplies should be ramped up next (DAC, USB). 6. sys_nrespwron must be held low at the time the power supplies are ramped up till the time the sys_32k and sys_xtalin clocks are stable. 7. The other power supplies can then be turned on upon software request. Notes: Depending on the target Power IC • VDDS, VDDSHV (1.8-V operation only), VDDS_SRAM_CORE_BG, VDDS_SRAM_MPU, and VDDSOSC can be grouped and powered up together. • VDDS_DPLL_PER_CORE, VDDS_DPLL_MPU_HOST and all the other complex IO power supplies can be grouped together. Figure 3-3 shows the power-up sequence. Note: If an external square clock is provided, it could be started after sys_nrespwron release provided it is clean: no glitch, stable frequency, and duty cycle. Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 67 PRODUCT PREVIEW The following steps give an example of power-up sequence supported by the AM3517/05. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 VDDS VDDSHV www.ti.com 1.8V 3.3V VDDS_SRAM_CORE_BG, VDDS_SRAM_MPU, VDDSOSC VDD_CORE 1.8V 1.2V PRODUCT PREVIEW sys_nrespwron sys_32k sys_xtalin VDDS_DPLL_PER_CORE , VDDS_DPLL_MPU_USBHOST VDDA_DAC, VDDA1P8V_USBPHY VDDA3P3V_USBPHY 1.8V 1.8V 3.3V Figure 3-3. Power-up Sequence 68 ELECTRICAL CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com Power-down Sequence The AM3517/05 device proceeds with the power-down sequence shown below. The following steps give an example of the power-down sequence supported by the AM3517/05 device. 1. Reset AM3517/05 device. 2. Stop all signals driven to AM3517/05. 3. Option 1: Power down all domains simutaneously. 4. Option 2: If all domains cannot be powered down simultaneously, follow the below sequence: a. Power off all complex I/O domains b. Power off core domain (VDD_CORE) c. Power off all PLL domains (VDDS_DPLL_MPU_USBHOST and VDDS_DPLL_PER_CORE) d. Power off all SRAM LDOs e. Power off all standard I/O domains (VDDS and VDDSHV) Submit Documentation Feedback ELECTRICAL CHARACTERISTICS 69 PRODUCT PREVIEW 3.5.2 SPRS550 – OCTOBER 2009 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 4 CLOCK SPECIFICATIONS The AM3517/05 device has three external input clocks, a low frequency (sys_32k), a high frequency (sys_xtalin), and an optional (sys_altclk). The AM3517/05 device has two configurable output clocks, sys_clkout1 and sys_clkout2. Figure 4-1 shows the interface to the external clock sources and clock outputs. AM35x sys_32k Power IC Alternate Clock Source Selectable (54, 48 MHz or other [up to 59 MHz]) sys_altclk rmii_50mhz_clk Ethernet input 50-MHz clock PRODUCT PREVIEW sys_clkout1 To Peripherals (From OSC_CLK: 12, 13,16.8, 19.2, 26, or 38.4 MHz) sys_clkout2 To Peripherals (From OSC_CLK: 12,13, 16.8, 19.2, 26, or 38.4 MHz, core_clk [DPLL, up to 166 MHz], DPLL-96 MHz or DPLL-54 MHz outputs with a divider of 1, 2, 4, 8, or 16) sys_xtalout To Quartz (Oscillator output) or Unconnected sys_xtalin From Quartz (Oscillator input), Square Clock, or Crystal sys_clkreq Clock Request. To Square Clock Source or from Peripherals sys_xtalout sys_xtalout Oscillator is Used Unconnected Oscillator is Bypassed sys_xtalin sys_clkreq GPin sys_xtalin sys_clkreq Square Clock Source 030-007 Figure 4-1. Clock Interface The AM3517/05 device operation requires the following three input clocks: • The 32-kHz clock can be generated using one of the following options and can be selected via the sys_boot7 pin. See Figure 4-2. – External: Supplied by an oscillator on the sys_32k pin. – Internal: 32-kHz clock generation using a fixed divider on the HS system clock (26MHz). • The system alternative clock can be used (through the sys_altclk pin) to provide alternative 48 or 54 MHz or other clock source (up to 54 MHz). • The system clock input (26 MHz) is used to generate the main source clock of the AM3517/05 device. It supplies the DPLLs as well as several AM3517/05 modules. The system clock input can be connected to either: – A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is used as an input (GPIN). – A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to request the external system clock. 70 CLOCK SPECIFICATIONS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 0 Sys_32k Sys_32k_in (to wkup_pd) 32.5 kHz 1 Fixed Divider /800 Sys_clk= 26 MHz Sys_xtalin Gz Coming From WKUP_PD Pwrdn Coming From WKUP_PD Sys_xtalout 0 Latch Sys_boot7 PRODUCT PREVIEW 1 JTAG Overrides for DFT 1 Sys_clk PowerOn Reset Figure 4-2. 32-kHz Clock Generation The AM3517/05 outputs externally two clocks: • sys_clkout1 can output the oscillator clock (26 MHz) at any time. • sys_clkout2 can output the oscillator clock, core_clk, 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is programmable. Submit Documentation Feedback CLOCK SPECIFICATIONS 71 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 4.1 Oscillator On AM3517/05, VSSOSC has a dedicated ground (sys_xtalgnd) that is used to help reduce jitter. The load capacitors for sys_xtalin and sys_xtalout should be connected between the corresponding xtal pin to sys_xtalgnd as shown in Figure 4-3. OSC BUFFER IOSC/OOSC PRODUCT PREVIEW S Y S _ X T A L I N S Y S _ XT AL G N D S Y S _ XT A L O U T Figure 4-3. AM3517/05 Oscillator Connections 4.2 Input Clock Specifications The clock system accepts three input clock sources: • 32-kHz digital CMOS clock • Crystal oscillator clock or CMOS digital clock (26 MHz) • Alternate clock (48 or 54 MHz, or other up to 54 MHz) 72 CLOCK SPECIFICATIONS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 4.3 Output Clock Specifications Two output clocks (pin sys_clkout1 and pin sys_clkout2) are available: • sys_clkout1 can output the oscillator clock (26 MHz) at any time. It can be controlled by software or externally using sys_clkreq control. When the device is in the off state, the sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the device. The off state polarity of sys_clkout1 is programmable. • sys_clkout2 can output sys_clk (26 MHz), core_clk (core DPLL output), APLL-96 MHz, or APLL-54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is programmable. This output is active only when the core domain is active. Table 4-1 summarizes the sys_clkout1 output clock electrical characteristics. NAME f DESCRIPTION MIN TYP Frequency CI Load capacitance (1) (1) MAX PRODUCT PREVIEW Table 4-1. sys_clkout1 Output Clock Electrical Characteristics UNIT 26 MHz f(max) = 38.4 MHz 70 pF f(max) = 26 MHz 125 The load capacitance is adapted to a frequency. Table 4-2 details the sys_clkout1 output clock timing characteristics. Table 4-2. sys_clkout1 Output Clock Switching Characteristics NAME DESCRIPTION MIN f 1 / CO0 Frequency CO1 tw(CLKOUT1) Pulse duration, sys_clkout1 low or high TYP MAX UNIT 26 MHz 0.40 * 0.60 * tc(CLKOUT1) tc(CLKOUT1) ns CO2 tR(CLKOUT1) Rise time, sys_clkout1 (1) 3.31 ns CO3 tF(CLKOUT1) Fall time, sys_clkout1 (1) 3.31 ns (1) With a load capacitance of 25 pF. CO0 CO1 CO1 sys_clkout 030-014 Figure 4-4. sys_clkout1 System Output Clock Table 4-3 summarizes the sys_clkout2 output clock electrical characteristics. Table 4-3. sys_clkout2 Output Clock Electrical Characteristics NAME DESCRIPTION f Frequency, sys_clkout2 (1) CL Load capacitance (2) (1) (2) MIN f(max) = 166 MHz 2 TYP 8 MAX UNIT 166 MHz 12 pF The maximum frequency supported is core_clk/2 MHz. The load capacitance is adapted to a frequency. Table 4-4 details the sys_clkout2 output clock timing characteristics. Submit Documentation Feedback CLOCK SPECIFICATIONS 73 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 4-4. sys_clkout2 Output Clock Switching Characteristics NAME DESCRIPTION MIN f 1 / CO0 Frequency CO1 tw(CLKOUT2) Pulse duration, sys_clkout2 low or high CO2 tR(CLKOUT2) Rise time, sys_clkout2 (1) CO3 tF(CLKOUT2) Fall time, sys_clkout2 (1) (1) TYP 0.40 * tc(CLKOUT2) MAX UNIT 322 MHz 0.60 * tc(CLKOUT2) ns 3.7 ns 4.3 ns With a load capacitance of 25 pF. CO0 CO1 CO1 sys_clkout 030-015 PRODUCT PREVIEW Figure 4-5. sys_clkout2 System Output Clock 74 CLOCK SPECIFICATIONS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 4.4 DPLL Specifications The AM3517/05 integrates four DPLLs. The PRM and CM drive them. The four main DPLLs are: • DPLL1 (MPU) • DPLL3 (Core) • DPLL4 (Peripherals) • DPLL5 (Second Peripherals DPLL) Figure 4-6 illustrates the DPLL implementation. VDDS_DPLL_MPU_USBHOST PRODUCT PREVIEW Device Power Rail DPLL1 DPLL3 DPLL4 DPLL5 VDDS_DPLL_PER_CORE 030-016 Figure 4-6. DPLL Implementation 4.4.1 Digital Phase-Locked Loop (DPLL) The DPLL provides all interface clocks and some functional clocks (such as the processor clocks) of the AM3517/05 device. DPLL1 gets an always-on clock used to produce the synthesized clock. They get a high-speed bypass clock used to switch the DPLL output clock on this high-speed clock during bypass mode. The high-speed bypass clock is an L3 divided clock (programmable by 1 or 2) that saves DPLL processor power consumption when the processor does not need to run faster than the L3 clock speed, or optimizes performance during frequency scaling. Each DPLL synthesized frequency is set by programming M (multiplier) and N (divider) factors. In addition, all DPLL outputs can be controlled by an independent divider (M2 to M6). The clock generating DPLLs of the AM3517/05 device have following features: • Independent power domain per DPLL • Controlled by clock-manager (CM) • Fed with always-on system clock with independent gating control per DPLL • Analog part supplied through dedicated power supply (1.8 V) and an embedded LDO to get rid of 1-MHz noise • Up to four independent output dividers for simultaneous generation of multiple clock frequencies Submit Documentation Feedback CLOCK SPECIFICATIONS 75 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 4.4.1.1 DPLL1 (MPU) DPLL1 is located in the MPU subsystem and supplies all clocks of the subsystem. All MPU subsystem clocks are internally generated in the subsystem. When the core domain is on, it can use the DPLL3 (CORE DPLL) output as a high-frequency bypass input clock. 4.4.1.2 DPLL3 (CORE) DPLL3 supplies all interface clocks and also a few module functional clocks. It can be also source of the emulation trace clock. It is located in the core domain area. All interface clocks and a few module functional clocks are generated in the CM. When the core domain is on, it can be used as a bypass input to DPLL1. 4.4.1.3 DPLL4 (Peripherals) PRODUCT PREVIEW DPLL4 generates clocks for the peripherals. It supplies five clock sources: 96-MHz functional clocks to subsystems and peripherals, 54 MHz to TV DAC, display functional clock, camera sensor clock, and emulation trace clock. It is located in the core domain area. All interface clocks and few module functional clocks are generated in the CM. Its outputs to the DSS, PER, and EMU domains are propagated with always-on clock trees. 4.4.1.4 DPLL5 (Second peripherals DPLL) DPLL5 supplies the 120-MHz functional clock to the CM. 76 CLOCK SPECIFICATIONS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com 4.4.2 SPRS550 – OCTOBER 2009 DPLL Noise Isolation The DPLL requires dedicated power supply pins to isolate the core analog circuit from the switching noise generated by the core logic that can cause jitter on the clock output signal. Guard rings are added to the cell to isolate it from substrate noise injection. The vdd supplies are the most sensitive to noise; decoupling capacitance is recommended below the supply rails. The maximum input noise level allowed is 30 mVPP for frequencies below 1 MHz. illustrates an example of a noise filter. Noise Filter DPLL_MPU DPLL_CORE PRODUCT PREVIEW VDDS_DPLL_MPU_USBHOST C DLL Noise Filter VDDS_DPLL_PER_CORE DPLL5 C DPLL4 030-017 Figure 4-7. DPLL Noise Filter Table 4-5 specifies the noise filter requirements. Table 4-5. DPLL Noise Filter Requirements NAME MIN Filtering capacitor (1) (2) (3) (4) TYP 100 MAX UNIT nF The capacitors must be inserted between power and ground as close as possible. This circuit is provided only as an example. The filter must be located as close as possible to the device. No filtering required if noise is below 10 mVPP. Submit Documentation Feedback CLOCK SPECIFICATIONS 77 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 5 VIDEO DAC SPECIFICATIONS A dual-display interface equips the AM3517/05 processor. This display subsystem provides the necessary control signals to interface the memory frame buffer directly to the external displays (TV-set). Two (one per channel) 10-bit current steering DACs are inserted between the DSS and the TV set to generate the video analog signal. One of the video DACs also includes TV detection and power-down mode. Figure 5-1 illustrates the AM3517/05 DAC architecture. Device TV DCT PRODUCT PREVIEW DIN1[9:0] ROUT1 tv_vfb1 TVOUT BUFFER Video DAC 1 tv_out1 DSS tv_vfb2 TVOUT TVOUT BUFFER BUFFER Video DAC 2 ROUT2 DIN2[9:0] tv_out2 vdda_dac V_ref vssa_dac tv_vref CBG 030-018 Figure 5-1. Video DAC Architecture The following paragraphs detail the 10-bit DAC interface pinout, static and dynamic specifications, and noise requirements. The operating conditions and absolute maximum ratings are detailed in Table 5-2 and Table 5-4. 78 VIDEO DAC SPECIFICATIONS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 5.1 Interface Description Table 5-1 summarizes the external pins of the video DAC. Table 5-1. External Pins of 10-bit Video DAC I/O DESCRIPTION tv_out1 O TV analog output composite DAC1 video output. An external resistor is connected between this node and tv_vfb1. The nominal value of ROUT1 is 1650 . Finally, note that this is the output node that drives the load (75 ). tv_out2 O TV analog output S-VIDEO DAC2 video output. An external resistor is connected between this node and tv_vfb2. The nominal value of ROUT2 is 1650 . Finally, note that this is the output node that drives the load (75 ). tv_vref I Reference output voltage from internal bandgap A decoupling capacitor (CBG) needs to be connected for optimum performance. tv_vfb1 O Amplifier feedback node Amplifier feedback node. An external resistor is connected between this node and tv_out1. The nominal value of ROUT1 is 1650 (1%). tv_vfb2 O Amplifier feedback node Amplifier feedback node. An external resistor is connected between this node and tv_out2. The nominal value of ROUT2 is 1650 (1%). Submit Documentation Feedback VIDEO DAC SPECIFICATIONS PRODUCT PREVIEW PIN NAME 79 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 5.2 Electrical Specifications Over Recommended Operating Conditions (TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 , RLOAD = 75 , unless otherwise noted) Table 5-2. DAC Static Electrical Specification PARAMETER R CONDITIONS/ASSUMPTIONS MIN Resolution TYP MAX 10 UNIT Bits DC ACCURACY INL (1) Integral nonlinearity 1 1 LSB DNL (2) Differential nonlinearity 1 1 LSB ANALOG OUTPUT PRODUCT PREVIEW - Full-scale output voltage - Output offset voltage - Output offset voltage drift - Gain error RVOUT Output impedance RLOAD = 75 0,7 0.88 1 V 50 mV 20 17 mV/C 19 67.5 75 82.5 0.525 0.55 0.575 % FS REFERENCE VREF Reference voltage range - Reference noise density RSET Full-scale current adjust resistor PSRR Reference PSRR (3) (Up to 6 MHz) 100-kHz reference noise bandwidth V 129 3700 4000 4200 40 dB POWER CONSUMPTION Ivdda-up Analog Supply Current (4) 2 channels, no load 8 mA - Analog supply driving a 75- load (RMS) 2 channels 50 mA Lasts less than 1 ns 60 mA Measured at fCLK = 54 MHz, fOUT = 2 MHz sine wave, vdd = 1.3 V 2 mA Ivdda-up (peak) Peak analog supply current: Ivdd-up Digital supply current (5) Peak digital supply current (6) Lasts less than 1 ns 2.5 mA Ivdda-down Analog power at power-down T = 30C, vdda = 1.8 V 1.5 mA Ivdd-down Digital power at power-down T = 30C, vdd = 1.3 V 1 mA Ivdd-up (1) (2) (3) (4) (5) (6) 80 (peak) The INL is measured at the output of the DAC (accessible at an external pin during bypass mode). The DNL is measured at the output of the DAC (accessible at an external pin during bypass mode). Assuming a capacitor of 0.1 F at the tv_ref node. The analog supply current Ivdda is directly proportional to the full-scale output current IFS and is insensitive to fCLK The digital supply current IVDD is dependent on the digital input waveform, the DAC update rate fCLK, and the digital supply VDD. The peak digital supply current occurs at full-scale transition for duration less than 1 ns. VIDEO DAC SPECIFICATIONS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 (TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 , RLOAD = 75 , unless otherwise noted) Table 5-3. Video DAC Dynamic Electrical Specification CONDITIONS/ASSUMPTIONS MIN TYP MAX Equal to input clock frequency Clock jitter rms clock jitter required in order to assure 10-bit accuracy Attenuation at 5.1 MHz Corner frequency for signal 0.1 Attenuation at 54 MHz (1) Image frequency 25 tST Output settling time Time from the start of the output transition to output within 1 LSB of final value. 85 ns tRout Output rise time Measured from 10% to 90% of full-scale transition 25 ns tFout Output fall time Measured from 10% to 90% of full-scale transition 25 ns BW Signal bandwidth 6 MHz Differential gain (2) Within bandwidth 40 ps 0.5 1.5 dB 30 33 dB fCLK = 54 MHz, fOUT = 1 MHz 1 deg. 45 dB (3) SNR Signal-to-noise ratio 1 kHz to 6 MHz bandwidth fCLK = 54 MHz, fOUT = 1 MHz 55 PSRR Power supply rejection ratio Up to 6 MHz 20 (4) Crosstalk Between the two video channels (1) (2) (3) (4) MHz 1.5% Differential phase (2) SFDR 54 UNIT Output update rate PRODUCT PREVIEW PARAMETER fCLK (1) 50 dB dB 40 dB For internal input clock information, For more information, see the Device Display Interface Subsystem Reference Guide [literature number SPRUFV2]. The differential gain and phase value is for dc coupling. Note that there is degradation for the ac coupling. The SNR value is for dc coupling. Note that there is a 6-dB degradation for ac coupling. The PSSR value is for dc coupling. Note that there is a 10-dB degradation for ac coupling. Submit Documentation Feedback VIDEO DAC SPECIFICATIONS 81 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 5.3 Analog Supply (vdda_dac) Noise Requirements In order to assure 10-bit accuracy of the DAC analog output, the analog supply vdda_dac has to meet the noise requirements stated in this section. The DAC Power Supply Rejection Ratio is defined as the relative variation of the full-scale output current divided by the supply variation. Thus, it is expressed in percentage of Full-Scale Range (FSR) per volt of DI OUT I OUTFS VAC 100 × supply variation as shown in the following equation: PSRRDAC = % FSR V Depending on frequency, the PSRR is defined in Table 5-4. Table 5-4. Video DAC Power Supply Rejection Ratio Supply Noise Frequency PSRR % FSR/V PRODUCT PREVIEW 0 to 100 kHz 1 > 100 kHz The rejection decreases 20 dB/dec. Example: at 1 MHz the PSRR is 10% of FSR/V A graphic representation is shown in Figure 5-2. PSRR (% FSR/V) First pole of DAC output load 10 1 f 100 kHz 1 MHz 030-019 Figure 5-2. Video DAC Power Supply Rejection Ratio To ensure that the DAC SFDR specification is met, the PSRR values and the clock jitter requirements translate to the following limits on vdda_dac (for the Video DAC). The maximum peak-to-peak noise on vdda (ripple) is defined in Table 5-5: Table 5-5. Video DAC Maximum Peak-to-Peak Noise on vdda_dac Tone Frequency Maximum Peak-to-Peak Noise on vdda_dac 0 to 100 kHz < 30 mVpp > 100 kHz Decreases 20 dB/dec. Example: at 1 MHz the maximum is 3 mVpp The maximum noise spectral density (white noise) is defined in Table 5-6: Table 5-6. Video DAC Maximum Noise Spectral Density Supply Noise Bandwidth 82 Maximum Supply Noise Density 0 to 100 kHz < 20 V / Hz > 100 kHz Decreases 20 dB/dec. Example: at 1 MHz the maximum noise density is 2 / Hz VIDEO DAC SPECIFICATIONS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Because the DAC PSRR deteriorates at a rate of 20 dB/dec after 100 kHz, it is highly recommended to have vdda_dac low pass filtered (proper decoupling) (see the illustrated application: Section 5.4, External Component Value Choice). 5.4 External Component Value Choice The full-scale output voltage VOUTMAX is regulated by the reference amplifier, and is set by an internal resistor RSET. IOUTMAX can be expressed as: IOUTMAX = IREF /8 * (63 + 15/16) Where: The output current IOUT appearing at DAC output is a function of both the input code and IOUTMAX and can be expressed as: IOUT = (DAC_CODE/1023) * IOUTMAX Where: DAC_CODE = 0 to 1023 is the DAC input code in decimal. The output voltage is: VOUT = IOUT *N* RCABLE Where: (N = amplifier gain = 21) RCABLE = 75 (cable typical impedance) The TV-out buffer requires a per channel external resistors: ROUT1/2. The equation below can be used to select different resistor values (if necessary): ROUT = (N+1) RCABLE = 1650 Recommended parameter values are: Table 5-7. Video DAC Recommended External Components Values Recommended Value UNIT CBG 100 nF ROUT1/2 1650 In order to limit the reference noise bandwidth and to suppress transients on VREF, it is necessary to connect a large decoupling capacitor BG) between the tv_vref and vssa_dac pins. Submit Documentation Feedback VIDEO DAC SPECIFICATIONS 83 PRODUCT PREVIEW VREF = 0.5V IREF = VREF/RSET AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Note: The timing data shown is preliminary data and is subject to change in future revisions. 6.1 Timing Test Conditions All timing requirements and switching characteristics are valid over the recommended operating conditions of Table 3-3, unless otherwise specified. 6.2 Interface Clock Specifications 6.2.1 Interface Clock Terminology The Interface clock is used at the system level to sequence the data and/or control transfers accordingly with the interface protocol. PRODUCT PREVIEW 6.2.2 Interface Clock Frequency The two interface clock characteristics are: • The maximum clock frequency • The maximum operating frequency The interface clock frequency documented in this document is the maximum clock frequency, which corresponds to the maximum frequency programmable on this output clock. This frequency defines the maximum limit supported by the AM3517/05 IC and doesn't take into account any system consideration (PCB, peripherals). The system designer will have to consider these system considerations and AM3517/05 IC timings characteristics as well, to define properly the maximum operating frequency, which corresponds to the maximum frequency supported to transfer the data on this interface. 6.2.3 Clock Jitter Specifications Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this document is the time difference between the typical cycle period and the actual cycle period affected by noise sources on the clock. The cycle (or period) jitter terminology identifies this type of jitter. Cycle (or Period) Jitter Tn-1 Tn Tn+1 Max. Cycle Jitter = Max (Ti) Min. Cycle Jitter = Min (Ti) Jitter Standard Deviation (or rms Jitter) = Standard Deviation (Ti) 030-020 Figure 6-1. Cycle (or Period) Jitter 6.2.4 Clock Duty Cycle Error The duty cycle error is the ratio between either the high-level pulse duration or the low-level pulse duration and the cycle time of a clock signal. 84 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 6.3 Timing Parameters The timing parameter symbols used in the timing requirement and switching characteristic tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies have been abbreviated as follows: Table 6-1. Timing Parameters Symbols Parameter c Cycle time (period) d Delay time dis Disable time en Enable time h Hold time su Setup time START Start bit t Transition time v Valid time Submit Documentation Feedback w Pulse duration (width) X Unknown, changing, or dont care level H High L Low V Valid IV Invalid AE Active Edge FE First Edge LE Last Edge Z High impedance TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS PRODUCT PREVIEW LOWERCASE SUBSCRIPTS 85 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.4 External Memory Interfaces The AM3517/05 processor includes the following external memory interfaces: • General-purpose memory controller (GPMC) • SDRAM controller (SDRC) 6.4.1 General-Purpose Memory Controller (GPMC) The GPMC is the AM3517/05 unified memory controller used to interface external memory devices such as: • Asynchronous SRAM-like memories and ASIC devices • Asynchronous page mode and synchronous burst NOR flash • NAND flash PRODUCT PREVIEW 6.4.1.1 GPMC/NOR Flash Interface Synchronous Timing Table 6-3 and Table 6-4 assume testing over the recommended operating conditions (see Figure 6-2 through Figure 6-5) and electrical characteristic conditions. Table 6-2. GPMC/NOR Flash Synchronous Mode Timing Conditions TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT MIN MAX Input Conditions tR Input signal rise time TBD TBD ns tF Input signal fall time TBD TBD ns TBD pF Output Conditions CLOAD Output load capacitance Table 6-3. GPMC/NOR Flash Interface Timing Requirements Synchronous Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX F12 tsu(DV-CLKH) Setup time, read gpmc_d[15:0] valid before gpmc_clk high TBD ns F13 th(CLKH-DV) Hold time, gpmc_d[15:0] valid after gpmc_clk high TBD ns F21 tsu(WAITV-CLKH) Setup time, gpmc_waitx (1) valid before gpmc_clk high TBD ns F22 th(CLKH-WAITV) Hold Time, gpmc_waitx (1) valid after gpmc_clk high TBD ns (1) Wait monitoring support is limited to a WaitMonitoringTime value > 0. Table 6-4. GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX F0 tc(CLK) Cycle time (1), output clock gpmc_clk period TBD F1 tw(CLKH) Typical pulse duration, output clock gpmc_clk high TBD TBD ns F1 tw(CLKL) Typical pulse duration, output clock gpmc_clk low TBD TBD ns tdc(CLK) Duty cycle error, output clk gpmc_clk TBD TBD ps tj(CLK) Jitter standard deviation (2), output clock gpmc_clk TBD ps (1) (2) 86 ns Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the I/F module by setting the GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider. The jitter probability density can be approximated by a Gaussian function. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-4. GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode (continued) PARAMETER 1.8V, 3.3V MIN UNIT MAX tR(CLK) Rise time, output clock gpmc_clk TBD ns tF(CLK) Fall time, output clock gpmc_clk TBD ns tR(DO) Rise time, output data TBD ns tF(DO) Fall time, output data TBD ns F2 td(CLKH-nCSV) Delay time, gpmc_clk rising edge to gpmc_ncsx (3) transition TBD TBD ns F3 td(CLKH-nCSIV) Delay time, gpmc_clk rising edge to gpmc_ncsx (3) invalid TBD TBD ns F4 td(ADDV-CLK) Delay time, address bus valid to gpmc_clk first edge TBD TBD ns F5 td(CLKH-ADDIV) Delay time, gpmc_clk rising edge to gpmc_a[16:1] invalid TBD F6 td(nBEV-CLK) Delay time, gpmc_nbe0_cle, gpmc_nbe1 valid to gpmc_clk first edge TBD TBD ns F7 td(CLKH-nBEIV) Delay time, gpmc_clk rising edge to gpmc_nbe0_cle, gpmc_nbe1 invalid TBD TBD ns F8 td(CLKH-nADV) Delay time, gpmc_clk rising edge to gpmc_nadv_ale transition TBD TBD ns F9 td(CLKH-nADVIV) Delay time, gpmc_clk rising edge to gpmc_nadv_ale invalid TBD TBD ns F10 td(CLKH-nOE) Delay time, gpmc_clk rising edge to gpmc_noe transition TBD TBD ns F11 td(CLKH-nOEIV) Delay time, gpcm rising edge to gpmc_noe invalid TBD TBD ns F14 td(CLKH-nWE) Delay time, gpmc_clk rising edge to gpmc_nwe transition TBD TBD ns F15 td(CLKH-Data) Delay time, gpmc_clk rising edge to data bus transition TBD TBD ns F17 td(CLKH-nBE) Delay time, gpmc_clk rising edge to gpmc_nbex_cle transition TBD TBD ns F18 tW(nCSV) Pulse duration, gpmc_ncsx (3) low Read TBD ns Write TBD ns Pulse duration, gpmc_nbe0_cle, gpmc_nbe1 low Read TBD ns Write TBD ns Pulse duration, gpmc_nadv_ale low Read TBD ns Write TBD ns F19 F20 tW(nBEV) tW(nADVV) F23 td(CLKH-IODIR) Delay time, gpmc_clk rising edge to gpmc_io_dir high (IN direction) TBD F24 td(CLKH-IODIRIV) Delay time, gpmc_clk rising edge to gpmc_io_dir low (OUT direction) TBD (3) ns TBD PRODUCT PREVIEW NO. ns ns In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 87 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_ncsx F4 gpmc_a[10:1] Valid Address F6 F7 F19 gpmc_nbe0_cle F19 PRODUCT PREVIEW gpmc_nbe1 F6 F8 F8 F20 F9 gpmc_nadv_ale F10 F11 gpmc_noe F13 F12 D0 gpmc_d[15:0] gpmc_waitx F23 gpmc_io_dir OUT F24 IN OUT 030-021 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 6-2. GPMC/NOR Flash Synchronous Single Read (GpmcFCLKDivider = 0) 88 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 F1 F1 F0 gpmc_clk F2 F3 gpmc_ncsx F4 Valid Address gpmc_a[10:1] F6 F7 gpmc_nbe0_cle F7 gpmc_nbe1 F6 F8 F8 F9 F10 PRODUCT PREVIEW gpmc_nadv_ale F11 gpmc_noe F13 F13 F12 D0 gpmc_d[15:0] F21 F12 D1 D2 D3 F22 gpmc_waitx F24 F23 gpmc_io_dir OUT IN OUT 030-022 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 6-3. GPMC/NOR Flash Synchronous Burst Read 4x16-bit (GpmcFCLKDivider = 0) Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 89 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com F1 F1 F0 gpmc_clk F2 F3 gpmc_ncsx F4 gpmc_a[10:1] Valid Address F17 F6 F17 F17 gpmc_nbe0_cle F17 F17 F17 PRODUCT PREVIEW gpmc_nbe1 F6 F8 F8 F9 gpmc_nadv_ale F14 F14 gpmc_nwe F15 gpmc_d[15:0] D0 D1 F15 D2 F15 D3 gpmc_waitx gpmc_io_dir OUT 030-023 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 6-4. GPMC/NOR Flash Synchronous Burst Write (GpmcFCLKDivider = 0) 90 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 F1 F0 F1 gpmc_clk F2 F3 gpmc_ncsx F6 F7 gpmc_nbe0_cle Valid F6 F7 gpmc_nbe1 Valid F4 gpmc_a[26:17] Address (MSB) F4 gpmc_a[16:1]_d[15:0] F13 F5 Address (LSB) F8 D0 D1 F12 D2 F8 D3 F9 gpmc_nadv_ale F10 F11 gpmc_noe gpmc_waitx F24 F23 gpmc_io_dir OUT IN OUT 030-024 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 6-5. GPMC/Multiplexed NOR Flash Synchronous Burst Read Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 91 PRODUCT PREVIEW F12 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com F1 F1 F0 gpmc_clk F2 F3 gpmc_ncsx F4 Address (MSB) gpmc_a[26:17] F17 F6 F17 F17 gpmc_nbe0_cle F17 F17 F17 PRODUCT PREVIEW gpmc_nbe1 F6 F8 F8 F9 gpmc_nadv_ale F14 F14 gpmc_nwe F15 gpmc_d[15:0] Address (LSB) D0 D1 F15 F15 D2 D3 gpmc_waitx OUT gpmc_io_dir 030-025 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 6-6. GPMC/Multiplexed NOR Flash Synchronous Burst Write 6.4.1.2 GPMC/NOR Flash Interface Asynchronous Timing Table 6-7 and Table 6-8 assume testing over the recommended operating conditions (see Figure 6-7 through Figure 6-12) and electrical characteristic conditions. Table 6-5. GPMC/NOR Flash Asynchronous Mode Timing Conditions TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 1.8 ns tF Input signal fall time 1.8 ns 15.94 pF Output Conditions CLOAD Output load capacitance Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters (1) (2) NO. PARAMETER 1.8V MIN FI1 Maximum output data generation delay from internal functional clock FI2 Maximum input data capture delay by internal functional clock FI3 Maximum device select generation delay from internal functional clock (1) (2) 92 1.0 V MAX MIN 0.9 V MAX MIN UNIT MAX 6.5 9.1 13.7 ns 4 5.6 8.1 ns 6.5 9.1 13.7 ns The internal parameters table must be used to calculate Data Access Time stored in the corresponding CS register bit field. Internal parameters are referred to the GPMC functional internal clock which is not provided externally. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters (continued) PARAMETER 1.8V MIN 1.0 V MAX MIN 0.9 V MAX MIN UNIT MAX FI4 Maximum address generation delay from internal functional clock 6.5 9.1 13.7 ns FI5 Maximum address valid generation delay from internal functional clock 6.5 9.1 13.7 ns FI6 Maximum byte enable generation delay from internal functional clock 6.5 9.1 13.7 ns FI7 Maximum output enable generation delay from internal functional clock 6.5 9.1 13.7 ns FI8 Maximum write enable generation delay from internal functional clock 6.5 9.1 13.7 ns FI9 Maximum functional clock skew 100 170 200 ps Table 6-7. GPMC/NOR Flash Interface Timing Requirements – Asynchronous Mode NO. PARAMETER 1.15 V MIN 1.0 V MAX MIN 0.9 V MAX MIN UNIT MAX FA5 (1) tacc(DAT) Data maximum access time H (2) H (2) H (2) GPMC_FCLK cycles FA20 (3) tacc1-pgmode(DAT) Page mode successive data maximum access time P (4) P (4) P (4) GPMC_FCLK cycles FA21 (5) tacc2-pgmode(DAT) Page mode first data maximum access time H (2) H (2) H (2) GPMC_FCLK cycles (1) (2) (3) (4) (5) The FA5 parameter illustrates the amount of time required to internally sample input Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data is internally sampled by active functional clock edge. FA5 value must be stored inside the AccessTime register bit field. H = AccessTime * (TimeParaGranularity + 1) The FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number of GPMC functional clock cycles. After each access to input Page Data, next input Page Data is internally sampled by active functional clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field. P = PageBurstAccessTime * (TimeParaGranularity + 1) The FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data is internally sampled by active functional clock edge. FA21 value must be stored inside the AccessTime register bit field. Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode NO. PARAMETER 1.15 V MIN FA0 FA1 FA3 FA4 1.0 V MAX 0.9 V MIN MAX UNIT MIN MAX tR(DO) Rise time, output data 2.0 2.0 2.0 ns tF(DO) Fall time, output data 2.0 2.0 2.0 ns tW(nBEV) Pulse duration, Read gpmc_nbe0_cl Write e, gpmc_nbe1 valid time N(12) N(12) N(12) ns (12) (12) (12) ns Pulse duration, Read gpmc_ncsx(13) Write v low A(1) A(1) A(1) (1) (1) (1) tW(nCSV) td(nCSV-nADVIV) td(nCSV-nOEIV) Delay time, gpmc_ncsx(13) valid to gpmc_nadv_al e invalid Read Write Delay time, gpmc_ncsx(13) valid to gpmc_noe invalid (Single read) Submit Documentation Feedback N N A (2) B (2) B – 0.2 – 0.2 C(3) – 0.2 N A (2) B (2) B + 2.0 + 2.0 C(3) + 2.0 (2) B (2) B – 0.2 – 0.2 C(3) – 0.2 ns A (2) B (2) B + 2.6 + 2.6 C(3) + 2.6 (2) B (2) B – 0.2 – 0.2 C(3) – 0.2 ns (2) + 3.7 ns (2) + 3.7 ns C(3) + 3.7 ns B B TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 93 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode (continued) NO. PARAMETER 1.15 V 1.0 V 0.9 V UNIT MIN MAX MIN MAX MIN MAX PRODUCT PREVIEW FA9 td(AV-nCSV) Delay time, address bus valid to gpmc_ncsx(13) valid J(9) – 0.2 J(9) + 2.0 J(9) – 0.2 J(9) + 2.6 J(9) – 0.2 J(9) + 3.7 ns FA10 td(nBEV-nCSV) Delay time, gpmc_nbe0_cle, gpmc_nbe1 valid to gpmc_ncsx(13) valid J(9) – 0.2 J(9) + 2.0 J(9) – 0.2 J(9) + 2.6 J(9) – 0.2 J(9) + 3.7 ns FA12 td(nCSV-nADVV) Delay time, gpmc_ncsx(13) valid to gpmc_nadv_ale valid K(10) – 0.2 K(10) + 2.0 K(10) – 0.2 K(10) + 2.6 K(10) – 0.2 K(10) + 3.7 ns FA13 td(nCSV-nOEV) Delay time, gpmc_ncsx(13) valid to gpmc_noe valid L(11) – 0.2 L(11) + 2.0 L(11) – 0.2 L(11) + 2.6 L(11) – 0.2 L(11) + 3.7 ns FA14 td(nCSV-IODIR) Delay time, gpmc_ncsx(13) valid to gpmc_io_dir high L(11) – 0.2 L(11) + 2.0 L(11) – 0.2 L(11) + 2.6 L(11) – 0.2 L(11) + 3.7 ns FA15 td(nCSV-IODIR) Delay time, gpmc_ncsx(13) valid to gpmc_io_dir low M(14) – 0.2 M(14) + 2.0 M(14) – 0.2 M(14) + 2.6 M(14) – 0.2 M(14) + 3.7 ns FA16 tw(AIV) Address invalid duration between 2 successive R/W accesses FA18 td(nCSV-nOEIV) Delay time, gpmc_ncsx(13) valid to gpmc_noe invalid (Burst read) FA20 tw(AV) Pulse duration, address valid – 2nd, 3rd, and 4th accesses FA25 td(nCSV-nWEV) Delay time, gpmc_ncsx(13) valid to gpmc_nwe valid E(5) – 0.2 E(5) + 2.0 E(5) – 0.2 E(5) + 2.6 E(5) – 0.2 E(5) + 3.7 ns FA27 td(nCSV-nWEIV) Delay time, gpmc_ncsx(13) valid to gpmc_nwe invalid F(6) – 0.2 F(6) + 2.0 F(6) – 0.2 F(6) + 2.6 F(6) – 0.2 F(6) + 3.7 ns FA28 td(nWEV-DV) Delay time, gpmc_ new valid to data bus valid 3.7 ns FA29 td(DV-nCSV) Delay time, data bus valid to gpmc_ncsx(13) valid J(9) + 3.7 ns FA37 td(nOEV-AIV) Delay time, gpmc_noe valid to gpmc_a[16:1]_d[15:0] address phase end 3.7 ns G(7) I(8) – 0.2 G(7) I(8) + 2.0 I(8) – 0.2 D(4) I(8) + 2.6 I(8) – 0.2 D(4) 2.0 J(9) – 0.2 G(7) J(9) + 2.0 2.0 I(8) + 3.7 D(4) 2.6 J(9) – 0.2 ns J(9) + 2.6 2.6 J(9) – 0.2 ns ns (1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n being the page burst access number (2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK (3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK (4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK (5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK (6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK (7) G = Cycle2CycleDelay * GPMC_FCLK (8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK 94 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 (9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK (10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK (11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK (12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK (13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. (14) M = ((RdCycleTime - CSOnTime) * (TimeParaGranularity + 1) - 0.5 * CSExtraDelay) * GPMC_FCLK Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR behavior is automatically handled by GPMC controller. GPMC_FCLK PRODUCT PREVIEW gpmc_clk FA5 FA1 gpmc_ncsx FA9 Valid Address gpmc_a[10:1] FA0 FA10 gpmc_nbe0_cle Valid gpmc_nbe1 Valid FA0 FA10 FA3 FA12 gpmc_nadv_ale FA4 FA13 gpmc_noe gpmc_d[15:0] Data IN 0 Data IN 0 gpmc_waitx FA14 gpmc_io_dir OUT FA15 IN OUT 030-026 (1)(2)(3) Figure 6-7. GPMC/NOR Flash – Asynchronous Read – Single Word Timing (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. (2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bit field. (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 95 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com GPMC_FCLK gpmc_clk FA5 FA5 FA1 FA1 gpmc_ncsx FA16 FA9 FA9 gpmc_a[10:1] Address 0 Address 1 FA0 FA0 FA10 FA10 PRODUCT PREVIEW gpmc_nbe0_cle Valid FA0 FA0 gpmc_nbe1 Valid Valid Valid FA10 FA10 FA3 FA3 FA12 FA12 gpmc_nadv_ale FA4 FA4 FA13 FA13 gpmc_noe gpmc_d[15:0] Data Upper gpmc_waitx FA15 gpmc_io_dir FA14 OUT IN FA14 OUT FA15 IN 030-027 Figure 6-8. GPMC/NOR Flash – Asynchronous Read – 32-bit Timing (1)(2)(3) (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. (2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bit field. (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. 96 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 GPMC_FCLK gpmc_clk FA21 FA20 FA20 FA20 FA1 gpmc_ncsx FA9 Add0 gpmc_a[10:1] Add1 Add2 Add3 D0 D1 D2 Add4 FA0 FA10 gpmc_nbe0_cle gpmc_nbe1 FA12 gpmc_nadv_ale FA18 FA13 gpmc_noe gpmc_d[15:0] D3 D3 gpmc_waitx FA15 gpmc_io_dir OUT FA14 IN OUT 030-028 Figure 6-9. GPMC/NOR Flash – Asynchronous Read – Page Mode 4x16-bit Timing(1)(2)(3)(4) (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. (2) FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by active functional clock edge. FA21 value must be stored inside AccessTime register bit field. (3) FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input page data). FA20 value must be stored in PageBurstAccessTime register bit field. (4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 97 PRODUCT PREVIEW FA0 FA10 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com gpmc_fclk gpmc_clk FA1 gpmc_ncsx FA9 Valid Address gpmc_a[10:1] FA0 FA10 gpmc_nbe0_cle FA0 FA10 PRODUCT PREVIEW gpmc_nbe1 FA3 FA12 gpmc_nadv_ale FA27 FA25 gpmc_nwe FA29 gpmc_d[15:0] Data OUT gpmc_waitx gpmc_io_dir OUT 030-029 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 6-10. GPMC/NOR Flash – Asynchronous Write – Single Word Timing 98 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 GPMC_FCLK gpmc_clk FA1 FA5 gpmc_ncsx FA9 gpmc_a[26:17] Address (MSB) FA0 FA10 gpmc_nbe0_cle Valid gpmc_nbe1 Valid FA3 FA12 gpmc_nadv_ale FA4 FA13 gpmc_noe FA29 gpmc_a[16:1]_d[15:0] FA37 Address (LSB) FA14 gpmc_io_dir OUT Data IN Data IN FA15 OUT IN gpmc_waitx 030-030 Figure 6-11. GPMC/Multiplexed NOR Flash – Asynchronous Read – Single Word Timing (1)(2)(3) (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. (2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bit field. (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 99 PRODUCT PREVIEW FA0 FA10 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com gpmc_fclk gpmc_clk FA1 gpmc_ncsx FA9 gpmc_a[26:17] Address (MSB) FA0 FA10 gpmc_nbe0_cle FA0 FA10 PRODUCT PREVIEW gpmc_nbe1 FA3 FA12 gpmc_nadv_ale FA27 FA25 gpmc_nwe FA29 gpmc_a[16:1]_d[15:0] FA28 Valid Address (LSB) Data OUT gpmc_waitx gpmc_io_dir OUT 030-031 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 6-12. GPMC/Multiplexed NOR Flash – Asynchronous Write – Single Word Timing 6.4.1.3 GPMC/NAND Flash Interface Timing Table 6-10 through Table 6-12 assume testing over the recommended operating conditions (see Figure 6-13 through Figure 6-16) and electrical characteristic conditions. Table 6-9. GPMC/NAND Flash Asynchronous Mode Timing Conditions TIMING CONDITION PARAMETER 1.8V, 3.3V MIN UNIT MAX Input Conditions tR Input signal rise time 1.8 ns tF Input signal fall time 1.8 ns CLOAD Output load capacitance 55 pF Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing Internal Parameters (1) (2) NO. PARAMETER 1.15 V MIN GNFI1 (1) (2) 100 Maximum output data generation delay from internal functional clock 1.0 V MAX 6.5 MIN 0.9 V MAX 9.1 MIN UNIT MAX 13.7 ns Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field. Internal parameters are referred to the GPMC functional internal clock which is not provided externally. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing Internal Parameters (continued) PARAMETER 1.15 V MIN 1.0 V MAX MIN 0.9 V MAX MIN UNIT MAX GNFI2 Maximum input data capture delay by internal functional clock 4 5.6 8.1 ns GNFI3 Maximum device select generation delay from internal functional clock 6.5 9.1 13.7 ns GNFI4 Maximum address latch enable generation delay from internal functional clock 6.5 9.1 13.7 ns GNFI5 Maximum command latch enable generation delay from internal functional clock 6.5 9.1 13.7 ns GNFI6 Maximum output enable generation delay from internal functional clock 6.5 9.1 13.7 ns GNFI7 Maximum write enable generation delay from internal functional clock 6.5 9.1 13.7 ns GNFI8 Maximum functional clock skew 100 170 200 ps Table 6-11. GPMC/NAND Flash Interface Timing Requirements NO. PARAMETER 1.8V, 3.3V MIN GNF12 (1) (1) (2) tacc(DAT) UNIT MAX J (2) Data maximum access time GPMC_FCLK cycles The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field. J = AccessTime * (TimeParaGranularity + 1) Table 6-12. GPMC/NAND Flash Interface Switching Characteristics NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX tR(DO) Rise time, output data 2.0 ns tF(DO) Fall time, output data 2.0 ns (1) GNF0 tw(nWEV) Pulse duration, gpmc_nwe valid time GNF1 td(nCSV-nWEV) Delay time, gpmc_ncsx(13) valid to gpmc_nwe valid B(2) - 0.2 B(2) + 2.0 ns GNF2 tw(CLEH-nWEV) Delay time, gpmc_nbe0_cle high to gpmc_nwe valid C(3) - 0.2 C(3) + 2.0 ns GNF3 tw(nWEV-DV) Delay time, gpmc_d[15:0] valid to gpmc_nwe valid D(4) - 0.2 D(4) + 2.0 ns GNF4 tw(nWEIV-DIV) Delay time, gpmc_nwe invalid to gpmc_d[15:0] invalid E(5) - 0.2 E(5) + 2.0 ns GNF5 tw(nWEIV-CLEIV) Delay time, gpmc_nwe invalid to gpmc_nbe0_cle invalid F(6) - 0.2 F(6) + 2.0 ns GNF6 tw(nWEIV-nCSIV) Delay time, gpmc_nwe invalid to gpmc_ncsx(13) invalid G(7) - 0.2 G(7) + 2.0 ns GNF7 tw(ALEH-nWEV) Delay time, gpmc_nadv_ale High to gpmc_nwe valid C(3) - 0.2 C(3) + 2.0 ns GNF8 tw(nWEIV-ALEIV) Delay time, gpmc_nwe invalid to gpmc_nadv_ale invalid F(6) - 0.2 F(6) + 2.0 ns GNF9 tc(nWE) Cycle time, Write cycle time (13) A ns H(8) ns I(9) + 2.0 GNF10 td(nCSV-nOEV) Delay time, gpmc_ncsx valid to gpmc_noe valid GNF13 tw(nOEV) Pulse duration, gpmc_noe valid time K(10) ns GN F14 tc(nOE) Cycle time, Read cycle time L(11) ns Submit Documentation Feedback I (9) - 0.2 ns TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 101 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-12. GPMC/NAND Flash Interface Switching Characteristics (continued) NO. GNF15 PARAMETER tw(nOEIV-nCSIV) 1.8V, 3.3V Delay time, gpmc_noe invalid to gpmc_ncsx(13) invalid UNIT MIN MAX M(12) - 0.2 M(12) + 2.0 ns PRODUCT PREVIEW (1) A = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK (2) B = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK (3) C = ((WEOnTime – ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – ADVExtraDelay)) * GPMC_FCLK (4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK (5) E = (WrCycleTime – WEOffTime * (TimeParaGranularity + 1) – 0.5 * WEExtraDelay ) * GPMC_FCLK (6) F = (ADVWrOffTime – WEOffTime * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – WEExtraDelay ) * GPMC_FCLK (7) G = (CSWrOffTime – WEOffTime * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – WEExtraDelay ) * GPMC_FCLK (8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK (9) I = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK (10) K = (OEOffTime – OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK (11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK (12) M = (CSRdOffTime – OEOffTime * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – OEExtraDelay ) * GPMC_FCLK (13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. GPMC_FCLK GNF1 GNF6 GNF2 GNF5 gpmc_ncsx gpmc_nbe0_cle gpmc_nadv_ale gpmc_noe GNF0 gpmc_nwe GNF3 gpmc_a[16:1]_d[15:0] GNF4 Command 030-032 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. Figure 6-13. GPMC/NAND Flash – Command Latch Cycle Timing 102 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 GPMC_FCLK GNF1 GNF6 GNF7 GNF8 gpmc_ncsx gpmc_nbe0_cle gpmc_nadv_ale gpmc_noe GNF9 GNF0 gpmc_nwe GNF4 gpmc_a[16:1]_d[15:0] PRODUCT PREVIEW GNF3 Address 030-033 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. Figure 6-14. GPMC/NAND Flash – Address Latch Cycle Timing GPMC_FCLK GNF12 GNF10 GNF15 gpmc_ncsx gpmc_nbe0_cle gpmc_nadv_ale GNF14 GNF13 gpmc_noe gpmc_a[16:1]_d[15:0] DATA gpmc_waitx 030-034 Figure 6-15. GPMC/NAND Flash – Data Read Cycle Timing(1)(2)(3) (1) The GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data is internally sampled by active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field. (2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. (3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 ,1, 2, or 3. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 103 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com GPMC_FCLK GNF1 GNF6 gpmc_ncsx gpmc_nbe0_cle gpmc_nadv_ale gpmc_noe GNF9 GNF0 gpmc_nwe PRODUCT PREVIEW GNF3 gpmc_a[16:1]_d[15:0] GNF4 DATA 030-035 In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 or 1. Figure 6-16. GPMC/NAND Flash – Data Write Cycle Timing 104 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com 6.4.2 SPRS550 – OCTOBER 2009 DDR2 Memory Controller PRODUCT PREVIEW The DDR2 Memory Controller is a dedicated interface to DDR2 SDRAM. It supports JESD79D-2A standard compliant DDR2 SDRAM devices and compliant Mobile DDR SDRAM devices. DDR2 SDRAM plays a key role in an AM3517/05-based system. Such a system is expected to require a significant amount of high-speed external memory for all of the following functions: • Buffering of input image data from sensors or video sources • Intermediate buffering for processing/resizing of image data in the VPFE • Numerous OSD display buffers • Intermediate buffering for large raw Bayer data image files while performing image processing functions • Buffering for intermediate data while performing video encode and decode functions • Storage of executable code for the ARM The DDR2 Memory Controller supports the following features: • JESD79D-2A standard compliant DDR2 SDRAM • Mobile DDR SDRAM • 256 MByte memory space • Data bus width 16 bits • CAS latencies: – DDR2: 2, 3, 4, and 5 • Internal banks: – DDR2: 1, 2, 4, and 8 • Burst length: 8 6.4.3 • Burst type: sequential • • • • • • • • • • 1 CS signal Page sizes: 256, 512, 1024, and 2048 SDRAM autoinitialization Self-refresh mode Partial array self-refresh Power down mode Prioritized refresh Programmable refresh rate and backlog counter Programmable timing parameters Little endian DDR2 Memory Controller Electrical Data/Timing Table 6-13. Switching Characteristics Over Recommended Operating Conditions for DDR2 Memory Controller (1) (2)(see ) NO . 1 (1) (2) PARAMETER tc(sdrc_clk) Cycle time, sdrc_clk MIN MAX UNIT 333-DDR2 (supported for 216-MHz device) 90 TBD 216-DDR2 (supported for 270-MHz device) 90 216 243-DDR2 (supported for 300-MHz device) 90 243 MHz sdrc_clk cycle time = 2 x PLLC1.SYSCLK7 or 2 x PLLC2.SYSCLK3 cycle time. The PLL2 Controller must be programmed such that the resulting sdrc_nclk clock frequency is within the specified range. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 105 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 1 sdrc_clk Figure 6-17. DDR2 Memory Controller Clock Timing 6.4.3.1 DDR2 Interface This section provides the timing specification for the DDR2 interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2 memory system without the need for a complex timing closure process. For more information regarding guidelines for using this DDR2 specification, Understanding TI's PCB Routing Rule-Based DDR2 Timing Specification (SPRAAV0). 6.4.3.1.1 DDR2 Interface Schematic PRODUCT PREVIEW Figure 6-18 shows the DDR2 interface schematic for a single-memory DDR2 system. The dual-memory system shown in Figure 6-19. Pin numbers for the AM3517/05 can be obtained from the pin description section. 6.4.3.1.2 Compatible JEDEC DDR2 Devices Table 6-14 shows the parameters of the JEDEC DDR2 devices that are compatible with this interface. Generally, the DDR2 interface is compatible with x16 DDR2 speed grade DDR2 devices. The AM3517/05 also supports JEDEC DDR2 x8 devices in the dual chip configuration. In this case, one chip supplies the upper byte and the second chip supplies the lower byte. Addresses and most control signals are shared just like regular dual chip memory configurations. Table 6-14. Compatible JEDEC DDR2 Devices No. (1) (2) 106 Parameter Min Max Unit 1 JEDEC DDR2 Device Speed Grade DDR2-333 MHz 2 JEDEC DDR2 Device Bit Width 3 JEDEC DDR2 Device Count 1 2 Devices 4 JEDEC DDR2 Device Ball Count 84 92 Balls x16 x32 Notes See Note (1) See Note (2) Bits Higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backwards compatibility. 92 ball devices retained for legacy support. New designs will migrate to 84 ball DDR2 devices. Electrically, the 92 and 84 ball DDR2 devices are the same. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 6.4.3.1.3 PCB Stackup The minimum stackup required for routing the AM3517/05 is a six layer stack as shown in Table 6-15. Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size of the PCB footprint. Layer Type Description 1 Signal Top Routing Mostly Horizontal 2 Plane Ground 3 Plane Power 4 Signal Internal Routing 5 Plane Ground 6 Signal Bottom Routing Mostly Vertical Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS PRODUCT PREVIEW Table 6-15. Minimum PCB Stack Up 107 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Complete stack up specifications are provided in Table 6-16. AM35x SDRC_D0 T DQ0 SDRC_D7 T DQ7 SDRC_DM0 SDRC_DQS0P SDRC_DQS0N SDRC_D8 T T T T LDM LDQS LDQS# LQ8 T LQ15 T UDM UDQS UDQS# SDRC_D15 PRODUCT PREVIEW SDRC_DM1 SDRC_DQS1P SDRC_DQS1N SDRC_STRBEN0 T T T Length = avg DQS0-1 length+CLK SDRC_STRBEN_DLY0 x16 DDR2 SDRC_D16 T DQ0 SDRC_D23 T DQ7 SDRC_DM2 SDRC_DQS2P SDRC_DQS2N T LDM LDQS LDQS# SDRC_D24 T DQ8 SDRC_D31 T DQ15 T UDM UDQS UDQS# SDRC_DM3 SDRC_DQS3P SDRC_DQS3N SDRC_STRBEN1 T T T T T Length = avg DQS2-3 length+CLK SDRC_STRBEN_DLY1 SDRC_BA0 SDRC_BA1 SDRC_BA2 T T T BA0 BA1 BA2* BA0 BA1 BA2* SDRC_A0 T A0 A0 SDRC_A14 T A14* A14* SDRC_nCS0 SDRC_nCS1 SDRC_nCAS SDRC_nRAS SDRC_nWE SDRC_nCKE0 SDRC_CLK SDRC_nCLK T CS1 CS2* CAS# RAS# WE# CS1 CS2* CAS# RAS# WE# T CLK CLK# CLK CLK# SDRC_ODT0 T ODT* ODT* VREF VREF T T T T T T VREFSSTL DDR_PADREF 50 0.1mF** 0.1mF** Vio1.8* 0.1mF 0.1mF 0.1mF** 1K W 1% 1K W 1% 1% SPRS550-008 Figure 6-18. DDR2 Single-Memory High Level Schematic 108 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 AM35x DDR2 SDRC_D0 T DQ0 SDRC_D7 T DQ7 SDRC_DM0 SDRC_DQS0P SDRC_DQS0N SDRC_D8 T T T DM0 DQS0 DQS0# DQ8 SDRC_D15 T DQ15 SDRC_DM1 SDRC_DQS1P SDRC_DQS1N SDRC_STRBEN0 T T T DM1 DQS1 DQS1# T T SDRC_D16 T DQ16 SDRC_D23 T DQ23 SDRC_DM2 SDRC_DQS2P SDRC_DQS2N T T T DM2 DQS2 DQS2# SDRC_D24 T DQ24 SDRC_D31 T DQ31 SDRC_DM3 SDRC_DQS3P SDRC_DQS3N SDRC_STRBEN1 T T T DM3 DQS3 DQS3# T Length = avg D16-D31 length+CLK SDRC_STRBEN_DLY1 SDRC_BA0 SDRC_BA1 SDRC_BA2 T T T BA0 BA1 BA2* SDRC_A0 T A0 SDRC_A14 T A14* SDRC_nCS0 SDRC_nCS1 SDRC_nCAS SDRC_nRAS SDRC_nWE SDRC_nCKE0 SDRC_CLK SDRC_nCLK T T T T T T T T CS1 CS2* CAS# RAS# WE# CKE CLK CLK# SDRC_ODT0 T ODT* VREFSSTL DDR_PADREF PRODUCT PREVIEW Length = avg D0-D15 length+CLK SDRC_STRBEN_DLY0 Vio1.8* 0.1mF 1K W 1% 0.1mF 1K W 1% VREF 0.1mF** 0.1mF** 0.1mF** 50 1% SPRS550-009 Figure 6-19. DDR2 Dual-Memory High Level Schematic Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 109 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-16. PCB Stack Up Specifications No. Parameter Min Typ Max Unit 1 PCB Routing/Plane Layers 6 2 Signal Routing Layers 3 3 Full ground layers under DDR2 routing Region 2 4 Number of ground plane cuts allowed within DDR routing region 5 Number of ground reference planes required for each DDR2 routing layer 6 Number of layers between DDR2 routing layer and ground plane 7 PCB Routing Feature Size 4 Mils 8 PCB Trace Width w 4 Mils 0 1 0 PCB BGA escape via pad size 20 Mils PCB BGA escape via hole size 10 Mils 11 AM3517/05 BGA pad size 12 12 DDR2 Device BGA pad size 13 Single Ended Impedance, Zo 14 Impedance Control 50 Z-5 Z 75 Ω Z+5 Ω See Note (1) See Note (2) See Note (3) The recommended pad size is 0.3 mm per IPC-7351 specification. Please refer to IPC standard IPC-7351 or manufacturer's recommendations for correct BGA pad size. Z is the nominal singled ended impedance selected for the PCB specified by item 12. 6.4.3.1.4 Placement Figure 6-19 shows the required placement for the DDR2 devices. The dimensions for Figure 6-20 are defined in Table 6-17. The placement does not restrict the side of the PCB that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For single-memory DDR2 systems, the second DDR2 device is omitted from the placement. X A1 Y OFFSET Y DDR2 Device Y OFFSET DDR2 Controller PRODUCT PREVIEW 9 10 (1) (2) (3) Notes AM3517/05 A1 Recommended DDR2 Device Orientation Figure 6-20. DDR2 Device Placement 110 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-17. Placement Specifications No. (1) (2) (3) (4) (5) Parameter Min X 2 Y 3 Y Offset 4 DDR2 Keepout Region 5 Clearance from non-DDR2 signal to DDR2 Keepout Region Max Unit 1750 Mils Notes See Notes (1) (2) , 1280 Mils See Notes (1) (2) 650 Mils See Notes (1) (2) 4 w , (3) . See Note (4) See Note (5) , See Figure 6-18 for dimension definitions. Measurements from center of AM3517/05 device to center of DDR2 device. For single memory systems it is recommended that Y Offset be as small as possible. DDR2 Keepout region to encompass entire DDR2 routing area Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane. 6.4.3.1.5 DDR2 Keep Out Region The region of the PCB used for the DDR2 circuitry must be isolated from other signals. The DDR2 keep out region is defined for this purpose and is shown in Figure 6-21. The size of this region varies with the placement and DDR routing. Additional clearances required for the keep out region are shown in Table 6-17. DDR2 Device DDR2 Controller A1 A1 Region should encompass all DDR2 circuitry and varies depending on placement. Non-DDR2 signals should not be routed on the DDR signal layers within the DDR2 keep out region. Non-DDR2 signals may be routed in the region provided they are routed on layers separated from DDR2 signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the 1.8 V power plane should cover the entire keep out region. Figure 6-21. DDR2 Keepout Region Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 111 PRODUCT PREVIEW 1 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.4.3.1.6 Bulk Bypass Capacitors Bulk bypass capacitors are required for moderate speed bypassing of the DDR2 and other circuitry. Table 6-18 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the AM3517/05 and DDR2 interfaces. Additional bulk bypass capacitance may be needed for other circuitry. Table 6-18. Bulk Bypass Capacitors No. Parameter PRODUCT PREVIEW 1 VDD18_DDR Bulk Bypass Capacitor Count 2 VDD18_DDR Bulk Bypass Total Capacitance 3 DDR#1 Bulk Bypass Capacitor Count 4 DDR#1 Bulk Bypass Total Capacitance 5 DDR#2 Bulk Bypass Capacitor Count 6 DDR#2 Bulk Bypass Total Capacitance (1) (2) 112 Min 3 Max Unit Notes Devices See Note 30 uF 1 Devices (1) See Note (1) 22 uF 1 Devices See Notes (1) (2) , 22 uF See Note (2) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass caps. Only used on dual-memory systems TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 6.4.3.1.7 High-Speed Bypass Capacitors High-speed (HS) bypass capacitors are critical for proper DDR2 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass cap, AM3517/05/DDR2 power, and AM3517/05/DDR2 ground connections. Table 6-19 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB. 6.4.3.1.8 Net Classes Table 6-20 lists the clock net classes for the DDR2 interface. Table 6-21 lists the signal net classes, and associated clock net classes, for the signals in the DDR2 interface. These net classes are used for the termination and routing rules that follow. Table 6-19. High-Speed Bypass Capacitors Parameter Min 1 HS Bypass Capacitor Package Size 2 Distance from HS bypass capacitor to device being bypassed 3 Number of connection vias for each HS bypass capacitor 2 4 Trace length from bypass capacitor contact to connection via 1 5 Number of connection vias for each DDR2 device power or ground balls 1 6 Trace length from DDR2 device power ball to connection via 7 VDD18_DDR HS Bypass Capacitor Count 20 8 VDD18_DDR HS Bypass Capacitor Total Capacitance 1.2 9 DDR#1 HS Bypass Capacitor Count 10 DDR#1 HS Bypass Capacitor Total Capacitance 11 DDR#2 HS Bypass Capacitor Count 12 DDR#2 HS Bypass Capacitor Total Capacitance (1) (2) (3) (4) Max Unit 0402 10 Mils 250 0.4 8 0.4 See Note (2) See Note (3) See Note (3) Mils Vias 35 8 (1) Mils Vias 30 Notes See Note Mils Devices µF Devices µF Devices µF See Notes (3) (4) , See Note (4) LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. These devices should be placed as close as possible to the device being bypassed. Only used on dual-memory systems Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 113 PRODUCT PREVIEW No. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-20. Clock Net Class Definitions Clock Net Class AM3517/05 Device Pin Names CK sdrc_clk/sdrc_nclk DQS0 sdrc_dqs0p /sdrc_dqs0n DQS1 sdrc_dqs1p /sdrc_dqs1n Table 6-21. Signal Net Class Definitions Clock Net Class ADDR_CTRL Associated Clock Net Class AM3517/05 Device Pin Names PRODUCT PREVIEW CK sdrc_ba[2:0], sdrc_a[13:0], sdrc_ncs0 , sdrc_ncas, sdrc_nras, sdrc_nwe, sdrc_cke0 DQ0 DQS0 sdrc_d[7:0], sdrc_dm0 DQ1 DQS1 sdrc_d[15:8], sdrc_dm1 CK, DQS0, DQS1 sdrc_strben0, sdrc_strben_dly0 SDRC_STRBENx 6.4.3.1.9 DDR2 Signal Termination No terminations of any kind are required in order to meet signal integrity and overshoot requirements. Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only type permitted. Table 6-22 shows the specifications for the series terminators. Table 6-22. DDR2 Signal Terminations No. Parameter Min Unit Notes See Note (1) 22 Zo Ω See Notes (2) (3) , (1) 0 22 Zo Ω See Notes (1), (2) (3) (4) , , 0 10 Zo Ω See Notes (2) (3) , 0 2 ADDR_CTRL Net Class 0 3 Data Byte Net Classes (DQS0-DQS1, D0-D31) 4 SDRC_STRBENx Net Class (SDRC_STRBENx) 114 Max Ω CLK Net Class (1) (2) (3) (4) Typ 10 1 , (1) , Only series termination is permitted, parallel or SST specifically disallowed. Terminator values larger than typical only recommended to address EMI issues. Termination value should be uniform across net class. When no termination is used on data lines (0 Ωs), the DDR2 devices must be programmed to operate in 60% strength mode. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 6.4.3.1.10 VREF Routing VREF is used as a reference by the input buffers of the DDR2 memories as well as the AM3517/05. VREF is intended to be = the DDR2 power supply voltage and should be created using a resistive divider as shown in Figure 6-18. Other methods of creating VREF are not recommended. Figure 6-22 shows the layout guidelines for VREF. VREF Bypass Capacitor DDR2 Device A1 VREF Nominal Minimum Trace Width is 20 Mils A1 Neck down to minimum in BGA escape regions is acceptable. Narrowing to accomodate via congestion for short distances is also acceptable. Best performance is obtained if the width of VREF is maximized. Figure 6-22. VREF Routing and Topology 6.4.3.1.11 DDR2 CLK and ADDR_CTRL Routing Figure 6-23 shows the topology of the routing for the CLK and ADDR_CTRL net classes. The route is a balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A should be maximized. T C A DDR2 Controller B A1 AM3517/05 A1 Figure 6-23. CLKand ADDR_CTRL Routing and Topology Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 115 PRODUCT PREVIEW AM3517/05 Device AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-23. CLKand ADDR_CTRL Routing Specification No Parameter Min Typ (1) Max Unit Notes 25 Mils See Note (1) 25 Mils See Note (2) See Note (3) 4w See Note (2) 3w See Note (2) See Note (1) Center to center DQS-DQSN spacing 2w 2 CLKA to B/A to C Skew Length Mismatch 3 CLKB to C Skew Length Mismatch 4 Center to center CLKto other DDR2 trace spacing 5 CK/ADDR_CTRL nominal trace length 6 7 8 Center to center ADDR_CTRL to other DDR2 trace spacing 9 Center to center ADDR_CTRL to other ADDR_CTRL trace spacing 10 ADDR_CTRL A to B/A to C Skew Length Mismatch 100 Mils 11 ADDR_CTRL B to C Skew Length Mismatch 100 Mils (1) (2) (3) 4w CACLM-50 CACLM CACLM+50 Mils ADDR_CTRL to CLKSkew Length Mismatch 100 Mils ADDR_CTRL to ADDR_CTRL Skew Length Mismatch 100 Mils Series terminator, if used, should be located closest to AM3517/05. Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion. CACLM is the longest Manhattan distance of the CLKand ADDR_CTRL net classes. Figure 6-24 shows the topology and routing for the DQS and Dx net classes; the routes are point to point. Skew matching across bytes is not needed nor recommended. T A1 T E0 E1 DDR2 Controller PRODUCT PREVIEW 1 AM3517/05 T A1 E2 T E3 Figure 6-24. DQS and Dx Routing and Topology 116 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-24. DQS and Dx Routing Specification (1) (1) (2) (3) (4) (5) (6) Parameter Min 1 Center to center DQS-DQSN spacing 2 DQS E Skew Length Mismatch 3 Center to center DQS to other DDR2 trace spacing 4 DQS/Dx nominal trace length 5 Dx to DQS Skew Length Mismatch 6 Dx to Dx Skew Length Mismatch 7 Center to center Dx to other DDR2 trace spacing 8 Center to Center Dx to other Dx trace spacing 9 Dx/DQS E Skew Length Mismatch Typ Max Unit Notes 2w 25 Mils See Note (3) Mils See Notes (2) 100 Mils See Note (4) 100 Mils See Note (4) 4w See Notes (3) 3w See Notes (6) See Note (4) 4w DQLM-50 DQLM DQLM+ 50 , (4) , (5) , (3) 100 Mils "Dx" indicates a data line. Series terminator, if used, should be located closest to DDR. Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion. There is no need and it is not recommended to skew match across data bytes, i.e., from DQS0 and data byte 0 to DQS1 and data byte 1. Dx's from other DQS domains are considered other DDR2 trace. DQLM is the longest Manhattan distance of each of the DQS and Dx net classes. A1 FL Figure 6-25 shows the routing for the SDRC_STRBENx net classes. Table 6-25 contains the routing specification. DDR2 Controller T A1 AM3517/05 FH T Figure 6-25. SDRC_STRBENx Routing Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 117 PRODUCT PREVIEW No. (2) AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-25. SDRC_STRBENx Routing Specification No. 1 Parameter Typ Max Unit Notes CKB0B1 See Note (1) SDRC_STRBEN1 Length F CKB0B2 See Note (2) See Note (3) 3 Center to center SDRC_STRBENx to any other trace spacing 4 DQS/Dx nominal trace length 5 SDRC_STRBENx Skew (1) (2) (3) Min SDRC_STRBEN0 Length F 4w DQLM-50 DQLM DQLM+50 Mils 100 Mils CKB0B1 is the sum of the length of the CLK net plus the average length of the DQS0 and DQS1 nets. CKB0B2 is the sum of the length of the CLK net plus the average length of the DQS2 and DQS3 nets. Skew from CKB0B1 or CKB0B2. PRODUCT PREVIEW 118 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 6.5 Video Interfaces 6.5.1 Video Processing Subsystem (VPSS) The Video Processing Sub-System (VPSS) provides a Video Processing Front End (VPFE) input interface for external imaging peripherals (i.e., image sensors, video decoders, etc.). 6.5.1.1 Video Processing Front End (VPFE) PRODUCT PREVIEW The Video Processing Front-End (VPFE) controller receives input video/image data from external capture devices and stores it to external memory which is transferred into the external memory via a built in DMA engine. An internal buffer block provides a high bandwidth path between the VPSS module and the external memory. The Cortex-A8 will process the image data based on application requirements. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 119 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.5.1.1.1 Video Processing Front End (VPFE) Timing Table 6-26, , and Table 6-27 assume testing over recommended operating conditions (see Figure 6-26 through Figure 6-28). Table 6-26. VPFE Timing Requirements NO. 1.8-V, 3.3-V PARAMETER MIN MAX 13.33 100 UNIT PRODUCT PREVIEW VF1 tc(VDIN_CLK) Cycle time, pixel clock input, VDIN_CLK VF2 tsu(VDIN_D-VDIN_CLK) Setup time, VDIN_D to VDIN_CLK rising edge TBD ns ns VF3 tsu(VDIN_HD-VDIN_CLK) Setup time, VDIN_HD to VDIN_CLK rising edge TBD ns VF4 tsu(VDIN_VD-VDIN_CLK) Setup time, VDIN_VD to VDIN_CLK rising edge TBD ns VF5 tsu(VDIN_WEN-VDIN_CLK) Setup time, VDIN_WEN to VDIN_CLK rising edge TBD ns VF6 tsu(C_FLD-VDIN_CLK) Setup time, VDIN_FIELD to VDIN_CLK rising edge TBD ns VF7 th(VDIN_CLK-VDIN_D) Hold time, VDIN_D valid after VDIN_CLK rising edge TBD ns VF8 th(VDIN-HD-VDIN_CLK) Hold time, VDIN_HD to VDIN_CLK rising edge TBD ns VF9 th(VDIN_VD-VDIN_CLK) Hold time, VDIN_VD to VDIN_CLK rising edge TBD ns VF10 th(VDIN_WEN-VDIN_CLK) Hold time, VDIN_WEN to VDIN_CLK rising edge TBD ns VF11 th(C_FLD-VDIN_CLK) Hold time, VDIN_FIELD to VDIN_CLK rising edge TBD ns Table 6-27. VPFE Output Switching Characteristics NO. 1.8-V, 3.3-V PARAMETER MIN MAX UNIT VF12 td(VDIN_HD-VDIN_CLK) Output delay time, VDIN_HD to CLK rising edge TBD ns VF13 td(VDIN_VD-VDIN_CLK) Output delay time, VDIN_VD to CLK rising edge TBD ns VF14 td(VDIN_WEN-VDIN_CLK) Output delay time, VDIN_WEN to CLK rising edge TBD ns VF15 toh(VDIN_HD-VDIN_CLK) Output hold time, VDIN_HD to CLK rising edge TBD ns VF16 toh(VDIN_VD-VDIN_CLK) Output hold time, VDIN_VD to CLK rising edge TBD ns VF17 toh(C_FLD-VDIN_CLK) Output hold time, VDIN_FLD to CLK rising edge TBD ns VF1 VDIN_CLK (Falling Edge) VDIN_CLK (Rising Edge) VF2 VF7 VF7 VDIN_D[xx] VDIN_HD, VDIN_VD, VDIN_FIELD VF8, VF9, VF11 VF3, VF4, VF6 VF10 VF5 VDIN_WEN SPRS550-001 Figure 6-26. VPFE0 Input Timings 120 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 VDIN_CLK (Falling Edge) VDIN_CLK (Rising Edge) VF15, VF16, VF17 VF12, VF13, VF14 VDIN_HD, VDIN_VD, VDIN_FIELD VF15, VF16, VF17 VF12, VF13, VF14 SPRS550-002 Figure 6-27. VPFE Output Timings VDIN_HD (Rising Edge) VF20 VF19 VDIN_D[xx] SPRS550-003 Figure 6-28. VPFE Input Timings With VDIN0_HD as Pixel Clock 6.5.2 Display Subsystem (DSS) The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or internal (SRAM) memory on an LCD panel or a TV set. The DSS integrates a display controller. It can be used in two configurations: • LCD display support in: – Bypass mode (RFBI module bypassed) – RFBI mode (through RFBI module) • TV display support (not discussed in this document because of its analog IO signals) The two display supports can be active at the same time. 6.5.2.1 LCD Display Support in Bypass Mode Two types of LCD panel are supported: • Thin film transistor (TFT) or active matrix technology • Supertwisted nematic (STN) or passive matrix technology Both configurations are discussed in the following paragraphs. 6.5.2.1.1 LCD Display in TFT Mode Table 6-28 assumes testing over the recommended operating conditions (see Figure 6-29). Table 6-28. LCD Display Interface Switching Characteristics in TFT Mode (1) NO. PARAMETER 1.8V, 3.3V MIN MAX UNIT DL0 td(PCLKA-HSYNCT) Delay time, dss_pclk active edge to dss_hsync transition TBD TBD ns DL1 td(PCLKA-VSYNCT) Delay time, dss_pclk active edge to dss_vsync transition TBD TBD ns DL2 td(PCLKA-ACBIASA) Delay time, dss_pclk active edge to dss_acbias active level TBD TBD ns DL3 td(PCLKA-DATAV) Delay time, dss_pclk active edge to dss_data bus valid TBD TBD ns (1) The capacitive load is equivalent to 25 pF. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 121 PRODUCT PREVIEW VF18 VDIN_HD (Falling Edge) AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-28. LCD Display Interface Switching Characteristics in TFT Mode (continued) NO. PARAMETER 1.8V, 3.3V MIN DL4 tc(PCLK) Cycle time (2), dss_pclk TBD DL5 tw(PCLK) Pulse duration, dss_pclk low or high TBD cload Load capacitance (2) UNIT MAX ns TBD ns TBD pF The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the DISPC_DIVISOR register. DL5 DL4 PRODUCT PREVIEW dss_pclk DL1 dss_vsync DL0 dss_hsync DL2 dss_acbias DL3 dss_data[23:0] 030-061 Figure 6-29. LCD Display in TFT ModeStep 1Step 2Step 3 (1) The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins. (2) The pixel clock frequency is programmable. (3) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk. 6.5.2.1.2 LCD Display in STN Mode Table 6-29 assumes testing over the recommended operating conditions (see Figure 6-30). Table 6-29. LCD Display Interface Switching Characteristics in STN Mode (1) (2) NO. PARAMETER 1.8V, 3.3V MIN MAX TBD DL3 td(PCLKA-DATAV) Delay time, dss_pclk active edge to dss_data bus valid TBD DL4 tc(PCLK) Cycle time (3), dss_pclk TBD DL5 tw(PCLK) Pulse duration, dss_pclk low or high TBD cload Load capacitance (1) (2) (3) 122 UNIT ns ns TBD ns TBD pF The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low. The capacitive load is equivalent to 40 pF. The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the DISPC_DIVISOR register. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 DL5 DL4 dss_pclk dss_vsync dss_hsync dss_acbias PRODUCT PREVIEW DL3 dss_data[23:0] 030-062 (1)(2)(3)(4) Figure 6-30. LCD Display in STN Mode (1) (2) (3) (4) The pixel data bus depends on the use 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins. All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk. dss_vsync width must be programmed to be as small as possible. The pixel clock frequency is programmable. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 123 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.6 Serial Communications Interfaces 6.6.1 Multichannel Buffered Serial Port (McBSP) Timing There are five McBSP modules called McBSP1 through McBSP5. McBSP provides a full-duplex, direct serial interface between the AM3517/05 device and other devices in a system such as other application devices or codecs. It can accommodate a wide range of peripherals and clocked frame-oriented protocols (I2S, PCM, and TDM) due to its high level of versatility. PRODUCT PREVIEW The McBSP1-5 modules may support two types of data transfer at the system level: • The full-cycle mode, for which one clock period is used to transfer the data, generated on one edge and captured on the same edge (one clock period later). • The half-cycle mode, for which one half clock period is used to transfer the data, generated on one edge and captured on the opposite edge (one half clock period later). Note that a new data is generated only every clock period, which secures the required hold time. The interface clock (CLKX/CLKR) activation edge (data/frame sync capture and generation) has to be configured accordingly with the external peripheral (activation edge capability) and the type of data transfer required at the system level. The AM3517/05 McBSP1-5 timing characteristics are described for both rising and falling activation edges. McBSP1 supports: • 6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins. • 4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are internally looped back via software configuration, respectively, to the clkr and fsr internal signals for data receive. McBSP2, 3, 4, and 5 support only the 4-pin mode. The following sections describe the timing characteristics for applications in normal mode (that is, AM3517/05 McBSPx connected to one peripheral) and TDM applications in multipoint mode. 6.6.1.1 McBSP in Normal Mode Table 6-30. McBSP Timing Conditions (Normal Mode) TIMING CONDITION PARAMETER Input Conditions 1.8V, 3.3 V UNIT MIN MAX tR Input signal rise time TBD TBD ns tF Input signal fall time TBD TBD ns TBD pF Output Conditions CLOAD Output load capacitance Table 6-31. McBSP Output Clock Pulse Duration NO. PARAMETER 1.8 V MIN (1) 124 3.3 V MAX MIN UNIT MAX tW(CLKH) Typical pulse duration, mcbsp1_clkr / mcbspx_clkx high (1) TBD TBD ns tW(CLKL) Typical pulse duration, mcbsp1_clkr / mcbspx_clkx low (1) TBD TBD ns tdc(CLK) Duty cycle error, mcbsp1_clkr / mcbspx_clkx (1) TBD TBD TBD TBD ns In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 6.6.1.1.1 Receive Timing with Rising Edge as Activation Edge Table 6-32 through Table 6-37 assume testing over the recommended operating conditions (see Figure 6-31 through Figure 6-32). Table 6-32. McBSP1, 2, and 3 (Sets #1 and #2) Timing Requirements Rising Edge and Receive Mode (1) PARAMETER 1.8V MIN B3 B4 tsu(DRV-CLKAE) th(CLKAE-DRV) MAX 3.3V MIN UNIT MAX Setup time, mcbspx_dr valid before mcbsp1_clkr / mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns Hold time, mcbspx_dr valid after mcbsp1_clkr / mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns B5 tsu(FSV-CLKAE) Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr / mcbspx_clkx active edge TBD TBD ns B6 th(CLKAE-FSV) Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr / mcbspx_clkx active edge TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). Table 6-33. McBSP1, 2, and 3 (Sets #1 and #2) Switching Characteristics Rising Edge and Receive Mode (1) NO. B2 (1) PARAMETER td(CLKAE-FSV) 1.8V Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr / mcbspx_fsx valid 3.3V MIN MAX MIN MAX TBD TBD TBD TBD UNIT ns In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). Table 6-34. McBSP4 (Set #3) Timing Requirements Rising Edge and Receive Mode (1) NO. PARAMETER 1.8 V MIN B3 B4 B5 B6 (1) tsu(DRV-CLKXAE) th(CLKXAE-DRV) MAX 3.3 V MIN UNIT MAX Setup time, mcbspx_dr valid before mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns Hold time, mcbspx_dr valid after mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns tsu(FSXV-CLKXAE) Setup time mcbspx_fsx valid before mcbspx_clkx active edge TBD TBD ns th(CLKXAE-FSXV) Hold Time mcbspx_fsx valid after mcbspx_clkx active edge TBD TBD ns In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-36 and Table 6-37 Table 6-35. McBSP4 (Set #3) Switching Characteristics Rising Edge and Receive Mode (1) NO. B2 (1) PARAMETER td(CLKXAE-FSXV) 1.8 V Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 3.3 V MIN MAX MIN MAX TBD TBD TBD TBD UNIT ns In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-36 and Table 6-37 Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 125 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-36. McBSP3 (Set #3), 4 (Set #1), and 5 Timing Requirements Rising Edge and Receive Mode (1) NO. PARAMETER 1.8 V MIN B3 tsu(DRV-CLKXAE) 3.3 V MAX MIN UNIT MAX Setup time, mcbspx_dr valid before mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns Master TBD TBD ns Slave B4 th(CLKXAE-DRV) Hold time, mcbspx_dr valid after mcbspx_clkx active edge TBD TBD ns B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge TBD TBD ns B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active edge TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 6-34 and Table 6-35. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). PRODUCT PREVIEW Table 6-37. McBSP3 (Set #3), 4 (Set #1), and 5 Switching Requirements Rising Edge and Receive Mode (1) NO. B2 PARAMETER td(CLKXAE-FSXV) 1.8 V Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 3.3 V UNIT MIN MAX MIN MAX TBD TBD TBD TBD ns mcbspx_clkr B2 B2 mcbspx_fsr B3 mcbspx_dr B4 D7 D5 D6 030-068 Figure 6-31. McBSP Rising Edge Receive Timing in Master Mode mcbspx_clkr B5 B6 mcbspx_fsr B3 mcbspx_dr B4 D7 D6 D5 030-069 Figure 6-32. McBSP Rising Edge Receive Timing in Slave Mode (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 6-34 and Table 6-35. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). 6.6.1.1.2 Transmit Timing with Rising Edge as Activation Edge Table 6-38 through Table 6-43 assume testing over the recommended operating conditions (see Figure 6-33 and Figure 6-34). Table 6-38. McBSP1, 2, and 3 (Sets #1 and #2) Timing Requirements Rising Edge and Transmit Mode (1) NO. PARAMETER 1.8V MIN B5 (1) 126 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge TBD 3.3V MAX MIN TBD UNIT MAX ns In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-38. McBSP1, 2, and 3 (Sets #1 and #2) Timing Requirements Rising Edge and Transmit Mode (continued) NO. PARAMETER 1.8V 3.3V MIN B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active edge MAX MIN TBD UNIT MAX TBD ns Table 6-39. McBSP1, 2, and 3 (Sets #1 and #2) Switching Characteristics Rising Edge and Transmit Mode (1) PARAMETER 1.8V 3.3V UNIT MIN MAX MIN MAX B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid TBD TBD TBD TBD ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master TBD TBD TBD TBD ns Slave TBD TBD TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). Table 6-40. McBSP4 (Set #3) Timing Requirements Rising Edge and Transmit Mode (1) NO. PARAMETER 1.8V MIN 3.3V MAX MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge TBD TBD ns B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active edge TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-42. Table 6-41. McBSP4 (Set #3) Switching Characteristics Rising Edge and Transmit Mode (1) NO. PARAMETER 1.8V B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid (1) 3.3V UNIT MIN MAX MIN MAX TBD TBD TBD TBD ns Master TBD TBD TBD TBD ns Slave TBD TBD TBD TBD ns In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-42. Table 6-42. McBSP3 (Set #3), 4 (Set #1), and 5 Timing Requirements Rising Edge and Transmit Mode (1) NO. PARAMETER 1.8V MIN 3.3V MAX MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge TBD TBD ns B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active edge TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-42. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 127 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-43. McBSP 3 (Set #3), 4 (Set #1), and 5 Switching Requirements Rising Edge and Transmit Mode (1) NO. PARAMETER 1.8V 3.3V UNIT MIN MAX MIN MAX B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid TBD TBD TBD TBD ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master TBD TBD TBD TBD ns Slave TBD TBD TBD TBD ns mcbspx_clkx B2 B2 mcbspx_fsx PRODUCT PREVIEW B8 mcbspx_dx D7 D6 D5 030-070 Figure 6-33. McBSP Rising Edge Transmit Timing in Master Mode mcbspx_clkx B5 B6 mcbspx_fsx B8 mcbspx_dx D7 D6 D5 030-071 Figure 6-34. McBSP Rising Edge Transmit Timing in Slave Mode (1) In mcbspx, x identifies the McBSP number: 3, 4 or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). 6.6.1.1.3 Receive Timing with Falling Edge as Activation Edge Table 6-44 through Table 6-49 assume testing over the recommended operating conditions (see Figure 6-35 and Figure 6-36). Table 6-44. McBSP1, 2, and 3 (Sets #1 and #2) Timing Requirements Falling Edge and Receive Mode (1) NO. PARAMETER 1.8V MIN 3.3V MAX MIN UNIT MAX B3 tsu(DRV-CLKAE) Setup time, mcbspx_dr valid before mcbsp1_clkr / mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns B4 th(CLKAE-DRV) Hold time, mcbspx_dr valid after mcbsp1_clkr / mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns B5 tsu(FSV-CLKAE) Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr /mcbspx_clkx active edge TBD TBD ns B6 th(CLKAE-FSV) Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr /mcbspx_clkx active edge TBD TBD ns (1) 128 In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-45. McBSP1, 2, and 3 (Sets #1 and #2) Switching Characteristics Falling Edge and Receive Mode (1) NO. B2 (1) PARAMETER td(CLKAE-FSV) 1.8 V Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr / mcbspx_fsx valid 3.3 V UNIT MIN MAX MIN MAX TBD TBD TBD TBD ns In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). Table 6-46. McBSP4 (Set #3) Timing Requirements Falling Edge and Receive Mode (1) PARAMETER 1.8 V 3.3 V MIN MAX MIN UNIT MAX B3 tsu(DRV-CLKXAE) Setup time, mcbspx_dr valid before mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns B4 th(CLKXAE-DRV) Hold time, mcbspx_dr valid after mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns B5 tsu(FSXV-CLKXAE) Setup time mcbspx_fsx valid before mcbspx_clkx active edge TBD TBD ns B6 th(CLKXAE-FSXV) Hold time mcbspx_fsx valid after mcbspx_clkx active edge TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-48 Table 6-47. McBSP4 (Set #3) Switching Characteristics Falling Edge and Receive Mode (1) NO. B2 (1) PARAMETER td(CLKXAE-FSXV) 1.8 V Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 3.3 V UNIT MIN MAX MIN MAX TBD TBD TBD TBD ns In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-48 Table 6-48. McBSP3 (Set #3), 4 (Set #1), and 5 Timing Requirements Falling Edge and Receive Mode (1) NO. PARAMETER 1.8 V MIN B3 B4 tsu(DRV-CLKXAE) th(CLKXAE-DRV) 3.3 V MAX MIN UNIT MAX Setup time, mcbspx_dr valid before mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns Hold time, mcbspx_dr valid after mcbspx_clkx active edge Master TBD TBD ns Slave TBD TBD ns B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge TBD TBD ns B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active edge TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). Table 6-49. McBSP3 (Set #3), 4 (Set #1), and 5 Switching Requirements Falling Edge and Receive Mode (1) NO. B2 (1) PARAMETER td(CLKXAE-FSXV) 1.8 V Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 3.3 V UNIT MIN MAX MIN MAX TBD TBD TBD TBD ns In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 129 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com mcbspx_clkr B2 B2 mcbspx_fsr B3 mcbspx_dr B4 D7 D6 D5 030-072 Figure 6-35. McBSP Falling Edge Receive Timing in Master Mode mcbspx_clkr B5 B6 mcbspx_fsr PRODUCT PREVIEW B3 mcbspx_dr B4 D7 D6 D5 030-073 Figure 6-36. McBSP Falling Edge Receive Timing in Slave Mode 6.6.1.1.4 Transmit Timing with Falling Edge as Activation Edge Table 6-50 through Table 6-55 assume testing over the recommended operating conditions (see Figure 6-37 and Figure 6-38). Table 6-50. McBSP1, 2, and 3 (Sets #1 and #2) Timing Requirements Falling Edge and Transmit Mode (1) NO. PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge TBD ns B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active edge TBD ns (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). Table 6-51. McBSP1, 2, and 3 (Sets #1 and #2) Switching Characteristics Falling Edge and Transmit Mode (1) NO. PARAMETER 1.8 V MIN 3.3 V MAX UNIT MIN MAX B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid TBD TBD ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master TBD TBD ns Slave TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). Table 6-52. McBSP4 (Set #3) Timing Requirements Falling Edge and Transmit Mode (1) NO. PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge TBD TBD ns B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active edge TBD TBD ns (1) 130 In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-54. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-53. McBSP4 (Set #3) Switching Characteristics Falling Edge and Transmit Mode (1) NO. PARAMETER 1.8 V 3.3 V UNIT MIN MAX MIN MAX B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid TBD TBD TBD TBD ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master TBD TBD TBD TBD ns Slave 0.6 17.3 0.6 33.1 ns (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-54. Table 6-54. McBSP3 (Set #3), 4 (Set #1), and 5 Timing Requirements Falling Edge and Transmit Mode (1) PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 5.8 12.2 ns B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active edge 0.5 0.5 ns (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 6-54. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). Table 6-55. McBSP3 (Set #3), 4 (Set #1), and 5 Switching Requirements Falling Edge and Transmit Mode (1) NO. PARAMETER 1.8 V 3.3 V MIN MAX MIN MAX UNIT B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid TBD TBD TBD TBD ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master TBD TBD TBD TBD ns Slave TBD TBD TBD TBD ns (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 6-54. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). mcbspx_clkx B2 B2 mcbspx_fsx B8 mcbspx_dx D7 D6 D5 030-074 Figure 6-37. McBSP Falling Edge Transmit Timing in Master Mode mcbspx_clkx B5 B6 mcbspx_fsx B8 mcbspx_dx D7 D6 D5 030-075 Figure 6-38. McBSP Falling Edge Transmit Timing in Slave Mode Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 131 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.6.1.2 McBSP in TDMMultipoint Mode (McBSP3) For TDM application in multipoint mode, AM3517/05 is considered as a slave. Table 6-57 and Table 6-58 assume testing over the operating conditions and electrical characteristic conditions described below. Table 6-56. McBSP3 Timing ConditionsTDM in Multipoint Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT MIN MAX Input Conditions tR Input signal rising time TBD TBD ns tF Input signal falling time TBD TBD ns TBD pF Output Conditions CLOAD Output Load Capacitance PRODUCT PREVIEW Table 6-57. McBSP3 Timing RequirementsTDM in Multipoint Mode (1) NO. PARAMETER 1.8 V MIN 3.3 V MAX UNIT MAX tW(CLKH) Cycle Time, mcbsp3_clkx tW(CLKH) Typical Pulse duration, mcbsp3_clkx high TBD TBD tW(CLKL) Typical Pulse duration, mcbsp3_clkx low TBD TBD tdc(CLK) Duty cycle error, mcbsp3_clkx TBD B3 (2) tsu(DRV-CLKAE) Setup time, mcbsp3_dr valid before mcbsp3_clkx active edge TBD TBD ns B4 (2) th(CLKAE-DRV) Hold time, mcbsp3_dr valid after mcbsp3_clkx active edge TBD TBD ns B5 (2) tsu(FSV-CLKAE) Setup time, mcbsp3_fsx valid before mcbsp3_clkx active edge TBD TBD ns B6 (2) th(CLKAE-FSV) Hold time, mcbsp3_fsx valid after mcbsp3_clkx active edge TBD TBD ns (1) (2) TBD MIN TBD TBD ns TBD ns ns TBD ns For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins). See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures. Table 6-58. McBSP3 Switching CharacteristicsTDM in Multipoint Mode (1) NO. B8 (2) (1) (2) PARAMETER td(CLKXAE-DXV) Delay time, mcbsp3_clkx active edge to mcbsp3_dx valid 1.8 V 3.3 V UNIT MIN MAX MIN MAX TBD TBD TBD TBD ns For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins). See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures. 6.6.2 Multichannel Serial Port Interface (McSPI) Timing The multichannel SPI is a master/slave synchronous serial bus. The McSPI1 module supports up to four peripherals and the others (McSPI2, McSPI3, and McSPI4) support up to two peripherals. The following timings are applicable to the different configurations of McSPI in master/slave mode for any McSPI and any channel (n). 6.6.2.1 McSPI in Slave Mode Table 6-59 and Table 6-60 assume testing over the recommended operating conditions (see Figure 6-39). 132 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-59. McSPI Interface Timing Requirements – Slave Mode (1) (2) PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX SS0 tc(CLK) Cycle time, mcspix_clk TBD TBD ns SS1 tw(CLK) Pulse duration, mcspix_clk high or low TBD TBD ns SS2 tsu(SIMOV-CLKAE) Setup time, mcspix_simo valid before mcspix_clk active edge TBD TBD ns SS3 th(SIMOV-CLKAE) Hold time, mcspix_simo valid after mcspix_clk active edge TBD TBD ns SS4 tsu(CS0V-CLKFE) Setup time, mcspix_cs0 valid before mcspix_clk first edge TBD TBD ns SS5 th(CS0I-CLKLE) Hold time, mcspix_cs0 invalid after mcspix_clk last edge TBD TBD ns (1) (2) The input timing requirements are given by considering a rise time and a fall time of 4 ns. In mcspix, x is equal to 1, 2, 3, or 4. Table 6-60. McSPI Interface Switching Requirements (1) (2) (3) (4) NO. PARAMETER 1.8 V SS6 td(CLKAE-SOMIV) Delay time, mcspix_clk active edge to mcspix_somi shifted SS7 td(CS0AE-SOMIV) Delay time, mcspix_cs0 active edge to Modes 0 and 2 mcspix_somi shifted (1) (2) (3) (4) 3.3 V UNIT MIN MAX MIN MAX TBD TBD TBD TBD ns TBD ns TBD The capacitive load is equivalent to 20 pF. In mcspix, x is equal to 1, 2, 3, or 4. The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all software configurable. This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and capture input data. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 133 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Mode 0 & 2 mcspix_cs0(EPOL=1) SS0 SS4 SS5 SS1 mcspix_clk(POL=0) SS0 SS1 mcspix_clk(POL=1) SS2 SS3 Bit n-1 PRODUCT PREVIEW mcspix_simo Bit n-2 SS7 Bit n-4 Bit 0 SS6 Bit n-1 mcspix_somi Bit n-3 Bit n-2 Bit n-3 Bit n-4 Bit 0 Mode 1 & 3 mcspix_cs0(EPOL=1) SS0 SS1 mcspix_clk(POL=0) SS0 SS1 SS4 SS5 mcspix_clk(POL=1) SS3 SS2 Bit n-1 mcspix_simo Bit n-2 Bit n-3 Bit 1 Bit 0 SS6 Bit n-1 mcspix_somi Bit n-2 Bit n-3 Bit 1 Bit 0 030-076 Figure 6-39. McSPI Interface Transmit and Receive in Slave Mode(1)(2) (1) The active clock edge (rising or falling) on which mcspi_somi is driven and mcspi_simo data is latched is software configurable with the bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL. (2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL In mcspix, x is equal to 1, 2, 3, or 4. 6.6.2.2 McSPI in Master Mode Table 6-61 and Table 6-62 assume testing over the recommended operating conditions (see Figure 6-40). Table 6-61. McSPI1, 2, and 4 Interface Timing Requirements – Master Mode (1) (2) NO. PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX SM2 tsu(SOMIV-CLKAE) Setup time, mcspix_somi valid before mcspix_clk active edge TBD TBD ns SM3 th(SOMIV-CLKAE) Hold time, mcspix_somi valid after mcspix_clk active edge TBD TBD ns (1) (2) 134 The input timing requirements are given by considering a rise time and a fall time of 4 ns. In mcspix, x is equal to 1, 2, 3, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 3. n is equal to 0 for x equal to 4. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-62. McSPI1, 2, and 4 Interface Switching Characteristics – Master Mode (1) (2) (3) PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX SM0 tc(CLK) Cycle time, mcspix_clk TBD SM1 tw(CLK) Pulse duration, mcspix_clk high or low TBD TBD TBD SM4 td(CLKAE-SIMOV) Delay time, mcspix_clk active edge to mcspix_simo shifted TBD TBD TBD TBD ns SM5 td(CSnA-CLKFE) Delay time, mcspix_csi active to mcspix_clk first edge Modes 1 and 3 TBD TBD TBD ns Modes 0 and 2 TBD TBD TBD ns Modes 1 and 3 TBD TBD Modes 0 and 2 TBD SM6 SM7 (1) (2) (3) td(CLKLE-CSnI) td(CSnAE-SIMOV) Delay time, mcspix_clk last edge to mcspix_csi inactive Delay time, mcspix_csi active edge to mcspix_simo shifted Modes 0 and 2 TBD ns ns ns ns TBD TBD ns Timings are given for a maximum load capacitance of 20 pF for spix_csn signals, 30 pF for spix_clk and spix_simo signals with x = 1 or 2, and 20 pF for spi4_clk and spi4_simo signals. In mcspix, x is equal to 1, 2, 3, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 3. n is equal to 0 for x equal to 4. The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all software configurable. Table 6-63 and Table 6-64 assume testing over the recommended operating conditions (see Figure 6-40). Table 6-63. McSPI 3 Interface Timing Requirements – Master Mode (1) (2) NO. PARAMETER 1.8 V MIN SM2 tsu(SOMIV-CLKAE) Setup time, mcspi3_somi valid before mcspi3_clk active edge SM3 th(SOMIV-CLKAE) Hold time, mcspi3_somi valid after mcspi3_clk active edge (1) (2) 3.3 V MAX MIN UNIT MAX TBD TBD ns TB TBD ns The input timing requirements are given by considering a rise time and a fall time of 4 ns. In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and mcspi3_somi is latched is all software configurable. Table 6-64. McSPI3 Interface Switching Requirements – Master Mode (1) (2) (3) NO. PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX SM0 tc(CLK) Cycle time, mcspix_clk TBD SM1 tw(CLK) Pulse duration, mcspix_clk high or low TBD TBD TBD TBD ns SM4 td(CLKAE-SIMOV) Delay time, mcspix_clk active edge to mcspix_simo shifted TBD TBD TBD TBD ns SM5 td(CSnA-CLKFE) Delay time, mcspix_csi active Modes 1 to mcspix_clk first edge and 3 TBD TBD ns Modes 0 and 2 TBD TBD ns (1) (2) (3) TBD ns The capacitive load is equivalent to 20 pF. In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and mcspi3_somi is latched is all software configurable. This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and capture input data. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 135 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-64. McSPI3 Interface Switching Requirements – Master Mode (continued) NO. PARAMETER 1.8 V MIN SM6 SM7 td(CLKLE-CSnI) td(CSnAE-SIMOV) Delay time, mcspix_clk last edge to mcspix_csi inactive MIN UNIT MAX Modes 1 and 3 TBD TBD ns Modes 0 and 2 TBD TBD ns Delay time, mcspix_csi active Modes 0 edge to mcspix_simo shifted and 2 mcspix_csn(EPOL=1) 3.3 V MAX TBD TBDD ns Mode 0 & 2 SM0 PRODUCT PREVIEW SM1 SM5 SM6 mcspix_clk(POL=0) SM0 SM1 mcspix_clk(POL=1) SM4 SM7 Bit n-1 mcspix_simo Bit n-2 Bit n-3 Bit n-4 Bit 0 SM2 SM3 Bit n-1 mcspix_somi Bit n-2 Bit n-3 Bit 0 Bit n-4 Mode 1 & 3 mcspix_csn(EPOL=1) SM0 SM1 mcspix_clk(POL=0) SM0 SM1 SM5 SM6 mcspix_clk(POL=1) SM4 mcspix_simo Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0 SM2 SM3 mcspix_somi Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0 030-077 Figure 6-40. McSPI Interface Transmit and Receive in Master Mode(1)(2)(3) (1) The active clock edge (rising or falling) on which mcspix_simo is driven and mcspi_somi data is latched is software configurable with the bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL. (2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL. (3) In mcspix, x is equal to 1. In mcspix_csn, n is equal to 0, 1, 2, or 3. 136 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com 6.6.3 SPRS550 – OCTOBER 2009 Multiport Full-Speed Universal Serial Bus (USB) Interface The AM3517/05 processor provides three USB ports working in full- and low-speed data transactions (up to 12Mbit/s). Connected to either a serial link controller (TLL modes) or a serial PHY (PHY interface modes) it supports: • 6-pin (Tx: Dat/Se0 or Tx: Dp/Dm) unidirectional mode • 4-pin bidirectional mode • 3-pin bidirectional mode 6.6.3.1 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional Standard 6-pin Mode Table 6-66 and Table 6-67 assume testing over the recommended operating conditions (see Figure 6-41). TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT PRODUCT PREVIEW Table 6-65. Low-/Full-Speed USB Timing Conditions Unidirectional Standard 6-pin Mode Input Conditions tR Input signal rise time 2.0 ns tF Input signal fall time 2.0 ns Output load capacitance 15.0 pF Output Conditions CLOAD Table 6-66. Low-/Full-Speed USB Timing Requirements Unidirectional Standard 6-pin Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX FSU1 td(Vp,Vm) Time duration, mmx_rxdp and mmx_rxdm low together during transition 14.0 ns FSU2 td(Vp,Vm) Time duration, mmx_rxdp and mmx_rxdm high together during transition 8.0 ns FSU3 td(RCVU0) Time duration, mmx_rrxcv undefine during a single end 0 (mmx_rxdp and mmx_rxdm low together) 14.0 ns FSU4 td(RCVU1) Time duration, mmx_rxrcv undefine during a single end 1 (mmx_rxdp and mmx_rxdm high together) 8.0 ns Table 6-67. Low-/Full-Speed USB Switching Characteristics Unidirectional Standard 6-pin Mode NO. PARAMETER 1.8V, 3.3V MIN MAX UNIT FSU5 td(TXENL-DATV) Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 ns FSU6 td(TXENL-SE0V) Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 ns FSU7 ts(DAT-SE0) Skew between mmx_txdat and mmx_txse0 transition 1.5 ns FSU8 td(DATI-TXENH) Delay time, mmx_txdat invalid to mmx_txen_n high 81.8 FSU9 td(SE0I-TXENH) Delay time, mmx_txse0 invalid to mmx_txen_n high 81.8 tR(do) Rise time, mmx_txen_n 4.0 ns tF(do) Fall time, mmx_txen_n 4.0 ns tR(do) Rise time, mmx_txdat 4.0 ns tF(do) Fall time, mmx_txdat 4.0 ns tR(do) Rise time, mmx_txse0 4.0 ns tF(do) Fall time, mmx_txse0 4.0 ns Submit Documentation Feedback ns ns TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 137 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Transmit mmx_txen_n FSU5 Receive FSU8 mmx_txdat FSU6 FSU7 FSU9 mmx_txse0 FSU1 FSU2 FSU1 FSU2 FSU3 FSU4 mmx_rxdp mmx_rxdm PRODUCT PREVIEW mmx_rxrcv 030-080 In mmx, x is equal to 0, 1, or 2. Figure 6-41. Low-/Full-Speed USB Unidirectional Standard 6-pin Mode 6.6.3.2 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 4-pin Mode Table 6-69 and Table 6-70 assume testing over the recommended operating conditions (see Figure 6-42). Table 6-68. Low-/Full-Speed USB Timing Conditions Bidirectional Standard 4-pin Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT Input Conditions tR Input signal rise time 2.0 ns tF Input signal fall time 2.0 ns Output load capacitance 15.0 pF Output Conditions CLOAD Table 6-69. Low-/Full-Speed USB Timing Requirements Bidirectional Standard 4-pin Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX FSU10 td(DAT,SE0) Time duration, mmx_txdat and mmx_txse0 low together during transition 14.0 ns FSU11 td(DAT,SE0) Time duration, mmx_txdat and mmx_txse0 high together during transition 8.0 ns FSU12 td(RCVU0) Time duration, mmx_rrxcv undefine during a single end 0 (mmx_txdat and mmx_txse0 low together) 14.0 ns FSU13 td(RCVU1) Time duration, mmx_rxrcv undefine during a single end 1 (mmx_txdat and mmx_txse0 high together) 8.0 ns Table 6-70. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 4-pin Mode NO. PARAMETER 1.8V, 3.3V MIN MAX UNIT FSU14 td(TXENL-DATV) Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 ns FSU15 td(TXENL-SE0V) Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 ns FSU16 ts(DAT-SE0) Skew between mmx_txdat and mmx_txse0 transition 1.5 ns FSU17 td(DATV-TXENH) Delay time, mmx_txdat invalid before mmx_txen_n high 81.8 FSU18 td(SE0V-TXENH) Delay time, mmx_txse0 invalid before mmx_txen_n high 81.8 tR(txen) Rise time, mmx_txen_n 138 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS ns ns 4.0 ns Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-70. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 4-pin Mode (continued) PARAMETER 1.8V, 3.3V MIN UNIT MAX tF(txen) Fall time, mmx_txen_n 4.0 ns tR(dat) Rise time, mmx_txdat 4.0 ns tF(dat) Fall time, mmx_txdat 4.0 ns tR(se0) Rise time, mmx_txse0 4.0 ns tF(se0) Fall time, mmx_txse0 4.0 ns Transmit mmx_txen_n FSU14 FSU17 Receive FSU10 FSU11 FSU18 FSU10 FSU11 FSU12 FSU13 mmx_txdat FSU15 FSU16 mmx_txse0 mmx_rxrcv 030-081 In mmx, x is equal to 0, 1, or 2. Figure 6-42. Low-/Full-Speed USB Bidirectional Standard 4-pin Mode 6.6.3.3 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 3-pin Mode Table 6-72 and Table 6-73 assume testing over the recommended operating conditions below (see Figure 6-43). Table 6-71. Low-/Full-Speed USB Timing Conditions Bidirectional Standard 3-pin Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT Input Conditions tR Input signal rise time 2.0 ns tF Input signal fall time 2.0 ns Output load capacitance 15.0 pF Output Conditions CLOAD Table 6-72. Low-/Full-Speed USB Timing Requirements Bidirectional Standard 3-pin Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX FSU19 td(DAT,SE0) Time duration, mmx_txdat and mmx_txse0 low together during transition 14.0 ns FSU20 td(DAT,SE0) Time duration, mmx_tsdat and mmx_txse0 high together during transition 8.0 ns Table 6-73. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 3-pin Mode NO. PARAMETER 1.8V, 3.3V MIN MAX UNIT FSU21 td(TXENL-DATV) Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 ns FSU22 td(TXENL-SE0V) Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 ns Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 139 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-73. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 3-pin Mode (continued) NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX PRODUCT PREVIEW FSU23 ts(DAT-SE0) Skew between mmx_txdat and mmx_txse0 transition FSU24 td(DATI-TXENH) Delay time, mmx_txdat invalid to mmx_txen_n high 81.8 1.5 FSU25 td(SE0I-TXENH) Delay time, mmx_txse0 invalid to mmx_txen_n high 81.8 tR(do) Rise time, mmx_txen_n 4.0 ns tF(do) Fall time, mmx_txen_n 4.0 ns tR(do) Rise time, mmx_txdat 4.0 ns tF(do) Fall time, mmx_txdat 4.0 ns tR(do) Rise time, mmx_txse0 4.0 ns tF(do) Fall time, mmx_txse0 4.0 ns Transmit mmx_txen_n FSU21 ns ns ns Receive FSU24 FSU19 FSU20 FSU25 FSU19 FSU20 mmx_txdat FSU22 FSU23 mmx_txse0 030-082 In mmx, x is equal to 0, 1, or 2. Figure 6-43. Low-/Full-Speed USB Bidirectional Standard 3-pin Mode 6.6.3.4 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional TLL 6-pin Mode Table 6-75 and Table 6-76 assume testing over the recommended operating conditions (see Figure 6-44). Table 6-74. Low-/Full-Speed USB Timing Conditions Unidirectional TLL 6-pin Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT Input Conditions tR Input signal rise time 2 ns tF Input signal fall time 2 ns Output load capacitance 15 pF Output Conditions CLOAD Table 6-75. Low-/Full-Speed USB Timing Requirements Unidirectional TLL 6-pin Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX FSUT1 td(SE0,DAT) Time duration, mmx_txse0 and mmx_txdat low together during transition 14 ns FSUT2 td(SE0,DAT) Time duration, mmx_txse0 and mmx_txdat high together during transition 8 ns Table 6-76. Low-/Full-Speed USB Switching Characteristics Unidirectional TLL 6-pin Mode NO. FSUT3 140 PARAMETER td(TXENH-DPV) Delay time, mmx_txen_n high to mmx_rxdp valid TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 1.8V, 3.3V MIN MAX 81.8 84.8 UNIT ns Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-76. Low-/Full-Speed USB Switching Characteristics Unidirectional TLL 6-pin Mode (continued) PARAMETER 1.8V, 3.3V UNIT MIN MAX 84.8 FSUT4 td(TXENH-DMV) Delay time, mmx_txen_n high to mmx_rxdm valid 81.8 FSUT5 td(DPI-TXENL) Delay time, mmx_rxdp invalid mmx_txen_n low 81.8 FSUT6 td(DMI-TXENL) Delay time, mmx_rxdm invalid mmx_txen_n low 81.8 FSUT7 ts(DP-DM) Skew between mmx_rxdp and mmx_rxdm transition 1.5 ns FSUT8 ts(DP,DM-RCV) Skew between mmx_rxdp, mmx_rxdm, and mmx_rxrcv transition 1.5 ns tR(rxrcv) Rise time, mmx_rxrcv 4 ns tF(rxrcv) Fall time, mmx_rxrcv 4 ns tR(dp) Rise time, mmx_rxdp 4 ns tF(dp) Fall time, mmx_rxdp 4 ns tR(dm) Rise time, mmx_rxdm 4 ns tF(dm) Fall time, mmx_rxdm 4 ns mmx_txen_n Transmit ns ns ns PRODUCT PREVIEW NO. Receive FSUT1 FSUT2 FSUT1 FSUT2 mmx_txdat mmx_txse0 FSUT3 FSUT5 mmx_rxdp FSUT4 FSUT7 FSUT6 mmx_rxdm FSUT8 mmx_rxrcv 030-083 In mmx, x is equal to 0, 1, or 2. Figure 6-44. Low-/Full-Speed USB Unidirectional TLL 6-pin Mode 6.6.3.5 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 4-pin Mode Table 6-78 and Table 6-79 assume testing over the recommended operating conditions (see Figure 6-45). Table 6-77. Low-/Full-Speed USB Timing Conditions Bidirectional TLL 4-pin Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT Input Conditions tR Input signal rise time 2 ns tF Input signal fall time 2 ns Output load capacitance 15 pF Output Conditions CLOAD Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 141 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-78. Low-/Full-Speed USB Timing Requirements Bidirectional TLL 4-pin Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX FSUT9 td(DAT,SE0) Time duration, mmx_txdat and mmx_txse0 low together during transition 14 ns FSUT10 td(DAT,SE0) Time duration, mmx_tsdat and mmx_txse0 high together during transition 8 ns Table 6-79. Low-/Full-Speed USB Switching Characteristics Bidirectional TLL 4-pin Mode NO. PARAMETER 1.8V, 3.3V UNIT PRODUCT PREVIEW MIN MAX FSUT11 td(TXENL-DATV) Delay time, mmx_txen_n active to mmx_txdat valid 81.8 84.8 ns FSUT12 td(TXENL-SE0V) Delay time, mmx_txen_n active to mmx_txse0 valid 81.8 84.8 ns FSUT13 ts(DAT-SE0) Skew between mmx_txdat and mmx_txse0 transition 1.5 ns FSUT14 ts(DP,DM-RCV) Skew between mmx_rxdp, mmx_rxdm, and mmx_rxrcv transition 1.5 ns FSUT15 td(DATI-TXENL) Delay time, mmx_txse0 invalid to mmx_txen_n Low 81.8 FSUT16 td(SE0I-TXENL) Delay time, mmx_txdat invalid to mmx_txen_n Low 81.8 tR(rcv) Rise time, mmx_rxrcv 4 ns tF(rcv) Fall time, mmx_rxrcv 4 ns tR(dat) Rise time, mmx_txdat 4 ns tF(dat) Fall time, mmx_txdat 4 ns tR(se0) Rise time, mmx_txse0 4 ns tF(se0) Fall time, mmx_txse0 4 ns mmx_txen_n ns Receive Transmit FSUT11 ns FSUT15 FSUT9 FSUT10 FSUT16 FSUT9 FSUT10 mmx_txdat FSUT12 FSUT13 mmx_txse0 FSUT14 mmx_rxrcv 030-084 In mmx, x is equal to 0, 1, or 2. Figure 6-45. Low-/Full-Speed USB Bidirectional TLL 4-pin Mode 6.6.3.6 Multiport Full-Speed Universal Serial Bus (USB) Bidirectional TLL 3-pin Mode Table 6-81 and Table 6-82 assume testing over the recommended operating conditions (see Figure 6-46). Table 6-80. Low-/Full-Speed USB Timing Conditions Bidirectional TLL 3-pin Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT Input Conditions tR Input signal rise time 2 ns tF Input signal fall time 2 ns Output load capacitance 15 pF Output Conditions CLOAD 142 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-81. Low-/Full-Speed USB Timing Requirements Bidirectional TLL 3-pin Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX FSUT17 td(DAT,SE0) Time duration, mmx_txdat and mmx_txse0 low together during transition 14 ns FSUT18 td(DAT,SE0) Time duration, mmx_tsdat and mmx_txse0 high together during transition 8 ns Table 6-82. Low-/Full-Speed USB Switching Characteristics Bidirectional TLL 3-pin Mode PARAMETER 1.8V, 3.3V UNIT MIN MAX FSUT19 td(TXENH-DATV) Delay time, mmx_txen_n high to mmx_txdat valid 81.8 84.8 ns FSUT20 td(TXENH-SE0V) Delay time, mmx_txen_n high to mmx_txse0 valid 81.8 84.8 ns FSUT21 ts(DAT-SE0) Skew between mmx_txdat and mmx_txse0 transition 1.5 ns FSUT22 td(DATI-TXENL) Delay time, mmx_txdat invalid mmx_txen_n low 81.8 FSUT23 td(SE0I-TXENL) Delay time, mmx_txse0 invalid mmx_txen_n low 81.8 tR(dat) Rise time, mmx_txdat 4 ns tF(dat) Fall time, mmx_txdat 4 ns tR(se0) Rise time, mmx_txse0 4 ns tF(se0) Fall time, mmx_txse0 4 ns mmx_txen_n ns ns Receive Transmit FSUT19 PRODUCT PREVIEW NO. FSUT22 FSUT17 FSUT18 FSUT23 FSUT17 FSUT18 mmx_txdat FSUT20 FSUT21 mmx_txse0 030-085 In mmx, x is equal to 0, 1, or 2. Figure 6-46. Low-/Full-Speed USB Bidirectional TLL 3-pin Mode 6.6.4 Multiport High-Speed Universal Serial Bus (USB) Timing In addition to the full-speed USB controller, a high-speed (HS) USB controller is instantiated inside AM3517/05. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 1 and 2. • Port 1 and port 2: – 12-bit master mode (SDR) – 12-bit TLL master mode (SDR) – 8-bit TLL master mode (DDR) Note: TLL is not available in 3.3V mode 6.6.4.1 High-Speed Universal Serial Bus (USB) on Ports 1 and 2 12-bit Master Mode Table 6-84 and Table 6-85 assume testing over the recommended operating conditions (see Figure 6-47). Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 143 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-83. High-Speed USB Timing Conditions 12-bit Master Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT tR Input signal rise time 2 ns tF Input signal fall time 2 ns Output load capacitance 3 pF Input Conditions Output Conditions CLOAD Table 6-84. High-Speed USB Timing Requirements 12-bit Master Mode (1) NO. PARAMETER 1.8V, 3.3V MIN HSU3 UNIT MAX PRODUCT PREVIEW ts(DIRV-CLKH) Setup time, hsusbx_dir valid before hsusbx_clk rising edge 9.3 ns ts(NXTV-CLKH) Setup time, hsusbx_nxt valid before hsusbx_clk rising edge 9.3 ns th(CLKH-DIRIV) Hold time, hsusbx_dir valid after hsusbx_clk rising edge 0.2 ns th(CLKH-NXT/IV) Hold time, hsusbx_nxt valid after hsusbx_clk rising edge 0.2 ns HSU5 ts(DATAV-CLKH) Setup time, hsusbx_data[0:7] valid before hsusbx_clk rising edge 9.3 ns HSU6 th(CLKH-DATIV) Hold time, hsusbx_data[0:7] valid after hsusbx_clk rising edge 0.2 ns HSU4 (1) In hsusbx, x is equal to 1 or 2. Table 6-85. High-Speed USB Switching Characteristics 12-bit Master Mode (1) N O. PARAMETER 1.8V, 3.3V MIN HSU0 HSU1 HSU2 (1) (2) UNIT MAX fp(CLK) hsusbx_clk clock frequency 60 MHz tj(CLK) Jitter standard deviation (2), hsusbx_clk 200 ps td(clkL-STPV) Delay time, hsusbx_clk high to output hsusbx_stp valid 13 ns td(clkL-STPIV) Delay time, hsusbx_clk high to output hsusbx_stp invalid td(clkL-DV) Delay time, hsusbx_clk high to output hsusbx_data[0:7] valid td(clkL-DIV) Delay time, hsusbx_clk high to output hsusbx_data[0:7] invalid tR(do) Rise time, output signals 2 ns tF(do) Fall time, output signals 2 ns 2 ns 13 2 ns ns In hsusbx, x is equal to 1 or 2. The jitter probability density can be approximated by a Gaussian function. HSU0 hsusbx_clk HSU1 HSU1 hsusbx_stp HSU3 HSU4 hsusbx_dir_&_nxt HSU5 HSU2 HSU2 Data_OUT hsusbx_data[7:0] HSU6 Data_IN 030-087 In hsusbx, x is equal to 1 or 2. Figure 6-47. High-Speed USB 12-bit Master Mode 144 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 6.6.4.2 High-Speed Universal Serial Bus (USB) on Ports 1 and 2 12-bit TLL Master Mode Table 6-87 and Table 6-88 assume testing over the recommended operating conditions (see Figure 6-48). Table 6-86. High-Speed USB Timing Conditions 12-bit TLL Master Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2 ns tF Input signal fall time 2 ns Output load capacitance 3 pF Output Conditions CLOAD NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX HSU2 ts(STPV-CLKH) Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge 6 ns HSU3 ts(CLKH-STPIV) Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge 0 ns HSU4 ts(DATAV-CLKH) Setup time, hsusbx_tll_data[7:0] valid before hsusbx_tll_clk rising edge 6 ns HSU5 th(CLKH-DATIV) Hold time, hsusbx_tll_data[7:0] valid after hsusbx_tll_clk rising edge 0 ns (1) PRODUCT PREVIEW Table 6-87. High-Speed USB Timing Requirements 12-bit TLL Master Mode (1) In hsusbx, x is equal to 1, 2, or 3. Table 6-88. High-Speed USB Switching Characteristics 12-bit TLL Master Mode (1) NO. PARAMETER 1.8V, 3.3V MIN HSU0 HSU6 HSU7 (1) (2) UNIT MAX fp(CLK) hsusbx_tll_clk clock frequency 60 MHz tj(CLK) Jitter standard deviation (2), hsusbx_tll_clk 200 ps td(CLKL-DIRV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid 9 ns td(CLKL-DIRIV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid td(CLKL-NXTV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid td(CLKL-NXTIV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid td(CLKL-DV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] valid td(CLKL-DIV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] invalid tR(do) Rise time, output signals 2 ns tF(do) Fall time, output signals 2 ns 0 ns 9 0 ns ns 9 0 ns ns In hsusbx, x is equal to 1, 2, or 3. The jitter probability density can be approximated by a Gaussian function. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 145 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com HSU0 hsusbx_tll_clk HSU3 HSU2 hsusbx_tll_stp HSU6 HSU6 hsusbx_tll_dir_&_nxt HSU4 HSU7 HSU5 hsusbx_tll_data[7:0] HSU7 Data_IN Data_OUT 030-088 PRODUCT PREVIEW In hsusbx, x is equal to 1, 2, or 3. Figure 6-48. High-Speed USB 12-bit TLL Master Mode 6.6.4.3 High-Speed Universal Serial Bus (USB) on Ports 1 and 2 8-bit TLL Master Mode Table 6-90 and Table 6-91 assume testing over the recommended operating conditions (see Figure 6-49). Table 6-89. High-Speed USB Timing Conditions 8-bit TLL Master Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT Input Conditions tR Input signal rise time 2 ns tF Input signal fall time 2 ns Output load capacitance 3 pF Output Conditions CLOAD Table 6-90. High-Speed USB Timing Requirements 8-bit TLL Master Mode (1) NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX HSU2 ts(STPV-CLKH) Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge 6 ns HSU3 ts(CLKH-STPIV) Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge 0 ns HSU4 ts(DATAV-CLKH) Setup time, hsusbx_tll_data[3:0] valid before hsusbx_tll_clk rising edge 3 ns HSU5 th(CLKH-DATIV) Hold time, hsusbx_tll_data[3:0] valid after hsusbx_tll_clk rising edge -0.1 ns (1) In hsusbx, x is equal to 1, 2, or 3. Table 6-91. High-Speed USB Switching Characteristics 8-bit TLL Master Mode (1) NO. PARAMETER 1.8V, 3.3V MIN HSU0 UNIT MAX fp(CLK) hsusbx_tll_clk clock frequency 60 MHz tj(CLK) Jitter standard deviation (2), hsusbx_tll_clk 200 ps HSU1 tj(CLK) Duty cycle, hsusbx_tll_clk pulse duration (low and high) HSU6 td(CLKL-DIRV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid td(CLKL-DIRIV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid td(CLKL-NXTV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid td(CLKL-NXTIV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid td(CLKL-DV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] valid HSU7 (1) (2) In hsusbx, x is equal to 1, 2, or 3. The jitter probability density can be approximated by a Gaussian function. 146 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 47.6% 52.4% 9 0 ns ns 9 0 ns ns 4 ns Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-91. High-Speed USB Switching Characteristics 8-bit TLL Master Mode (continued) NO. PARAMETER 1.8V, 3.3V MIN HSU8 UNIT MAX td(CLKL-DIV) Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] invalid 0 ns tR(do) Rise time, output signals 2 ns tF(do) Fall time, output signals 2 ns HSU0 HSU1 HSU1 hsusbx_tll_clk HSU3 HSU6 HSU6 hsusbx_tll_dir_&_nxt HSU5 HSU4 hsusbx_tll_data[3:0] Data_IN HSU5 HSU8 HSU4 Data_IN_(n+1) HSU7 Data_IN_(n+2) HSU7 Data_OUT Data_OUT_(n+1) 030-089 In hsusbx, x is equal to 1, 2, or 3. Figure 6-49. High-Speed USB 8-bit TLL Master Mode 6.6.5 USB0 OTG (USB2.0 OTG) The AM3517/05 USB2.0 peripheral supports the following features: • USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s) and full speed (FS: 12 Mb/s) • USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s) • All transfer modes (control, bulk, interrupt, and isochronous) • 16 Transmit (TX) and 16 Receive (RX) endpoints in addition to endpoint 0 • FIFO RAM – 32K endpoint – Programmable size • Integrated USB 2.0 High Speed PHY • Connects to a standard Charge Pump for VBUS 5 V generation • RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB 6.6.5.1 USB2.0 Electrical Data/Timing Table 6-92. USB2.0 (OTG) Switching Characteristics NO. PARAMETER (1) 1.8V,3.3V HIGH SPEED FULL SPEED MIN MAX MIN MAX MIN MAX TBD TBD USB 1 VCRS Output signal cross-over voltage TBD TBD TBD TBD USB 2 ZDRV Driver Output Impedance TBD TBD TBD TBD USB 3 tr(D) Rise time, USB_DP and USB_DM signals TBD TBD TBD TBD (1) UNIT LOW SPEED V Ω TBD TBD ns In hsusbx, x is equal to 1, 2, or 3. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 147 PRODUCT PREVIEW HSU2 hsusbx_tll_stp AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-92. USB2.0 (OTG) Switching Characteristics (continued) NO. PARAMETER 1.8V,3.3V UNIT HIGH SPEED FULL SPEED LOW SPEED MIN MAX MIN MAX MIN MAX TBD TBD TBD TBD TBD TBD ns PRODUCT PREVIEW USB 4 tf(D) Fall time, USB_DP and USB_DM signals USB 5 tRFM Rise/Fall time, matching TBD TBD TBD TBD % USB 6 tw(EOPT) Pulse duration, EOP transmitter TBD TBD TBD TBD ns USB 7 tw(EOPR) Pulse duration, EOP receiver TBD TBD USB 8 t(cjr) Consecutive jitter TBD TBD TBD ns USB 9 t(pjkjr) Paired JK jitter TBD TBD TBD ns USB 10 t(jpkjr) Paired KJ jitter TBD TBD TBD ns USB 11 f(op) Operating frequency TBD TBD Mb/s TBD TBD TBD ns tper – tjr USB_DM VCRS USB_DP 90% VOH 10% VOL tr tf SPRS550-005 Figure 6-50. USB 2.0 Integrated Transceiver Interface Timing 6.6.6 High-End Controller Area Network Controller (HECC) Timing The AM3517/05 device has a High-End Controller Area Network Controller (HECC). The HECC uses established protocol to communicate serially with other controllers in harsh environments. The HECC is fully compliant with the Controller Area Network (CAN) protocol, version 2.0B. Key features of the HECC include the following: • CAN, version 2.0B compliant • 32 RX/TX message objects • 32 receive identifier masks • Programmable wake-up on bus activity • Programmable interrupt scheme • Automatic reply to a remote request • Automatic re-transmission in case of error or loss of arbitration • Protection against reception of a new message • 32-bit time stamp • Local network time counter • Programmable priority register for each message • Programmable transmission and reception time-out • HECC/SCC mode of operation • Standard-Extended Identifier • Self-test mode 148 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 6.6.6.1 HECC Timing Requirements Table 6-93. Timing Requirements for HECC Receive (see Figure 6-51) 1.8 V, 3.3 V NO. MIN 1 f(baud) Maximum programmable baud rate 2 tw(HECC_RX) Pulse duration, receive data bit MAX -1 UNIT 1 Mbps 3 ns 6.6.6.2 HECC Switching Characteristics NO. 1.8 V, 3.3 V PARAMETER MIN 3 f(baud) Maximum programmable baud rate 4 tw(HECC_TX) Pulse duration, transmit data bit -1 UNIT MAX 1 Mbps 3 ns 2 HECCx_RX 4 HECCx_TX Figure 6-51. HECC Transmit/Receive Timing Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 149 PRODUCT PREVIEW Table 6-94. Switching Characteristics Over Recommended Operating Conditions for HECC Transmit (see Figure 6-51) AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 6.6.7 www.ti.com Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) provides an efficient interface between AM3517/05 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The EMAC controls the flow of packet data from the AM3517/05 device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the AM3517/05 device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. 6.6.7.1 EMAC Electrical Data/ Timing PRODUCT PREVIEW Table 6-95. RMII Input Timing Requirements NO. PARAMETER 1.8V, 3.3V MIN TYP MAX TBD UNIT 1 tc(REFCLK) Cycle Time, REF_CLK 2 tw(REFCLKH) Pulse Width, REF_CLK High TBD TBD ns ns 3 tw(REFCLKL) Pulse Width, REF_CLK Low TBD TBD ns 6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before REF_CLK High TBD ns 7 th(REFCLK-RXD) Input Hold Time, RXD Valid after REF_CLK High TBD ns 8 tsu(CRSDV-REFCLK) Input Setup Time, CRSDV Valid before REF_CLK High TBD ns 9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after REF_CLK High TBD ns 10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before REF_CLK High TBD ns 11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after REF_CLK High TBD ns Table 6-96. RMII Output Timing Requirements NO. 150 PARAMETER 1.8V, 3.3V MAX UNIT 4 td(REFCLK-TXD) Output Delay Time, REF_CLK High to TXD Valid TBD TBD ns 5 td(REFCLK-TXEN) Output Delay Time, REF_CLK High to TXEN Valid TBD TBD ns TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS MIN TYP Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 1 2 3 REF_CLK 5 5 TXEN 4 TXD[1:0] PRODUCT PREVIEW 6 7 RXD[1:0] 8 9 CRS_DV 10 11 RXER_IN SPRS550-004 Figure 6-52. RMII Timing Diagram 6.6.8 Universal Asynchronous Receiver/Transmitter (UART) The AM3517/05 has four UARTs (one with Infrared Data Association [IrDA] and Consumer Infrared [CIR] modes). Table 6-97. Timing Requirements for UARTx Receive 1.8V, 3.3V NO. MIN MAX UNIT 4 tw(URXDB) Pulse duration, receive data bit (RXDn) .96U 1.05U ns 5 tw(URXSB) Pulse duration, receive start bit .96U 1.05U ns Table 6-98. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit NO. 1 1.8V, 3.3V PARAMETER f(baud) MIN MAX UART0 Maximum programmable baud rate f(baud_15) 5 UART0 Maximum programmable baud rate f(baud_30) 0.23 UART0 Maximum programmable baud rate f(baud_100) 0.115 UNIT mbps 2 tw(UTXDB) Pulse duration, transmit data bit, 15/30/100 pF U-2 U+2 ns 3 tw(UTXSB) Pulse duration, transmit start bit, 15/30/100 pF U-2 U+2 ns Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 151 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 3 2 UART_TXDn Start Bit Data Bits 5 4 UART_RXDn Start Bit Data Bits Figure 6-53. UART Transmit/Receive Timing PRODUCT PREVIEW 6.6.8.1 UART IrDA Interface The IrDA module can operate in three different modes: • Slow infrared (SIR) (≤115.2 Kbits/s) • Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s) • Fast infrared (FIR) (4 Mbits/s) Pulse duration 90% 90% 50% 50% 10% 10% tr tf 030-118 Figure 6-54. UART IrDA Pulse Parameters 6.6.8.1.1 IrDA—Receive Mode Table 6-99. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode SIGNALING RATE ELECTRICAL PULSE DURATION MIN NOMINAL MAX UNIT SIR 2.4 Kbit/s 1.41 78.1 88.55 µs 9.6 Kbit/s 1.41 19.5 22.13 µs 19.2 Kbit/s 1.41 9.75 11.07 µs 38.4 Kbit/s 1.41 4.87 5.96 µs 57.6 Kbit/s 1.41 3.25 4.34 µs 115.2 Kbit/s 1.41 1.62 2.23 µs MIR 152 0.576 Mbit/s 297.2 416 518.8 ns 1.152 Mbit/s 149.6 208 258.4 ns TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-99. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode (continued) SIGNALING RATE ELECTRICAL PULSE DURATION MIN NOMINAL UNIT MAX FIR 4.0 Mbit/s (Single pulse) 67 125 164 ns 4.0 Mbit/s (Double pulse) 190 250 289 ns PARAMETER MAX UNIT tR Rising time, uart3_rx_irrx 200 ns tF Falling time, uart3_rx_irrx 200 ns PRODUCT PREVIEW Table 6-100. UART IrDA—Rise and Fall Time—Receive Mode 6.6.8.1.2 IrDA—Transmit Mode Table 6-101. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode SIGNALING RATE ELECTRICAL PULSE DURATION MIN NOMINAL UNIT MAX SIR 2.4 Kbit/s 78.1 78.1 78.1 µs 9.6 Kbit/s 19.5 19.5 19.5 µs 19.2 Kbit/s 9.75 9.75 9.75 µs 38.4 Kbit/s 4.87 4.87 4.87 µs 57.6 Kbit/s 3.25 3.25 3.25 µs 115.2 Kbit/s 1.62 1.62 1.62 µs 416 419 ns 208 211 ns MIR 0.576 Mbit/s 414 1.152 Mbit/s 206 FIR 6.6.9 4.0 Mbit/s (Single pulse) 123 125 128 ns 4.0 Mbit/s (Double pulse) 248 250 253 ns HDQ / 1-Wire Interfaces This module is intended to work with both the HDQ and the 1-Wire protocols. The protocols use a single wire to communicate between the master and the slave. The protocols employ an asynchronous return to 1 mechanism where, after any command, the line is pulled high. 6.6.9.1 HDQ Protocol Table 6-102 and Table 6-103 assume testing over the recommended operating conditions (see Figure 6-55 through Figure 6-58). Table 6-102. HDQ Timing Requirements PARAMETER DESCRIPTION MIN tCYCD Bit window 253 tHW1 Reads 1 tHW0 Reads 0 tRSPS (1) Command to host respond time MAX UNIT s 68 180 (1) Defined by software. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 153 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-103. HDQ Switching Characteristics PARAMETER DESCRIPTION tB Break timing MIN TYP tBR Break recovery 63 tCYCH Bit window 253 tDW1 Sends1 (write) 1.3 tDW0 Sends0 (write) 101 MAX UNIT 193 s tB tBR HDQ 030-095 PRODUCT PREVIEW Figure 6-55. HDQ Break (Reset) Timing tCYCH tHW0 tHW1 HDQ 030-096 Figure 6-56. HDQ Read Bit Timing (Data) tCYCD tDW0 tDW1 HDQ 030-097 Figure 6-57. HDQ Write Bit Timing (Command/Address or Data) Command _byte_written 0_(LSB ) Break 1 Data_byte_received tRSPS 6 1 7_(MSB) 0_(LSB) 6 HDQ 030-098 Figure 6-58. HDQ Communication Timing 6.6.9.2 1-Wire Protocol Table 6-104 and Table 6-105 assume testing over the recommended operating conditions (see Figure 6-59 through Figure 6-61). Table 6-104. 1-Wire Timing Requirements PARAMETER DESCRIPTION tPDH Presence pulse delay high tPDL Presence pulse delay low tRDV + tREL Read bit-zero time 154 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS MIN MAX UNIT 68 s 68 tPDH 102 Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-105. 1-Wire Switching Characteristics PARAMETER DESCRIPTION tRSTL Reset time low MIN TYP 484 tRSTH Reset time high 484 tSLOT Write bit cycle time 102 tLOW1 Write bit-one time 1.3 tLOW0 Write bit-zero time 101 tREC Recovery time 134 tLOWR Read bit strobe time 13 MAX UNIT s tRTSL 1-WIRE tPDH tPDL 030-099 Figure 6-59. 1-Wire Break (Reset) Timing tSLOT_and_ tREC tRDV_and_ tREL tLOWR 1-WIRE 030-100 Figure 6-60. 1-Wire Read Bit Timing (Data) tSLOT_and_tREC tLOW0 1-WIRE tLOW1 030-101 Figure 6-61. 1-Wire Write Bit Timing (Command/Address or Data) Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 155 PRODUCT PREVIEW tRSTH AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.6.10 I2C Interface The multimaster I2C peripheral provides an interface between two or more devices via an I2C serial bus. The I2C controller supports the multimaster mode which allows more than one device capable of controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can operate as either transmitter or receiver, according to the function of the device. In addition to being a transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when performing data transfers. This data transfer is carried out via two serial bidirectional wires: • An SDA data line • An SCL clock line The following sections illustrate the data transfer is in master or slave configuration with 7-bit addressing format. The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode (up to 100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s) . PRODUCT PREVIEW 6.6.10.1 I2C Standard/Fast-Speed Mode Table 6-106. I2C Standard/Fast-Speed Mode Timings 1.8V, 3.3-V PARAMETER (1) NO. STANDARD MODE MIN MAX FAST MODE MIN MAX fSCL Clock Frequency, i2cX_scl I1 tw(SCLH) Pulse Duration, i2cX_scl high I2 tw(SCLL) Pulse Duration, i2cX_scl low 4.7 1.3 s I3 tsu(SDAV-SCLH) Setup time, i2cX_sda valid before i2cX_scl active level 250 100 (2) ns I4 th(SCLHSDAV) Hold time, i2cX_sda valid after i2cX_scl active level I5 tsu(SDAL-SCLH) Setup time, i2cX_scl high after i2cX_sda low (for a START (4) condition or a repeated START condition) I6 th(SCLHSDAH) I7 I8 (1) (2) (3) (4) 156 100 UNIT 4 400 0.6 3.45 (3) kHz s 0.9 (3) s 4.7 0.6 s Hold time, i2cX_sda low level after i2cX_scl high level (STOP condition) 4 0.6 s th(SCLHRSTART) Hold time, i2cX_sda low level after i2cX_scl high level (for a repeated START condition) 4 0.6 s tw(SDAH) Pulse duration, i2cX_sda high between STOP and START conditions 4.7 1.3 s tR(SCL) Rise time, i2cX_scl 1000 300 ns tF(SCL) Fall time, i2cX_scl 300 300 ns tR(SDA) Rise time, i2cX_sda 1000 300 ns tF(SDA) Fall time, i2cX_sda 300 300 ns CB Capacitive load for each bus line 60 60 pF In i2cX, X is equal to 1, 2, or 3. A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) 250 ns must then be met. This is automatically the case if the device does not stretch the low period of the i2cx_scl. If such a device does stretch the low period of the i2cx_scl, it must output the next data bit to the i2cx_sda line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns (according to the standard-mode I2C-bus specification) before the i2cx_scl line is released. The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl signal. After this time, the first clock is generated. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 START REPEAT START START STOP i2cX_sda I2 I6 I1 I5 I3 I4 I8 I6 I7 i2cX_scl 030-093 PRODUCT PREVIEW Figure 6-62. I2C Standard/Fast Mode Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 157 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.6.10.2 I2C High-Speed Mode Table 6-107. I2C HighSpeed Mode Timings (1) (2) 1.8V, 3.3V NO. PARAMETER CB = 60 pF MAX MIN fSCL MAX Clock frequency, i2cX_scl CB = 400 pF MAX MIN 3.4 (3) 1.7 (3) MHz PRODUCT PREVIEW I1 tw(SCLH) Pulse duration, i2cX_scl high 60 I2 tw(SCLL) Pulse duration, i2cX_scl low 160 (3) 320 (3) s I3 tsu(SDAV-SCLH) Setup time, i2cX_sda valid before i2cX_scl active level 10 10 ns I4 th(SCLHSDAV) Hold time, i2cX_sda valid after i2cX_scl active level I5 tsu(SDAL-SCLH) Setup time, i2cX_scl high after i2cX_sda low (for a START (4) condition or a repeated START condition) 160 160 s I6 th(SCLHSDAH) Hold time, i2cX_sda low level after i2cX_scl high level (STOP condition) 160 160 s I7 th(SCLHRSTART) Hold time, i2cX_sda low level after i2cX_scl high level (for a repeated START condition) 160 160 ns tR(SCL) Rise time, i2cX_scl 10 40 80 ns tR(SCL) Rise time, i2cX_scl after a repeated START condition and after a bit acknowledge 10 80 160 ns tF(SCL) Fall time, i2cX_scl 10 40 80 ns tR(SDA) Rise time, i2cX_sda 10 80 160 ns tF(SDA) Fall time, i2cX_sda 10 80 160 ns (1) (2) (3) (4) 120 UNIT MAX 0 (2) 70 s 150 s In i2cX, X is equal to 1, 2, or 3. The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to bridge the undefined region of the falling edge of i2cx_scl. HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(SCLL) > 2 tw(SCLH). After this time, the first clock is generated. START REPEAT STOP i2cX_sda I5 I6 I1 I2 I3 I4 I7 i2cX_scl 030-094 2 Figure 6-63. I C High-Speed ModeStep 1Step 2Step 3 (1) HS-mode master devices generate a serial clock signal with a high-to-low ratio of 1 to 2. tw(SCLL) > 2 x tw(SCLH). (2) In i2cX, X is equal to 1, 2, or 3. (3) After this time, the first clock is generated. Table 6-108. Correspondence Standard vs. TI Timing References STANDARD-I2C TI-AM35x 158 S/F Mode HS Mode fSCL FSCL FSCLH I1 tw(SCLH) THIGH THIGH I2 tw(SCLL) TLOW TLOW I3 tsu(SDAV-SCLH) TSU;DAT TSU;DAT I4 th(SCLH-SDAV) TSU;DAT TSU;DAT I5 tsu(SDAL-SCLH) TSU;STA TSU;STA I6 th(SCLH-SDAH) THD;STA THD;STA TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-108. Correspondence Standard vs. TI Timing References (continued) STANDARD-I2C TI-AM35x HS Mode th(SCLH-RSTART) TSU;STO TSU;STO I8 tw(SDAH) TBUF PRODUCT PREVIEW S/F Mode I7 Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 159 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.7 Removable Media Interfaces 6.7.1 High-Speed Multimedia Memory Card (MMC) and Secure Digital IO Card (SDIO) Timing The MMC/SDIO host controller provides an interface to high-speed and standard MMC, SD memory cards, or SDIO cards. The application interface is responsible for managing transaction semantics. The MMC/SDIO host controller deals with MMC/SDIO protocol at transmission level, packing data, adding CRC, start/end bit, and checking for syntactical correctness. PRODUCT PREVIEW There are three MMC interfaces on the AM3517/05: • MMC/SD/SDIO Interface 1: – 1.8-V/3.3-V support – 8 bits • MMC/SD/SDIO Interface 2: – 1.8-V/3.3-V support – 8 bits – 4 bits with external transceiver allowing to support 1.8-V/3.3-V peripherals in 1.8-V mode operation. Transceiver direction control signals are multiplexed with the upper four data bits. • MMC/SD/SDIO Interface 3: – 1.8-V/3.3-V support – 8 bits 6.7.1.1 MMC/SD/SDIO in SD Identification Mode Table 6-110 and Table 6-111 assume testing over the recommended operating conditions and electrical characteristic conditions. Table 6-109. MMC/SD/SDIO Timing Conditions SD Identification Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT MIN MAX SD Identification Mode Input Conditions tR Input signal rise time TBD TBD ns tF Input signal fall time TBD TBD ns TBD pF Output Conditions CLOAD Output load capacitance Table 6-110. MMC/SD/SDIO Timing Requirements SD Identification Mode (1) (2) (3) NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX SD Identification Mode MMC/SD/SDIO Interface 1 HSSD3/SD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge TBD ns HSSD4/SD4 tsu(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge TBD ns MMC/SD/SDIO Interface 2 HSSD3/SD3 tsu(CMDV-CLKIH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge TBD ns HSSD4/SD4 tsu(CLKIH-CMDIV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge TBD ns (1) (2) (3) 160 Timing parameters are referred to output clock specified in Table 6-111. The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-111. Corresponding figures showing timing parameters are common with other interface modes. (See SD and HS SD modes). TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-110. MMC/SD/SDIO Timing Requirements SD Identification Mode (continued) NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX MMC/SD/SDIO Interface 3 HSSD3/SD3 tsu(CMDV-CLKIH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge TBD ns HSSD4/SD4 tsu(CLKIH-CMDIV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge TBD ns Table 6-111. MMC/SD/SDIO Switching Characteristics SD Identification Mode (1) NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX HSSD1/SD1 tc(clk) Cycle time (2), output clk period HSSD2/SD2 tW(clkH) Typical pulse duration, output clk high TBD HSSD2/SD2 tW(clkL) Typical pulse duration, output clk low TBD tdc(clk) Duty cycle error, output clk TBD ns tj(clk) Jitter standard deviation (3), output clk TBD ps tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd transition TBD ns TBD PRODUCT PREVIEW SD Identification Mode ns ns ns MMC/SD/SDIO Interface 1 HSSD5/SD5 TBD MMC/SD/SDIO Interface 2 HSSD5/SD5 tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns td(CLKOH-CMD) Delay time, mmc2_clk rising clock edge to mmc2_cmd transition TBD ns TBD MMC/SD/SDIO Interface 3 HSSD5/SD5 (1) (2) (3) tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns td(CLKOH-CMD) Delay time, mmc3_clk rising clock edge to mmc3_cmd transition TBD ns TBD Corresponding figures showing timing parameters are common with other interface modes (see SD and HS SD modes). Related with the output clk maximum and minimum frequencies programmable in I/F module. The jitter probability density can be approximated by a Gaussian function. Table 6-112. X Parameter CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 161 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-113. Y Parameter CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD 6.7.1.2 MMC/SD/SDIO in High-Speed MMC Mode Table 6-115 and Table 6-116 assume testing over the recommended operating conditions and electrical characteristic conditions (see Figure 6-64 and Figure 6-65). Table 6-114. MMC/SD/SDIO Timing Conditions High-Speed MMC Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT PRODUCT PREVIEW MIN MAX High-Speed MMC Mode Input Conditions tR Input signal rise time TBD TBD ns tF Input signal fall time TBD TBD ns Output Conditions CLOAD Output load capacitance TBD pF Table 6-115. MMC/SD/SDIO Timing Requirements High-Speed MMC Mode (1) (2) (3) (4) NO. PARAMETER 1.8 V, 3.3V MIN UNIT MAX High-Speed MMC Mode MMC/SD/SDIO Interface 1 MMC3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge TBD ns MMC4 tsu(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge TBD ns MMC7 tsu(DATxV-CLKIH) Setup time, mmc1_datx valid before mmc1_clk rising clock edge TBD ns MMC8 tsu(CLKIH-DATxIV) Hold time, mmc1_datx valid after mmc1_clk rising clock edge TBD ns MMC/SD/SDIO Interface 2 MMC3 tsu(CMDV-CLKIH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge TBD ns MMC4 tsu(CLKIH-CMDIV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge TBD ns MMC7 tsu(DATxV-CLKIH) Setup time, mmc2_datx valid before mmc2_clk rising clock edge TBD ns MMC8 tsu(CLKIH-DATxIV) Hold time, mmc2_datx valid after mmc2_clk rising clock edge TBD ns MMC/SD/SDIO Interface 3 MMC3 tsu(CMDV-CLKIH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge TBD ns MMC4 tsu(CLKIH-CMDIV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge TBD ns MMC7 tsu(DATxV-CLKIH) Setup time, mmc3_datx valid before mmc3_clk rising clock edge TBD ns (1) (2) (3) (4) 162 Timing parameters are referred to output clock specified in Table 6-116. The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-116. Corresponding figures showing timing parameters are common with Standard MMC mode (See Figure 6-64 and Figure 6-65) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-115. MMC/SD/SDIO Timing Requirements High-Speed MMC Mode (continued) NO. PARAMETER 1.8 V, 3.3V MIN MMC8 tsu(CLKIH-DATxIV) UNIT MAX Hold time, mmc3_datx valid after mmc3_clk rising clock edge TBD ns Table 6-116. MMC/SD/SDIO Switching Characteristics High-Speed MMC Mode (1) N O. PARAMETER 1.8V, 3.3V MIN UNIT MAX High-Speed MMC Mode MMC1 tc(clk) Cycle time (2), output clk period TBD ns MMC2 tW(clkH) Typical pulse duration, output clk high TBD ns MMC2 tW(clkL) Typical pulse duration, output clk low TBD tdc(clk) Duty cycle error, output clk Jitter standard deviation , output clk ps TBD ps PRODUCT PREVIEW tj(clk) (3) ns TBD MMC/SD/SDIO Interface 1 tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns MMC5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd transition TBD TBD ns MMC6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to mmc1_datx transition TBD TBD ns MMC/SD/SDIO Interface 2 tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns MMC5 td(CLKOH-CMD) Delay time, mmc2_clk rising clock edge to mmc2_cmd transition TBD TBD ns MMC6 td(CLKOH-DATx) Delay time, mmc2_clk rising clock edge to mmc2_datx transition TBD TBD ns MMC/SD/SDIO Interface 3 tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns MMC5 td(CLKOH-CMD) Delay time, mmc3_clk rising clock edge to mmc3_cmd transition TBD TBD ns MMC6 td(CLKOH-DATx) Delay time, mmc3_clk rising clock edge to mmc3_datx transition TBD TBD ns (1) (2) (3) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7. Related with the output clk maximum and minimum frequencies programmable in I/F module. The jitter probability density can be approximated by a Gaussian function. Table 6-117. X Parameter CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 163 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-118. Y Parameter CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD For details about clock division factor CLKD, see the TBD. 6.7.1.3 MMC/SD/SDIO in Standard MMC Mode and MMC Identification Mode Table 6-120 and Table 6-121 assume testing over the recommended operating conditions and electrical characteristic conditions. Table 6-119. MMC/SD/SDIO Timing Conditions Standard MMC Mode and MMC Identification Mode PRODUCT PREVIEW TIMING CONDITION PARAMETER VALUE UNIT Standard MMC Mode and MMC Identification Mode Input Conditions tR Input signal rise time TBD ns tF Input signal fall time TBD ns Output load capacitance TBD pF Output Conditions CLOAD 164 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-120. MMC/SD/SDIO Timing Requirements Standard MMC Mode and MMC Identification Mode (1) (2) NO. PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX Standard MMC Mode and MMC Identification Mode MMC/SD/SDIO Interface 1 MMC3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge TBD TBD ns MMC4 tsu(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge TBD TBD ns MMC7 tsu(DATxV-CLKIH) Setup time, mmc1_datx valid before mmc1_clk rising clock edge TBD TBD ns MMC8 tsu(CLKIH-DATxIV) Hold time, mmc1_datx valid after mmc1_clk rising clock edge TBD TBD ns MMC3 tsu(CMDV-CLKIH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge TBD TBD ns MMC4 tsu(CLKIH-CMDIV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge TBD TBD ns MMC7 tsu(DATxV-CLKIH) Setup time, mmc2_datx valid before mmc2_clk rising clock edge TBD TBD ns MMC8 tsu(CLKIH-DATxIV) Hold time, mmc2_datx valid after mmc2_clk rising clock edge TBD TBD ns PRODUCT PREVIEW MMC/SD/SDIO Interface 2 MMC/SD/SDIO Interface 3 MMC3 tsu(CMDV-CLKIH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge TBD TBD ns MMC4 tsu(CLKIH-CMDIV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge TBD TBD ns MMC7 tsu(DATxV-CLKIH) Setup time, mmc3_datx valid before mmc3_clk rising clock edge TBD TBD ns MMC8 tsu(CLKIH-DATxIV) Hold time, mmc3_datx valid after mmc3_clk rising clock edge TBD TBD ns (1) (2) Timing parameters are referred to output clock specified in Table 6-121. The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-121. Table 6-121. MMC/SD/SDIO Switching Characteristics Standard MMC Mode and MMC Identification Mode NO. PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX MMC Identification Mode MMC1 tc(clk) Cycle time (1), output clk period TBD TBD ns MMC2 tW(clkH) Typical pulse duration, output clk high TBD TBD ns MMC2 tW(clkL) Typical pulse duration, output clk low TBD TBD ns tdc(clk) Duty cycle error, output clk TBD TBD ns tj(clk) Jitter standard deviation (2), output clk TBD TBD ps Standard MMC Mode MMC1 tc(clk) Cycle time (1), output clk period TBD TBD ns MMC2 tW(clkH) Typical pulse duration, output clk high TBD TBD ns MMC2 tW(clkL) Typical pulse duration, output clk low TBD TBD ns tdc(clk) Duty cycle error, output clk TBD TBD ps tj(clk) Jitter standard deviation (2), output clk TBD TBD ps TBD TBD ns MMC/SD/SDIO Interface 1 tc(clk) (1) (2) Rise time, output clk Related with the output clk maximum and minimum frequencies programmable in I/F module. The jitter probability density can be approximated by a Gaussian function. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 165 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-121. MMC/SD/SDIO Switching Characteristics Standard MMC Mode and MMC Identification Mode (continued) NO. PARAMETER 1.8 V MIN 3.3 V MAX MIN UNIT MAX tW(clkH) Fall time, output clk TBD TBD ns tW(clkL) Rise time, output data TBD TBD ns PRODUCT PREVIEW tdc(clk) Fall time, output data TBD ns MMC5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd transition TBD TBD TBD TBD TBD ns MMC6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to mmc1_datx transition TBD TBD TBD TBD ns MMC5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd transition TBD TBD TBD TBD ns MMC6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to mmc1_datx transition TBD TBD TBD TBD ns MMC/SD/SDIO Interface 2 tc(clk) Rise time, output clk TBD TBD ns tW(clkH) Fall time, output clk TBD TBD ns tW(clkL) Rise time, output data TBD TBD ns tdc(clk) Fall time, output data TBD TBD ns MMC5 td(CLKOH-CMD) Delay time, mmc2_clk rising clock edge to mmc2_cmd transition TBD TBD TBD TBD ns MMC6 td(CLKOH-DATx) Delay time, mmc2_clk rising clock edge to mmc2_datx transition TBD TBD TBD TBD ns MMC/SD/SDIO Interface 3 tc(clk) Rise time, output clk TBD TBD ns tW(clkH) Fall time, output clk TBD TBD ns tW(clkL) Rise time, output data TBD TBD ns tdc(clk) Fall time, output data TBD TBD ns MMC5 td(CLKOH-CMD) Delay time, mmc3_clk rising clock edge to mmc3_cmd transition TBD TBD TBD TBD ns MMC6 td(CLKOH-DATx) Delay time, mmc3_clk rising clock edge to mmc3_datx transition TBD TBD TBD TBD ns Table 6-122. X Parameter CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD Table 6-123. Y Parameter CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD 166 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 For details about clock division factor CLKD, see the TBD. MMC1 MMC2 mmcx_clk MMC3 MMC4 mmcx_cmd MMC7 MMC8 mmcx_dat[3:0] 030-104 In mmcx, x is equal to 1, 2, or 3. MMC1 MMC2 mmcx_clk MMC5 MMC5 mmcx_cmd MMC6 MMC6 mmcx_dat[3:0] 030-105 In mmcx, x is equal to 1, 2, or 3. Figure 6-65. MMC/SD/SDIO High-Speed and Standard MMC Modes Data/Command Transmit 6.7.1.4 MMC/SD/SDIO in High-Speed SD Mode Table 6-125 and Table 6-126 assume testing over the recommended operating conditions and electrical characteristic conditions. Table 6-124. MMC/SD/SDIO Timing Conditions High-Speed SD Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT MIN MAX High-Speed SD Mode Input Conditions tR Input signal rise time TBD TBD ns tF Input signal fall time TBD TBD ns Output Conditions CLOAD Output load capacitance TBD pF Table 6-125. MMC/SD/SDIO Timing Requirements High-Speed SD Mode (1) (2) (3) NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX High-Speed SD Mode MMC/SD/SDIO Interface 1 HSSD3 (1) (2) (3) tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge TBD ns Timing Parameters are referred to output clock specified in Table 6-126. The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-126. In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 167 PRODUCT PREVIEW Figure 6-64. MMC/SD/SDIO High-Speed and Standard MMC Modes Data/Command Receive AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-125. MMC/SD/SDIO Timing Requirements High-Speed SD Mode (continued) NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX HSSD4 tsu(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge TBD ns HSSD7 tsu(DATxV-CLKIH) Setup time, mmc1_datx valid before mmc1_clk rising clock edge TBD ns HSSD8 tsu(CLKIH-DATxIV) Hold time, mmc1_datx valid after mmc1_clk rising clock edge TBD ns MMC/SD/SDIO Interface 2 PRODUCT PREVIEW HSSD3 tsu(CMDV-CLKIH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge TBD ns HSSD4 tsu(CLKIH-CMDIV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge TBD ns HSSD7 tsu(DATxV-CLKIH) Setup time, mmc2_datx valid before mmc2_clk rising clock edge TBD ns HSSD8 tsu(CLKIH-DATxIV) Hold time, mmc2_datx valid after mmc2_clk rising clock edge TBD ns MMC/SD/SDIO Interface 3 HSSD3 tsu(CMDV-CLKIH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge TBD ns HSSD4 tsu(CLKIH-CMDIV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge TBD ns HSSD7 tsu(DATxV-CLKIH) Setup time, mmc3_datx valid before mmc3_clk rising clock edge TBD ns HSSD8 tsu(CLKIH-DATxIV) Hold time, mmc3_datx valid after mmc3_clk rising clock edge TBD ns Table 6-126. MMC/SD/SDIO Switching Characteristics High-Speed SD Mode NO. PARAMETER 1.8 V, 3.3 V MIN UNIT MAX High-Speed SD Mode HSSD1 tc(clk) Cycle time (1), output clk period TBD ns HSSD2 tW(clkH) Typical pulse duration, output clk high TBD ns HSSD2 tW(clkL) Typical pulse duration, output clk low TBD tdc(clk) Duty cycle error, output clk tj(clk) Jitter standard deviation (2) , output clk ns TBD ps TBD ps MMC/SD/SDIO Interface 1 tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns HSSD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd transition TBD TBD ns HSSD6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to mmc1_datx transition TBD TBD ns MMC/SD/SDIO Interface 2 (1) (2) 168 tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns Related with the output clk maximum and minimum frequencies programmable in I/F module. The jitter probability density can be approximated by a Gaussian function. TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-126. MMC/SD/SDIO Switching Characteristics High-Speed SD Mode (continued) NO. PARAMETER 1.8 V, 3.3 V MIN MAX UNIT HSSD5 td(CLKOH-CMD) Delay time, mmc2_clk rising clock edge to mmc2_cmd transition TBD TBD ns HSSD6 td(CLKOH-DATx) Delay time, mmc2_clk rising clock edge to mmc2_datx transition TBD TBD ns tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns HSSD5 td(CLKOH-CMD) Delay time, mmc3_clk rising clock edge to mmc3_cmd transition TBD TBD ns HSSD6 td(CLKOH-DATx) Delay time, mmc3_clk rising clock edge to mmc3_datx transition TBD TBD ns PRODUCT PREVIEW MMC/SD/SDIO Interface 3 Table 6-127. X Parameters CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD Table 6-128. Y Parameters CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD For details about clock division factor CLKD, see the TBD. HSSD1 HSSD2 mmcx_clk HSSD3 HSSD4 mmcx_cmd HSSD7 HSSD8 mmcx_dat[3:0] 030-106 In mmcx, x is equal to 1, 2, or 3. Figure 6-66. MMC/SD/SDIO High-Speed SD Mode Data/Command Receive Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 169 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com HSSD1 HSSD2 mmcx_clk HSSD5 HSSD5 mmcx_cmd HSSD6 HSSD6 mmcx_dat[3:0] 030-107 In mmcx, x is equal to 1, 2, or 3. Figure 6-67. MMC/SD/SDIO High-Speed SD Mode Data/Command Transmit 6.7.1.5 MMC/SD/SDIO in Standard SD Mode PRODUCT PREVIEW Table 6-130 and Table 6-131 assume testing over the recommended operating conditions and electrical characteristic conditions (see Figure 6-68). Table 6-129. MMC/SD/SDIO Timing Conditions Standard SD Mode TIMING CONDITION PARAMETER 1.8V, 3.3V UNIT MIN MAX Standard SD Mode Input Conditions tR Input signal rise time TBD TBD ns tF Input signal fall time TBD TBD ns Output Conditions CLOAD 170 Output load capacitance TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS TBD pF Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-130. MMC/SD/SDIO Timing Requirements Standard SD Mode (1) (2) (3) NO. PARAMETER 1.8 V, 3.3V MIN UNIT MAX Standard SD Mode MMC/SD/SDIO Interface 1 SD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge TBD ns SD4 tsu(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge TBD ns SD7 tsu(DATxV-CLKIH) Setup time, mmc1_datx valid before mmc1_clk rising clock edge TBD ns SD8 tsu(CLKIH-DATxIV) Hold time, mmc1_datx valid after mmc1_clk rising clock edge TBD ns SD3 tsu(CMDV-CLKIH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge TBD ns SD4 tsu(CLKIH-CMDIV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge TBD ns SD7 tsu(DATxV-CLKIH) Setup time, mmc2_datx valid before mmc2_clk rising clock edge TBD ns SD8 tsu(CLKIH-DATxIV) Hold time, mmc2_datx valid after mmc2_clk rising clock edge TBD ns PRODUCT PREVIEW MMC/SD/SDIO Interface 2 MMC/SD/SDIO Interface 3 SD3 tsu(CMDV-CLKIH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge TBD ns SD4 tsu(CLKIH-CMDIV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge TBD ns SD7 tsu(DATxV-CLKIH) Setup time, mmc3_datx valid before mmc3_clk rising clock edge TBD ns SD8 tsu(CLKIH-DATxIV) Hold time, mmc3_datx valid after mmc3_clk rising clock edge TBD ns (1) (2) (3) Timing parameters are referred to output clock specified in Table 6-131. The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-131. In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7. Table 6-131. MMC/SD/SDIO Switching Characteristics Standard SD Mode NO. PARAMETER 1.8V, 3.3V MIN UNIT MAX Standard SD Mode SD1 tc(clk) Cycle time (1), output clk period TBD ns SD2 tW(clkH) Typical pulse duration, output clk high TBD ns SD2 tW(clkL) Typical pulse duration, output clk low TBD tdc(clk) Duty cycle error, output clk TBD ps tj(clk) Jitter standard deviation (2), output clk TBD ps tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd transition TBD ns ns MMC/SD/SDIO Interface 1 SD5 (1) (2) TBD Related with the output clk maximum and minimum frequencies programmable in I/F module. The jitter probability density can be approximated by a Gaussian function. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 171 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-131. MMC/SD/SDIO Switching Characteristics Standard SD Mode (continued) NO. SD6 PARAMETER td(CLKOH-DATx) 1.8V, 3.3V Delay time, mmc1_clk rising clock edge to mmc1_datx transition UNIT MIN MAX TBD TBD ns MMC/SD/SDIO Interface 2 PRODUCT PREVIEW tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns SD5 td(CLKOH-CMD) Delay time, mmc2_clk rising clock edge to mmc2_cmd transition TBD TBD ns SD6 td(CLKOH-DATx) Delay time, mmc2_clk rising clock edge to mmc2_datx transition TBD TBD ns MMC/SD/SDIO Interface 3 tc(clk) Rise time, output clk TBD ns tW(clkH) Fall time, output clk TBD ns tW(clkL) Rise time, output data TBD ns tdc(clk) Fall time, output data TBD ns SD5 td(CLKOH-CMD) Delay time, mmc3_clk rising clock edge to mmc3_cmd transition TBD TBD ns SD6 td(CLKOH-DATx) Delay time, mmc3_clk rising clock edge to mmc3_datx transition TBD TBD ns Table 6-132. X Parameter CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD Table 6-133. Y Parameter CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD For details about clock division factor CLKD, see the TBD. SD1 SD2 mmcx_clk SD3 SD4 mmcx_cmd SD7 SD8 mmcx_dat[3:0] 030-108 In mmcx, x is equal to 1, 2, or 3. Figure 6-68. MMC/SD/SDIO Standard SD Mode Data/Command Receive 172 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 SD1 SD2 mmcx_clk SD5 SD5 mmcx_cmd SD6 SD6 mmcx_dat[3:0] 030-109 In mmcx, x is equal to 1, 2, or 3. PRODUCT PREVIEW Figure 6-69. MMC/SD/SDIO Standard SD Mode Data/Command Transmit Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 173 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 6.8 Test Interfaces The emulation and trace interfaces allow tracing activities of the following CPUs: • ARM1136JF-STM through an Embedded Trace Macro-cell (ETM11) dedicated to enable real-time trace of the ARM subsystem operations and a Serial Debug Trace Interface (SDTI) All processors can be emulated via JTAG ports. 6.8.1 Embedded Trace Macro Interface (ETM) Table 6-134 assumes testing over the recommended operating conditions (see Figure 6-70). Table 6-134. Embedded Trace Macro Interface Switching Characteristics (1) NO. PARAMETER PRODUCT PREVIEW f 1/tc(CLK) MIN Frequency, etk_clk (2) UNIT TBD MHz ETM0 tc(CLK) Cycle time ETM1 tW(CLK) Clock pulse width, etk_clk TBD ETM2 td(CLK-CTL) Delay time, etk_clk clock edge to etk_ctl transition TBD TBD ns ETM3 td(CLK-D) Delay time, etk_clk clock high to etk_d[15:0] transition TBD TBD ns (1) (2) , etk_clk MAX TBD ns ns The capacitive load is equivalent to 25 pF. Cycle time is given by considering a jitter of 5%. ETM0 ETM1 etk_clk ETM2 ETM2 etk_ctl ETM3 ETM3 etk_d[15:0] 030-110 Figure 6-70. Embedded Trace Macro Interface 6.8.2 System Debug Trace Interface (SDTI) The system debug trace interface (SDTI) module provides real-time software tracing functionality to the AM3517/05 device. The trace interface has four trace data pins and a trace clock pin. This interface is a dual-edge interface: the data are available on rising and falling edges of sdti_clk but can be also configured in single edge mode where data are available on falling edge of sdti_clk. Serial interface operates in clock stop regime: serial clock is not free running, when there is no trace data there is no trace clock. 6.8.2.1 System Debug Trace Interface in Dual-Edge Mode Table 6-136 assumes testing over the recommended operating conditions and electrical characteristic conditions (see Figure 6-71). Table 6-135. System Debug Trace Interface Timing Conditions – Dual-Edge Mode TIMING CONDITION PARAMETER VALUE UNIT 25 pF Output Conditions CLOAD 174 Output load capacitance TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-136. System Debug Trace Interface Switching Characteristics – Dual-Edge Mode PARAMETER 1.15 V UNIT MIN SD1 tc(CLK) Cycle time, sdti_clk period SD2 tw(CLK) Typical pulse duration, sdti_clk high or low tdc(CLK) Duty cycle error, sdti_clk tR(CLK) tF(CLK) td(CLK-TxD) Delay time, sdti_clk transition to sdti_txd[3:0] transition SD3 (1) MAX 29 ns 0.5*P (1) ns –1.2 1.2 ns Rise time, sdti_clk 5 ns Fall time, sdti_clk 5 ns ns Multiplexing mode on etk pins 2.3 10.9 Multiplexing mode on jtag_emu pins 2.3 13.9 tR(CLK) Rise time, sdti_txd[3:0] 5 ns tF(CLK) Fall time, sdti_txd[3:0] 5 ns P = sdti_clk clock period SD1 SD2 sdti_clk SD3 sdti_txd[3:0] Header SD3 Header Ad[7:4] Ad[3:0] Da[15:12] Da[11:8] Da[7:4] Da[3:0] 030-111 Figure 6-71. System Debug Trace Interface – Dual-Edge Mode 6.8.2.2 System Debug Trace Interface in Single-Edge Mode Table 6-138 assumes testing over the recommended operating conditions and electrical characteristic conditions (see Figure 6-72). Table 6-137. System Debug Trace Interface Timing Conditions – Single-Edge Mode TIMING CONDITION PARAMETER VALUE UNIT 25 pF Output Conditions CLOAD Output load capacitance Table 6-138. System Debug Trace Interface Switching Characteristics – Single-Edge Mode NO. PARAMETER 1.15 V MIN UNIT MAX SD1 tc(CLK) Cycle time, sdti_clk period SD2 tw(CLK) Typical pulse duration, sdti_clk high or low tdc(CLK) Duty cycle error, sdti_clk 1.2 ns tR(CLK) Rise time, sdti_clk 5 ns tF(CLK) Fall time, sdti_clk 5 ns td(CLK-TxD) Delay time, sdti_clk transition to sdti_txd[3:0] transition ns SD3 (1) 29 ns 0.5*P (1) –1.2 ns Multiplexing mode on etk pins 2.3 26.5 Multiplexing mode on jtag_emu pins 2.3 33.2 tR(CLK) Rise time, sdti_txd[3:0] 5 ns tF(CLK) Fall time, sdti_txd[3:0] 5 ns P = sdti_clk clock period. Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 175 PRODUCT PREVIEW NO. AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com SD1 SD2 sdti_clk SD3 sdti_txd[3:0] Header Header SD3 Ad[7:4] Ad[3:0] Da[15:12] Da[11:8] Da[7:4] Da[3:0] 030-112 Figure 6-72. System Debug Trace Interface – Single-Edge Mode 6.8.3 JTAG Interfaces PRODUCT PREVIEW AM3517/05 JTAG TAP controller handles standard IEEE JTAG interfaces. The following sections define the timing requirements for several tools used to test the AM3517/05 processors as: • Free running clock tool, like XDS560 and XDS510 tools • Adaptive clock tool, like RealView ICE tool and Lauterbach tool 6.8.3.1 JTAG Free Running Clock Mode Table 6-140 and Table 6-141 assume testing over the recommended operating conditions and electrical characteristic conditions (see Figure 6-73). Table 6-139. JTAG Timing Conditions Free Running Clock Mode TIMING CONDITION PARAMETER 1.8 V 3.3 V MAX MAX UNIT Input Conditions tR Input signal rise time TBD TBD ns tF Input signal fall time TBD TBD ns Output load capacitance TBD TBD pF Output Conditions CLOAD Table 6-140. JTAG Timing Requirements Free Running Clock Mode (1) 1.8 V NO. PARAMETER MIN 3.3 V MAX MIN MAX UNIT JT4 tc(tck) Cycle time (2), jtag_tck period JT5 tw(tckL) Typical pulse duration, jtag_tck low TBD TBD ns JT6 tw(tckH) Typical pulse duration, jtag_tck high TBD TBD ns tdc(tck) Duty cycle error, jtag_tck TBD TBD TBD TBD ps tj(tck) Cycle jitter (3), jtag_tck TBD TBD TBD TBD ps tsu(tdiV-rtckH) Setup time, jtag_tdi valid before jtag_rtck high TBD TBD ns JT7 ns JT8 th(tdiV-rtckH) Hold time, jtag_tdi valid after jtag_rtck high TBD TBD ns JT9 tsu(tmsV-rtckH) Setup time, jtag_tms valid before jtag_rtck high TBD TBD ns JT10 th(tmsV-rtckH) Hold time, jtag_tms valid after jtag_rtck high TBD TBD ns JT12 tsu(emuxV-rtckH) Setup time, jtag_emux (4) valid before jtag_rtck high TBD TBD ns JT13 th(emuxV-rtckH) Hold time,jtag_emux (4) valid after jtag_rtck high TBD TBD ns (1) (2) (3) (4) 176 The timing requirements are assured for the cycle jitter and duty cycle error conditions specified. Related with the input maximum frequency supported by the JTAG module. Maximum cycle jitter supported by jtag _tck input clock. x = 0 to 1 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 Table 6-141. JTAG Switching Characteristics Free Running Clock Mode PARAMETER MIN 3.3 V MAX MIN MAX UNIT JT1 tc(rtck) Cycle time (1), jtag_rtck period JT2 tw(rtckL) Typical pulse duration, jtag_rtck low TBD TBD ns JT3 tw(rtckH) Typical pulse duration, jtag_rtck high TBD TBD ns tdc(rtck) Duty cycle error, jtag_rtck TBD ps tj(rtck) Jitter standard deviation (2), jtag_rtck TBD TBD ps tR(rtck) Rise time, jtag_rtck TBD TBD ns tF(rtck) Fall time, jtag_rtck TBD TBD ns JT11 td(rtckL-tdoV) TBD Delay time, jtag_rtck low to jtag_tdo valid TBD ns TBD TBD ns tF(tdo) Fall time, jtag_tdo TBD TBD ns Delay time, jtag_rtck high to ,jtag_emux valid TBD TBD TBD Rise time, jtag_tdo (3) TBD TBD TBD TBD ns tR(tdo) JT14 td(rtckH-emuxV) (1) (2) (3) TBD TBD ns tR(emux) Rise time, jtag_emux (3) TBD TBD TBD ns tF(emux) Fall time, jtag_emux (3) TBD TBD ns PRODUCT PREVIEW 1.8 V NO. Related with the jtag_rtck maximum frequency. The jitter probability density can be approximated by a Gaussian function. x = 0 to 1 JT4 JT5 JT6 jtag_tck JT1 JT2 JT3 jtag_rtck JT7 JT8 JT9 JT10 jtag_tdi jtag_tms JT12 JT13 jtag_emux(IN) JT11 jtag_tdo JT14 jtag_emux(OUT) 030-113 In jtag_emux, x is equal to 0 to 1. Figure 6-73. JTAG Interface Timing Free Running Clock Mode 6.8.3.2 JTAG Adaptive Clock Mode Table 6-143 and Table 6-144 assume testing over the recommended operating conditions and electrical characteristic conditions (see Figure 6-74): Table 6-142. JTAG Timing Conditions Adaptive Clock Mode TIMING CONDITION PARAMETER 1.8 V 3.3 V MAX UNIT Input Conditions tR Input signal rise time Submit Documentation Feedback TBD TBD ns TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 177 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com Table 6-142. JTAG Timing Conditions Adaptive Clock Mode (continued) TIMING CONDITION PARAMETER 1.8 V 3.3 V MAX tF UNIT Input signal fall time TBD TBD ns Output load capacitance TBD TBD pF Output Conditions CLOAD Table 6-143. JTAG Timing Requirements Adaptive Clock Mode (1) 1.8 V NO. PARAMETER MIN 3.3 V MAX MIN MAX PRODUCT PREVIEW JA4 tc(tck) Cycle time (2), jtag_tck period JA5 tw(tckL) Typical pulse duration, jtag_tck low TBD TBD JA6 tw(tckH) Typical pulse duration, jtag_tck high TBD TBD tdc(lclk) Duty cycle error, jtag_tck (3) TBD ns ns ns TBD TBD TBD TBD ps TBD TBD TBD TBD ps tj(lclk) Cycle jitter JA7 tsu(tdiV-tckH) Setup time, jtag_tdi valid before jtag_tck high TBD TBD ns JA8 th(tdiV-tckH) Hold time, jtag_tdi valid after jtag_tck high TBD TBD ns JA9 tsu(tmsV-tckH) Setup time, jtag_tms valid before jtag_tck high TBD TBD ns JA10 th(tmsV-tckH) Hold time, jtag_tms valid after jtag_tck high TBD TBD ns (1) (2) (3) , jtag_tck TBD UNIT The timing requirements are assured for the cycle jitter and duty cycle error conditions specified. Related with the input maximum frequency supported by the JTAG module. Maximum cycle jitter supported by jtag _tck input clock. Table 6-144. JTAG Switching Characteristics Adaptive Clock Mode 1.8 V PARAMETER JA1 tc(rtck) Cycle time (1), jtag_rtck period JA2 tw(rtckL) Typical pulse duration, jtag_rtck low TBD TBD JA3 tw(rtckH) Typical pulse duration, jtag_rtck high TBD TBD tdc(rtck) Duty cycle error, jtag_rtck JA11 MIN 3.3 V NO. MAX MIN MAX TBD TBD (2) , jtag_rtck UNIT ns TBD TBD ns ns TBD ps tj(rtck) Jitter standard deviation TBD TBD ps tR(rtck) Rise time, jtag_rtck TBD TBD ns tF(rtck) Fall time, jtag_rtck TBD TBD ns td(rtckL-tdoV) Delay time, jtag_rtck low to jtag_tdo valid TBD ns tR(tdo) Rise time, jtag_tdo, TBD TBD ns tF(tdo) Fall time, jtag_tdo TBD TBD ns (1) (2) Related with the jtag _rtck maximum frequency programmable. The jitter probability density can be approximated by a Gaussian function. 178 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS TBD TBD TBD Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 JA4 JA5 JA6 jtag_tck JA7 JA8 JA9 JA10 jtag_tdi jtag_tms JA1 JA2 JA3 jtag_rtck JA11 jtag_tdo PRODUCT PREVIEW 030-114 Figure 6-74. JTAG Interface Timing Adaptive Clock Mode Submit Documentation Feedback TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS 179 AM3517/05 ARM Microprocessor SPRS550 – OCTOBER 2009 www.ti.com 7 PACKAGE CHARACTERISTICS 7.1 Package Thermal Resistance Table 7-1 provides the thermal resistance characteristics for the recommended package types used on the AM3517/05 Applications Processor. Table 7-1. AM3517/05 Thermal Resistance Characteristics (1) Package Power (W) RJA(C/W) RJB(C/W) RJC(C/W) Board Type AM3517/05 (ZCN Pkg.) TBD TBD 10.1 TBD 2S2P (1) RJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, C/W RJB (Theta-JB) = Thermal Resistance Junction-to-Board, C/W RJC (Theta-JC) = Thermal Resistance Junction-to-Case, C/W PRODUCT PREVIEW 7.2 Device Support 7.2.1 Development Support 7.2.2 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all AM35x processors and support tools. Each device has one of three prefixes: X, P, or null (no prefix). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices/tools (TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the final devices electrical specifications and may not use production assembly flow. (TMX definition) P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. (TMP definition) null Production version of the silicon die that is fully qualified. (TMS definition) Support tool development evolutionary flow: TMDX Development support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development support product. TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: Developmental product is intended for internal evaluation purposes. Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TIs standard warranty applies. Predictions show that prototype devices (X or P), have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. For additional description of the device nomenclature markings, see the AM35x Processor Silicon Errata (literature number SPRZ306). 180 PACKAGE CHARACTERISTICS Submit Documentation Feedback AM3517/05 ARM Microprocessor www.ti.com SPRS550 – OCTOBER 2009 X AM3517 B ZCN PREFIX X = Experimental Device P = Prototype Device blank = Production Device ( ) blank = commercial temperature A = extended temperature PACKAGE TYPE ZCN = 491-pin sPBGA DEVICE SILICON REVISION Figure 7-1. Device Nomenclature 7.2.3 Documentation Support The following documents describe the AM3517/05 ARM Microprocessor. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com. The current documentation that describes the AM3517/05 ARM Microprocessor, related peripherals, and other technical collateral, is available in the product folder at: www.ti.com. SPRUGR0 AM35x ARM Microprocessor Technical Reference Manual. Collection of documents providing detailed information on the SitaraTM architecture including power, reset, and clock control, interrupts, memory map, and switch fabric interconnect. Detailed information on the microprocessor unit (MPU) subsystem as well a functional description of the peripherals supported on AM3517/05 devices is also included. 7.2.3.2 Related Documentation from Other Sources The following documents are related to the AM3517/05 ARM Microprocessor. Copies of these documents can be obtained directly from the internet or from your Texas Instruments representative. Cortex-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8 processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com. Please see the AM3517/05 ARM Microprocessor Silicon Errata (literature number SPRZ306) to determine the revision of the Cortex-A8 core used on your device. ARM Core CortexTM-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the different revisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. Please see the AM3517/05 ARM Microprocessor Silicon Errata (literature number SPRZ306) to determine the revision of the Cortex-A8 core used on your device. Submit Documentation Feedback PACKAGE CHARACTERISTICS 181 PRODUCT PREVIEW 7.2.3.1 Related Documentation from Texas Instruments PACKAGE OPTION ADDENDUM www.ti.com 23-Oct-2009 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing XAM3517ZCN ACTIVE NFBGA ZCN Pins Package Eco Plan (2) Qty 491 90 TBD Lead/Ball Finish Call TI MSL Peak Temp (3) Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DLP® Products DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com www.dlp.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated