TI XAM3517AZCN

AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
AM3517/05 Sitara™ ARM Microprocessors
Check for Samples: AM3517, AM3505
1 Device Summary
1.1
Features
123456
• AM3517/05 Sitara™ ARM Microprocessor:
– MPU Subsystem
• 600-MHz Sitara™ ARM® Cortex™-A8 Core
• NEONTM SIMD Coprocessor and Vector
floating point (FP) co-processor
– Memory Interfaces:
• 166 MHz 16/32- bit mDDR/DDR2 Interface
with 1 GByte total addressable space
• Up to 83 MHz General Purpose Memory
Interface supporting 16-bit Wide
Multiplexed Address/Data bus
• 64 K-Byte SRAM
• 3 Removable Media Interfaces
[MMC/SD/SDIO]
– IO Voltage:
• mDDR/DDR2 IOs: 1.8V
• Other IOs: 1.8V and 3.3V
– Core Voltage: 1.2V
– Commercial and Extended Temperature
Grade
(operating restrictions apply)
– 16-bit Video Input Port capable of capturing
HD video
– HD resolution Display Subsystem
– Serial Communication
• High-End CAN Controller
• 10/100 Mbit Ethernet MAC
• USB OTG subsystem with standard
DP/DM interface [HS/FS/LS]
• Multiport USB Host Subsystem
[HS/FS/LS]
– 12-pin ULPI or 6/4/3-pin Serial
Interface
• Four Master/Slave Multichannel Serial
Port Interface (McSPI) Ports
• Five Multichannel Buffered Serial Ports
– 512-Byte Transmit/Receive Buffer
(McBSP1/3/4/5)
– 5K-Byte Transmit/Receive Buffer
(McBSP2)
– SIDETONE Core Support (McBSP2 and
3 Only) For Filter, Gain, and Mix
Operations
– 128-Channel Transmit/Receive Mode
– Direct Interface to I2S and PCM Device
and TDM Buses
• HDQ/1-Wire Interface
• 4 UARTs (One with Infrared Data
Association [IrDA] and Consumer Infrared
[CIR] Modes)
• 3 Master/Slave High-Speed InterIntegrated Circuit (I2C) Controllers
• 12 32-bit General Purpose Timers
• 1 32-bit Watchdog Timer
• 1 32-bit 32-kHz Sync Timer
• Up to 186 General-Purpose I/O (GPIO)
Pins
• Display subsystem
– Parallel Digital Output
– Up to 24-Bit RGB
– Supports Up to 2 LCD Panels
– Support for Remote Frame Buffer Interface
(RFBI) LCD Panels
– Two 10-bit Digital-to-Analog Converters
(DACs) Supporting
• Composite NTSC/PAL Video
• Luma/Chroma Separate Video (S-Video)
– Rotation 90, 180, and 270 degrees
– Resize Images From 1/4x to 8x
– Color Space Converter
– 8-bit Alpha Blending
• Video Processing Front End (VPFE) 16-bit
Video Input Port
– RAW Data Interface
– 75-MHz Maximum Pixel Clock
– Supports REC656/CCIR656 Standard
– Supports YCbCr422 Format (8-bit or 16-bit
With Discrete Horizontal and Vertical Sync
Signals)
– Generates Optical Black Clamping Signals
1
2
3
4
5
6
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PowerVR SGX is a trademark of Imagination Technologies Ltd.
Sitara is a trademark of Texas Instruments.
Cortex, NEON are trademarks of ARM Ltd or its subsidiaries.
ARM, Jazelle are registered trademarks of ARM Ltd or its subsidiaries.
All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Products conform to
specifications per the terms of the Texas Instruments standard warranty. Production
processing does not necessarily include testing of all parameters.
Copyright © 2009–2012, Texas Instruments Incorporated
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
•
•
•
•
– Built-in Digital Clamping and Black Level
Compensation
– 10-bit to 8-bit A-law Compression Hardware
– Supports up to 16K Pixels (Image Size) in
Horizontal and Vertical Directions
System Direct Memory Access (sDMA)
Controller (32 Logical Channels With
Configurable Priority)
Comprehensive Power, Reset and Clock
Management
ARM Cortex™-A8 Memory Architecture
– ARMv7 Architecture
– In-Order, Dual-Issue, Superscalar
Microprocessor Core
– ARM NEON™ Multimedia Architecture
– Over 2x Performance of ARMv6 SIMD
– Supports Both Integer and Floating Point
SIMD
– Jazelle® RCT Execution Environment
Architecture
– Dynamic Branch Prediction with Branch
Target Address Cache, Global history buffer
and 8 entry return stack
– Embedded Trace Macrocell [ETM] support
for Non_invasive Debug
– 16K-Byte instruction Cache (4-Way setassociative)
– 16K-Byte Data Cache (4-Way SetAssociative)
– 256K-Byte L2 Cache
PowerVR SGX™ Graphics Accelerator (AM3517
only)
– Tile Based Architecture Delivering up to 10
MPoly/sec
– Universal Scalable Shader Engine: Multithreaded Engine Incorporating Pixel and
Vertex Shader Functionality
– Industry Standard API Support: OpenGLES
1.2
•
•
•
•
•
•
2
www.ti.com
•
•
•
•
•
•
1.1 and 2.0, OpenVG1.0
– Fine Grained Task Switching, Load
Balancing, and Power Management
– Programmable, High-Quality Image AntiAliasing
Endianess
– ARM Instructions - Little Endian
– ARM Data – Configurable
SDRC Memory Controller
– 16/32-bit Memory Controller With 1G-Byte
Total Address Space
– Double Data Rate (DDR2) SDRAM, mobile
Double Data Rate (mDDR)SDRAM
– SDRAM Memory Scheduler (SMS) and
Rotation Engine
General Purpose Memory Controller (GPMC)
– 16-bit Wide Multiplexed Address/Data Bus
– Up to 8 Chip Select Pins With 128M-Byte
Address Space per Chip Select Pin
– Glueless Interface to NOR Flash, NAND
Flash (With ECC Hamming Code
Calculation), SRAM and Pseudo-SRAM
– Flexible Asynchronous Protocol Control for
Interface to Custom Logic (FPGA, CPLD,
ASICs, etc.)
– Nonmultiplexed Address/Data Mode (Limited
2K-Byte Address Space)
Test Interfaces
– IEEE-1149.1 (JTAG) Boundary-Scan
Compatible
– Embedded Trace Macro Interface (ETM)
65-nm CMOS technology
Packages:
– 491-pin BGA (17x17, 0.65mm pitch)
[ZCN suffix]
with via channel array technology
– 484-pin PBGA (23x23, 1-mm pitch)
[ZER suffix]
Applications
Single Board Computers
Industrial and Home Automation
Digital Signage
Point of Service
Portable Media Player
Portable Industrial
•
•
•
•
•
•
Transportation
Navigation
Smart White Goods
Digital TV
Digital Video Camera
Gaming
Device Summary
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
1.3
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Description
AM3517/05 is a high-performance ARM Cortex-A8 microprocessor with speeds up to 600 MHz. The
device offers 3D graphics acceleration while also supporting numerous peripherals, including DDR2, CAN,
EMAC, and USB OTG PHY that are well suited for industrial apllications.
The processor can support other applications, including:
• Single Board Computers
• Home and Industrial automation
• Human Machine Interface
The device supports high-level operating systems (OSs), such as:
• Linux®
• Windows® CE
• Android™
The following subsystems are part of the device:
• Microprocessor unit (MPU) subsystem based on the ARM Cortex-A8 microprocessor.
• PowerVR SGX™ Graphics Accelerator (AM3517 device only) Subsystem for 3D graphics acceleration
to support display and gaming effects.
• Display subsystem with several features for multiple concurrent image manipulation, and a
programmable interface supporting a wide variety of displays. The display subsystem also supports
NTSC/PAL video out.
• High performance interconnects provide high-bandwidth data transfers for multiple initiators to the
internal and external memory controllers and to on-chip peripherals. The device also offers a
comprehensive clock-management scheme.
AM3517/05 devices are available in a 491-pin BGA package and a 484-pin PBGA package.
This AM3517/05 data manual presents the electrical and mechanical specifications for the AM3517/05
Sitara ARM Microprocessor.
Device Summary
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
3
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
1.4
www.ti.com
Functional Block Diagram
Figure 1-1 shows the functional block diagram of the AM3517/05 Sitara ARM Microprocessor.
LCD Panel
MPU
Subsystem
ARM CortexA8TM Core
16K/16K L1$
Parallel
POWERVR
TM
SGX
Graphics
Accelerator
(AM3517 only)
L2$
256K
64
64
HECC
32
32
32
Channel
System
DMA
32
CVBS
or
S-Video
Analog
DAC
64
HS/FS/
LS
USB
Host
Dual Output 3-Layer
Display Processor
(1xGraphics, 2xVideo)
Temporal Dithering
SDTV → QCIF Support
32
USB PHY
USB OTG
Controller
32
32
Async
EMAC
USB transceivers /
device ports [3]
VPFE
64
L3 Interconnect Network-Hierarchial, Performance, and Power Driven
32
64K
On-Chip
RAM
64
132K
On-Chip
BOOT
ROM
SMS:
SDRAM
Memory
Scheduler/
Rotation
EMIF
Controller
DDR PHY
External
DDR2/
mDDR
32
32
32
L4 Interconnect
GPMC:
General
Purpose
Memory
Controller
NAND/NOR/
FLASH,
SRAM
Peripherals:
4xUART, 3xHigh-Speed I2C,
5xMcBSP
(2x with Sidetone/Audio Buffer)
4xMcSPI, 186xGPIO,
3xHigh-Speed MMC/SDIO,
HDQ/1 Wire,
12xGPTimers, 1xWDT,
32K Sync Timer
System
Controls
PRCM
External
Peripherals
Interfaces
Emulation
Debug: ETM, JTAG
SPRS550-006
Figure 1-1. AM3517/05 Functional Block Diagram
4
Device Summary
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
1.5
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
ZCN and ZER Package Differences
Table 1-1 shows the ZER and ZCN package differences on the device.
Table 1-1. ZCN and ZER Package Differences
FEATURE
ZCN PACKAGE
ZER PACKAGE
Pin Assignments
For ZCN package pin assignments, see
Section 2, Terminal Description
For ZER package pin assignments, see
Section 2, Terminal Description
Video Interfaces
TV Out available
TV Out not available
Device Summary
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
5
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
........................................ 1
............................................. 1
1.2
Applications .......................................... 2
1.3
Description ........................................... 3
1.4
Functional Block Diagram ........................... 4
1.5
ZCN and ZER Package Differences ................. 5
Revision History .............................................. 7
2 Terminal Description ................................... 8
2.1
Pin Assignments ..................................... 8
2.2
Ball Characteristics ................................. 17
2.3
Multiplexing Characteristics ........................ 51
2.4
Signal Description .................................. 57
3 Electrical Characteristics ............................ 80
3.1
Absolute Maximum Ratings ........................ 80
3.2
Recommended Operating Conditions .............. 82
3.3
DC Electrical Characteristics ....................... 84
3.4
Core Voltage Decoupling ........................... 86
3.5
Power-up and Power-down ......................... 88
4 Clock Specifications .................................. 91
4.1
Oscillator ........................................... 92
4.2
Input Clock Specifications .......................... 93
1
Device Summary
1.1
6
Features
5
6
7
........................ 95
................................ 97
Video DAC Specifications .......................... 100
5.1
Interface Description .............................. 101
4.3
Output Clock Specifications
4.4
DPLL Specifications
5.2
Electrical Specifications Over Recommended
Operating Conditions .............................. 102
5.3
Analog Supply (vdda_dac) Noise Requirements
104
5.4
External Component Value Choice
105
.
...............
Timing Requirements and Switching
Characteristics ....................................... 106
...........................
.....................
6.3
Timing Parameters ................................
6.4
External Memory Interfaces .......................
6.5
Video Interfaces ...................................
6.6
Serial Communications Interfaces ................
6.7
Removable Media Interfaces ......................
6.8
Test Interfaces ....................................
Package Characteristics ............................
7.1
Package Thermal Resistance .....................
7.2
Device Support ....................................
7.3
Mechanical Data ..................................
6.1
Timing Test Conditions
106
6.2
Interface Clock Specifications
106
Contents
107
108
150
155
197
211
215
215
215
217
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history table highlights the technical changes made from the previous to the
current revision.
SEE
Section 2.2
ADDITIONS/MODIFICATIONS/DELETIONS
Ball Characteristics:
Corrected USB0_VBUS signal voltage to 3.3V in Table 2-1, Ball Characteristics (ZCN Pkg.)
Section 2.4.7
General-Purpose IOs:
Corrected ZCN/ZER ball numbers for GPIO_125, GPIO_126, GPIO_130, GPIO_131 signals in Table 2-25,
General-Purpose IOs Signals Description
Section 4.1
Oscillator:
Deleted paragraph and added notes to Figure 4-3, AM3517/05 Oscillator Connections
Section 6.6.8.1
Management Data Input/Output (MDIO) Electrical Data/Timing:
Modified Parameter 5 MIN value in Table 6-115, Timing Requirements for MDIO Input
Contents
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
7
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
2 Terminal Description
2.1
2.1.1
Pin Assignments
Pin Map (Top View)
The following illustrations show the top views of the 484-pin [ZER] and 491-pin [ZCN] package pin
assignments in four quadrants (A, B, C, and D).
Note: A pin with an "NC" designator indicates No Connection. For proper device operation, these pins
must be left unconnected.
8
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
25
24
23
22
21
AE
VSS
DSS_ACBIAS
DSS_PCLK
ETK_D15
ETK_D12
AD
DSS_DATA1
DSS_DATA0
DSS_VSYNC
DSS_HSYNC
AC
DSS_DATA4
DSS_DATA3
DSS_DATA2
AB
DSS_DATA6
DSS_DATA5
AA
DSS_DATA9
Y
W
DSS_DATA8
20
19
18
17
16
15
14
ETK_D8
ETK_D5
ETK_CTL
MCSPI2_
CS1
MCSPI1_
CS3
MCSPI1_
CS2
MCSPI1_
CLK
AE
ETK_D13
ETK_D9
ETK_D6
ETK_D0
ETK_CLK
MCSPI2_
CLK
MCSPI1_
SIMO
MCSPI1_
CS1
AD
ETK_D14
ETK_D10
ETK_D1
MCSPI2_
SIMO
MCSPI1_
SOMI
AC
ETK_D7
ETK_D2
MCSPI2_
SOMI
MCSPI1_CS0
AB
UART1_TX
ETK_D3
MCSPI2_
CS0
VDDS_
DPLL_MPU
_USBHOST
AA
UART1_RTS
ETK_D4
VDDSHV
VDDSHV
Y
VDDS
VDDSHV
VDDSHV
W
ETK_D11
DSS_DATA7
DSS_DATA13 DSS_DATA12 DSS_DATA11 DSS_DATA10
UART1_CTS
DSS_DATA18 DSS_DATA17 DSS_DATA16 DSS_DATA15 DSS_DATA14
UART1_RX
V
DSS_DATA20
DSS_DATA19
U
JTAG_TCK
JTAG_NTRST
DSS_
DATA23
T
JTAG_EMU0
JTAG_TDO
JTAG_TDI
R
MCBSP1_
CLKR
P
MCBSP_
CLKS
MCBSP1_
FSX
MCBSP1_
DR
N
SYS_
CLKOUT1
MCBSP1_
CLKX
VSS
M
SYS_
CLKOUT2
SYS_
CLKREQ
25
24
VSS
DSS_
DATA21
DSS_
DATA22
JTAG_TMS
_TMSC
JTAG_RTCK
MCBSP1_
FSR
NC
NC
21
22
VDD_CORE
VSS
V
VDD_CORE
VDD_CORE
VSS
U
VSS
T
VDDSHV
VSS
VSS
VDDSHV
VDDSHV
VDD_CORE
VDD_CORE
VDD_CORE
VDD_CORE
VSS
VSS
VSS
R
VSS
VSS
VSS
VSS
P
VSS
N
M
VDDSHV
VDDSHV
VSS
VDDS_DPLL_
PER_CORE
VDDSHV
VSS
VDD_CORE
23
VDD_CORE
VDDS
JTAG_
EMU1
MCBSP1_
DX
VSS
20
19
18
VSS
VSS
17
VSS
VSS
VSS
16
15
14
Figure 2-1. ZCN Pin Map [Quadrant A]
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
9
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
13
12
www.ti.com
10
11
9
8
7
6
5
3
4
2
1
AE
MMC2_
DAT7
MMC2_
DAT3
MMC2_
CMD
MMC1_
DAT7
MMC1_
DAT2
RMII_50MHZ
_CLK
RMII_TXD1
RMII_MDIO
_DATA
CCDC_
DATA4
CCDC_
DATA1
CCDC_
WEN
CCDC_
HD
VSS
AE
AD
MMC2_
DAT6
MMC2_
DAT2
MMC2_CLK
MMC1_
DAT6
MMC1_
DAT1
RMII_TXEN
RMII_TXD0
RMII_MDIO
_CLK
CCDC_
DATA3
CCDC_
DATA0
CCDC_
VD
CCDC_
PCLK
CCDC_
FIELD
AD
MMC2_
DAT1
MMC1_
DAT5
MMC1_
DAT0
RMII_RXER
CCDC_
DATA7
SYS_
BOOT6
AC
MMC2_
DAT0
MMC1_
DAT4
MMC1_
CMD
RMII_CRS_
DV
CCDC_
DATA6
SYS_
BOOT4
AB
MMC1_
DAT3
MMC1_CLK
SYS_
BOOT1
AA
AC
AB
AA
MMC2_
DAT5
MMC2_
DAT4
VDDS_SRAM CAP_VDD_
_MPU
SRAM_MPU
CCDC_
DATA2
SYS_
BOOT8
SYS_
BOOT5
SYS_
BOOT3
RMII_RXD1
RMII_RXD0
CCDC_
DATA5
SYS_
BOOT0
SYS_NIRQ
Y
I2C2_SDA
I2C2_SCL
W
HECC1_
TXD
RESERVED
V
RESERVED
GPMC_
WAIT3
U
GPMC_
WAIT0
GPMC_
NWP
GPMC_
NBE1
T
GPMC_
NWE
GPMC_
NOE
GPMC_NADV
_ALE
R
UART3_TX
_IRTX
UART3_RX
_IRRX
P
VDDSHV
VDDSHV
VDDSHV
VDDS
W
VDDSHV
VDDSHV
VDDSHV
VDDSHV
V
VSS
VSS
VDD_CORE VDD_CORE
VSS
VSS
U
VSS
VSS
VDD_CORE
VSS
VSS
T
VSS
VSS
VDD_CORE
VDD_CORE
VDDSHV
VDDSHV
GPMC_
WAIT2
GPMC_
WAIT1
R
VSS
VSS
VSS
VSS
VDD_CORE
VDD_CORE
VDDSHV
VDDSHV
VDDS
GPMC_NBE0
_CLE
P
VSS
VSS
VSS
VSS
VSS
VSS
N
VSS
VSS
VSS
VSS
VDDSHV
VDDSHV
GPMC_
NCS6
GPMC_
NCS7
M
VSS
VSS
VSS
VDDSHV
VDDSHV
VDDSHV
GPMC_
NCS2
GPMC_
NCS3
7
6
5
4
3
13
12
VSS
11
VDD_CORE
VSS
10
VSS
9
8
VDDSHV
VDDSHV
I2C3_SDA
I2C1_SDA
I2C3_SCL
I2C1_SCL
SYS_
BOOT2
SYS
_NRES
PWRON
SYS
_NRES
WARM
Y
VDDSHV
SYS_
BOOT7
HECC1_
RXD
UART3_RTS UART3_CTS GPMC_CLK
_SD
_RCTX
GPMC_
NCS4
2
GPMC_
NCS5
N
M
1
Figure 2-2. ZCN Pin Map [Quadrant B]
10
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
25
24
23
22
L
HDQ_
SIO
NC
NC
NC
K
SYS_
XTALIN
SYS_32K
NC
J
VSSOSC
H
SYS_
XTALOUT
TV_
OUT2
G
USB0_ID
USB0_
VBUS
F
USB0_DP
USB0_DM
VDDA3P3V
_USBPHY
E
USB0_
DRVVBUS
UART2
_TX
UART2_RX
D
C
B
A
MCBSP2_
FSX
MCBSP2_
CLKX
25
NC
TV_
OUT1
NC
VSSA_DAC
VDDA_DAC
VDDA1P8V
_USBPHY
VSS
CAP_
VDDA1P2LDO
_USBPHY
MCBSP3_
DR
MCBSP3_
CLKX
24
MCBSP4_
DR
23
19
18
17
16
15
14
VDDSOSC
VDDSHV
VDD_CORE
VSS
VSS
VSS
VSS
L
VDDSHV
VDD_CORE
VDD_CORE
VSS
K
VSS
VSS
VDD_CORE
VDD_CORE
VSS
J
VDDSHV
VDDSHV
VDDS
VDD_CORE
VSS
H
VDDS
VDDS
VDDS
G
NC
VDDS
VREFSSTL
F
SDRC_NCAS
E
TV_VFB1
TV_VREF
NC
VSS
UART2_RTS
VDDS_SRAM CAP_VDD_
_CORE_BG SRAM_CORE
SDRC_D4
MCBSP3_
FSX
MCBSP4_
CLKX
20
UART2_CTS
MCBSP2_
DX
MCBSP2_DR MCBSP3_DX
VSS
TV_VFB2
21
MCBSP4_
DX
MCBSP4_
FSX
SDRC_D2
SDRC_D5
SDRC_D9
SDRC_D11
SDRC_CKE0
D
SDRC_DM0
SDRC_D3
SDRC_D6
SDRC_D10
SDRC_D12
SDRC_NRAS
C
SDRC_
D0
SDRC_
DQS0P
SDRC_
DM1
SDRC_
NWE
B
SDRC_
D15
SDRC_
NCS1
A
15
14
SDRC_
D1
SDRC_
DQS0N
21
20
22
SDRC_
D7
SDRC_
STRBEN0
19
SDRC_
D8
SDRC_
DQS1P
SDRC_
STRBEN
_DLY0
SDRC_
DQS1N
18
17
SDRC_
D13
SDRC_
D14
16
Figure 2-3. ZCN Pin Map [Quadrant C]
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
11
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
L
K
J
13
12
11
VSS
VSS
VSS
VSS
VSS
www.ti.com
10
9
8
7
VSS
VDD_CORE VDD_CORE
VSS
VDD_CORE
VDD_CORE
VSS
VSS
VSS
VDD_CORE VDD_CORE
VSS
VDDS
VDDSHV
G
VDDS
VDDS
VDDS
VDDS
F
VDDS
VDDS
VDDS
VDDS
GPMC_A4
E
SDRC_
NCS0
SDRC_
A4
SDRC_
A9
SDRC_DM2
SDRC_D19
D
SDRC_BA2
SDRC_A3
SDRC_A8
SDRC_A14
SDRC_D18
C
SDRC_BA1
SDRC_A2
SDRC_A7
SDRC_
ODT
A
SDRC_CLK
13
DDR_
PADREF
VDDSHV
VDDSHV
GPMC_D7
VDDSHV
VSS
SDRC_
NCLK
5
4
3
VDD_CORE VDD_CORE
VSS
H
B
6
GPMC_A10
GPMC_D0
GPMC_A5
GPMC_D12
GPMC_D8
SDRC_D23
1
GPMC_
NCS0
GPMC_
NCS1
L
GPMC_D15
K
GPMC_D10
GPMC_D11
J
GPMC_D5
GPMC_D6
H
GPMC_D3
GPMC_D4
G
GPMC_D13 GPMC_D14
GPMC_D9
GPMC_D1
GPMC_D2
GPMC_A6
GPMC_A7
GPMC_A8
GPMC_A9
F
GPMC_A1
GPMC_A2
GPMC_A3
E
SCRC_D29
SDRC_DM3
D
SDRC_D27
SDRC_D28
SDRC_D31
C
SDRC_D26
SDRC_
DQS3N
SDRC_D30
B
SDRC_D25
SDRC_
DQS3P
VSS
A
3
2
1
SDRC_D21
SDRC_D20
2
SDRC_A1
SDRC_A6
SDRC_A11
SDRC_
A13
SDRC_
D17
SDRC_
DQS2N
SDRC_D22
SDRC_24
SDRC_BA0
SDRC_A0
SDRC_A5
SDRC_
A10
SDRC_
A12
SDRC_
D16
SDRC_
DQS2P
SDRC_
STRBEN1
SDRC_
STRBEN
_DLY1
12
11
10
9
8
7
6
5
4
Figure 2-4. ZCN Pin Map [Quadrant D]
12
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
A
B
C
D
E
22
VSS
DSS_PCLK
UART1_TX
ETK_D8
ETK_D10
21
VDDSHV
DSS_HSYNC
UART1_RTS
ETK_D9
20
DSS_DATA0
DSS_VSYNC
UART1_RX
ETK_D13
19
DSS_DATA1 DSS_ACBIAS
UART1_CTS
18
DSS_DATA2
DSS_DATA3
17
DSS_DATA4
DSS_DATA8
16
DSS_DATA13
DSS_DATA7
15
F
G
H
ETK_D1
ETK_CLK
MCSPI2_
SOMI
ETK_D7
ETK_D5
ETK_CTL
ETK_D11
ETK_D2
ETK_D0
ETK_D14
ETK_D4
ETK_D6
ETK_D3
DSS_DATA5
ETK_D15
ETK_D12
VDDSHV
VSS
DSS_DATA9
DSS_DATA6
K
MCSPI2_CLK MCSPI1_CLK
L
VDDSHV
22
MMC2_DAT3
MMC2_DAT6
21
MCSPI1_CS1 MMC2_DAT0
MMC2_DAT5
20
MCSPI2_CS1 MCSPI1_CS2 MCSPI1_SIMO MMC2_DAT1
19
MCSPI2_CS0 MCSPI1_CS3
MCSPI2_
SIMO
VDDSHV
MCSPI1_
SOMI
MCSPI1_CS0
MMC2_DAT4
VSS
VDDSHV
VDDS_DPLL_
MPU_
USBHOST
VDDS_
SRAM_MPU
17
VDD_CORE
VSS
VDDS
16
VDD_CORE
VSS
15
18
VDDSHV
VSS
VSS
VDDS
VSS
VSS
DSS_DATA16 DSS_DATA15 DSS_DATA19 DSS_DATA14
VDDSHV
VSS
VDDS
VSS
14
DSS_DATA17 DSS_DATA23 DSS_DATA22 DSS_DATA12
JTAG_TCK
VDDSHV
VSS
VSS
VDD_CORE
VSS
VDD_CORE
14
13
DSS_DATA20 DSS_DATA21 DSS_DATA18 JTAG_NTRST JTAG_EMU0
VSS
VDDSHV
VSS
VSS
VDD_CORE
VSS
13
VDDSHV
VSS
VDD_CORE
VSS
VDD_CORE
12
H
J
K
L
12
DSS_DATA10 DSS_DATA11
JTAG_TMS_
TMSC
JTAG_TDI
JTAG_RTCK
A
B
C
JTAG_TDO
D
JTAG_EMU1
E
VDDSHV
F
VDDSHV
J
G
VSS
Figure 2-5. ZER Pin Map [Quadrant A]
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
13
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
M
22
VSS
N
www.ti.com
P
R
MMC1_DAT4 MMC1_CLK RMII_RXER
RMII_
50MHZ_CLK
T
U
RMII_
MDIO_CLK
CCDC_
DATA4
CCDC_
DATA0
RMII_
CRS_DV
RMII_
MDIO_DATA
CCDC_
DATA2
CCDC_WEN
CCDC_
DATA6
CCDC_
DATA1
MMC2_CLK MMC1_CMD MMC1_DAT0
20
MMC2_CMD MMC1_DAT1 MMC1_DAT3 RMII_TXD1
RMII_RXD1
CCDC_
DATA5
19
MMC2_DAT7 MMC1_DAT5 MMC1_DAT2 RMII_TXEN
RMII_RXD0
CCDC_
DATA7
18
MMC2_DAT2 MMC1_DAT6 MMC1_DAT7
17
CAP_VDD
_SRAM_MPU
16
VSS
W
RMII_TXD0
21
VDDSHV
V
VSS
VDDSHV
VSS
VDDSHV
VSS
VDDSHV
VSS
VDDSHV
VDD_CORE
VSS
VDDS
VSS
VDDSHV
VSS
VDDSHV
15
VDD_CORE
VSS
14
VSS
VDD_CORE
VSS
VDD_CORE
VSS
13
VDD_CORE
VSS
VDD_CORE
VSS
VDDSHV
VSS
12
VSS
VDD_CORE
VSS
VDD_CORE
VSS
VDDSHV
M
N
P
R
T
U
VSS
VDDSHV
CCDC_
DATA3
Y
CCDC_VD
AA
VDDSHV
CCDC_HD CCDC_FIELD
AB
VSS
CCDC_
PCLK
SYS_BOOT8 SYS_BOOT7 SYS_BOOT1
SYS_BOOT6 SYS_BOOT5 SYS_BOOT3 SYS_BOOT0
22
21
20
19
SYS_NRE
SWARM
SYS_NRES
PWRON
SYS_NIRQ
18
I2C3_SDA
I2C2_SCL
I2C1_SCL
I2C1_SDA
17
I2C3_SCL
I2C2_SDA
GPMC_
WAIT1
HECC1_RXD
16
RESERVED UART3_CTS GPMC_NBE1 GPMC_NWE HECC1_TXD
_RCTX
15
GPMC_
GPMC_NOE
NADV_ALE
14
UART3_RX GPMC_CLK
_IRRX
13
SYS_BOOT4 SYS_BOOT2
VDDSHV
RESERVED
GPMC_
WAIT3
GPMC_NWP
GPMC_
WAIT0
UART3_RTS
_SD
GPMC_
WAIT2
UART3_TX
_IRTX
GPMC_NCS3 GPMC_NCS5 GPMC_NCS2 GPMC_NCS6
V
W
Y
AA
VSS
12
AB
Figure 2-6. ZER Pin Map [Quadrant B]
14
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
A
11
VSS
B
C
D
E
MCBSP1
_CLKR
MCBSP1_FSX MCBSP1_FSR MCBSP_CLKS
SYS_
CLKOUT2
F
G
H
VSS
VSS
VSS
NC
VDDSHV
VSS
VDD_CORE
VDDS_
DPLL_PER
_CORE
J
K
L
VDD_CORE
VSS
11
VDD_CORE
10
10
SYS_XTALIN
VSSOSC
MCBSP1_DX
NC
9
SYS_
XTALOUT
HDQ_SIO
MCBSP1_DR
NC
SYS_
CLKOUT1
NC
VDDSOSC
VSS
VSS
VDD_CORE
VSS
9
8
SYS_32K
SYS_CLKREQ
MCBSP1
_CLKX
NC
NC
NC
VDDSHV
VSS
VDD_CORE
VSS
VDD_CORE
8
7
USB0_
DRVVBUS
USB0_ID
USB0_VBUS
VDDA1P8V
_USBPHY
CAP_VDDA1
P2LDO_
USBPHY
VDDA3P3V
_USBPHY
VSS
VSS
NC
VDDS
VSS
7
6
USB0_DP
USB0_DM
UART2_RX
UART2_TX
VSS
VSS
NC
VSS
VDDS
6
5
UART2_CTS
UART2_RTS
MCBSP2_DR
MCBSP2
_CLKX
MCBSP2_FSX
VDDS
VSS
VDDS
VREFSSTL
5
4
MCBSP3_FSX MCBSP3_DR MCBSP3_DX
MCBSP3
_CLKX
MCBSP2_DX
SDRC_DM0
SDRC_D11
3
2
1
MCBSP4
_CLKX
VSS
VDDS_SRAM CAP_VDD_
_CORE_BG SRAM_CORE
SDRC_BA2
SDRC_BA1
SDRC_D12
SDRC_NCS0
SDRC_NCS1
SDRC_BA0
4
SDRC_D10
SDRC_D14
SDRC_CKE0
SDRC_NCAS
3
MCBSP4_DR
SDRC_D2
SDRC_D1
SDRC_D0
SDRC_D4
SDRC_D9
MCBSP4_DX MCBSP4_FSX
SDRC_D3
SDRC_D5
SDRC_DQS0P
SDRC_
STRBEN0
SDRC_D8
SDRC_DQS1P SDRC_DM1
SDRC_NWE
SDRC_NCLK
2
SDRC_D13
SDRC_DQS1N SDRC_D15
SDRC_NRAS
SDRC_CLK
1
K
L
VSS
VDDSHV
SDRC_D6
SDRC_D7
SDRC_DQS0N
A
B
C
D
E
SDRC_
STRBEN
_DLY0
F
G
H
J
Figure 2-7. ZER Pin Map [Quadrant C]
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
15
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
M
N
P
11
VDD_CORE
VSS
VDD_CORE
10
VSS
VDD_CORE
9
VDD_CORE
8
T
U
V
VSS
VDDSHV
VSS
GPMC_NCS7
GPMC_
NBE0_CLE GPMC_NCS1 GPMC_NCS4
VDDSHV
11
VSS
VDD_CORE
VSS
VDDSHV
GPMC_D14
GPMC_D8 GPMC_NCS0 GPMC_D12
GPMC_D10
10
VSS
VDD_CORE
VSS
VDDSHV
VSS
GPMC_D15
GPMC_D11
GPMC_D13
GPMC_D3
GPMC_D9
9
VSS
VDD_CORE
VSS
VDD_CORE
VSS
VDDSHV
VDDSHV
GPMC_D7
GPMC_D4
GPMC_D5
GPMC_D6
8
7
VDD_CORE
VSS
VDD_CORE
VSS
VDDS
VSS
VDDSHV
GPMC_D1
GPMC_D0
GPMC_A9
7
6
VSS
VDDS
VSS
VDDS
VSS
VDDS
VSS
GPMC_A8
GPMC_A10
GPMC_A7
GPMC_A6
6
5
SDRC_A2
VDDS
VDDS
VSS
VDDS
VSS
SDRC_D22
GPMC_A1
GPMC_A2
GPMC_A4
GPMC_A5
5
4
SDRC_A1
SDRC_A5
SDRC_A9
SDRC_A13
SDRC_DM2
SDRC_D18
SDRC_D19
SDRC_D25
SDRC_D27
SDRC_D30
GPMC_A3
4
3
SDRC_A0
SDRC_A3
SDRC_A6
SDRC_A12
SDRC_D16
SDRC_D17
SDRC_D23
SDRC_D24
SDRC_D26
SDRC_D29 SDRC_DM3
3
2
DDR_
PADREF
SDRC_A7
SDRC_A11
SDRC_
DQS2N
SDRC_D21
SDRC_
STRBEN
_DLY1
SDRC_
DQS3N
SDRC_D28
SDRC_D31
2
1
VSS
VDDS
SDRC_
DQS2P
SDRC_
D20
SDRC_
STRBEN1
SDRC_
DQS3P
VDDS
VSS
1
M
N
W
Y
SDRC_A4
SDRC_A8
P
R
SDRC_A10
R
SDRC_A14
SDRC_
ODT
T
U
W
GPMC_D2
V
Y
AA
AA
AB
AB
Figure 2-8. ZER Pin Map [Quadrant D]
16
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
2.2
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Ball Characteristics
Table 2-1 and Table 2-2 describe the terminal characteristics and the signals multiplexed on each pin for
the ZCN/ZER packages. The following list describes the table column headers.
1. BALL LOCATION: Ball number(s) on the bottom side associated with each signal(s) on the bottom.
2. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the
signal name in mode 0).
Note: The Ball Characteristics table does not take into account subsystem pin multiplexing options.
Subsystem pin multiplexing options are described in Section 2.4, Signal Description.
3. MODE: Multiplexing mode number.
(a) Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin
corresponds to the name of the pin. There is always a function mapped on the primary mode.
Notice that primary mode is not necessarily the default mode.
Note: The default mode is the mode which is automatically configured on release of the internal
GLOBAL_PWRON reset; also see the RESET REL. MODE column.
(b) Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively
used for alternate functions, while some modes are not used and do not correspond to a functional
configuration.
4. TYPE: Signal direction
– I = Input
– O = Output
– I/O = Input/Output
– D = Open drain
– DS = Differential
– A = Analog
Note: In the safe_mode, the buffer is configured in high-impedance.
5. BALL RESET STATE: The state of the terminal at reset (power up).
– 0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
– 1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
– Z: High-impedance
– L: High-impedance with an active pulldown resistor
– H: High-impedance with an active pullup resistor
6. BALL RESET REL. STATE: The state of the terminal at reset release.
– 0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
– 1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
– Z: High-impedance
– L: High-impedance with an active pulldown resistor
– H : High-impedance with an active pullup resistor
7. RESET REL. MODE: This mode is automatically configured on release of the internal
GLOBAL_PWRON reset.
8. POWER: The voltage supply that powers the terminal’s I/O buffers.
9. VOLTAGE: Supply voltage for associated pin.
10. HYS: Indicates if the input buffer is with hysteresis.
11. LOAD: Load capacitance of the associated output buffer.
12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and
pulldown resistors can be enabled or disabled via software.
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
17
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
13. IO CELL: IO cell information.
Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results.
This can be easily prevented with the proper software configuration.
Table 2-1. Ball Characteristics (ZCN Pkg.)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
B21
sdrc_d0
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
A21
sdrc_d1
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D20
sdrc_d2
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C20
sdrc_d3
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
E19
sdrc_d4
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D19
sdrc_d5
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C19
sdrc_d6
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
B19
sdrc_d7
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
B18
sdrc_d8
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D17
sdrc_d9
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C17
sdrc_d10
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D16
sdrc_d11
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C16
sdrc_d12
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
B16
sdrc_d13
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
A16
sdrc_d14
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
A15
sdrc_d15
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
A7
sdrc_d16
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
B7
sdrc_d17
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D7
sdrc_d18
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
E7
sdrc_d19
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C6
sdrc_d20
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D6
sdrc_d21
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
B5
sdrc_d22
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C5
sdrc_d23
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
B4
sdrc_d24
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
A3
sdrc_d25
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
B3
sdrc_d26
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C3
sdrc_d27
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C2
sdrc_d28
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D2
sdrc_d29
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
B1
sdrc_d30
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C1
sdrc_d31
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
A12
sdrc_ba0
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
C13
sdrc_ba1
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
D13
sdrc_ba2
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
A11
sdrc_a0
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
B11
sdrc_a1
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
C11
sdrc_a2
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
D11
sdrc_a3
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
E11
sdrc_a4
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
A10
sdrc_a5
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
B10
sdrc_a6
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
C10
sdrc_a7
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
D10
sdrc_a8
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
E10
sdrc_a9
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
A9
sdrc_a10
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
B9
sdrc_a11
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
A8
sdrc_a12
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
B8
sdrc_a13
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
18
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
D8
sdrc_a14
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
E13
sdrc_ncs0
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
A14
sdrc_ncs1
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
A13
sdrc_clk
0
O
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
B13
sdrc_nclk
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
D14
sdrc_cke0
0
O
L
PD
7
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
sdrc_cke0_s 7
afe
L
C14
sdrc_nras
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
E14
sdrc_ncas
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
B14
sdrc_nwe
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
C21
sdrc_dm0
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
B15
sdrc_dm1
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
E8
sdrc_dm2
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
D1
sdrc_dm3
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
B20
sdrc_dqs0p
0
IO
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
B17
sdrc_dqs1p
0
IO
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
A6
sdrc_dqs2p
0
IO
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
A2
sdrc_dqs3p
0
IO
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
A20
sdrc_dqs0n
0
IO
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
A17
sdrc_dqs1n
0
IO
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
B6
sdrc_dqs2n
0
IO
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
B2
sdrc_dqs3n
0
IO
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
C8
sdrc_odt
0
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
A19
sdrc_strben0 0
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
A18
sdrc_strben_ 0
dly0
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
A5
sdrc_strben1 0
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
A4
sdrc_strben_ 0
dly1
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
B12
ddr_padref
0
A
VDDS
1.8V
E3
gpmc_a1
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_34
4
IO
safe_mode
7
gpmc_a2
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_35
4
IO
safe_mode
7
gpmc_a3
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_36
4
IO
safe_mode
7
gpmc_a4
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_37
4
IO
safe_mode
7
gpmc_a5
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_38
4
IO
safe_mode
7
gpmc_a6
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_39
4
IO
safe_mode
7
gpmc_a7
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_40
4
IO
safe_mode
7
gpmc_a8
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_41
4
IO
safe_mode
7
gpmc_a9
0
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
E2
E1
F7
F6
F4
F3
F2
F1
O
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
19
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
sys_
ndmareq2
1
I
gpio_42
4
IO
safe_mode
7
gpmc_a10
0
O
sys_
ndmareq3
1
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_43
4
IO
safe_mode
7
G5
gpmc_d0
0
G4
gpmc_d1
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
30
PU/ PD
LVCMOS
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
G3
gpmc_d2
LVCMOS
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
G2
LVCMOS
gpmc_d3
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
G1
gpmc_d4
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H2
gpmc_d5
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H1
gpmc_d6
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
J5
gpmc_d7
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
J4
gpmc_d8
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_44
4
IO
gpmc_d9
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_45
4
IO
gpmc_d10
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_46
4
IO
gpmc_d11
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_47
4
IO
gpmc_d12
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_48
4
IO
gpmc_d13
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_49
4
IO
gpmc_d14
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_50
4
IO
gpmc_d15
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_51
4
IO
L2
gpmc_ncs0
0
O
H
Z
0
VDDSHV
1.8V/3.3V
No
30
NA
LVCMOS
L1
gpmc_ncs1
0
O
H
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_52
4
IO
gpmc_ncs2
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
G6
J3
J2
J1
K4
K3
K2
K1
M4
M3
M2
20
0
O
gpt9_pwm_e 2
vt
IO
gpio_53
4
IO
safe_mode
7
gpmc_ncs3
0
O
sys_
ndmareq0
1
I
gpt10_pwm_ 2
evt
IO
gpio_54
4
IO
safe_mode
7
gpmc_ncs4
0
O
sys_
ndmareq1
1
I
gpt9_pwm_e 3
vt
IO
gpio_55
4
IO
safe_mode
7
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
M1
gpmc_ncs5
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
sys_
ndmareq2
1
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
N5
gpt10_pwm_ 3
evt
IO
gpio_56
4
IO
safe_mode
7
gpmc_ncs6
0
O
sys_
ndmareq3
1
I
gpt11_pwm_ 3
evt
IO
gpio_57
4
IO
safe_mode
7
gpmc_ncs7
0
O
gpmc_io_dir
1
O
gpt8_pwm_e 3
vt
IO
gpio_58
4
IO
safe_mode
7
gpmc_clk
0
O
gpio_59
4
IO
R1
gpmc_nadv_ 0
ale
O
L
Z
0
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
R2
gpmc_noe
0
O
H
Z
0
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
R3
gpmc_nwe
0
O
H
Z
0
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
R4
gpmc_nbe0_ 0
cle
O
L
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_60
4
IO
gpmc_nbe1
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_61
4
IO
safe_mode
7
gpmc_nwp
0
O
L
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_62
4
IO
T3
gpmc_wait0
0
I
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
T4
gpmc_wait1
0
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
uart4_tx
1
O
gpio_63
4
IO
safe_mode
7
gpmc_wait2
0
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
uart4_rx
1
I
gpio_64
4
IO
safe_mode
7
gpmc_wait3
0
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
sys_
ndmareq1
1
I
uart3_cts_rct 2
x
I
gpio_65
4
IO
safe_mode
7
dss_pclk
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_66
4
IO
hw_dbg12
5
O
safe_mode
7
dss_hsync
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_67
4
IO
hw_dbg13
5
O
safe_mode
7
N4
N1
T1
T2
T5
U1
AE23
AD22
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
21
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
AD23
dss_vsync
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_68
4
IO
safe_mode
7
dss_acbias
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_69
4
IO
safe_mode
7
dss_data0
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
uart1_cts
2
I
gpio_70
4
IO
safe_mode
7
dss_data1
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
uart1_rts
2
O
gpio_71
4
IO
safe_mode
7
dss_data2
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_72
4
IO
safe_mode
7
dss_data3
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_73
4
IO
safe_mode
7
dss_data4
0
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
AE24
AD24
AD25
AC23
AC24
AC25
AB24
AB25
AA23
AA24
AA25
Y22
Y23
Y24
22
O
uart3_rx_ irrx 2
I
gpio_74
4
IO
safe_mode
7
dss_data5
0
O
uart3_tx_ irtx 2
O
gpio_75
4
IO
safe_mode
7
dss_data6
0
O
uart1_tx
2
O
gpio_76
4
IO
hw_dbg14
5
O
safe_mode
7
dss_data7
0
O
uart1_rx
2
I
gpio_77
4
IO
hw_dbg15
5
O
safe_mode
7
dss_data8
0
O
gpio_78
4
IO
hw_dbg16
5
O
safe_mode
7
dss_data9
0
O
gpio_79
4
IO
hw_dbg17
5
O
safe_mode
7
dss_data10
0
O
gpio_80
4
IO
safe_mode
7
dss_data11
0
O
gpio_81
4
IO
safe_mode
7
dss_data12
0
O
gpio_82
4
IO
safe_mode
7
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
Y25
dss_data13
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_83
4
IO
safe_mode
7
dss_data14
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_84
4
IO
safe_mode
7
dss_data15
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_85
4
IO
safe_mode
7
dss_data16
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_86
4
IO
safe_mode
7
dss_data17
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_87
4
IO
safe_mode
7
dss_data18
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
mcspi3_clk
2
IO
dss_data4
3
O
gpio_88
4
IO
safe_mode
7
dss_data19
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
mcspi3_
simo
2
IO
dss_data3
3
O
gpio_89
4
IO
safe_mode
7
dss_data20
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
mcspi3_
somi
2
IO
dss_data2
3
O
gpio_90
4
IO
safe_mode
7
dss_data21
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
mcspi3_cs0
2
IO
dss_data1
3
O
gpio_91
4
IO
safe_mode
7
dss_data22
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
mcspi3_cs1
2
O
dss_data0
3
O
gpio_92
4
IO
safe_mode
7
dss_data23
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
dss_data5
3
O
gpio_93
4
IO
safe_mode
7
H24
tv_out2
0
O
0
VDDA_DAC
1.8V
NA
10-bit DAC
K21
tv_out1
0
O
0
VDDA_DAC
1.8V
NA
10-bit DAC
K20
tv_vfb1
0
O
Z
NA
0
VDDA_DAC
1.8V
NA
10-bit DAC
H23
tv_vfb2
0
O
Z
NA
0
VDDA_DAC
1.8V
NA
10-bit DAC
H20
tv_vref
0
I
Z
NA
0
VDDA_DAC
1.8V
NA
10-bit DAC
AD2
ccdc_pclk
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
PU/ PD
LVCMOS
gpio_94
4
IO
hw_dbg0
5
O
safe_mode
7
W21
W22
W23
W24
W25
V24
V25
U21
U22
U23
Yes
15
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
23
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
AD1
ccdc_field
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
ccdc_data8
1
I
uart4_tx
2
O
i2c3_scl
3
IOD
gpio_95
4
IO
hw_dbg1
5
O
safe_mode
7
ccdc_ hd
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
uart4_rts
2
O
gpio_96
4
IO
safe_mode
7
ccdc_vd
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
uart4_cts
2
I
gpio_97
4
IO
hw_dbg2
5
O
safe_mode
7
ccdc_wen
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
ccdc_data9
1
I
uart4_rx
2
I
gpio_98
4
IO
hw_dbg3
5
O
safe_mode
7
ccdc_data0
0
I
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
i2c3_sda
3
IOD
gpio_99
4
I
safe_mode
7
ccdc_data1
0
I
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
gpio_100
4
I
safe_mode
7
ccdc_data2
0
I
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
gpio_101
4
IO
hw_dbg4
5
O
safe_mode
7
ccdc_data3
0
I
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
gpio_102
4
IO
hw_dbg5
5
O
safe_mode
7
ccdc_data4
0
I
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
gpio_103
4
IO
hw_dbg6
5
O
safe_mode
7
ccdc_data5
0
I
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
gpio_104
4
IO
hw_dbg7
5
O
safe_mode
7
ccdc_data6
0
I
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
gpio_105
4
IO
safe_mode
7
ccdc_data7
0
I
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
gpio_106
4
IO
safe_mode
7
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/PD
LVCMOS
AE2
AD3
AE3
AD4
AE4
AC5
AD5
AE5
Y6
AB6
AC6
AE6
24
rmii_mdio_da 0
ta
IO
ccdc_data8
1
I
gpio_107
4
IO
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
AD6
Y7
AA7
AB7
AC7
AD7
AE7
AD8
AE8
D25
C25
B25
D24
AA9
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
safe_mode
rmii_mdio_cl 0
k
7
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/PD
LVCMOS
ccdc_data9
1
I
gpio_108
4
IO
safe_mode
7
rmii_rxd0
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
25
PU/PD
LVCMOS
25
PU/ PD
LVCMOS
0
I
ccdc_data10 1
I
gpio_109
4
IO
hw_dbg8
5
O
safe_mode
7
rmii_rxd1
0
I
ccdc_data11 1
I
gpio_110
4
IO
hw_dbg9
5
O
safe_mode
7
rmii_crs_dv
0
I
ccdc_data12 1
I
gpio_111
4
IO
safe_mode
7
rmii_rxer
0
I
ccdc_data13 1
I
gpio_167
4
IO
hw_dbg10
5
O
safe_mode
7
rmii_txd0
0
O
ccdc_ data14 1
I
gpio_126
4
IO
hw_dbg11
5
O
safe_mode
7
rmii_txd1
0
O
ccdc_data15 1
I
gpio_112
4
I
safe_mode
7
rmii_txen
0
O
gpio_113
4
I
safe_mode
7
rmii_50mhz_ 0
clk
I
gpio_114
4
I
safe_mode
7
mcbsp2_fsx
0
IO
gpio_116
4
IO
safe_mode
7
mcbsp2_
clkx
0
IO
gpio_117
4
IO
safe_mode
7
mcbsp2_dr
0
I
gpio_118
4
IO
safe_mode
7
mcbsp2_dx
0
IO
gpio_119
4
IO
safe_mode
7
mmc1_clk
0
O
gpio_120
4
IO
NA
H
PU
7
VDDSHV
1.8V/3.3V
NA
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
25
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
AB9
AC9
AD9
AE9
AA10
AB10
AC10
AD10
AE10
AD11
AE11
AB12
AC12
AD12
26
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
safe_mode
7
mmc1_cmd
gpio_121
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
4
IO
safe_mode
7
mmc1_dat0
0
IO
mcspi2_clk
1
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_122
4
IO
safe_mode
7
mmc1_dat1
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
0
IO
mcspi2_simo 1
IO
gpio_123
4
IO
safe_mode
7
mmc1_dat2
0
IO
mcspi2_somi 1
IO
gpio_124
4
IO
safe_mode
7
mmc1_dat3
0
IO
mcspi2_cs0
1
O
gpio_125
4
IO
safe_mode
7
mmc1_dat4
0
IO
gpio_126
4
IO
safe_mode
7
mmc1_dat5
0
IO
gpio_127
4
IO
safe_mode
7
mmc1_dat6
0
IO
gpio_128
4
IO
safe_mode
7
mmc1_dat7
0
IO
gpio_129
4
IO
safe_mode
7
mmc2_clk
0
O
mcspi3_clk
1
IO
uart4_cts
2
I
gpio_130
4
IO
safe_mode
7
mmc2_ cmd 0
IO
mcspi3_
simo
1
IO
uart4_rts
2
O
gpio_131
4
IO
safe_mode
7
mmc2_ dat0 0
IO
mcspi3_
somi
1
IO
uart4_tx
2
O
gpio_132
4
IO
safe_mode
7
mmc2_ dat1 0
IO
uart4_rx
2
I
gpio_133
4
IO
safe_mode
7
mmc2_ dat2 0
IO
mcspi3_cs1
O
1
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
AE12
AB13
AC13
PIN NAME
[2]
MODE [3]
TYPE [4]
gpio_134
4
IO
safe_mode
7
mmc2_ dat3 0
IO
mcspi3_cs0
1
IO
gpio_135
4
IO
safe_mode
7
mmc2_ dat4 0
IO
mmc2_dir_da 1
t0
O
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
mmc2_ dat5 0
IO
mmc2_dir_da 1
t1
O
mmc3_dat1
3
IO
gpio_137
4
IO
mm_fsusb3_r 6
xdp
IO
safe_mode
AD13
AE13
B24
C24
A24
C23
F20
F19
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
7
mmc2_ dat6 0
IO
mmc2_dir_
cmd
1
O
mmc3_dat2
3
IO
gpio_138
4
IO
safe_mode
7
mmc2_ dat7 0
IO
mmc2_ clkin 1
I
mmc3_dat3
3
IO
gpio_139
4
IO
mm_fsusb3_r 6
xdm
IO
safe_mode
7
mcbsp3_dx
0
IO
uart2_cts
1
I
gpio_140
4
IO
safe_mode
7
mcbsp3_dr
0
I
uart2_rts
1
O
gpio_141
4
IO
safe_mode
7
mcbsp3_
clkx
0
IO
uart2_tx
1
O
gpio_142
4
IO
safe_mode
7
mcbsp3_fsx
0
IO
uart2_rx
1
I
gpio_143
4
IO
safe_mode
7
uart2_cts
0
I
mcbsp3_dx
1
IO
gpt9_pwm_e 2
vt
IO
gpio_144
4
IO
safe_mode
7
uart2_rts
0
O
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
27
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
E24
E23
AA19
Y19
Y20
W20
B23
A23
B22
A22
PIN NAME
[2]
MODE [3]
TYPE [4]
mcbsp3_dr
1
I
gpt10_pwm_ 2
evt
IO
gpio_145
4
IO
safe_mode
7
uart2_tx
0
O
mcbsp3_
clkx
1
IO
gpt11_pwm
_evt
2
IO
gpio_146
4
IO
safe_mode
7
uart2_rx
0
I
mcbsp3_fsx
1
IO
gpt8_pwm_e 2
vt
IO
gpio_147
4
IO
safe_mode
7
uart1_tx
0
O
gpio_148
4
IO
safe_mode
7
uart1_rts
0
O
gpio_149
4
IO
safe_mode
7
uart1_cts
0
I
gpio_150
4
IO
safe_mode
7
uart1_rx
0
I
mcbsp1_ clkr 2
I
mcspi4_clk
3
IO
gpio_151
4
IO
safe_mode
7
mcbsp4_
clkx
0
IO
gpio_152
4
IO
mm_fsusb3_t 6
xse0
IO
safe_mode
7
mcbsp4_dr
0
I
gpio_153
4
IO
mm_fsusb3_r 6
xrcv
IO
safe_mode
7
mcbsp4_dx
0
IO
gpio_154
4
IO
mm_fsusb3_t 6
xdat
IO
safe_mode
7
mcbsp4_fsx
0
IO
gpio_155
4
IO
mm_fsusb3_t 6
xen_ n
IO
safe_mode
R25
P21
28
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
7
mcbsp1_ clkr 0
IO
mcspi4_clk
1
IO
gpio_156
4
IO
safe_mode
7
mcbsp1_fsr
0
IO
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
P22
P23
P25
P24
N24
N2
N3
P1
P2
F25
F24
PIN NAME
[2]
MODE [3]
TYPE [4]
gpio_157
4
IO
safe_mode
7
mcbsp1_dx
0
IO
mcspi4_
simo
1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
mcbsp1_dr
0
I
mcspi4_
somi
1
IO
mcbsp3_dr
2
I
gpio_159
4
IO
safe_mode
7
mcbsp_clks
0
I
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
mcbsp1_fsx
0
IO
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
mcbsp1_
clkx
0
IO
mcbsp3_
clkx
2
IO
gpio_162
4
IO
safe_mode
7
uart3_cts_
rctx
0
IO
gpio_163
4
IO
safe_mode
7
uart3_rts_ sd 0
O
gpio_164
4
IO
safe_mode
7
uart3_rx_ irrx 0
I
gpio_165
4
IO
safe_mode
7
uart3_tx_ irtx 0
O
gpio_166
4
IO
safe_mode
7
usb0_dp
0
IO
uart3_tx_ irtx 1
O
usb0_dm
IO
0
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
5.0V
Yes
PU/ PD
USB_PHY
5.0V
Yes
PU/ PD
USB_PHY
uart3_rx_ irrx 1
I
G24
usb0_vbus
0
A
VDDA3P3V_ 3.3V
USBPHY
Yes
PU/ PD
USB_PHY
G25
usb0_id
0
A
VDDA3P3V_ 3.3V
USBPHY
Yes
PU/ PD
USB_PHY
E25
usb0_drvvbu 0
s
O
uart3_tx_ irtx 2
O
gpio_125
4
IO
safe_mode
7
hecc1_ txd
0
V2
O
uart3_rx_ irrx 2
I
gpio_130
IO
4
L
PD
7
VDDSHV
1.8V/3.3V
H
PU
7
VDDSHV
1.8V/3.3V
30
Yes
24
LVCMOS
PU/ PD
LVCMOS
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
29
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
V3
PIN NAME
[2]
MODE [3]
safe_mode
7
hecc1_ rxd
0
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
24
PU/ PD
LVCMOS
uart3_rts_ sd 2
O
gpio_131
4
IO
safe_mode
7
V4
i2c1_scl
0
IOD
H
PU
0
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
V5
i2c1_ sda
0
IOD
H
PU
0
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
W1
i2c2_scl
0
IOD
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
gpio_168
4
IO
safe_mode
7
i2c2_sda
0
IOD
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
gpio_183
4
IO
safe_mode
7
i2c3_scl
0
IOD
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
gpio_184
4
IO
safe_mode
7
i2c3_sda
0
IOD
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
gpio_185
4
IO
safe_mode
7
hdq_sio
0
IO
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
LVCMOS
sys_altclk
1
I
i2c2_sccbe
2
O
i2c3_sccbe
3
O
gpio_170
4
IO
safe_mode
7
mcspi1_clk
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc2_dat4
1
IO
gpio_171
4
IO
safe_mode
7
mcspi1_
simo
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc2_dat5
1
IO
gpio_172
4
IO
safe_mode
7
mcspi1_
somi
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc2_dat6
1
IO
gpio_173
4
IO
safe_mode
7
mcspi1_cs0
0
IO
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc2_dat7
1
IO
gpio_174
4
IO
safe_mode
7
mcspi1_cs1
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc3_cmd
3
IO
gpio_175
4
IO
safe_mode
7
mcspi1_cs2
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc3_clk
3
O
gpio_176
4
IO
safe_mode
7
mcspi1_cs3
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
hsusb2_
data2
3
IO
gpio_177
4
IO
W2
W4
W5
L25
AE14
AD15
AC15
AB15
AD14
AE15
AE16
30
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
mm_fsusb2_t 5
xdat
AD16
AC16
AB16
AA16
AE17
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
30
IO
safe_mode
7
mcspi2_clk
0
IO
hsusb2_
data7
3
IO
gpio_178
4
IO
safe_mode
7
mcspi2_
simo
0
IO
gpt9_pwm_e 1
vt
IO
hsusb2_
data4
3
IO
gpio_179
4
IO
safe_mode
7
mcspi2_
somi
0
IO
gpt10_pwm_ 1
evt
IO
hsusb2_
data5
3
IO
gpio_180
4
IO
safe_mode
7
mcspi2_cs0
0
IO
gpt11_pwm_ 1
evt
IO
hsusb2_
data6
3
IO
gpio_181
4
IO
safe_mode
7
mcspi2_cs1
0
O
gpt8_pwm_e 1
vt
IO
hsusb2_
data3
3
IO
gpio_182
4
IO
mm_fsusb2_t 5
xen_ n
IO
safe_mode
7
K24
sys_32k
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
PU/ PD
LVCMOS
K25
sys_xtalin
0
I
Z
Z
0
VDDSOSC
1.8V
NA
PU/ PD
LVCMOS
H25
sys_xtalout
0
O
Z
Z
0
VDDSOSC
1.8V
NA
PU/ PD
LVCMOS
M24
sys_clkreq
0
IO
L
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_1
4
IO
sys_nirq
0
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_0
4
IO
Y1
safe_mode
7
Y2
sys_
nrespwron
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Y3
sys_
nreswarm
0
IO
L
PD
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_30
4
IO
sys_boot0
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_2
4
IO
sys_boot1
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_3
4
IO
sys_boot2
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_4
4
IO
Y4
AA1
AA2
Open Drain
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
31
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
AA3
sys_boot3
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_5
4
IO
sys_boot4
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
AB1
AB2
mmc2_dir_da 1
t2
O
gpio_6
4
IO
sys_boot5
0
I
mmc2_dir_da 1
t3
O
gpio_7
4
IO
sys_boot6
0
I
gpio_8
4
IO
AC2
sys_boot7
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/PD
LVCMOS
AC3
sys_boot8
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/PD
LVCMOS
N25
sys_clkout1
0
O
H
PD
0/7 (1)
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_10
4
IO
safe_mode
7
sys_clkout2
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
10
PU/ PD
LVCMOS
gpio_186
4
IO
AC1
M25
safe_mode
7
U24
jtag_ntrst
0
I
L
PD
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
U25
jtag_tck
0
I
L
PD
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
T21
jtag_rtck
0
O
L
Z
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
T22
jtag_tms_tms 0
c
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
T23
jtag_tdi
0
I
H
PU
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
T24
jtag_tdo
0
O
L
Z
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
T25
jtag_emu0
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_11
4
IO
jtag_emu1
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_31
4
IO
etk_clk
0
O
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
mcbsp5_
clkx
1
IO
mmc3_clk
2
O
hsusb1_stp
3
O
gpio_12
4
IO
etk_ctl
0
O
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
mmc3_cmd
2
IO
hsusb1_clk
3
O
gpio_13
4
IO
mm_fsusb1_r 5
xdp
IO
etk_d0
0
O
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
mcspi3_
simo
1
IO
mmc3_dat4
2
IO
hsusb1_
data0
3
IO
gpio_14
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
R24
AD17
AE18
AD18
AC18
(1)
32
4
IO
mm_fsusb1_r 5
xrcv
IO
etk_d1
0
O
mcspi3_
somi
1
IO
hsusb1_
data1
3
IO
Mux0 if sys_boot6 is pulled down (clock master).
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
AB18
AA18
Y18
AE19
AD19
AB19
AE20
AD20
AC20
AB20
PIN NAME
[2]
MODE [3]
TYPE [4]
gpio_15
4
IO
mm_fsusb1_t 5
xse0
IO
etk_d2
0
O
mcspi3_cs0
1
IO
hsusb1_
data2
3
IO
gpio_16
4
IO
mm_fsusb1_t 5
xdat
IO
etk_d3
0
O
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_
data7
3
IO
gpio_17
4
IO
etk_d4
0
O
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_
data4
3
IO
gpio_18
4
IO
etk_d5
0
O
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_
data5
3
IO
gpio_19
4
IO
etk_d6
0
O
mcbsp5_dx
1
IO
mmc3_dat2
2
IO
hsusb1_
data6
3
IO
gpio_20
4
IO
etk_d7
0
O
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_
data3
3
IO
gpio_21
4
IO
mm_fsusb1_t 5
xen_n
IO
etk_d8
0
O
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
etk_d9
0
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm_fsusb1_r 5
xdm
IO
etk_d10
0
O
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
etk_d11
0
O
mcspi3_clk
1
IO
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
33
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
AE21
AD21
AC21
AE22
PIN NAME
[2]
MODE [3]
TYPE [4]
hsusb2_stp
3
O
gpio_25
4
IO
mm_fsusb2_r 5
xdp
IO
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm_fsusb2_r 5
xdm
IO
etk_d14
0
O
hsusb2_
data0
3
IO
gpio_28
4
IO
mm_fsusb2_r 5
xrcv
IO
etk_d15
0
O
hsusb2_
data1
3
IO
gpio_29
4
IO
mm_fsusb2_t 5
xse0
IO
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
V16, V15,
VDD_CORE 0
V11, V10,
U16, U15,
U11, U10,
T18, T17, T9,
T8, R18,
R17, R9, R8,
M18, L18,
L9, L8, K18,
K17, K9, K8,
J16, J15,
J11, J10,
H15, H11,
H10
PWR
1.2V
AA13
VDDS_SRA
M_MPU
0
PWR
1.8V
E17
VDDS_SRA 0
M_CORE_B
G
PWR
1.8V
AA12
CAP_VDD_S 0
RAM_MPU
PWR
1.2V
E16
CAP_VDD_S 0
RAM_CORE
PWR
1.2V
AA15
VDDS_DPLL 0
_MPU_USB
HOST
PWR
1.8V
N20
VDDS_DPLL 0
_PER_CORE
PWR
1.8V
H21
VDDA_DAC
0
PWR
1.8V
F23
VDDA3P3V_ 0
USBPHY
PWR
3.3V
G22
VDDA1P8V_ 0
USBPHY
PWR
1.8V
F22
CAP_VDDA1 0
P2LDO_USB
PHY
PWR
1.2V
34
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-1. Ball Characteristics (ZCN Pkg.) (continued)
BALL
LOCATION
[1]
PIN NAME
[2]
MODE [3]
TYPE [4]
Y16, Y15,
VDDSHV
Y13, Y12,
Y10, W16,
W15, W13,
W12,W10,
W9, W6, V7,
V6, U19,
T20, T19, T7,
T6, R7, R6,
P20, P19,
N19, N7, N6,
M7, M6, M5,
L19, K19,
K7, K6, K5,
J7, H18, H17
0
PWR
1.8V/3.3V
Y9, W18,
U20, R5,
H16, H8,
G17, G16,
G14, G13,
G11, G10,
G8, F16,
F13, F11,
F10, F8
VDDS
0
PWR
1.8V
F14
VREFSSTL
0
I
L20
VDDSOSC
0
PWR
1.8V
J25
VSSOSC
O
GND
1.8V
AE25, AE1, VSS
V18, V17,
V14, V13,
V12, V9, V8,
U18, U17,
U14, U13,
U12, U9, U8,
T14, T13,
T12, R16,
R15, R14,
R13, R12,
R11, R10,
P18, P17,
P16, P15,
P14, P13,
P12, P11,
P10, P9, P8,
N18, N17,
N14, N13,
N12, N9, N8,
M17, M16,
M15, M14,
M13,M12,
M11, M10,
M9, M8, L17,
L16, L15,
L14, L13,
L12, L11,
L10, K14,
K13, K12,
J18, J17,
J14, J13,
J12, J9, J8,
H14, H13,
H12, H9,
A25, A1,
N23, G20,
G21
0
GND
H22
0
GND
VSSA_DAC
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
L24, L23,
NC (2)
L22, L21,
K23, K22,
H19,
N22,N21,F17
U2 (3)
Reserved
V1 (3)
Reserved
(2)
(3)
"NC" indicates "No Connect". For proper device operation, these pins must be left unconnected.
For proper device operation, this pin must be pulled up to VDDSHV via a 10k-Ω resistor.
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
35
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-2. Ball Characteristics (ZER Pkg.)
BALL
PIN NAME
LOCATION [2]
[1]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
E3
sdrc_d0
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D3
sdrc_d1
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C3
sdrc_d2
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C2
sdrc_d3
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
F3
sdrc_d4
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D2
sdrc_d5
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
C1
sdrc_d6
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
D1
sdrc_d7
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
G2
sdrc_d8
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
G3
sdrc_d9
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
H3
sdrc_d10
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
G4
sdrc_d11
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
H4
sdrc_d12
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
G1
sdrc_d13
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
J3
sdrc_d14
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
J1
sdrc_d15
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
T3
sdrc_d16
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
U3
sdrc_d17
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
U4
sdrc_d18
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
V4
sdrc_d19
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
V1
sdrc_d20
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
V2
sdrc_d21
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
V5
sdrc_d22
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
V3
sdrc_d23
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
W3
sdrc_d24
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
W4
sdrc_d25
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
Y3
sdrc_d26
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
Y4
sdrc_d27
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
AA2
sdrc_d28
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
AA3
sdrc_d29
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
AA4
sdrc_d30
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
AB2
sdrc_d31
0
IO
L
Z
0
VDDS
1.8V
Yes
4
PU/ PD
LVCMOS
L4
sdrc_ba0
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
K5
sdrc_ba1
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
J5
sdrc_ba2
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
M3
sdrc_a0
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
M4
sdrc_a1
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
M5
sdrc_a2
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
N3
sdrc_a3
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
N2
sdrc_a4
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
N4
sdrc_a5
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
P3
sdrc_a6
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
P2
sdrc_a7
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
P1
sdrc_a8
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
P4
sdrc_a9
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
R1
sdrc_a10
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
R2
sdrc_a11
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
R3
sdrc_a12
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
R4
sdrc_a13
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
T2
sdrc_a14
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
J4
sdrc_ncs0
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
K4
sdrc_ncs1
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
L1
sdrc_clk
0
O
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
L2
sdrc_nclk
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
36
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
K3
0
O
L
PD
7
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
sdrc_cke0
sdrc_cke0_s 7
afe
I
K1
sdrc_nras
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
L3
sdrc_ncas
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
K2
sdrc_nwe
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
F4
sdrc_dm0
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
J2
sdrc_dm1
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
T4
sdrc_dm2
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
AB3
sdrc_dm3
0
O
L
Z
0
VDDS
1.8V
No
8
PU/ PD
LVCMOS
E2
sdrc_dqs0p
0
IO
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
H2
sdrc_dqs1p
0
IO
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
U1
sdrc_dqs2p
0
IO
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
Y1
sdrc_dqs3p
0
IO
L
Z
0
VDDS
1.8V
Yes
8
PU/ PD
LVCMOS
E1
sdrc_dqs0n
0
IO
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
H1
sdrc_dqs1n
0
IO
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
U2
sdrc_dqs2n
0
IO
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
Y2
sdrc_dqs3n
0
IO
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
T1
sdrc_odt
0
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
F2
sdrc_strben0 0
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
F1
sdrc_strben_ 0
dly0
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
W1
sdrc_strben1 0
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
W2
sdrc_strben_ 0
dly1
L
Z
0
VDDS
1.8V
8
PU/ PD
LVCMOS
W5
gpmc_a1
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_34
4
IO
gpmc_a2
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_35
4
IO
gpmc_a3
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_36
4
IO
gpmc_a4
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_37
4
IO
gpmc_a5
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_38
4
IO
gpmc_a6
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_39
4
IO
gpmc_a7
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_40
4
IO
gpmc_a8
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_41
4
IO
gpmc_a9
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
sys_
ndmareq2
1
I
gpio_42
4
IO
gpmc_a10
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
sys_
ndmareq3
1
I
Y5
AB4
AA5
AB5
AB6
AA6
W6
AB7
Y6
gpio_43
4
IO
AA7
gpmc_d0
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
30
PU/ PD
LVCMOS
Y7
gpmc_d1
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
W7
gpmc_d2
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
AA9
gpmc_d3
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Y8
gpmc_d4
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
AA8
gpmc_d5
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
AB8
gpmc_d6
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
W8
gpmc_d7
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
37
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
W10
gpmc_d8
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_44
4
IO
gpmc_d9
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_45
4
IO
gpmc_d10
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_46
4
IO
gpmc_d11
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_47
4
IO
gpmc_d12
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_48
4
IO
gpmc_d13
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_49
4
IO
gpmc_d14
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_50
4
IO
gpmc_d15
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_51
4
IO
Y10
gpmc_ncs0
0
O
H
Z
0
VDDSHV
1.8V/3.3V
No
30
NA
LVCMOS
Y11
gpmc_ncs1
0
O
H
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_52
4
IO
gpmc_ncs2
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
AB9
AB10
W9
AA10
Y9
V10
V9
Y12
V12
AA11
W12
AA12
0
O
gpt9_pwm_e 2
vt
IO
gpio_53
4
IO
gpmc_ncs3
0
O
sys_
ndmareq0
1
I
gpt10_pwm_ 2
evt
IO
gpio_54
4
IO
gpmc_ncs4
0
O
sys_
ndmareq1
1
I
gpt9_pwm_e 3
vt
IO
gpio_55
4
IO
gpmc_ncs5
0
O
sys_
ndmareq2
1
I
gpt10_pwm_ 3
evt
IO
gpio_56
4
IO
gpmc_ncs6
0
O
sys_
ndmareq3
1
I
gpt11_pwm_ 3
evt
IO
gpio_57
4
IO
gpmc_ncs7
0
O
gpmc_io_dir
1
O
gpt8_pwm_e 3
vt
IO
gpio_58
4
IO
gpmc_clk
0
O
gpio_59
4
IO
AA14
gpmc_nadv_ 0
ale
O
L
Z
0
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
AB14
gpmc_noe
0
O
H
Z
0
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
AA15
gpmc_nwe
0
O
H
Z
0
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
V11
AB13
38
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
gpmc_nbe0_ 0
cle
O
L
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_60
4
IO
gpmc_nbe1
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_61
4
IO
gpmc_nwp
0
O
L
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_62
4
IO
V13
gpmc_wait0
0
I
H
PU
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
AA16
gpmc_wait1
0
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
uart4_tx
1
O
gpio_63
4
IO
gpmc_wait2
0
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
uart4_rx
1
I
gpio_64
4
IO
gpmc_wait3
0
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
sys_
ndmareq1
1
I
uart3_cts_rct 2
x
I
gpio_65
4
IO
dss_pclk
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_66
4
IO
hw_dbg12
5
O
dss_hsync
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_67
4
IO
hw_dbg13
5
O
dss_vsync
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_68
4
IO
dss_acbias
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_69
4
IO
dss_data0
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
uart1_cts
2
I
gpio_70
4
IO
dss_data1
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
uart1_rts
2
O
gpio_71
4
IO
dss_data2
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_72
4
IO
dss_data3
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_73
4
IO
dss_data4
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
W11
Y15
W14
Y14
V14
B22
B21
B20
B19
A20
A19
A18
B18
A17
C18
D17
B16
B17
MODE [3]
uart3_rx_irrx 2
I
gpio_74
4
IO
dss_data5
0
O
uart3_tx_irtx
2
O
gpio_75
4
IO
dss_data6
0
O
uart1_tx
2
O
gpio_76
4
IO
hw_dbg14
5
O
dss_data7
0
O
uart1_rx
2
I
gpio_77
4
IO
hw_dbg15
5
O
dss_data8
0
O
gpio_78
4
IO
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
39
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
C17
C16
D16
D14
A16
D15
B15
A15
A14
C13
C15
A13
B13
C14
B14
AB21
AA21
Y21
40
MODE [3]
TYPE [4]
hw_dbg16
5
O
dss_data9
0
O
gpio_79
4
IO
hw_dbg17
5
O
dss_data10
0
O
gpio_80
4
IO
dss_data11
0
O
gpio_81
4
IO
dss_data12
0
O
gpio_82
4
IO
dss_data13
0
O
gpio_83
4
IO
dss_data14
0
O
gpio_84
4
IO
dss_data15
0
O
gpio_85
4
IO
dss_data16
0
O
gpio_86
4
IO
dss_data17
0
O
gpio_87
4
IO
dss_data18
0
O
mcspi3_clk
2
IO
dss_data4
3
O
gpio_88
4
IO
dss_data19
0
O
mcspi3_
simo
2
IO
dss_data3
3
O
gpio_89
4
IO
dss_data20
0
O
mcspi3_
somi
2
IO
dss_data2
3
O
gpio_90
4
IO
dss_data21
0
O
mcspi3_cs0
2
IO
dss_data1
3
O
gpio_91
4
IO
dss_data22
0
O
mcspi3_cs1
2
O
gpio_92
4
IO
dss_data23
0
O
dss_data5
3
O
gpio_93
4
IO
ccdc_pclk
0
IO
gpio_94
4
IO
hw_dbg0
5
O
ccdc_field
0
IO
ccdc_data8
1
I
uart4_tx
2
O
i2c3_scl
3
IO
gpio_95
4
IO
hw_dbg1
5
O
ccdc_ hd
0
IO
uart4_rts
2
O
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
Y22
W21
W22
W20
V21
V19
V22
U20
V20
U19
U21
U22
T19
T20
T21
R22
MODE [3]
TYPE [4]
gpio_96
4
IO
ccdc_vd
0
IO
uart4_cts
2
I
gpio_97
4
IO
hw_dbg2
5
O
ccdc_wen
0
IO
ccdc_data9
1
I
uart4_rx
2
I
gpio_98
4
IO
hw_dbg3
5
O
ccdc_data0
0
I
i2c3_sda
3
IO
gpio_99
4
I
ccdc_data1
0
I
gpio_100
4
I
ccdc_data2
0
I
gpio_101
4
IO
hw_dbg4
5
O
ccdc_data3
0
I
gpio_102
4
IO
hw_dbg5
5
O
ccdc_data4
0
I
gpio_103
4
IO
hw_dbg6
5
O
ccdc_data5
0
I
gpio_104
4
IO
hw_dbg7
5
O
ccdc_data6
0
I
gpio_105
4
IO
ccdc_data7
0
I
gpio_106
4
IO
rmii_mdio_da 0
ta
IO
ccdc_data8
1
I
gpio_107
4
IO
rmii_mdio_clk 0
O
ccdc_data9
1
I
gpio_108
4
IO
rmii_rxd0
0
I
ccdc_data10 1
I
gpio_109
4
IO
hw_dbg8
5
O
rmii_rxd1
0
I
ccdc_data11 1
I
gpio_110
4
IO
hw_dbg9
5
O
rmii_crs_dv
0
I
ccdc_data12 1
I
gpio_111
4
IO
rmii_rxer
0
I
ccdc_data13 1
I
gpio_167
4
IO
hw_dbg10
5
O
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
15
PU/PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
25
PU/PD
LVCMOS
8
Yes
8
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
41
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
T22
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
25
PU/PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
25
PU/PD
LVCMOS
25
PU/ PD
LVCMOS
R20
R19
R21
E5
D5
C5
E4
P22
N21
P21
N20
P19
P20
N22
N19
N18
P18
M21
M20
K20
42
rmii_txd0
ccdc_ data14 1
I
gpio_126
4
IO
hw_dbg11
5
O
rmii_txd1
0
O
ccdc_data15 1
I
gpio_112
4
I
rmii_txen
0
O
gpio_113
4
I
rmii_50mhz_ 0
clk
I
gpio_114
4
I
mcbsp2_fsx
0
IO
gpio_116
4
IO
mcbsp2_ clkx 0
IO
gpio_117
4
IO
mcbsp2_dr
0
I
gpio_118
4
IO
mcbsp2_dx
0
IO
gpio_119
4
IO
mmc1_clk
0
O
gpio_120
4
IO
mmc1_cmd
0
IO
gpio_121
4
IO
mmc1_dat0
0
IO
mcspi2_clk
1
IO
gpio_122
4
IO
mmc1_dat1
0
IO
mcspi2_simo 1
IO
gpio_123
4
IO
mmc1_dat2
0
IO
mcspi2_somi 1
IO
gpio_124
4
IO
mmc1_dat3
0
IO
mcspi2_cs0
1
O
gpio_125
4
IO
mmc1_dat4
0
IO
gpio_126
4
IO
mmc1_dat5
0
IO
gpio_127
4
IO
mmc1_dat6
0
IO
gpio_128
4
IO
mmc1_dat7
0
IO
gpio_129
4
IO
mmc2_clk
0
O
mcspi3_clk
1
IO
uart4_cts
2
I
gpio_130
4
IO
mmc2_ cmd
0
IO
mcspi3_
simo
1
IO
uart4_rts
2
O
gpio_131
4
IO
mmc2_ dat0 0
IO
mcspi3_
somi
IO
1
NA
H
PU
7
VDDSHV
1.8V/3.3V
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
No
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
NA
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
L19
M18
K21
L18
L20
L21
M19
C4
B4
D4
A4
A5
B5
D6
MODE [3]
TYPE [4]
uart4_tx
2
O
gpio_132
4
IO
mmc2_ dat1 0
IO
uart4_rx
2
I
gpio_133
4
IO
mmc2_ dat2 0
IO
mcspi3_cs1
1
O
gpio_134
4
IO
mmc2_ dat3 0
IO
mcspi3_cs0
1
IO
gpio_135
4
IO
mmc2_ dat4 0
IO
mmc2_dir_da 1
t0
O
mmc3_dat0
3
IO
gpio_136
4
IO
mmc2_ dat5 0
IO
mmc2_dir_da 1
t1
O
mmc3_dat1
3
IO
gpio_137
4
IO
mm_fsusb3_r 6
xdp
IO
mmc2_ dat6 0
IO
mmc2_dir_c
md
1
O
mmc3_dat2
3
IO
gpio_138
4
IO
mmc2_ dat7 0
IO
mmc2_clkin
1
I
mmc3_dat3
3
IO
gpio_139
4
IO
mm_fsusb3_r 6
xdm
IO
mcbsp3_dx
0
IO
uart2_cts
1
I
gpio_140
4
IO
mcbsp3_dr
0
I
uart2_rts
1
O
gpio_141
4
IO
mcbsp3_ clkx 0
IO
uart2_tx
1
O
gpio_142
4
IO
mcbsp3_fsx
0
IO
uart2_rx
1
I
gpio_143
4
IO
uart2_cts
0
I
mcbsp3_dx
1
IO
gpt9_pwm_e 2
vt
IO
gpio_144
4
IO
uart2_rts
0
O
mcbsp3_dr
1
I
gpt10_pwm_ 2
evt
IO
gpio_145
4
IO
uart2_tx
0
O
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
43
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
C6
C22
C21
C19
C20
A3
B3
A2
B2
B11
D11
C10
C9
E11
C11
C8
44
MODE [3]
TYPE [4]
mcbsp3_clkx 1
IO
gpt11_pwm
_evt
2
IO
gpio_146
4
IO
uart2_rx
0
I
mcbsp3_fsx
1
IO
gpt8_pwm_e 2
vt
IO
gpio_147
4
IO
uart1_tx
0
O
gpio_148
4
IO
uart1_rts
0
O
gpio_149
4
IO
uart1_cts
0
I
gpio_150
4
IO
uart1_rx
0
I
mcbsp1_ clkr 2
I
mcspi4_clk
3
IO
gpio_151
4
IO
mcbsp4_ clkx 0
IO
gpio_152
4
IO
mm_fsusb3_t 6
xse0
IO
mcbsp4_dr
0
I
gpio_153
4
IO
mm_fsusb3_r 6
xrcv
IO
mcbsp4_dx
0
IO
gpio_154
4
IO
mm_fsusb3_t 6
xdat
IO
mcbsp4_fsx
0
IO
gpio_155
4
IO
mm_fsusb3_t 6
xen_n
IO
mcbsp1_ clkr 0
IO
mcspi4_clk
1
IO
gpio_156
4
IO
mcbsp1_fsr
0
IO
gpio_157
4
IO
mcbsp1_dx
0
IO
mcspi4_
simo
1
IO
mcbsp3_dx
2
I
gpio_158
4
IO
mcbsp1_dr
0
I
mcspi4_
somi
1
IO
mcbsp3_dr
2
I
gpio_159
4
IO
mcbsp_clks
0
I
gpio_160
4
IO
uart1_cts
5
I
mcbsp1_fsx
0
IO
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
mcbsp1_ clkx 0
IO
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
W15
W13
AA13
MODE [3]
TYPE [4]
mcbsp3_clkx 2
IO
gpio_162
4
IO
uart3_cts_rct 0
x
IO
gpio_163
4
IO
uart3_rts_sd 0
O
gpio_164
IO
4
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
uart3_rx_irrx 0
I
gpio_165
4
IO
uart3_tx_irtx
0
O
gpio_166
4
IO
A6
usb0_dp
0
IO
5.0V
Yes
PU/ PD
LVCMOS
B6
usb0_dm
0
IO
5.0V
Yes
PU/ PD
LVCMOS
C7
usb0_vbus
0
A
VDDA3P3V_ 3.3V
USBPHY
Yes
PU/ PD
LVCMOS
B7
usb0_id
0
A
VDDA3P3V_ 3.3V
USBPHY
Yes
PU/ PD
LVCMOS
A7
usb0_drvvbu 0
s
O
uart3_tx_irtx
2
O
gpio_125
4
IO
hecc1_ txd
0
O
Y13
AB15
AB16
uart3_rx_irrx 2
I
gpio_130
4
IO
hecc1_ rxd
0
I
uart3_rts_sd 2
O
L
PD
7
VDDSHV
1.8V/3.3V
30
H
PU
7
VDDSHV
1.8V/3.3V
Yes
24
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
24
PU/ PD
LVCMOS
gpio_131
4
IO
AA17
i2c1_scl
0
IOD
H
PU
0
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
AB17
i2c1_ sda
0
IOD
H
PU
0
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
Y17
i2c2_scl
0
IOD
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
gpio_168
4
IO
i2c2_sda
0
IOD
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
gpio_183
4
IO
i2c3_scl
0
IOD
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
gpio_184
4
IO
i2c3_sda
0
IOD
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
Open Drain
gpio_185
4
IO
hdq_sio
0
IO
H
PU
7
VDDSHV
1.8V/3.3V
Yes
40
PU/ PD
LVCMOS
sys_altclk
1
I
i2c2_sccbe
2
O
i2c3_sccbe
3
O
gpio_170
4
IO
mcspi1_clk
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc2_dat4
1
IO
gpio_171
4
IO
mcspi1_
simo
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc2_dat5
1
IO
gpio_172
4
IO
mcspi1_
somi
0
IO
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc2_dat6
1
IO
gpio_173
4
IO
mcspi1_cs0
0
IO
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
mmc2_dat7
1
IO
gpio_174
4
IO
mcspi1_cs1
0
O
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Y16
W16
W17
B9
K22
K19
J18
K18
J20
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
45
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
J19
J21
J22
H20
H22
H21
H19
MODE [3]
TYPE [4]
mmc3_cmd
3
IO
gpio_175
4
IO
mcspi1_cs2
0
O
mmc3_clk
3
O
gpio_176
4
IO
mcspi1_cs3
0
O
hsusb2_
data2
3
IO
gpio_177
4
IO
mm_fsusb2_t 5
xdat
IO
mcspi2_clk
0
IO
hsusb2_
data7
3
IO
gpio_178
4
IO
mcspi2_
simo
0
IO
gpt9_pwm_e 1
vt
IO
hsusb2_
data4
3
IO
gpio_179
4
IO
mcspi2_
somi
0
IO
gpt10_pwm_ 1
evt
IO
hsusb2_
data5
3
IO
gpio_180
4
IO
mcspi2_cs0
0
IO
gpt11_pwm_ 1
evt
IO
hsusb2_
data6
3
IO
gpio_181
4
IO
mcspi2_cs1
0
O
gpt8_pwm_e 1
vt
IO
hsusb2_
data3
3
IO
gpio_182
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
L
PD
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
30
4
IO
mm_fsusb2_t 5
xen_n
IO
A8
sys_32k
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
PU/ PD
LVCMOS
A10
sys_xtalin
0
I
Z
Z
0
VDDSOSC
1.8V
NA
PU/ PD
LVCMOS
A9
sys_xtalout
0
O
Z
Z
0
VDDSOSC
1.8V
NA
PU/ PD
LVCMOS
B8
sys_clkreq
0
IO
L
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_1
4
IO
sys_nirq
0
I
H
PU
7
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_0
4
IO
AA18
sys_
nrespwron
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Y18
sys_
nreswarm
0
IO
L
PD
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_30
4
IO
sys_boot0
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_2
4
IO
sys_boot1
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_3
4
IO
sys_boot2
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_4
4
IO
AB18
AB19
AB20
W18
46
Open Drain
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
AA19
sys_boot3
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_5
4
IO
sys_boot4
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
V18
Y19
mmc2_dir_da 1
t2
O
gpio_6
4
IO
sys_boot5
0
I
mmc2_dir_da 1
t3
O
gpio_7
4
IO
sys_boot6
0
I
gpio_8
4
IO
AA20
sys_boot7
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/PD
LVCMOS
Y20
sys_boot8
0
I
Z
Z
0
VDDSHV
1.8V/3.3V
Yes
30
PU/PD
LVCMOS
E9
sys_clkout1
0
O
H
PD
0/7 (1)
VDDSHV
1.8V/3.3V
Yes
30
PU/ PD
LVCMOS
gpio_10
4
IO
sys_clkout2
0
O
L
PD
7
VDDSHV
1.8V/3.3V
Yes
10
PU/ PD
LVCMOS
gpio_186
4
IO
D13
jtag_ntrst
0
I
L
PD
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
E14
jtag_tck
0
I
L
PD
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
C12
jtag_rtck
0
O
L
Z
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
A12
jtag_tms_tms 0
c
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
B12
jtag_tdi
0
I
H
PU
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
D12
jtag_tdo
0
O
L
Z
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
E13
jtag_emu0
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_11
4
IO
jtag_emu1
0
IO
H
PU
0
VDDSHV
1.8V/3.3V
Yes
20
PU/ PD
LVCMOS
gpio_31
4
IO
etk_clk
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
W19
E10
E12
G22
G21
G20
F22
(1)
0
O
mcbsp5_ clkx 1
IO
mmc3_clk
2
O
hsusb1_stp
3
O
gpio_12
4
IO
etk_ctl
0
O
mmc3_cmd
2
IO
hsusb1_clk
3
O
gpio_13
4
IO
mm_fsusb1_r 5
xdp
IO
etk_d0
0
O
mcspi3_
simo
1
IO
mmc3_dat4
2
IO
hsusb1_
data0
3
IO
gpio_14
4
IO
mm_fsusb1_r 5
xrcv
IO
etk_d1
0
O
mcspi3_
somi
1
IO
hsusb1_
data1
3
IO
gpio_15
4
IO
mm_fsusb1_t 5
xse0
IO
Mux0 if sys_boot6 is pulled down (clock master).
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
47
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
MODE [3]
TYPE [4]
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
F20
etk_d2
0
O
H
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
mcspi3_cs0
1
IO
hsusb1_
data2
3
IO
gpio_16
L
PU
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
G19
E19
F21
F19
E21
D22
D21
E22
E20
48
4
IO
mm_fsusb1_t 5
xdat
IO
etk_d3
0
O
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_
data7
3
IO
gpio_17
4
IO
etk_d4
0
O
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_
data4
3
IO
gpio_18
4
IO
etk_d5
0
O
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_
data5
3
IO
gpio_19
4
IO
etk_d6
0
O
mcbsp5_dx
1
IO
mmc3_dat2
2
IO
hsusb1_
data6
3
IO
gpio_20
4
IO
etk_d7
0
O
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_
data3
3
IO
gpio_21
4
IO
mm_fsusb1_t 5
xen_n
IO
etk_d8
0
O
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
etk_d9
0
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm_fsusb1_r 5
xdm
IO
etk_d10
0
O
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
etk_d11
0
O
mcspi3_clk
1
IO
hsusb2_stp
3
O
gpio_25
4
IO
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
E18
D20
D19
D18
M2
MODE [3]
TYPE [4]
mm_fsusb2_r 5
xdp
IO
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm_fsusb2_r 5
xdm
IO
etk_d14
0
O
hsusb2_
data0
3
IO
gpio_28
4
IO
mm_fsusb2_r 5
xrcv
IO
etk_d15
0
O
hsusb2_
data1
3
IO
gpio_29
4
IO
mm_fsusb2_t 5
xse0
IO
ddr_padref
A
0
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
L
PD
4
VDDSHV
1.8V/3.3V
Yes
9, 25
PU/ PD
LVCMOS
VDDS
1.8V
J8, J10,
VDD_CORE 0
J12, J14,
J16, K9,
K11, K13,
K15, L8,
L10, L12,
L14, M7,
M9, M11,
M13, M15,
N8, N10,
N12, N14,
P7, P9,
P11, P13,
P15, R8,
R10, R12,
R14
PWR
1.2V
L17
VDDS_SRA
M_MPU
0
PWR
1.8V
J6
VDDS_SRA
M_CORE_B
G
0
PWR
1.8V
M17
CAP_VDD_S 0
RAM_MPU
PWR
1.2V
K6
CAP_VDD_S 0
RAM_CORE
PWR
1.2V
K17
VDDS_DPLL 0
_MPU_USBH
OST
PWR
1.8V
F11
VDDS_DPLL 0
_PER_CORE
PWR
1.8V
F7
VDDA3P3V_ 0
USBPHY
PWR
3.3V
D7
VDDA1P8V_ 0
USBPHY
PWR
1.8V
E7
CAP_VDDA1 0
P2LDO_USB
PHY
PWR
1.2V
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
49
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-2. Ball Characteristics (ZER Pkg.) (continued)
BALL
PIN NAME
LOCATION [2]
[1]
MODE [3]
TYPE [4]
A21, B1,
E15, E17,
F12, F14,
F18, G10,
G12, G13,
G8, G17,
H18, J17,
L22, N16,
P17, R16,
R18, T9,
T11, T13,
T17, U8,
U10, U12,
U14, U16,
U18, V7,
V8, V17,
AA22,
AB11
0
PWR
1.8V/3.3V
F5, F16,
VDDS
G15, H5,
K7, L6,
L16, N1,
N5, N6, P5,
R6, T5, T7,
T15, U6,
AA1
0
PWR
1.8V
L5
VREFSSTL
0
I
.5 * VDDS
G9
VDDSOSC
O
PWR
1.8V
A1, A11,
VSS
A22, E6,
E16, F6,
F13, F15,
F17, G5,
G7, G11,
G14, G16,
G18, H6,
H7, H8, H9,
H10, H11,
H12, H13,
H14, H15,
H16, H17,
J9, J11,
J13, J15,
K8, K10,
K12, K14,
K16, L7,
L9, L11,
L13, L15,
M1, M6,
M8, M10,
M12, M14,
M16, M22,
N7, N9,
N11, N13,
N15, N17,
P6, P8,
P10, P12,
P14, P16,
R5, R7, R9,
R11, R13,
R15, R17,
T6, T8,
T10, T12,
T14, T16,
T18, U5,
U7, U9,
U11, U13,
U15, U17,
V6, AB1,
AB12,
AB22
0
GND
B10
0
GND
VDDSHV
VSSOSC
BALL
RESET
STATE [5]
BALL
RESET REL. POWER [8]
RESET REL. MODE [7]
STATE [6]
VOLTAGE
[9]
HYS [10]
LOAD (pF)
[11]
PULL U/D
TYPE [12]
IO CELL [13]
D8, D9,
NC (2)
D10, E8,
F8, F9,
F10, J7, G6
V15
Reserved (3)
V16
Reserved (3)
(2)
(3)
50
"NC" indicates "No Connect". For proper device operation, these pins must be left unconnected.
For proper device operation, this pin must be pulled up via a 10k-Ω resistor.
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
2.3
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Multiplexing Characteristics
Table 2-3 provides descriptions of the AM3517/05 pin multiplexing on the ZCN and ZER packages.
Table 2-3. Multiplexing Characteristics
ZER
ZCN
BALL NO
BALL NO
MODE 0
E3
B21
sdrc_d0
D3
A21
sdrc_d1
C3
D20
sdrc_d2
C2
C20
sdrc_d3
F3
E19
sdrc_d4
D2
D19
sdrc_d5
C1
C19
sdrc_d6
D1
B19
sdrc_d7
G2
B18
sdrc_d8
G3
D17
sdrc_d9
H3
C17
sdrc_d10
G4
D16
sdrc_d11
H4
C16
sdrc_d12
G1
B16
sdrc_d13
J3
A16
sdrc_d14
J1
A15
sdrc_d15
T3
A7
sdrc_d16
U3
B7
sdrc_d17
U4
D7
sdrc_d18
V4
E7
sdrc_d19
V1
C6
sdrc_d20
V2
D6
sdrc_d21
V5
B5
sdrc_d22
V3
C5
sdrc_d23
W3
B4
sdrc_d24
W4
A3
sdrc_d25
Y3
B3
sdrc_d26
Y4
C3
sdrc_d27
AA2
C2
sdrc_d28
AA3
D2
sdrc_d29
AA4
B1
sdrc_d30
AB2
C1
sdrc_d31
L4
A12
sdrc_ba0
K5
C13
sdrc_ba1
J5
D13
sdrc_ba2
M3
A11
sdrc_a0
M4
B11
sdrc_a1
M5
C11
sdrc_a2
N3
D11
sdrc_a3
N2
E11
sdrc_a4
N4
A10
sdrc_a5
P3
B10
sdrc_a6
P2
C10
sdrc_a7
P1
D10
sdrc_a8
P4
E10
sdrc_a9
R1
A9
sdrc_a10
R2
B9
sdrc_a11
R3
A8
sdrc_a12
R4
B8
sdrc_a13
T2
D8
sdrc_a14
J4
E13
sdrc_ncs0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
51
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-3. Multiplexing Characteristics (continued)
ZER
ZCN
MODE 0
K4
A14
sdrc_ncs1
L1
A13
sdrc_clk
L2
B13
sdrc_nclk
K3
D14
sdrc_cke0
K1
C14
sdrc_nras
L3
E14
sdrc_ncas
K2
B14
sdrc_nwe
F4
C21
sdrc_dm0
J2
B15
sdrc_dm1
T4
E8
sdrc_dm2
AB3
D1
sdrc_dm3
E2
B20
sdrc_dqs0p
H2
B17
sdrc_dqs1p
U1
A6
sdrc_dqs2p
Y1
A2
sdrc_dqs3p
E1
A20
sdrc_dqs0n
H1
A17
sdrc_dqs1n
U2
B6
sdrc_dqs2n
Y2
B2
sdrc_dqs3n
T1
C8
sdrc_odt
F2
A19
sdrc_strben0
F1
A18
sdrc_strben_dly0
W1
A5
sdrc_strben1
W2
A4
sdrc_strben_dly1
W5
E3
gpmc_a1
gpio_34
safe_mode
Y5
E2
gpmc_a2
gpio_35
safe_mode
AB4
E1
gpmc_a3
gpio_36
safe_mode
AA5
F7
gpmc_a4
gpio_37
safe_mode
AB5
F6
gpmc_a5
gpio_38
safe_mode
AB6
F4
gpmc_a6
gpio_39
safe_mode
AA6
F3
gpmc_a7
gpio_40
safe_mode
W6
F2
gpmc_a8
gpio_41
safe_mode
AB7
F1
gpmc_a9
sys_ndmareq2
gpio_42
safe_mode
Y6
G6
gpmc_a10
sys_ndmareq3
gpio_43
safe_mode
AA7
G5
gpmc_d0
Y7
G4
gpmc_d1
W7
G3
gpmc_d2
AA9
G2
gpmc_d3
Y8
G1
gpmc_d4
AA8
H2
gpmc_d5
AB8
H1
gpmc_d6
W8
J5
gpmc_d7
W10
J4
gpmc_d8
gpio_44
AB9
J3
gpmc_d9
gpio_45
AB10
J2
gpmc_d10
gpio_46
W9
J1
gpmc_d11
gpio_47
AA10
K4
gpmc_d12
gpio_48
Y9
K3
gpmc_d13
gpio_49
V10
K2
gpmc_d14
gpio_50
V9
K1
gpmc_d15
gpio_51
Y10
L2
gpmc_ncs0
Y11
L1
gpmc_ncs1
Y12
M4
gpmc_ncs2
V12
M3
gpmc_ncs3
sys_ndmareq0
AA11
M2
gpmc_ncs4
sys_ndmareq1
W12
M1
gpmc_ncs5
sys_ndmareq2
52
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
sdrc_cke0_safe
gpio_52
gpt9_pwm_evt
gpio_53
safe_mode
gpt10_pwm_evt
gpio_54
safe_mode
gpt9_pwm_evt
gpio_55
safe_mode
gpt10_pwm_evt
gpio_56
safe_mode
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-3. Multiplexing Characteristics (continued)
ZER
ZCN
MODE 0
MODE 1
MODE 3
MODE 4
AA12
N5
gpmc_ncs6
sys_ndmareq3
MODE 2
gpt11_pwm_evt
gpio_57
MODE 5
MODE 6
MODE 7
safe_mode
V11
N4
gpmc_ncs7
gpmc_io_dir
gpt8_pwm_evt
gpio_58
safe_mode
AB13
N1
gpmc_clk
AA14
R1
gpmc_nadv_ale
AB14
R2
gpmc_noe
AA15
R3
gpmc_nwe
W11
R4
gpmc_nbe0_cle
gpio_60
Y15
T1
gpmc_nbe1
gpio_61
W14
T2
gpmc_nwp
gpio_62
V13
T3
gpmc_wait0
AA16
T4
gpmc_wait1
uart4_tx
gpio_63
safe_mode
Y14
T5
gpmc_wait2
uart4_rx
gpio_64
safe_mode
V14
U1
gpmc_wait3
sys_ndmareq1
B22
AE23
dss_pclk
gpio_66
hw_dbg12
safe_mode
B21
AD22
dss_hsync
gpio_67
hw_dbg13
safe_mode
B20
AD23
dss_vsync
gpio_68
safe_mode
B19
AE24
dss_acbias
gpio_69
safe_mode
A20
AD24
dss_data0
uart1_cts
gpio_70
safe_mode
A19
AD25
dss_data1
uart1_rts
gpio_71
safe_mode
A18
AC23
dss_data2
gpio_72
safe_mode
B18
AC24
dss_data3
gpio_73
safe_mode
A17
AC25
dss_data4
uart3_rx_irrx
gpio_74
safe_mode
C18
AB24
dss_data5
uart3_tx_irtx
gpio_75
D17
AB25
dss_data6
uart1_tx
gpio_76
hw_dbg14
safe_mode
B16
AA23
dss_data7
uart1_rx
gpio_77
hw_dbg15
safe_mode
B17
AA24
dss_data8
gpio_78
hw_dbg16
safe_mode
C17
AA25
dss_data9
gpio_79
hw_dbg17
safe_mode
C16
Y22
dss_data10
gpio_80
safe_mode
D16
Y23
dss_data11
gpio_81
safe_mode
D14
Y24
dss_data12
gpio_82
safe_mode
A16
Y25
dss_data13
gpio_83
safe_mode
D15
W21
dss_data14
gpio_84
safe_mode
B15
W22
dss_data15
gpio_85
safe_mode
A15
W23
dss_data16
gpio_86
safe_mode
A14
W24
dss_data17
gpio_87
safe_mode
C13
W25
dss_data18
mcspi3_clk
dss_data4
gpio_88
safe_mode
C15
V24
dss_data19
mcspi3_simo
dss_data3
gpio_89
safe_mode
A13
V25
dss_data20
mcspi3_somi
dss_data2
gpio_90
safe_mode
B13
U21
dss_data21
mcspi3_cs0
dss_data1
gpio_91
safe_mode
C14
U22
dss_data22
mcspi3_cs1
dss_data0
gpio_92
safe_mode
B14
U23
dss_data23
dss_data5
gpio_93
safe_mode
NA
K20
tv_vfb1
NA
K21
tv_out1
NA
H23
tv_vfb2
NA
H24
tv_out2
NA
H20
tv_vref
AB21
AD2
ccdc_pclk
AA21
AD1
ccdc_field
Y21
AE2
ccdc_hd
uart4_rts
gpio_96
Y22
AD3
ccdc_vd
uart4_cts
gpio_97
hw_dbg2
safe_mode
W21
AE3
ccdc_wen
uart4_rx
gpio_98
hw_dbg3
safe_mode
W22
AD4
ccdc_data0
W20
AE4
ccdc_data1
gpio_100
V21
AC5
ccdc_data2
gpio_101
hw_dbg4
safe_mode
V19
AD5
ccdc_data3
gpio_102
hw_dbg5
safe_mode
V22
AE5
ccdc_data4
gpio_103
hw_dbg6
safe_mode
gpio_59
ccdc_data8
ccdc_data9
uart3_cts_rctx
uart4_tx
safe_mode
gpio_65
i2c3_scl
i2c3_sda
safe_mode
safe_mode
gpio_94
hw_dbg0
safe_mode
gpio_95
hw_dbg1
safe_mode
safe_mode
gpio_99
safe_mode
safe_mode
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
53
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-3. Multiplexing Characteristics (continued)
ZER
ZCN
MODE 0
MODE 4
MODE 5
U20
Y6
ccdc_data5
MODE 1
MODE 2
gpio_104
hw_dbg7
V20
AB6
ccdc_data6
gpio_105
safe_mode
U19
AC6
ccdc_data7
gpio_106
safe_mode
U21
AE6
rmii_mdio_data
ccdc_data8
gpio_107
safe_mode
U22
AD6
rmii_mdio_clk
ccdc_data9
gpio_108
T19
Y7
rmii_rxd0
ccdc_data10
gpio_109
hw_dbg8
safe_mode
T20
AA7
rmii_rxd1
ccdc_data11
gpio_110
hw_dbg9
safe_mode
T21
AB7
rmii_crs_dv
ccdc_data12
gpio_111
R22
AC7
rmii_rxer
ccdc_data13
gpio_167
hw_dbg10
safe_mode
T22
AD7
rmii_txd0
ccdc_data14
gpio_126
hw_dbg11
safe_mode
R20
AE7
rmii_txd1
ccdc_data15
gpio_112
safe_mode
R19
AD8
rmii_txen
gpio_113
safe_mode
R21
AE8
rmii_50mhz_clk
gpio_114
safe_mode
E5
D25
mcbsp2_fsx
gpio_116
safe_mode
D5
C25
mcbsp2_clkx
gpio_117
safe_mode
C5
B25
mcbsp2_dr
gpio_118
safe_mode
E4
D24
mcbsp2_dx
gpio_119
safe_mode
P22
AA9
mmc1_clk
gpio_120
safe_mode
N21
AB9
mmc1_cmd
gpio_121
safe_mode
P21
AC9
mmc1_dat0
mcspi2_clk
gpio_122
safe_mode
N20
AD9
mmc1_dat1
mcspi2_simo
gpio_123
safe_mode
P19
AE9
mmc1_dat2
mcspi2_somi
gpio_124
safe_mode
P20
AA10
mmc1_dat3
mcspi2_cs0
gpio_125
safe_mode
N22
AB10
mmc1_dat4
gpio_126
safe_mode
N19
AC10
mmc1_dat5
gpio_127
safe_mode
N18
AD10
mmc1_dat6
gpio_128
safe_mode
P18
AE10
mmc1_dat7
gpio_129
safe_mode
M21
AD11
mmc2_clk
mcspi3_clk
uart4_cts
gpio_130
safe_mode
M20
AE11
mmc2_cmd
mcspi3_simo
uart4_rts
gpio_131
safe_mode
K20
AB12
mmc2_dat0
mcspi3_somi
uart4_tx
gpio_132
safe_mode
L19
AC12
mmc2_dat1
uart4_rx
gpio_133
safe_mode
M18
AD12
mmc2_dat2
mcspi3_cs1
gpio_134
safe_mode
K21
AE12
mmc2_dat3
mcspi3_cs0
gpio_135
safe_mode
L18
AB13
mmc2_dat4
mmc2_dir_dat0
mmc3_dat0
gpio_136
safe_mode
L20
AC13
mmc2_dat5
mmc2_dir_dat1
mmc3_dat1
gpio_137
mm_fsusb3_rxdp safe_mode
L21
AD13
mmc2_dat6
mmc2_dir_cmd
mmc3_dat2
gpio_138
safe_mode
M19
AE13
mmc2_dat7
mmc2_clkin
mmc3_dat3
gpio_139
mm_fsusb3_rxdm safe_mode
C4
B24
mcbsp3_dx
uart2_cts
gpio_140
safe_mode
B4
C24
mcbsp3_dr
uart2_rts
gpio_141
safe_mode
D4
A24
mcbsp3_clkx
uart2_tx
gpio_142
safe_mode
A4
C23
mcbsp3_fsx
uart2_rx
gpio_143
safe_mode
A5
F20
uart2_cts
mcbsp3_dx
gpt9_pwm_evt
gpio_144
safe_mode
B5
F19
uart2_rts
mcbsp3_dr
gpt10_pwm_evt
gpio_145
safe_mode
D6
E24
uart2_tx
mcbsp3_clkx
gpt11_pwm_evt
gpio_146
safe_mode
C6
E23
uart2_rx
mcbsp3_fsx
gpt8_pwm_evt
gpio_147
safe_mode
C22
AA19
uart1_tx
gpio_148
safe_mode
C21
Y19
uart1_rts
gpio_149
safe_mode
C19
Y20
uart1_cts
gpio_150
safe_mode
C20
W20
uart1_rx
A3
B23
B3
A2
MODE 7
safe_mode
safe_mode
safe_mode
safe_mode
mcbsp4_clkx
gpio_152
mm_fsusb3_txse safe_mode
0
A23
mcbsp4_dr
gpio_153
mm_fsusb3_rxrcv safe_mode
B22
mcbsp4_dx
gpio_154
mm_fsusb3_txdat safe_mode
B2
A22
mcbsp4_fsx
gpio_155
mm_fsusb3_txen safe_mode
_n
B11
R25
mcbsp1_clkr
gpio_156
safe_mode
D11
P21
mcbsp1_fsr
gpio_157
safe_mode
mcspi4_clk
mcspi4_clk
MODE 6
gpio_151
54
mcbsp1_clkr
MODE 3
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-3. Multiplexing Characteristics (continued)
ZER
ZCN
MODE 0
MODE 1
MODE 2
C10
P22
mcbsp1_dx
mcspi4_simo
mcbsp3_dx
MODE 3
MODE 4
gpio_158
C9
P23
mcbsp1_dr
mcspi4_somi
mcbsp3_dr
gpio_159
E11
P25
mcbsp_clks
C11
P24
mcbsp1_fsx
C8
N24
mcbsp1_clkx
W15
N2
W13
gpio_160
mcspi4_cs0
MODE 5
MODE 6
MODE 7
safe_mode
safe_mode
uart1_cts
safe_mode
mcbsp3_fsx
gpio_161
safe_mode
mcbsp3_clkx
gpio_162
safe_mode
uart3_cts_rctx
gpio_163
safe_mode
N3
uart3_rts_sd
gpio_164
safe_mode
AA13
P1
uart3_rx_irrx
gpio_165
safe_mode
Y13
P2
uart3_tx_irtx
gpio_166
A6
F25
usb0_dp (1)
uart3_tx_irtx
B6
F24
usb0_dm (1)
uart3_rx_irrx
C7
G24
usb0_vbus
B7
G25
usb0_id
A7
E25
usb0_drvvbus
uart3_tx_irtx
gpio_125
safe_mode
AB15
V2
hecc1_txd
uart3_rx_irrx
gpio_130
safe_mode
AB16
V3
hecc1_rxd
uart3_rts_sd
gpio_131
safe_mode
AA17
V4
i2c1_scl
AB17
V5
i2c1_sda
Y17
W1
i2c2_scl
gpio_168
safe_mode
Y16
W2
i2c2_sda
gpio_183
safe_mode
W16
W4
i2c3_scl
gpio_184
safe_mode
W17
W5
i2c3_sda
gpio_185
safe_mode
B9
L25
hdq_sio
sys_altclk
gpio_170
safe_mode
K22
AE14
mcspi1_clk
mmc2_dat4
gpio_171
safe_mode
K19
AD15
mcspi1_simo
mmc2_dat5
gpio_172
safe_mode
J18
AC15
mcspi1_somi
mmc2_dat6
gpio_173
safe_mode
K18
AB15
mcspi1_cs0
mmc2_dat7
gpio_174
safe_mode
J20
AD14
mcspi1_cs1
mmc3_cmd
gpio_175
safe_mode
J19
AE15
mcspi1_cs2
mmc3_clk
gpio_176
J21
AE16
mcspi1_cs3
hsusb2_data2
gpio_177
J22
AD16
mcspi2_clk
hsusb2_data7
gpio_178
safe_mode
H20
AC16
mcspi2_simo
gpt9_pwm_evt
hsusb2_data4
gpio_179
safe_mode
H22
AB16
mcspi2_somi
gpt10_pwm_evt
hsusb2_data5
gpio_180
safe_mode
H21
AA16
mcspi2_cs0
gpt11_pwm_evt
hsusb2_data6
gpio_181
H19
AE17
mcspi2_cs1
gpt8_pwm_evt
hsusb2_data3
gpio_182
AB18
Y1
sys_nirq
gpio_0
safe_mode
E10
M25
sys_clkout2
gpio_186
safe_mode
G22
AD17
etk_clk
G21
AE18
etk_ctl
G20
AD18
etk_d0
mcspi3_simo
F22
AC18
etk_d1
mcspi3_somi
F20
AB18
etk_d2
mcspi3_cs0
G19
AA18
etk_d3
mcspi3_clk
mmc3_dat3
E19
Y18
etk_d4
mcbsp5_dr
F21
AE19
etk_d5
F19
AD19
E21
i2c3_sccbe
safe_mode
mm_fsusb2_txdat
safe_mode
safe_mode
mm_fsusb2_txen
_n
safe_mode
mmc3_clk
hsusb1_stp
gpio_12
mmc3_cmd
hsusb1_clk
gpio_13
mm_fsusb1_rxdp
hw_dbg1
mmc3_dat4
hsusb1_data0
gpio_14
mm_fsusb1_rxrcv
hw_dbg2
hsusb1_data1
gpio_15
mm_fsusb1_txse
0
hw_dbg3
hsusb1_data2
gpio_16
mm_fsusb1_txdat
hw_dbg4
hsusb1_data7
gpio_17
hw_dbg5
mmc3_dat0
hsusb1_data4
gpio_18
hw_dbg6
mcbsp5_fsx
mmc3_dat1
hsusb1_data5
gpio_19
hw_dbg7
etk_d6
mcbsp5_dx
mmc3_dat2
hsusb1_data6
gpio_20
AB19
etk_d7
mcspi3_cs1
mmc3_dat7
hsusb1_data3
gpio_21
D22
AE20
etk_d8
mmc3_dat6
hsusb1_dir
gpio_22
D21
AD20
etk_d9
mmc3_dat5
hsusb1_nxt
gpio_23
E22
AC20
etk_d10
uart1_rx
hsusb2_clk
gpio_24
E20
AB20
etk_d11
hsusb2_stp
gpio_25
E18
AE21
etk_d12
hsusb2_dir
gpio_26
D20
AD21
etk_d13
hsusb2_nxt
gpio_27
(1)
mcbsp5_clkx
i2c2_sccbe
mcspi3_clk
hw_dbg0
hw_dbg8
mm_fsusb1_txen
_n
hw_dbg9
hw_dbg10
mm_fsusb1_rxdm
hw_dbg11
hw_dbg12
mm_fsusb2_rxdp
hw_dbg13
hw_dbg14
mm_fsusb2_rxdm
hw_dbg15
This mux selection is controlled by CONTROL_DEVCONF2 register.
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
55
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-3. Multiplexing Characteristics (continued)
ZER
ZCN
MODE 0
MODE 3
MODE 4
MODE 5
D19
AC21
etk_d14
hsusb2_data0
gpio_28
mm_fsusb2_rxrcv
hw_dbg16
D18
AE22
etk_d15
hsusb2_data1
gpio_29
mm_fsusb2_txse
0
hw_dbg17
A8
K24
sys_32k
A10
K25
sys_xtalin
A9
H25
sys_xtalout
B8
M24
sys_clkreq
AA18
Y2
sys_nrespwron
Y18
Y3
sys_nreswarm
gpio_30
AB19
Y4
sys_boot0
gpio_2
AB20
AA1
sys_boot1
gpio_3
W18
AA2
sys_boot2
gpio_4
AA19
AA3
sys_boot3
V18
AB1
sys_boot4
mmc2_dir_dat2
gpio_6
Y19
AB2
sys_boot5
mmc2_dir_dat3
gpio_7
W19
AC1
sys_boot6
AA20
AC2
sys_boot7
Y20
AC3
sys_boot8
E9
N25
sys_clkout1
D13
U24
jtag_ntrst
E14
U25
jtag_tck
C12
T21
jtag_rtck
A12
T22
jtag_tms_tmsc
B12
T23
jtag_tdi
D12
T24
jtag_tdo
E13
T25
jtag_emu0
gpio_11
E12
R24
jtag_emu1
gpio_31
M2
B12
ddr_padref
56
MODE 1
MODE 2
MODE 6
MODE 7
gpio_1
gpio_5
gpio_8
gpio_10
Terminal Description
safe_mode
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
2.4
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Signal Description
Many signals are available on multiple pins according to the software configuration of the pin multiplexing
options.
1. SIGNAL NAME: The signal name
2. DESCRIPTION: Description of the signal
3. TYPE: Type = Ball type for this specific function:
– I = Input
– O = Output
– Z = High-impedance
– D = Open Drain
– DS = Differential
– A = Analog
4. BALL: Associated ball location
5. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the
module/subsystem level. The pin function is selected at the module/system level.
Note: The Subsystem Multiplexing Signals are not described in Table 2-1 through Table 2-2.
2.4.1
External Memory Interfaces
Table 2-4. External Memory Interfaces - GPMC Signals Description
SIGNAL NAME[1]
DESCRIPTION[2]
TYPE[3]
ZCN BALL[4]
ZER BALL[4]
SUBSYSTEM PIN
MULTIPLEXING [5]
gpmc_a1
GPMC Address bit 1
O
E3/G5
W5/AA7
gpmc_a17
gpmc_a2
GPMC Address bit 2
O
E2/G4
Y5/Y7
gpmc_a18
gpmc_a3
GPMC Address bit 3
O
E1/G3
AB4/W7
gpmc_a19
gpmc_a4
GPMC Address bit 4
O
F7/G2
AA5/AA9
gpmc_a20
gpmc_a5
GPMC Address bit 5
O
F6/G1
AB5/Y8
gpmc_a21
gpmc_a6
GPMC Address bit 6
O
F4/H2
AB6/AA8
gpmc_a22
gpmc_a7
GPMC Address bit 7
O
F3/H1
AA6/AB8
gpmc_a23
gpmc_a8
GPMC Address bit 8
O
F2/J5
W6/W8
gpmc_a24
gpmc_a9
GPMC Address bit 9
O
F1/J4
AB7/W10
gpmc_a25
gpmc_a10
GPMC Address bit 10 O
G6/J3
Y6/AB9
gpmc_a26
gpmc_a11
GPMC Address bit 11 O
multiplexed on
gpmc_d10
J2
AB10
gpmc_a12
GPMC Address bit12
multiplexed on
gpmc_d11
O
J1
W9
gpmc_a13
GPMC Address bit13
multiplexed on
gpmc_d12
O
K4
AA10
gpmc_a14
GPMC Address bit
14multiplexed on
gpmc_d13
O
K3
Y9
gpmc_a15
GPMC Address bit15
multiplexed on
gpmc_d14
O
K2
V10
gpmc_a16
GPMC Address bit16
multiplexed on
gpmc_d15
O
K1
V9
gpmc_a17
GPMC Address bit17
multiplexed on
gpmc_a1
O
E3
W5
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
57
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-4. External Memory Interfaces - GPMC Signals Description (continued)
SIGNAL NAME[1]
DESCRIPTION[2]
TYPE[3]
ZCN BALL[4]
ZER BALL[4]
gpmc_a18
GPMC Address bit18
multiplexed on
gpmc_a2
O
E2
Y5
gpmc_a19
GPMC Address bit19
multiplexed on
gpmc_a3
O
E1
AB4
gpmc_a20
GPMC Address bit20
multiplexed on
gpmc_a4
O
F7
AA5
gpmc_a21
GPMC Address bit21
multiplexed on
gpmc_a5
O
F6
AB5
gpmc_a22
GPMC Address bit22
multiplexed on
gpmc_a6
O
F4
AB6
gpmc_a23
GPMC Address bit23
multiplexed on
gpmc_a7
O
F3
AA6
gpmc_a24
GPMC Address bit24
multiplexed on
gpmc_a8
O
F2
W6
gpmc_a25
GPMC Address bit25
multiplexed on
gpmc_a9
O
F1
AB7
gpmc_a26
GPMC Address bit26
multiplexed on
gpmc_a10
O
G6
Y6
gpmc_d0
GPMC Data bit 0
IO
G5
AA7
gpmc_a1/gpmc_d0
gpmc_d1
GPMC Data bit 1
IO
G4
Y7
gpmc_a2/gpmc_d1
gpmc_d2
GPMC Data bit 2
IO
G3
W7
gpmc_a3/gpmc_d2
gpmc_d3
GPMC Data bit 3
IO
G2
AA9
gpmc_a4/gpmc_d3
gpmc_d4
GPMC Data bit 4
IO
G1
Y8
gpmc_a5/gpmc_d4
gpmc_d5
GPMC Data bit 5
IO
H2
AA8
gpmc_a6/gpmc_d5
gpmc_d6
GPMC Data bit 6
IO
H1
AB8
gpmc_a7/gpmc_d6
gpmc_d7
GPMC Data bit 7
IO
J5
W8
gpmc_a8/gpmc_d7
gpmc_d8
GPMC Data bit 8
IO
J4
W10
gpmc_a9/gpmc_d8
gpmc_d9
GPMC Data bit 9
IO
J3
AB9
gpmc_a10/gpmc_d9
gpmc_d10
GPMC Data bit 10
IO
J2
AB10
gpmc_a11/gpmc_d10
gpmc_d11
GPMC Data bit 11
IO
J1
W9
gpmc_a12/gpmc_d11
gpmc_d12
GPMC Data bit 12
IO
K4
AA10
gpmc_a13/gpmc_d12
gpmc_d13
GPMC Data bit 13
IO
K3
Y9
gpmc_a14/gpmc_d13
gpmc_d14
GPMC Data bit 14
IO
K2
V10
gpmc_a15/gpmc_d14
gpmc_d15
GPMC Data bit 15
IO
K1
V9
gpmc_a16/gpmc_d15
gpmc_ncs0
GPMC Chip Select 0
O
L2
Y10
gpmc_ncs1
GPMC Chip Select 1
O
L1
Y11
gpmc_ncs2
GPMC Chip Select 2
O
M4
Y12
gpmc_ncs3
GPMC Chip Select 3
O
M3
V12
gpmc_ncs4
GPMC Chip Select 4
O
M2
AA11
gpmc_ncs5
GPMC Chip Select 5
O
M1
W12
gpmc_ncs6
GPMC Chip Select 6
O
N5
AA12
gpmc_ncs7
GPMC Chip Select 7
O
N4
V11
gpmc_clk
GPMC clock
O
N1
AB13
58
Terminal Description
SUBSYSTEM PIN
MULTIPLEXING [5]
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-4. External Memory Interfaces - GPMC Signals Description (continued)
SIGNAL NAME[1]
DESCRIPTION[2]
TYPE[3]
ZCN BALL[4]
ZER BALL[4]
gpmc_nadv_ale
Address Valid or
Address Latch
Enable
O
R1
AA14
gpmc_noe
Output Enable
O
R2
AB14
gpmc_nwe
Write Enable
O
R3
AA15
gpmc_nbe0_cle
Lower Byte Enable.
Also used for
Command Latch
Enable
O
R4
W11
gpmc_nbe1
Upper Byte Enable
O
T1
Y15
gpmc_nwp
Flash Write Protect
O
T2
W14
gpmc_wait0
External indication of
wait
I
T3
V13
gpmc_wait1
External indication of
wait
I
T4
AA16
gpmc_wait2
External indication of
wait
I
T5
Y14
gpmc_wait3
External indication of
wait
I
U1
V14
SUBSYSTEM PIN
MULTIPLEXING [5]
Table 2-5. External Memory Interfaces - SDRC Signals Description
SIGNAL NAME[1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
sdrc_d0
SDRAM data bit 0
IO
B21
E3
sdrc_d1
SDRAM data bit 1
IO
A21
D3
sdrc_d2
SDRAM data bit2
IO
D20
C3
sdrc_d3
SDRAM data bit 3
IO
C20
C2
sdrc_d4
SDRAM data bit 4
IO
E19
F3
sdrc_d5
SDRAM data bit 5
IO
D19
D2
sdrc_d6
SDRAM data bit 6
IO
C19
C1
sdrc_d7
SDRAM data bit 7
IO
B19
D1
sdrc_d8
SDRAM data bit 8
IO
B18
G2
sdrc_d9
SDRAM data bit 9
IO
D17
G3
sdrc_d10
SDRAM data bit 10
IO
C17
H3
sdrc_d11
SDRAM data bit 11
IO
D16
G4
sdrc_d12
SDRAM data bit 12
IO
C16
H4
sdrc_d13
SDRAM data bit 13
IO
B16
G1
sdrc_d14
SDRAM data bit 14
IO
A16
J3
sdrc_d15
SDRAM data bit 15
IO
A15
J1
sdrc_d16
SDRAM data bit 16
IO
A7
T3
sdrc_d17
SDRAM data bit 17
IO
B7
U3
sdrc_d18
SDRAM data bit 18
IO
D7
U4
sdrc_d19
SDRAM data bit 19
IO
E7
V4
sdrc_d20
SDRAM data bit 20
IO
C6
V1
sdrc_d21
SDRAM data bit 21
IO
D6
V2
sdrc_d22
SDRAM data bit 22
IO
B5
V5
sdrc_d23
SDRAM data bit 23
IO
C5
V3
sdrc_d24
SDRAM data bit 24
IO
B4
W3
sdrc_d25
SDRAM data bit 25
IO
A3
W4
sdrc_d26
SDRAM data bit 26
IO
B3
Y3
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
59
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-5. External Memory Interfaces - SDRC Signals Description (continued)
SIGNAL NAME[1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
sdrc_d27
SDRAM data bit 27
IO
C3
Y4
sdrc_d28
SDRAM data bit 28
IO
C2
AA2
sdrc_d29
SDRAM data bit 29
IO
D2
AA3
sdrc_d30
SDRAM data bit 30
IO
B1
AA4
sdrc_d31
SDRAM data bit 31
IO
C1
AB2
sdrc_ba0
SDRAM bank select 0
O
A12
L4
sdrc_ba1
SDRAM bank select 1
O
C13
K5
sdrc_ba2
SDRAM bank select 2
O
D13
J5
sdrc_a0
SDRAM address bit 0
O
A11
M3
sdrc_a1
SDRAM address bit 1
O
B11
M4
sdrc_a2
SDRAM address bit 2
O
C11
M5
sdrc_a3
SDRAM address bit 3
O
D11
N3
sdrc_a4
SDRAM address bit 4
O
E11
N2
sdrc_a5
SDRAM address bit 5
O
A10
N4
sdrc_a6
SDRAM address bit 6
O
B10
P3
sdrc_a7
SDRAM address bit 7
O
C10
P2
sdrc_a8
SDRAM address bit 8
O
D10
P1
sdrc_a9
SDRAM address bit 9
O
E10
P4
sdrc_a10
SDRAM address bit 10
O
A9
R1
sdrc_a11
SDRAM address bit 11
O
B9
R2
sdrc_a12
SDRAM address bit 12
O
A8
R3
sdrc_a13
SDRAM address bit 13
O
B8
R4
sdrc_a14
SDRAM address bit 14
O
D8
T2
sdrc_ncs0
Chip select 0
O
E13
J4
sdrc_ncs1
Chip select 1
O
A14
K4
sdrc_clk
Clock
O
A13
L1
sdrc_nclk
Clock Invert
O
B13
L2
sdrc_cke0
Clock Enable 0
O
D14
K3
sdrc_nras
SDRAM Row Access
O
C14
K1
sdrc_ncas
SDRAM column address
strobe
O
E14
L3
sdrc_nwe
SDRAM write enable
O
B14
K2
sdrc_dm0
Data Mask 0
O
C21
F4
sdrc_dm1
Data Mask 1
O
B15
J2
sdrc_dm2
Data Mask 2
O
E8
T4
sdrc_dm3
Data Mask 3
O
D1
AB3
sdrc_strben0
PCB layout trace loop 0
pin 0
A
A19
F2
sdrc_strben_dly0
PCB layout trace loop 0
pin 1
A
A18
F1
sdrc_strben1
PCB layout trace loop 1
pin 0
A
A5
W1
sdrc_strben_dly1
PCB layout trace loop 1
pin 1
A
A4
W2
sdrc_odt
On-die termination output
for sdrc_ncs0 only
O
C8
T1
sdrc_dqs0p
Data Strobe 0
IO
B20
E2
sdrc_dqs0n
Data Strobe 0
IO
A20
E1
sdrc_dqs1p
Data Strobe 1
IO
B17
H2
60
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-5. External Memory Interfaces - SDRC Signals Description (continued)
SIGNAL NAME[1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
sdrc_dqs1n
Data Strobe 1
IO
A17
H1
sdrc_dqs2p
Data Strobe 2
IO
A6
U1
sdrc_dqs2n
Data Strobe 2
IO
B6
U2
sdrc_dqs3p
Data Strobe 3
IO
A2
Y1
sdrc_dqs3n
Data Strobe 3
IO
B2
Y2
ddr_padref
Impedance control for
DDR2 output. This pin
must be connected to
ground via a 50-ohm (±
2%) resistor.
A
B12
M2
VREFSSTL
VREFSSTL is .5 * VDDS
= 0.9V for DDR data
PHY0 reference voltage
input
IO
F14
L5
2.4.2
Video Interfaces
Table 2-6. Video Interfaces - CCDC Signals Description
SIGNAL NAME[1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
SYSTEM MUX
MODE (1)
ccdc_pclk
CCDC pixel clock
IO
AD2
AB21
mode0
ccdc_field
CCDC field ID signal
IO
AD1
AA21
mode0
ccdc_hd
CCDC horizontal
sync
IO
AE2
Y21
mode0
ccdc_vd
CCDC vertical sync
IO
AD3
Y22
mode0
ccdc_wen
CCDC write enable
I
AE3
W21
mode0
ccdc_data0
CCDC data bit 0
I
AD4
W22
mode0
ccdc_data1
CCDC data bit 1
I
AE4
W20
mode0
ccdc_data2
CCDC data bit 2
I
AC5
V21
mode0
ccdc_data3
CCDC data bit 3
I
AD5
V19
mode0
ccdc_data4
CCDC data bit 4
I
AE5
V22
mode0
ccdc_data5
CCDC data bit 5
I
Y6
U20
mode0
ccdc_data6
CCDC data bit 6
I
AB6
V20
mode0
ccdc_data7
CCDC data bit 7
I
AC6
U19
mode0
ccdc_data8
CCDC data bit 8
I
AE6
U21
mode1
ccdc_data9
CCDC data bit 9
I
AD6
U22
mode1
ccdc_data10
CCDC data bit 10
I
Y7
T19
mode1
ccdc_data11
CCDC data bit 11
I
AA7
T20
mode1
ccdc_data12
CCDC data bit 12
I
AB7
T21
mode1
ccdc_data13
CCDC data bit 13
I
AC7
R22
mode1
ccdc_data14
CCDC data bit 14
I
AD7
T22
mode1
ccdc_data15
CCDC data bit 15
I
AE7
R20
mode1
(1)
See Multiplexing Characteristics table for more information.
Table 2-7. Video Interfaces - DSS Signals Description
SIGNAL NAME[1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
dss_pclk
LCD Pixel Clock
O
AE23
B22
dss_hsync
LCD Horizontal
Synchronization
O
AD22
B21
dss_vsync
LCD Vertical
Synchronization
O
AD23
B20
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
61
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-7. Video Interfaces - DSS Signals Description (continued)
SIGNAL NAME[1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
dss_acbias
AC bias control (STN) or
pixel data enable (TFT)
output
O
AE24
B19
dss_data0
LCD Pixel Data bit 0
IO
AD24
A20
dss_data1
LCD Pixel Data bit 1
IO
AD25
A19
dss_data2
LCD Pixel Data bit 2
IO
AC23
A18
dss_data3
LCD Pixel Data bit 3
IO
AC24
B18
dss_data4
LCD Pixel Data bit 4
IO
AC25
A17
dss_data5
LCD Pixel Data bit 5
IO
AB24
C18
dss_data6
LCD Pixel Data bit 6
IO
AB25
D17
dss_data7
LCD Pixel Data bit 7
IO
AA23
B16
dss_data8
LCD Pixel Data bit 8
IO
AA24
B17
dss_data9
LCD Pixel Data bit 9
IO
AA25
C17
dss_data10
LCD Pixel Data bit 10
IO
Y22
C16
dss_data11
LCD Pixel Data bit 11
IO
Y23
D16
dss_data12
LCD Pixel Data bit 12
IO
Y24
D14
dss_data13
LCD Pixel Data bit 13
IO
Y25
A16
dss_data14
LCD Pixel Data bit 14
IO
W21
D15
dss_data15
LCD Pixel Data bit 15
IO
W22
B15
dss_data16
LCD Pixel Data bit 16
IO
W23
A15
dss_data17
LCD Pixel Data bit 17
IO
W24
A14
dss_data18
LCD Pixel Data bit 18
IO
W25
C13
dss_data19
LCD Pixel Data bit 19
IO
V24
C15
dss_data20
LCD Pixel Data bit 20
O
V25
A13
dss_data21
LCD Pixel Data bit 21
O
U21
B13
dss_data22
LCD Pixel Data bit 22
O
U22
C14
dss_data23
LCD Pixel Data bit 23
O
U23
B14
Table 2-8. Video Interfaces – RFBI Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
SUBSYSTEM PIN
MULTIPLEXING [5]
rfbi_a0
RFBI command/data
control
O
AE24
B19
dss_acbias
rfbi_cs0
1st LCD chip select
O
AD22
B21
dss_hsync
rfbi_da0
RFBI data bus 0
IO
AD24
A20
dss_data0
rfbi_da1
RFBI data bus 1
IO
AD25
A19
dss_data1
rfbi_da2
RFBI data bus 2
IO
AC23
A18
dss_data2
rfbi_da3
RFBI data bus 3
IO
AC24
B18
dss_data3
rfbi_da4
RFBI data bus 4
IO
AC25
A17
dss_data4
rfbi_da5
RFBI data bus 5
IO
AB24
C18
dss_data5
rfbi_da6
RFBI data bus 6
IO
AB25
D17
dss_data6
rfbi_da7
RFBI data bus 7
IO
AA23
B16
dss_data7
rfbi_da8
RFBI data bus 8
IO
AA24
B17
dss_data8
rfbi_da9
RFBI data bus 9
IO
AA25
C17
dss_data9
rfbi_da10
RFBI data bus 10
IO
Y22
C16
dss_data10
rfbi_da11
RFBI data bus 11
IO
Y23
D16
dss_data11
rfbi_da12
RFBI data bus 12
IO
Y24
D14
dss_data12
rfbi_da13
RFBI data bus 13
IO
Y25
A16
dss_data13
62
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-8. Video Interfaces – RFBI Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
SUBSYSTEM PIN
MULTIPLEXING [5]
rfbi_da14
RFBI data bus 14
IO
W21
D15
dss_data14
rfbi_da15
RFBI data bus 15
IO
W22
B15
dss_data15
rfbi_rd
Read enable for RFBI O
AE23
B22
dss_pclk
rfbi_wr
Write Enable for
RFBI
AD23
B20
dss_vsync
rfbi_te_vsync0
tearing effect removal I
and Vsync input from
1st LCD
W23
A15
dss_data16
rfbi_hsync0
Hsync for 1st LCD
I
W24
A14
dss_data17
rfbi_te_vsync1
tearing effect removal I
and Vsync input from
2nd LCD
W25
C13
dss_data18
rfbi_hsync1
Hsync for 2nd LCD
I
V24
C15
dss_data19
rfbi_cs1
2nd LCD chip select
O
V25
A13
dss_data20
O
Table 2-9. Video Interfaces – TV Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
tv_out1
TV analog output
Composite: tv_out1
O
K21
NA
tv_out2
TV analog output SVIDEO: tv_out2
O
H24
NA
tv_vfb1
tv_vfb1: Feedback
through external resistor
to composite
O
K20
NA
tv_vfb2
tv_vfb2: Feedback
through external resistor
to S-VIDEO
O
H23
NA
tv_vref
External capacitor
I
H20
NA
2.4.3
Serial Communication Interfaces
Table 2-10. HDQ Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
hdq_sio
Bidirectional HDQ 1-Wire IO
control and data Interface.
Output is open drain.
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
L25
B9
Table 2-11. Serial Communication Interfaces – I2C Signals Description (I2C1)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
i2c1_scl
I2C Master Serial clock.
Output is open drain.
IOD
V4
AA17
i2c1_sda
I2C Serial Bidirectional
Data. Output is open
drain.
IOD
V5
AB17
Table 2-12. Serial Communication Interfaces - I2C Signals Description (I2C2)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
i2c2_scl
I2C Master Serial clock.
Output is open drain.
IOD
W1
Y17
i2c2_sda
I2C Serial Bidirectional
Data. Output is open
drain.
IOD
W2
Y16
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
63
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-13. Serial Communication Interfaces - I2C Signals Description (I2C3)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
i2c3_scl
I2C Master Serial clock.
Output is open drain.
IOD
W4
W16
i2c3_sda
I2C Serial Bidirectional
Data. Output is open
drain.
IOD
W5
W17
Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 1)
mcbsp1_dr
Received serial data
I
P23
C9
mcbsp1_clkr
Receive Clock
IO
R25
B11
mcbsp1_fsr
Receive frame
synchronization
IO
P21
D11
mcbsp1_dx
Transmitted serial data
IO
P22
C10
mcbsp1_clkx
Transmit clock
IO
N24
C8
mcbsp1_fsx
Transmit frame
synchronization
IO
P24
C11
mcbsp_clks
External clock input
(shared by McBSP1, 2, 3,
4, and 5)
I
P25
E11
MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 2)
mcbsp2_dr
Received serial data
I
B25
C5
mcbsp2_dx
Transmitted serial data
IO
D24
E4
mcbsp2_clkx
Combined serial clock
IO
C25
D5
mcbsp2_fsx
Combined frame
synchronization
IO
D25
E5
MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 3)
mcbsp3_dr
Received serial data
I
C24
B4
mcbsp3_dx
Transmitted serial data
IO
B24
C4
mcbsp3_clkx
Combined serial clock
IO
A24
D4
mcbsp3_fsx
Combined frame
synchronization
IO
C23
A4
MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 4)
mcbsp4_dr
Received serial data
I
A23
B3
mcbsp4_dx
Transmitted serial data
IO
B22
A2
mcbsp4_clkx
Combined serial clock
IO
B23
A3
mcbsp4_fsx
Combined frame
synchronization
IO
A22
B2
MULTICHANNEL BUFFERED SERIAL PORT (McBSP LP 5)
mcbsp5_dr
Received serial data
I
Y18
E19
mcbsp5_dx
Transmitted serial data
IO
AD19
F19
mcbsp5_clkx
Combined serial clock
IO
AD17
G22
mcbsp5_fsx
Combined frame
synchronization
IO
AE19
F21
Table 2-15. Serial Communication Interfaces – McSPI Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
AE14
K22
MULTICHANNEL SERIAL PORT INTERFACE (McSPI1)
mcspi1_clk
64
SPI Clock
IO
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-15. Serial Communication Interfaces – McSPI Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
ZCN BALL [4]
ZER BALL [4]
mcspi1_simo
Slave data in, master data IO
out
TYPE [3]
AD15
K19
mcspi1_somi
Slave data out, master
data in
IO
AC15
J18
mcspi1_cs0
SPI Enable 0, polarity
configured by software
IO
AB15
K18
mcspi1_cs1
SPI Enable 1, polarity
configured by software
O
AD14
J20
mcspi1_cs2
SPI Enable 2, polarity
configured by software
O
AE15
J19
mcspi1_cs3
SPI Enable 3, polarity
configured by software
O
AE16
J21
MULTICHANNEL SERIAL PORT INTERFACE (McSPI2)
mcspi2_clk
SPI Clock
IO
AD16,AC9
J22
mcspi2_simo
Slave data in, master data IO
out
AC16,AD9
H20
mcspi2_somi
Slave data out, master
data in
IO
AB16,AE9
H22
mcspi2_cs0
SPI Enable 0, polarity
configured by software
IO
AA16,AA10
H21
mcspi2_cs1
SPI Enable 1, polarity
configured by software
O
AE17
H19
MULTICHANNEL SERIAL PORT INTERFACE (McSPI3)
mcspi3_clk
SPI Clock
IO
W25,AD11,AA18
C13, M21, G19, E20
mcspi3_simo
Slave data in, master data IO
out
V24,AE11,AD18
C15, M20, G20
mcspi3_somi
Slave data out, master
data in
IO
V25, AB12, AC18
A13, K20, F22
mcspi3_cs0
SPI Enable 0, polarity
configured by software
IO
U21,AE12,AB18
B13, K21, F20
mcspi3_cs1
SPI Enable 1, polarity
configured by software
O
U22, AD12, AB19
C14, M18, E21
MULTICHANNEL SERIAL PORT INTERFACE (McSPI4)
mcspi4_clk
SPI Clock
W20, R25
C20, B11
mcspi4_simo
Slave data in, master data IO
out
IO
P22
C10
mcspi4_somi
Slave data out, master
data in
IO
P23
C9
mcspi4_cs0
SPI Enable 0, polarity
configured by software
IO
P24
C11
Table 2-16. Serial Communication Interfaces – HECC Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
hecc1_txd
Transmit serial data pin
O
V2
AB15
hecc1_rxd
Receive serial data pin
I
V3
AB16
Table 2-17. Serial Communication Interfaces – EMAC (RMII) Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
rmii_mdio_data
Management data I/O
IO
AE6
U21
rmii_mdio_clk
Management data clock
O
AD6
U22
rmii_rxd0
EMAC receive data pin 0
I
Y7
T19
rmii_rxd1
EMAC receive data pin 1
I
AA7
T20
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
65
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-17. Serial Communication Interfaces – EMAC (RMII) Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
rmii_crs_dv
EMAC carrier
sense/receive data valid
I
AB7
T21
rmii_rxer
EMAC receive error
I
AC7
R22
rmii_txd0
EMAC transmit data pin 0
O
AD7
T22
rmii_txd1
EMAC transmit data pin 1
O
AE7
R20
rmii_txen
EMAC transmit enable
O
AD8
R19
rmii_50mhz_clk
EMAC RMII 50 MHz clock I
AE8
R21
Table 2-18. Serial Communication Interfaces – UARTs Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1)
uart1_cts
UART1 Clear To Send
I
AD24,Y20,P25
C19,A20,E11
uart1_rts
UART1 Request To Send
O
AD25,Y19
C21,A19
uart1_rx
UART1 Receive data
I
AA23,W20,AC20
C20,B16,E22
uart1_tx
UART1 Transmit data
O
AB25,AA19
C22,D17
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2)
uart2_cts
UART2 Clear To Send
I
B24,F20
A5,C4
uart2_rts
UART2 Request To Send
O
C24,F19
B5,B4
uart2_rx
UART2 Receive data
I
C23,E23
C6,A4
uart2_tx
UART2 Transmit data
O
A24,E24
D6,D4
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA
uart3_cts_rctx
UART3 Clear To Send
(input), Remote TX
(output)
IO
U1,N2
W15,V14
uart3_rts_sd
UART3 Request To
Send , IR enable
O
N3,V3
W13AB16
uart3_rx_irrx
UART3 Receive data , IR
and Remote RX
I
AC25,P1,F25,V2
AA13,A17,A6,AB15
uart3_tx_irtx
UART3 Transmit data , IR
TX
O
AB24,P2,F24,E25
Y13,C18,B6,A7
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART4)
uart4_cts
UART4 Clear To Send
I
AD3,AD11
Y22,M21
uart4_rts
UART4 Request To Send
O
AE2,AE11
Y21,M20
uart4_rx
UART4 Receive data
I
T5,AE3,AC12
Y14,W21,L19
uart4_tx
UART4 Transmit data
O
T4,AD1,AB12
AA16,AA21,K20
Table 2-19. Serial Communication Interfaces – USB Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
UNIVERSAL SERIAL BUS INTERFACE (USB0)
usb0_dp
USB D+ (differential signal A
pair)
F25
A6
usb0_dm
USB D- (differential signal
pair)
A
F24
B6
usb0_drvvbus
Digital output to control
external supply
O
E25
A7
usb0_id
USB operating mode
identification pin
A
G25
B7
66
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-19. Serial Communication Interfaces – USB Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
ZCN BALL [4]
ZER BALL [4]
usb0_vbus
For host or device mode
A
operation, tie the
VBUS/USB power signal
to the USB connector.
When used in OTG mode
operation, tie VBUS to the
external charge pump and
to the VBUS signal on the
USB connector.
TYPE [3]
G24
C7
mm_fsusb3_rxdm
Vminus receive data (not
used in 3- or 4-pin
configurations)
IO
AE13
M19
mm_fsusb3_rxdp
Vplus receive data (not
used in 3- or 4-pin
configurations)
IO
AC13
L20
mm_fsusb3_rxrcv
Differential receiver signal
input (not used in 3-pin
mode)
IO
A23
B3
mm_fsusb3_txse0
Single-ended zero. Used
as VM in 4-pin VP_VM
mode.
IO
B23
A3
mm_fsusb3_txdat
USB data. Used as VP in
4-pin VP_VM mode.
IO
B22
A2
mm_fsusb3_txen_n
Transmit enable
IO
A22
B2
mm_fsusb2_rxdm
Vminus receive data (not
used in 3- or 4-pin
configurations)
IO
AD21
D20
mm_fsusb2_rxdp
Vplus receive data (not
used in 3- or 4-pin
configurations)
IO
AB20
E20
mm_fsusb2_rxrcv
Differential receiver signal
input (not used in 3-pin
mode)
IO
AC21
D19
mm_fsusb2_txse0
Single-ended zero. Used
as VM in 4-pin VP_VM
mode.
IO
AE22
D18
mm_fsusb2_txdat
USB data. Used as VP in
4-pin VP_VM mode.
IO
AE16
J21
mm_fsusb2_txen_n
Transmit enable
IO
AE17
H19
mm_fsusb1_rxdm
Vminus receive data (not
used in 3- or 4-pin
configurations)
IO
AD20
D21
mm_fsusb1_rxdp
Vplus receive data (not
used in 3- or 4-pin
configurations)
IO
AE18
G21
mm_fsusb1_rxrcv
Differential receiver signal
input (not used in 3-pin
mode)
IO
AD18
G20
mm_fsusb1_txse0
Single-ended zero. Used
as VM in 4-pin VP_VM
mode.
IO
AC18
F22
mm_fsusb1_txdat
USB data. Used as VP in
4-pin VP_VM mode.
IO
AB18
F20
mm_fsusb1_txen_n
Transmit enable
IO
AB19
E21
MM_FSUSB3
MM_FSUSB2
MM_FSUSB1
HSUSB2
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
67
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-19. Serial Communication Interfaces – USB Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
hsusb2_clk
Dedicated for external
transceiver 60-MHz clock
input from PHY
O
AC20
E22
hsusb2_stp
Dedicated for external
transceiver Stop signal
O
AB20
E20
hsusb2_dir
Dedicated for external
transceiver Data direction
control from PHY
I
AE21
E18
hsusb2_nxt
Dedicated for external
transceiver Next signal
from PHY
I
AD21
D20
hsusb2_data0
Dedicated for external
transceiver Bidirectional
data bus
IO
AC21
D19
hsusb2_data1
Dedicated for external
transceiver Bidirectional
data bus
IO
AE22
D18
hsusb2_data2
Dedicated for external
transceiver Bidirectional
data bus
IO
AE16
J21
hsusb2_data3
Dedicated for external
transceiver Bidirectional
data bus
IO
AE17
H19
hsusb2_data4
Dedicated for external
IO
transceiver Bidirectional
data bus additional signals
for 12-pin ULPI operation.
AC16
H20
hsusb2_data5
Dedicated for external
IO
transceiver Bidirectional
data bus additional signals
for 12-pin ULPI operation.
AB16
H22
hsusb2_data6
Dedicated for external
IO
transceiver Bidirectional
data bus additional signals
for 12-pin ULPI operation.
AA16
H21
hsusb2_data7
Dedicated for external
transceiver Bidirectional
data bus
IO
AD16
J22
hsusb1_clk
Dedicated for external
transceiver 60-MHz clock
input from PHY
O
AE18
G21
hsusb1_stp
Dedicated for external
transceiver Stop signal
O
AD17
G22
hsusb1_dir
Dedicated for external
transceiver Data direction
control from PHY
I
AE20
D22
hsusb1_nxt
Dedicated for external
transceiver Next signal
from PHY
I
AD20
D21
hsusb1_data0
Dedicated for external
transceiver Bidirectional
data bus
IO
AD18
G20
hsusb1_data1
Dedicated for external
transceiver Bidirectional
data bus
IO
AC18
F22
hsusb1_data2
Dedicated for external
transceiver Bidirectional
data bus
IO
AB18
F20
HSUSB1
68
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-19. Serial Communication Interfaces – USB Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
hsusb1_data3
Dedicated for external
transceiver Bidirectional
data bus
IO
AB19
E21
hsusb1_data4
Dedicated for external
IO
transceiver Bidirectional
data bus additional signals
for 12-pin ULPI operation
Y18
E19
hsusb1_data5
Dedicated for external
IO
transceiver Bidirectional
data bus additional signals
for 12-pin ULPI operation
AE19
F21
hsusb1_data6
Dedicated for external
IO
transceiver Bidirectional
data bus additional signals
for 12-pin ULPI operation
AD19
F19
hsusb1_data7
Dedicated for external
IO
transceiver Bidirectional
data bus additional signals
for 12-pin ULPI operation
AA18
G19
2.4.4
Removable Media Interfaces
Table 2-20. Removable Media Interfaces – MMC/SDIO Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1)
mmc1_clk
MMC/SD Output Clock
O
AA9
P22
mmc1_cmd
MMC/SD command signal IO
AB9
N21
mmc1_dat0
MMC/SD Card Data bit 0 / IO
SPI Serial Input
AC9
P21
mmc1_dat1
MMC/SD Card Data bit 1
IO
AD9
N20
mmc1_dat2
MMC/SD Card Data bit 2
IO
AE9
P19
mmc1_dat3
MMC/SD Card Data bit 3
IO
AA10
P20
mmc1_dat4
MMC/SD Card Data bit 4
IO
AB10
N22
mmc1_dat5
MMC/SD Card Data bit 5
IO
AC10
N19
mmc1_dat6
MMC/SD Card Data bit 6
IO
AD10
N18
mmc1_dat7
MMC/SD Card Data bit 7
IO
AE10
P18
MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2)
mmc2_clk
MMC/SD Output Clock
O
AD11
M21
mmc2_dir_dat0
Direction control for DAT0
signal case an external
transceiver used
O
AB13
L18
mmc2_dir_dat1
Direction control for DAT1 O
and DAT3 signals case an
external transceiver used
AC13
L20
mmc2_dir_dat2
Direction control for DAT2
signal case an external
transceiver used
O
AB1
V18
mmc2_dir_dat3
Direction control for DAT4, O
DAT5, DAT6, and DAT7
signals case an external
transceiver used
AB2
Y19
mmc2_clkin
MMC/SD input clock
I
AE13
NA
mmc2_dat0
MMC/SD Card Data bit 0
IO
AB12
K20
mmc2_dat1
MMC/SD Card Data bit 1
IO
AC12
L19
mmc2_dat2
MMC/SD Card Data bit 2
IO
AD12
M18
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
69
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-20. Removable Media Interfaces – MMC/SDIO Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
mmc2_dat3
MMC/SD Card Data bit 3
IO
AE12
K21
mmc2_dat4
MMC/SD Card Data bit 4
IO
AB13
L18
mmc2_dat5
MMC/SD Card Data bit 5
IO
AC13
L20
mmc2_dat6
MMC/SD Card Data bit 6
IO
AD13
L21
mmc2_dat7
MMC/SD Card Data bit 7
IO
AE13
M19
mmc2_dir_cmd
Direction control for CMD
signal case an external
transceiver is used
O
AD13
NA
mmc2_cmd
MMC/SD command signal IO
AE11
M20
MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3)
mmc3_clk
MMC/SD Output Clock
O
AE15,AD17
J19,G22
mmc3_cmd
MMC/SD command signal IO
AD14,AE18
J20,G21
mmc3_dat0
MMC/SD Card Data bit 0 / IO
SPI Serial Input
AB13,Y18
E19,L18
mmc3_dat1
MMC/SD Card Data bit 1
IO
AC13,AE19
L20,F21
mmc3_dat2
MMC/SD Card Data bit 2
IO
AD13,AD19
L21,F19
mmc3_dat3
MMC/SD Card Data bit 3
IO
AE13,AA18
M19,G19
mmc3_dat4
MMC/SD Card Data bit 4
IO
AD18
G20
mmc3_dat5
MMC/SD Card Data bit 5
IO
AD20
D21
mmc3_dat6
MMC/SD Card Data bit 6
IO
AE20
D22
mmc3_dat7
MMC/SD Card Data bit 7
IO
AB19
E21
70
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
2.4.5
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Test Interfaces
Table 2-21. Test Interfaces – ETK Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
etk_ctl
ETK trace ctl
O
AE18
G21
etk_clk
ETK trace clock
O
AD17
G22
etk_d0
ETK data 0
O
AD18
G20
etk_d1
ETK data 1
O
AC18
F22
etk_d2
ETK data 2
O
AB18
F20
etk_d3
ETK data 3
O
AA18
G19
etk_d4
ETK data 4
O
Y18
E19
etk_d5
ETK data 5
O
AE19
F21
etk_d6
ETK data 6
O
AD19
F19
etk_d7
ETK data 7
O
AB19
E21
etk_d8
ETK data 8
O
AE20
D22
etk_d9
ETK data 9
O
AD20
D21
etk_d10
ETK data 10
O
AC20
E22
etk_d11
ETK data 11
O
AB20
E20
etk_d12
ETK data 12
O
AE21
E18
etk_d13
ETK data 13
O
AD21
D20
etk_d14
ETK data 14
O
AC21
D19
etk_d15
ETK data 15
O
AE22
D18
Table 2-22. Test Interfaces – JTAG Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
jtag_ntrst
Test Reset
I
U24
D13
jtag_tck
Test Clock
I
U25
E14
jtag_rtck
ARM Clock Emulation
O
T21
C12
jtag_tms_tmsc
Test Mode Select
IO
T22
A12
jtag_tdi
Test Data Input
I
T23
B12
jtag_tdo
Test Data Output
O
T24
D12
jtag_emu0
Test emulation 0
IO
T25
E13
jtag_emu1
Test emulation 1
IO
R24
E12
Table 2-23. Test Interfaces – HWDBG Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
hw_dbg0
Debug signal 0
O
AD2,AD17
G22
hw_dbg1
Debug signal 1
O
AD1,AE18
G21
hw_dbg2
Debug signal 2
O
AD3,AD18
G20
hw_dbg3
Debug signal 3
O
AE3,AC18
F22
hw_dbg4
Debug signal 4
O
AC5,AB18
F20
hw_dbg5
Debug signal 5
O
AD5,AA18
G19
hw_dbg6
Debug signal 6
O
Y18,AE5
E19
hw_dbg7
Debug signal 7
O
Y6,AE19
F21
hw_dbg8
Debug signal 8
O
Y7,AD19
F19
hw_dbg9
Debug signal 9
O
AA7,AB19
E21
hw_dbg10
Debug signal 10
O
AC7,AE20
D22
hw_dbg11
Debug signal 11
O
AD7,AD20
D21
hw_dbg12
Debug signal 12
O
AE23,AC20
E22
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
71
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-23. Test Interfaces – HWDBG Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
hw_dbg13
Debug signal 13
O
AD22,AB20
E20
hw_dbg14
Debug signal 14
O
AB25,AE21
E18
hw_dbg15
Debug signal 15
O
AA23,AD21
D20
hw_dbg16
Debug signal 16
O
AA24,AC21
D19
hw_dbg17
Debug signal 17
O
AA25,AE22
D18
2.4.6
Miscellaneous
Table 2-24. Miscellaneous – GP Timer Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
gpt8_pwm_evt
PWM or event for GP
timer 8
IO
N4,E23,AE17
V11,C6,H19
gpt9_pwm_evt
PWM or event for GP
timer 9
IO
M4,M2,F20,AC16
Y12,AA11,A5,H20
gpt10_pwm_evt
PWM or event for GP
timer 10
IO
M3,M1,F19,AB16
V12,W12,B5,H22
gpt11_pwm_evt
PWM or event for GP
timer 11
IO
N5,E24,AA16
AA12,D6,H21
72
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
2.4.7
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
General-Purpose IOs
Table 2-25. General-Purpose IOs Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
gpio_0
General-purpose IO 0
IO
Y1
AB18
gpio_1
General-purpose IO 1
IO
M24
B8
gpio_2
General-purpose IO 2
IO
Y4
AB19
gpio_3
General-purpose IO 3
IO
AA1
AB20
gpio_4
General-purpose IO 4
IO
AA2
W18
gpio_5
General-purpose IO 5
IO
AA3
AA19
gpio_6
General-purpose IO 6
IO
AB1
V18
gpio_7
General-purpose IO 7
IO
AB2
Y19
gpio_8
General-purpose IO 8
IO
AC1
W19
gpio_10
General-purpose IO 10
IO
N25
E9
gpio_11
General-purpose IO 11
IO
T25
E13
gpio_12
General-purpose IO 12
IO
AD17
G22
gpio_13
General-purpose IO 13
IO
AE18
G21
gpio_14
General-purpose IO 14
IO
AD18
G20
gpio_15
General-purpose IO 15
IO
AC18
F22
gpio_16
General-purpose IO 16
IO
AB18
F20
gpio_17
General-purpose IO 17
IO
AA18
G19
gpio_18
General-purpose IO 18
IO
Y18
E19
gpio_19
General-purpose IO 19
IO
AE19
F21
gpio_20
General-purpose IO 20
IO
AD19
F19
gpio_21
General-purpose IO 21
IO
AB19
E21
gpio_22
General-purpose IO 22
IO
AE20
D22
gpio_23
General-purpose IO 23
IO
AD20
D21
gpio_24
General-purpose IO 24
IO
AC20
E22
gpio_25
General-purpose IO 25
IO
AB20
E20
gpio_26
General-purpose IO 26
IO
AE21
E18
gpio_27
General-purpose IO 27
IO
AD21
D20
gpio_28
General-purpose IO 28
IO
AC21
D19
gpio_29
General-purpose IO 29
IO
AE22
D18
gpio_30
General-purpose IO 30
IO
Y3
Y18
gpio_31
General-purpose IO 31
IO
R24
E12
gpio_34
General-purpose IO 34
IO
E3
W5
gpio_35
General-purpose IO 35
IO
E2
Y5
gpio_36
General-purpose IO 36
IO
E1
AB4
gpio_37
General-purpose IO 37
IO
F7
AA5
gpio_38
General-purpose IO 38
IO
F6
AB5
gpio_39
General-purpose IO 39
IO
F4
AB6
gpio_40
General-purpose IO 40
IO
F3
AA6
gpio_41
General-purpose IO 41
IO
F2
W6
gpio_42
General-purpose IO 42
IO
F1
AB7
gpio_43
General-purpose IO 43
IO
G6
Y6
gpio_44
General-purpose IO 44
IO
J4
W10
gpio_45
General-purpose IO 45
IO
J3
AB9
gpio_46
General-purpose IO 46
IO
J2
AB10
gpio_47
General-purpose IO 47
IO
J1
W9
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
73
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-25. General-Purpose IOs Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
gpio_48
General-purpose IO 48
IO
K4
AA10
gpio_49
General-purpose IO 49
IO
K3
Y9
gpio_50
General-purpose IO 50
IO
K2
V10
gpio_51
General-purpose IO 51
IO
K1
V9
gpio_52
General-purpose IO 52
IO
L1
Y11
gpio_53
General-purpose IO 53
IO
M4
Y12
gpio_54
General-purpose IO 54
IO
M3
V12
gpio_55
General-purpose IO 55
IO
M2
AA11
gpio_56
General-purpose IO 56
IO
M1
W12
gpio_57
General-purpose IO 57
IO
N5
AA12
gpio_58
General-purpose IO 58
IO
N4
V11
gpio_59
General-purpose IO 59
IO
N1
AB13
gpio_60
General-purpose IO 60
IO
R4
W11
gpio_61
General-purpose IO 61
IO
T1
Y15
gpio_62
General-purpose IO 62
IO
T2
W14
gpio_63
General-purpose IO 63
IO
T4
AA16
gpio_64
General-purpose IO 64
IO
T5
Y14
gpio_65
General-purpose IO 65
IO
U1
V14
gpio_66
General-purpose IO 66
IO
AE23
B22
gpio_67
General-purpose IO 67
IO
AD22
B21
gpio_68
General-purpose IO 68
IO
AD23
B20
gpio_69
General-purpose IO 69
IO
AE24
B19
gpio_70
General-purpose IO 70
IO
AD24
A20
gpio_71
General-purpose IO 71
IO
AD25
A19
gpio_72
General-purpose IO 72
IO
AC23
A18
gpio_73
General-purpose IO 73
IO
AC24
B18
gpio_74
General-purpose IO 74
IO
AC25
A17
gpio_75
General-purpose IO 75
IO
AB24
C18
gpio_76
General-purpose IO 76
IO
AB25
D17
gpio_77
General-purpose IO 77
IO
AA23
B16
gpio_78
General-purpose IO 78
IO
AA24
B17
gpio_79
General-purpose IO 79
IO
AA25
C17
gpio_80
General-purpose IO 80
IO
Y22
C16
gpio_81
General-purpose IO 81
IO
Y23
D16
gpio_82
General-purpose IO 82
IO
Y24
D14
gpio_83
General-purpose IO 83
IO
Y25
A16
gpio_84
General-purpose IO 84
IO
W21
D15
gpio_85
General-purpose IO 85
IO
W22
B15
gpio_86
General-purpose IO 86
IO
W23
A15
gpio_87
General-purpose IO 87
IO
W24
A14
gpio_88
General-purpose IO 88
IO
W25
C13
gpio_89
General-purpose IO 89
IO
V24
C15
gpio_90
General-purpose IO 90
IO
V25
A13
gpio_91
General-purpose IO 91
IO
U21
B13
gpio_92
General-purpose IO 92
IO
U22
C14
gpio_93
General-purpose IO 93
IO
U23
B14
gpio_94
General-purpose IO 94
IO
AD2
AB21
74
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-25. General-Purpose IOs Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
gpio_95
General-purpose IO 95
IO
AD1
AA21
gpio_96
General-purpose IO 96
IO
AE2
Y21
gpio_97
General-purpose IO 97
IO
AD3
Y22
gpio_98
General-purpose IO 98
IO
AE3
W21
gpio_99
General-purpose IO 99
I
AD4
W22
gpio_100
General-purpose IO 100
I
AE4
W20
gpio_101
General-purpose IO 101
IO
AC5
V21
gpio_102
General-purpose IO 102
IO
AD5
V19
gpio_103
General-purpose IO 103
IO
AE5
V22
gpio_104
General-purpose IO 104
IO
Y6
U20
gpio_105
General-purpose IO 105
IO
AB6
V20
gpio_106
General-purpose IO 106
IO
AC6
U19
gpio_107
General-purpose IO 107
IO
AE6
U21
gpio_108
General-purpose IO 108
IO
AD6
U22
gpio_109
General-purpose IO 109
IO
Y7
T19
gpio_110
General-purpose IO 110
IO
AA7
T20
gpio_111
General-purpose IO 111
IO
AB7
T21
gpio_112
General-purpose IO 112
I
AE7
R20
gpio_113
General-purpose IO 113
I
AD8
R19
gpio_114
General-purpose IO 114
I
AE8
R21
gpio_116
General-purpose IO 116
IO
D25
E5
gpio_117
General-purpose IO 117
IO
C25
D5
gpio_118
General-purpose IO 118
IO
B25
C5
gpio_119
General-purpose IO 119
IO
D24
E4
gpio_120
General-purpose IO 120
IO
AA9
P22
gpio_121
General-purpose IO 121
IO
AB9
N21
gpio_122
General-purpose IO 122
IO
AC9
P21
gpio_123
General-purpose IO 123
IO
AD9
N20
gpio_124
General-purpose IO 124
IO
AE9
P19
gpio_125
General-purpose IO 125
IO
E25, AA10
A7, P20
gpio_126
General-purpose IO 126
IO
AB10, AD7
N22, T22
gpio_127
General-purpose IO 127
IO
AC10
N19
gpio_128
General-purpose IO 128
IO
AD10
N18
gpio_129
General-purpose IO 129
IO
AE10
P18
gpio_130
General-purpose IO 130
IO
V2, AD11
M21, AB15
gpio_131
General-purpose IO 131
IO
V3, AE11
M20, AB16
gpio_132
General-purpose IO 132
IO
AB12
K20
gpio_133
General-purpose IO 133
IO
AC12
L19
gpio_134
General-purpose IO 134
IO
AD12
M18
gpio_135
General-purpose IO 135
IO
AE12
K21
gpio_136
General-purpose IO 136
IO
AB13
L18
gpio_137
General-purpose IO 137
IO
AC13
L20
gpio_138
General-purpose IO 138
IO
AD13
L21
gpio_139
General-purpose IO 139
IO
AE13
M19
gpio_140
General-purpose IO 140
IO
B24
C4
gpio_141
General-purpose IO 141
IO
C24
B4
gpio_142
General-purpose IO 142
IO
A24
D4
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
75
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 2-25. General-Purpose IOs Signals Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
gpio_143
General-purpose IO 143
IO
C23
A4
gpio_144
General-purpose IO 144
IO
F20
A5
gpio_145
General-purpose IO 145
IO
F19
B5
gpio_146
General-purpose IO 146
IO
E24
D6
gpio_147
General-purpose IO 147
IO
E23
C6
gpio_148
General-purpose IO 148
IO
AA19
C22
gpio_149
General-purpose IO 149
IO
Y19
C21
gpio_150
General-purpose IO 150
IO
Y20
C19
gpio_151
General-purpose IO 151
IO
W20
C20
gpio_152
General-purpose IO 152
IO
B23
A3
gpio_153
General-purpose IO 153
IO
A23
B3
gpio_154
General-purpose IO 154
IO
B22
A2
gpio_155
General-purpose IO 155
IO
A22
B2
gpio_156
General-purpose IO 156
IO
R25
B11
gpio_157
General-purpose IO 157
IO
P21
D11
gpio_158
General-purpose IO 158
IO
P22
C10
gpio_159
General-purpose IO 159
IO
P23
C9
gpio_160
General-purpose IO 160
IO
P25
E11
gpio_161
General-purpose IO 161
IO
P24
C11
gpio_162
General-purpose IO 162
IO
N24
C8
gpio_163
General-purpose IO 163
IO
N2
W15
gpio_164
General-purpose IO 164
IO
N3
W13
gpio_165
General-purpose IO 165
IO
P1
AA13
gpio_166
General-purpose IO 166
IO
P2
Y13
gpio_167
General-purpose IO 167
IO
AC7
R22
gpio_168
General-purpose IO 168
IO
W1
Y17
gpio_170
General-purpose IO 170
IO
L25
B9
gpio_171
General-purpose IO 171
IO
AE14
K22
gpio_172
General-purpose IO 172
IO
AD15
K19
gpio_173
General-purpose IO 173
IO
AC15
J18
gpio_174
General-purpose IO 174
IO
AB15
K18
gpio_175
General-purpose IO 175
IO
AD14
J20
gpio_176
General-purpose IO 176
IO
AE15
J19
gpio_177
General-purpose IO 177
IO
AE16
J21
gpio_178
General-purpose IO 178
IO
AD16
J22
gpio_179
General-purpose IO 179
IO
AC16
H20
gpio_180
General-purpose IO 180
IO
AB16
H22
gpio_181
General-purpose IO 181
IO
AA16
H21
gpio_182
General-purpose IO 182
IO
AE17
H19
gpio_183
General-purpose IO 183
IO
W2
Y16
gpio_184
General-purpose IO 184
IO
W4
W16
gpio_185
General-purpose IO 185
IO
W5
W17
gpio_186
General-purpose IO 186
IO
M25
E10
76
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
2.4.8
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
System and Miscellaneous Terminals
Table 2-26. System and Miscellaneous Signals Description
SIGNAL NAME [1]
DESCRIPTION [2]
TYPE [3]
ZCN BALL [4]
ZER BALL [4]
sys_32k
32-kHz clock input
I
K24
A8
sys_xtalin
Main input clock. Oscillator input
I
K25
A10
sys_xtalout
Output of oscillator
O
H25
A9
sys_altclk
Alternate clock source selectable for
GPTIMERs (maximum 54 MHz), USB (48
MHz) , or NTSC/PAL (54 MHz)
I
L25
B9
sys_clkreq
Request from device for system clock (open
source type)
IO
M24
B8
sys_clkout1
Configurable output clock1
O
N25
E9
sys_clkout2
Configurable output clock2
O
M25
E10
sys_boot0
Boot configuration mode bit 0
I
Y4
AB19
sys_boot1
Boot configuration mode bit 1
I
AA1
AB20
sys_boot2
Boot configuration mode bit 2
I
AA2
W18
sys_boot3
Boot configuration mode bit 3
I
AA3
AA19
sys_boot4
Boot configuration mode bit 4
I
AB1
V18
sys_boot5
Boot configuration mode bit 5
I
AB2
Y19
sys_boot6
Boot configuration mode bit 6
I
AC1
W19
sys_boot7
Boot configuration mode bit 7
I
AC2
AA20
sys_boot8
Boot configuration mode bit 8
I
AC3
Y20
sys_nrespwron
Power On Reset
I
Y2
AA18
sys_nreswarm
Warm Boot Reset (open drain output)
IOD
Y3
Y18
sys_nirq
External FIQ input
I
Y1
AB18
sys_ndmareq0
External DMA request 0 (system
expansion). Level (active low) or edge
(falling) selectable.
I
M3
V12
sys_ndmareq1
External DMA request 1 (system
expansion). Level (active low) or edge
(falling) selectable.
I
M2,U1
AA11,V14
sys_ndmareq2
External DMA request 2 (system
expansion). Level (active low) or edge
(falling) selectable.
I
F1,M1
W12,AB7
sys_ndmareq3
External DMA request 3 (system
expansion). Level (active low) or edge
(falling) selectable.
I
G6,N5
AA12,V6
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
77
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
2.4.9
www.ti.com
Power Supplies
Table 2-27. Power Supplies Description
BALL
(ZCN Pkg.) [4]
BALL
(ZER Pkg.) [4]
1.2-V core and oscillator macros power supply.
V16, V15, V11,
V10, U16, U15,
U11, U10, T18,
T17, T9, T8,
R18, R17, R9,
R8, M18, L18,
L9, L8, K18,
K17, K9, K8,
J16, J15, J11,
J10, H15, H11,
H10
J8,J10, J12, J14, J16, K9, K11, K13,
K15, L8, L10, L12, L14, M7, M9,
M11, M13, M15, N8, N10, N12, N14,
P7, P9, P11, P13, P15, R8, R10,
R12, R14
VSS
Core and I/O common ground.
AE25, AE1,
V18, V17, V14,
V13, V12, V9,
V8, U18, U17,
U14, U13, U12,
U9, U8, T14,
T13, T12, R16,
R15, R14, R13,
R12, R11, R10,
P18, P17, P16,
P15, P14, P13,
P12, P11, P10,
P9, P8, N18,
N17, N14, N13,
N12, N9, N8,
M17, M16, M15,
M14, M13,M12,
M11, M10, M9,
M8, L17, L16,
L15, L14, L13,
L12, L11, L10,
K14, K13, K12,
J18, J17, J14,
J13, J12, J9, J8,
H14, H13, H12,
H9, A25, A1,
N23, G20, G21
A1, A11,A22, E6, E16, F6, F13, F15,
F17, G5, G7, G11, G14, G16, G18,
H6, H7, H8, H9, H10, H11, H12, H13,
H14, H15, H16, H17, J9, J11, J13,
J15, K8, K10, K12, K14, K16, L7, L9,
L11, L13, L15, M1, M6, M8, M10,
M12, M14, M16, M22, N7, N9, N11,
N13, N15, N17, P6, P8, P10, P12,
P14, P16, R5, R7, R9, R11, R13,
R15, R17, T6, T8, T10, T12, T14,
T16, T18, U5, U7, U9, U11, U13,
U15, U17, V6, AB1, AB12, AB22
VDDS_SRAM_MPU
1.8-V MPU SLDO analog power supply.
AA13
L17
VDDS_SRAM_CORE_BG
1.8-V Core SLDO and VDDA of BandGap analog
power supply.
E17
J6
CAP_VDD_SRAM_MPU
1.2-V SRAMOUT for MPU SLDO.
For proper device operation, connect to a 1μF
decoupling capacitor.
AA12
M17
CAP_VDD_SRAM_CORE
1.2-V SRAMOUT for Core SLDO.
For proper device operation, connect to a 1μF
decoupling capacitor.
E16
K6
VDDS_DPLL_MPU_USBH
OST
1.8-V MPUSS DPLL and USBHOST DPLL analog
power supply.
AA15
K17
VDDS_DPLL_PER_CORE
1.8-V DPLL and HSDIVIDER/ CORE and
HSDIVIDER analog power supply.
N20
F11
VDDA_DAC
1.8-V DAC analog power supply.
H21
NA
VSSA_DAC
DAC analog ground.
H22
NA
VDDA3P3V_USBPHY
3.3-V USB transceiver analog power supply.
F23
F7
VDDA1P8V_USBPHY
1.8-V USB transceiver power supply.
G22
D7
CAP_VDDA1P2LDO_USB
PHY
Output of the 1.2-V internal LDO.
For proper device operation, connect a 0.22uF
capacitor between this pin and VSSA.
F22
E7
SIGNAL NAME[1]
VDD_CORE
78
DESCRIPTION[2]
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 2-27. Power Supplies Description (continued)
SIGNAL NAME[1]
DESCRIPTION[2]
BALL
(ZCN Pkg.) [4]
BALL
(ZER Pkg.) [4]
1.8/3.3-V power supply.
Y16, Y15, Y13,
Y12, Y10, W16,
W15, W13,
W12,W10, W9,
W6, V7, V6,
U19, T20, T19,
T7, T6, R7, R6,
P20, P19, N19,
N7, N6, M7, M6,
M5, L19, K19,
K7, K6, K5, J7,
H18, H17
A21, B1,E15, E17, F12, F14, F18,
G10, G12, G13, G8, G17, H18, J17,
L22, N16, P17, R16, R18, T9, T11,
T13, T17, U8, U10, U12, U14, U16,
U18, V7, V8, V17, AA22, AB11
VDDS
1.8-V power supply.
Y9, W18, U20,
R5, H16, H8,
G17, G16, G14,
G13, G11, G10,
G8, F16, F13,
F11, F10, F8
F5, F16, G9, G15, H5, K7, L6, L16,
N1, N5, N6, P5, R6, T5, T7, T15, U6,
AA1
VDDSOSC
1.8-V oscillator power supply.
L20
G9
VSSOSC
Oscillator ground.
J25
B10
VDDSHV
Terminal Description
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
79
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
3 Electrical Characteristics
3.1
Absolute Maximum Ratings
The following table specifies the absolute maximum ratings over the operating junction temperature range
of commercial and extended temperature devices. Stresses beyond those listed under absolute maximum
ratings may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these or any other conditions beyond those indicated under recommended
operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods
may affect device reliability.
Notes:
• Logic functions and parameter values are not assured out of the range specified in the recommended
operating conditions.
Table 3-1. Absolute Maximum Ratings Over Operating Junction Temperature Range
MIN
MAX
UNIT
VDD_CORE
Supply voltage range for core macros
PARAMETER
-0.5
1.6
V
VDDS
Second supply voltage range for 1.8-V I/O macros
-0.5
2.25
V
VDDSHV
Supply voltage range for 1.8/3.3V I/O macros
-0.5
3.8
V
VDDS_SRAM_MPU
Analog Supply voltage range for 1.8-V MPU SLDO
-0.5
2.25
V
VDDS_SRAM_CORE_BG
Analog Supply voltage range for 1.8-V Core SLDO and
VDDA of BandGap
-0.5
2.25
V
VDDS_DPLL_MPU_USBHOST
Analog power supply for 1.8-V MPUSS DPLL and
USBHOST DPLL
-0.5
2.1
V
VDDS_DPLL_PER_CORE
Analog power supply for 1.8-V DPLL and HSDIVIDER/
CORE and HSDIVIDER
-0.5
2.1
V
VDDA_DAC
Analog Power Supply for 1.8-V DAC
-0.5
2.43
V
VDDA3P3V_USBPHY
Analog power supply for 3.3-V USB transceiver
-0.5
3.6
V
VDDA1P8V_USBPHY
Power Supply for 1.8-V USB transceiver
-0.5
2.0
V
VDDSOSC
Power Supply for 1.8-V oscillator
V
-0.5
2.1
Oscillator input (sys_xtalin)
-0.3
VDDSOSC + 0.3
VDDS 1.8-V I/O macros
-0.3
VDDS + 0.3
-0.3
VDDSHV + 0.3
-0.3
3.8
Dual-voltage LVCMOS inputs, VDDSHV
= 1.8 V
Voltage range at
Dual-voltage LVCMOS inputs, VDDSHV
PAD
= 3.3 V
VPAD
USB VBUS pin (usb0_vbus)
5.5
USB 5V Tolerant IOs (usb0_dp,
usb0_dm, usb0_id)
5.25
HBM (human body model) (2)
>1000
CDM (charged device model) (3)
>500
V
VESD
ESD stress
voltage (1)
IIOI
Current-pulse injection on each I/O pin (4)
200
mA
Iclamp
Clamp current for an input or output
-20
20
mA
Tstg
Storage temperature range
-65
150
°C
(1)
(2)
(3)
(4)
80
V
Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
The level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM
allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary
precautions are taken. Actual performance of the device may exceed the value listed above.
The level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows
safe manufacturing with a standard ESD control process. Actual performance of the device may exceed the value listed above.
Each device is tested with I/O pin injection of 200 mA with a stress voltage of 1.5 times maximum vdd at room temperature.
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
The supply voltages and power consumption estimates are detailed in Table 3-2.
Table 3-2. Estimated Power Consumption at Ball Level
SIGNAL NAME
MAX
CURRENT
(mA)
DESCRIPTION
VDD_CORE
1.2-V core and oscillator macros power supply
AM3517
1500 mA
VDDS_SRAM_MPU
1.8-V MPU SLDO analog power supply
AM3505
1400 mA
40 mA
VDDS_SRAM_CORE_BG
1.8-V Core SLDO and VDDA of BandGap analog power supply
40 mA
VDDS_DPLL_MPU_USBHOST
1.8-V MPUSS DPLL and USBHOST DPLL analog power supply
25 mA
VDDS_DPLL_PER_CORE
1.8-V DPLL and HSDIVIDER/ CORE and HSDIVIDER analog power supply
25 mA
VDDA_DAC
1.8-V DAC analog power supply
65 mA
VDDA3P3V_USBPHY
3.3-V USB transceiver analog power supply
10 mA
VDDA1P8V_USBPHY
1.8-V USB transceiver power supply
50 mA
VDDSHV
3.3-/1.8-V power supply
300 mA
VDDS
1.8-V power supply
200 mA
VDDSOSC
1.8-V oscillator power supply
20 mA
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
81
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
3.2
www.ti.com
Recommended Operating Conditions
All AM3517/05 modules are used under the operating conditions contained in Table 3-3.
Note: Logic functions and parameter values are not assured if the device is operated out of the range
specified in the recommended operating conditions.
Table 3-3. Recommended Operating Conditions
PARAMETER
DESCRIPTION
MIN
NOM
MAX
UNIT
VDD_CORE
Core and oscillator macros power supply
1.152
1.20
1.248
V
24.00
mVpp
1.89
V
50.00
mVpp
1.89
V
50.00
mVpp
1.89
V
35.00
mVpp
1.89
V
35.00
mVpp
1.89
V
30.00
mVpp
Noise (peak-peak)
VDDS_SRAM_
MPU
MPU SRAM LDO analog power supply
VDDS_SRAM_
CORE_BG
Core SRAM LDO and BandGap analog power
supply
1.71
1.80
Noise (peak-peak)
1.71
1.80
Noise (peak-peak)
VDDS_DPLL_
MPU_
USBHOST
MPU and USBHOST DPLL analog power supply
1.71
VDDS_DPLL_
PER_CORE
Peripherals and Core DPLLs analog power supply 1.71
VDDA_DAC
DAC analog power supply
1.80
Noise (peak-peak)
1.80
Noise (peak-peak)
1.71
1.80
Noise (peak-peak)
VSSA_DAC
DAC analog ground
VDDA3P3V_
USBPHY
Analog power supply for 3.3-V USB transceiver
VDDA1P8V_
USBPHY
Power Supply for 1.8-V USB transceiver
VDDSHV
3.3-/1.8-V power supply
1.8-V power supply
Operating junction temperature
range
(2)
82
1.71
1.80
Noise (peak-peak)
Tj
(1)
3.30
Noise (peak-peak)
VDDS
Device
Operating Life
Power-On
Hours (POH) (1)
0.00
3.14
500 MHz ARM Clock Freq.
600 MHz ARM Clock Freq.
V
3.47
V
70.00
mVpp
1.89
V
50.00
mVpp
1.8 V Mode
1.71
1.80
1.89
V
3.3 V Mode
3.14
3.30
3.47
V
1.71
1.80
1.89
V
Commercial
Temperature
0
90
°C
Extended
Temperature
-40
105
°C
< 90°C TJ
100K
90 - 105 °C TJ
100K
< 90°C TJ
100K
90 - 105 °C TJ
50K (2)
hrs.
The POH information is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard
terms and conditions for TI semiconductor products.
Maximum lifetime will be 100k Power On Hours as long as no more than 50k is greater than 90°C.
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
The following diagram illustrates the power domains:
vdds_dpll_mpu_usbhost
DLL/DCDL
BandGap
vdds
BCK
MEM
LDO
in 1.8 V
out 1.2 V
VDDS
vddshv
VDDSHV
LDO3
1.0 V/1.2 V
MPU
DPLL_MPU
LDO
in 1.8 V
out 1.2 V
vdd_core
Core
DPLL_CORE
SRAM 1 LDO
0 V/1.0 V/1.2 V
SRAM1
ARRAY
LDO
tv_ref
HSDIVIDER
(for capacitor)
vdds_dpll_per_core
SRAM 2 LDO
0 V/1.0 V/1.2 V
vdda_dac
SRAM2
ARRAY
cap_vdd_sram_core
Dual Video DAC
LDO
in 1.8 V
out 1.2 V
Periph1
DPLL4
LDO
vss
HSDIVIDER
vssa_dac
LDO
in 1.8 V
out 1.2 V
Periph2
DPLL5
vdd_core domain
Device
030-003
Figure 3-1. AM3517/05 Voltage Domains
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
83
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
3.3
www.ti.com
DC Electrical Characteristics
Table 3-4 summarizes the dc electrical characteristics.
Table 3-4. DC Electrical Characteristics
PARAMETER
MIN
NOM
MAX
UNIT
LVCMOS Pin Buffers
VIH
High-level input voltage
VIL
VDDSHV = 1.8 V
Low-level input voltage
VOH
High-level output voltage
VOL
Low-level output voltage
II
Input current for dual voltage IO pins
(1)
0.65 x
VDDSHV.
VDDSHV = 3.3 V(1)
2
sys_xtalin
0.8 x
VDDSOSC
V
VDDSHV = 1.8 V(1)
0.35 x
VDDSHV
VDDSHV = 3.3 V(1)
0.8
sys_xtalin
0.2 x
VDDSOSC
VDDSHV = 1.8 V(1)
IOH = -2 mA
VDDSHV 0.45
VDDSHV = 3.3 V(1)
IOH = -2 mA
2.4
V
V
VDDSHV = 1.8 V(1)
IOL = 2 mA
0.45
VDDSHV = 3.3 V(1)
IOL = 2 mA
0.4
V
VI = Vss to
VDDSHV
Input pins with
pull disabled
-9
9
VI = Vss to
VDDSHV
Input pins with
100 µA pull-up
enabled
-310
-70
VI = Vss to
VDDSHV
Input pins with
100 µA pull-down
enabled
75
270
Input current for DDR2/mDDR 1.8V IO
pins
VI = Vss to
VDDSHV
Input pins with
100 µA pull-down
enabled
77
286
IOZ
Off-state output current
VO = VDDSHV
or 0V
Pull disabled
-20
20
µA
IOH
High-level output current (dual-voltage
LVCMOS IOs)
-2
mA
IOL
Low-level output current (dual-voltage
LVCMOS IOs)
2
mA
tT
Input transition time (rise time, tR or fall
time, tF evaluated between 10% and
90% at PAD)
VDDSHV = 1.8 Normal mode
V(1)
High-speed mode
10
ns
VDDSHV = 3.3 Normal mode
V(1)
High-speed mode
10
Capacitan
ce
µA
3
3
Input capacitance
(dual-voltage LVCMOS I/Os)
3
pF
Output capacitance
(dual-voltage LVCMOS I/Os)
3
pF
Complex IO Dedicated to USB : USB0_DM and USB0_DP
VIH
High-level input voltage
Low/Full speed
2.0
V
High speed
(2)
VIL
VOH
(1)
(2)
84
Low-level input voltage
High-level output voltage
Low/Full speed
0.8
High speed
(2)
V
Low/Full speed
2.8
VDDA3P3V_
USBPHY
V
High speed
360
440
mV
These IO specifications apply to the dual-voltage IOs only and do not apply to the DDR2/mDDR interfaces. DDR2/mDDR IOs are 1.8V
IOs and adhere to the JESD79-2A standard.
These parameters must adhere to the requirements defined in section 7.1.7.2 of Universal Serial Bus Specifications revision 2.0.
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER
VOL
Low-level output voltage
MIN
NOM
MAX
UNIT
Low/Full speed
0.0
0.3
V
High speed
-10
10
mV
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
85
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
3.4
www.ti.com
Core Voltage Decoupling
For module performance, decoupling capacitors are required to suppress the switching noise generated
by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is
close to the device because this minimizes the inductance of the circuit board wiring and interconnects.
Table 3-5 summarizes the power supplies decoupling characteristics.
Table 3-5. Core Voltage Decoupling Characteristics
PARAMETER
Cvdd_core
(1)
MIN
TYP
MAX
UNIT
50
100
120
nF
Ccap_vdd_sram_core
100
nF
Cvdds_dpll_mpu_usbhost
100
nF
Cvdds_dpll_per_core
100
nF
Cvdda_dac
100
nF
Cvdd_sram_core
100
nF
Cvdd_sram_core_bg
100
nF
Cvdds_sram_mpu
100
nF
Cvddshv
100
nF
Cvdda3p3v_usbphy
100
nF
Cvdda1p8v_usbphy
100
nF
(1)
86
1 capacitor per 2 to 4 balls
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
The following illustrates an example of power supply decoupling.
Device
vdda_dac
Cvdda_dac
vdds_sram_mpu
vdda_dac
vssa_dac
vdds_sram_mpu
Cvdds_sram_mpu
Video DAC
SRAM_LDO1
cap_vdd_sram_mpu
Ccap_vdd_sram_mpu
vdds_sram_core_bg
vdds_sram_core_bg
Cvdds_sram_core_bg
SRAM_LDO2
WKUP_LDO
vdd_sram_core
vdd_sram_core
Cvdd_sram_core
cap_vdd_sram
_core
Ccap_vdd_sram_core
BG
DPLL_MPU
vdds_dpll_mpu
_usbhost
vdds_dpll_mpu_usbhost
Cvdds_dpll_mpu_usbhost
DPLL_CORE
DPLL5
vdds_dpll_per_core
vdds_dpll_per_core
Cvdds_dpll_per_core
DPLL4
Vdd_core
Core
vdd_core
MPU
Cvdd_core
VSS
030-004
(1)
(2)
Decoupling capacitors must be placed as closed as possible to the power ball. Choose the ground located closest to the power pin
for each decoupling capacitor. Place the decoupling capacitor Ci in a group of 1, 2, or 3 balls; the total must be equal to the
decoupling requirement. In case you interconnect powers, first insert the decoupling capacitor and then interconnect the powers.
The decoupling capacitor value depends on the board characteristics.
Figure 3-2. Power Supply Decoupling
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
87
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
3.5
www.ti.com
Power-up and Power-down
This section provides the timing requirements for the AM3517/05 hardware signals.
3.5.1
Power-up Sequence
The following steps give an example of power-up sequence supported by the AM3517/05.
1. IO 1.8V supply (VDDS), Band-gap and LDO supplies (VDDS_SRAM_CORE_BG, VDDS_SRAM_MPU)
and oscillator supply (VDDSOSC) should come up first to a stable state.
2. IO 3.3V (VDDSHV) supply should be ramped up next to a stable state.
3. Core (VDD_CORE) supply follows next to a stable state.
4. All the PLL supplies (VDDS_DPLL_PER_CORE, VDDS_DPLL_MPU_USBHOST) and 1.8 V complex
IO supplies (VDDA_DAC, VDDA1P8V_USBPHY) should be ramped up next to a stable state.
5. Finally, 3.3 V complex IO (VDDA_3P3V_USBPHY) should be ramped up.
6. sys_nrespwron must be held low at the time the power supplies are ramped up till the time the
sys_32k and sys_xtalin clocks are stable.
Note: In VDDSHV 1.8 V operation mode, VDDSHV can be grouped and powered up together with VDDS,
VDDS_SRAM_CORE_BG, VDDS_SRAM_MPU and VDDSOSC.
88
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Figure 3-3 shows the power-up sequence.
VDDS, VDDS_SRAM_CORE_BG
VDDS_SRAM_MPU,
VDDSOSC
VDDSHV
1.8V
3.3V
1.2V
VDD_CORE
sys_nrespwron
sys_32k
sys_xtalin
VDDS_DPLL_PER_CORE ,
VDDS_DPLL_MPU_USBHOST,
VDDA_DAC,
VDDA1P8V_USBPHY
1.8V
3.3V
VDDA3P3V_USBPHY
Figure 3-3. Power-up Sequence
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
89
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
3.5.2
www.ti.com
Power-down Sequence
The AM3517/05 device proceeds with the power-down sequence shown below.
The following steps give an example of the power-down sequence supported by the AM3517/05
device.
1. Reset AM3517/05 device.
2. Stop all signals driven to AM3517/05.
3. Option 1: Power down all domains simutaneously.
4. Option 2: If all domains cannot be powered down simultaneously, follow the below sequence:
(a) Power off all complex I/O domains
(b) Power off core domain (VDD_CORE)
(c) Power off all PLL domains (VDDS_DPLL_MPU_USBHOST and VDDS_DPLL_PER_CORE)
(d) Power off all SRAM LDOs
(e) Power off all standard I/O domains (VDDS and VDDSHV)
90
Electrical Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
4 Clock Specifications
The AM3517/05 device has three external input clocks, a low frequency (sys_32k), a high frequency
(sys_xtalin), and an optional (sys_altclk). The AM3517/05 device has two configurable output clocks,
sys_clkout1 and sys_clkout2.
Figure 4-1 shows the interface to the external clock sources and clock outputs.
Microprocessor
sys_32k
Power IC
Alternate Clock Source Selectable (54, 48 MHz or other [up
to 59 MHz])
sys_altclk
rmii_50mhz_clk
Ethernet input 50-MHz clock
sys_clkout1
To Peripherals (From OSC_CLK: 26 MHz)
sys_clkout2
To Peripherals (From OSC_CLK: 26 MHz, core_clk
[DPLL, up to 166 MHz], DPLL-96 MHZ or DPLL-54 MHz
outputs with a divider of 1, 2, 4, 8, or 16)
sys_xtalout
To Quartz (Oscillator output) or Unconnected
From Quartz (Oscillator input), Square Clock, or Crystal
sys_xtalin
sys_clkreq
Clock Request. To Square Clock Source or from Peripherals
sys_xtalout
sys_xtalout
Oscillator
is Used
Unconnected
Oscillator
is Bypassed
sys_xtalin
sys_clkreq
GPin
sys_xtalin
sys_clkreq
Square
Clock
Source
Figure 4-1. Clock Interface
The AM3517/05 device operation requires the following three input clocks:
• The 32-kHz clock can be generated using one of the following options and can be selected via the
sys_boot7 pin. See Figure 4-2.
– External: Supplied by an oscillator on the sys_32k pin.
– Internal: 32-kHz clock generation using a fixed divider on the HS system clock (26MHz).
• The system alternative clock can be used (through the sys_altclk pin) to provide alternative 48 or 54
MHz or other clock source (up to 54 MHz).
• The system clock input (26 MHz) is used to generate the main source clock of the AM3517/05 device.
It supplies the DPLLs as well as several AM3517/05 modules. The system clock input can be
connected to either:
– A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is
used as an input (GPIN).
– A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to
request the external system clock.
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
91
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
0
Sys_32k
Sys_32k_in
1
32.5 kHz
Fixed
Divider
/800
Sys_clk=
26 MHz
Sys_xtalin
Sys_xtalout
0
Latch
Sys_boot7
1
JTAG Overrides
for DFT
1
Sys_clk
PowerOn Reset
Figure 4-2. 32-kHz Clock Generation
The AM3517/05 outputs externally two clocks:
• sys_clkout1 can output the oscillator clock (26 MHz) at any time.
• sys_clkout2 can output the oscillator clock, core_clk, 96 MHz or 54 MHz. It can be divided by 2, 4, 8,
or 16 and its off state polarity is programmable.
4.1
Oscillator
The sys_xtalin (26 MHz) oscillator provides the primary reference clock for the device. The on-chip
oscillator requires an external crystal connected across the sys_xtalin and sys_xtalout pins, along with two
load capacitors, as shown in Figure 4-3. The external crystal load capacitors must be connected only to
the oscillator ground pin (VSSOSC). Do not connect to board ground (VSS).
Note: If an external oscillator is to be used, the external oscillator clock signal should be connected to the
sys_xtalin pin with a 1.8V amplitude. The sys_xtalout should be left unconnected and the VSSOSC signal
should be connected to board ground (VSS).
92
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
sys_xtalin
sys_xtalout
VSSOSC
Crystal
26 MHz
C1
A.
B.
C2
Oscillator components (Crystal, C1, C2) must be located close to the AM35x package. Parasitic capacitance to the
printed circuit board (PCB) ground and other signals should be minimized to reduce noise coupled into the oscillator.
The VSSOSC terminal provides a Kelvin ground reference for the external crystal components. External crystal
component grounds should only be connected to the VSSOSC terminal and should not be connected to the PCB
ground plane.
C1 and C2 represent the total capacitance of the respective PCB trace, load capacitor, and other components
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1 and C2 should be selected to
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL =
[(C1*C2)/(C1+C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer
plus any mutual capacitance (Cpkg + CPCB) seen across the AM3517/05 sys_xtalin and sys_xtalout signals. For
recommended values of crystal circuit components, see Table 4-1.
Figure 4-3. AM3517/05 Oscillator Connections
Table 4-1. Crystal Electrical Characteristics
PARAMETER
MIN
TYP
MAX
UNIT
Oscillation frequency
26
MHz
Crystal ESR
50
Ω
Frequency stability
+/- 50
ppm
Parallel Load Capacitance
(C1 and C2)
20
pF
Shunt Capacitance
5
pF
4.2
Input Clock Specifications
The clock system accepts three input clock sources:
• 32-kHz digital CMOS clock
• Crystal oscillator clock or CMOS digital clock (26 MHz)
• Alternate clock (48 or 54 MHz, or other up to 54 MHz)
Table 4-2. 26-MHz SYS_CLK Input Clock Timing Requirements
PARAMETER
DESCRIPTION
f(xtalin)
Frequency, sys_xtalin
MIN
TYP
MAX
tw(xtalin)
Duty Cycle,
sys_xtalin
45
55
%
tj(xtalin)
Jitter, sys_xtalin
-1
1
%
tt(xtalin)
Transition time,
sys_xtalin
5
ns
26
UNIT
MHz
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
93
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 4-3. 32-kHz Input Clock Source Electrical Characteristics
PARAMET
ER
DESCRIPTION
f
Frequency, sys_32k
Ci
Input capacitance
Ri
MIN
TYP
MAX
UNIT
32.768
Input resistance
kHz
0.25
0.45
pF
6
GΩ
10
Table 4-4 details the input requirements of the 32-kHz input clock.
Table 4-4. 32-kHz Input Clock Source Timing Requirements (1)
PARAMETE
R
DESCRIPTION
MIN
TYP
MAX
UNIT
1 / tc(32k)
Frequency, sys_32k
tR(32k)
Rise transition time, sys_32k
20
ns
tF(32k)
Fall transition time, sys_32k
20
ns
tJ(32k)
Frequency stability, sys_32k
+/-200
ppm
(1)
32
kHz
See Electrical Characteristics for Standard LVCMOS IOs part for sys_32k VIH/VIL parameters.
Table 4-5. 48-MHz, 54-MHz, or up to 59-MHz Input Clock Source Electrical Characteristics
NAME
DESCRIPTION
f
Frequency , sys_altclk
Ci
Input capacitance
Ri
Input resistance
MIN
MAX
48, 54, or up to 59
0.25
UNIT
MHz
0.74
pF
106
GΩ
Table 4-6 details the input requirements of the 48- or 54-MHz input clock.
Table 4-6. 48-MHz, 54-MHz, or up to 59-MHz Input Clock Source Timing Requirements (1)
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
1 / tc(sys_altclk)
Frequency, sys_altclk
tw(sys_altclk)
Duty cycle
45
60
tj(sys_altclk)
Jitter
-1
1
%
tr(sys_altclk)
Rise transition time
10
ns
tf(sys_altclk)
Fall transition time
10
ns
ft(sys_altclk)
Frequency tolerance
50
ppm
(1)
(2)
94
48, 54, or up to 59
(2)
-50
MHz
%
Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300
period samples. The sinusoidal noise is added on top of the vdds supply voltage.
See Section 3, Electrical Characteristics, for sys_altclk VIH/VIL parameters.
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
4.3
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Output Clock Specifications
Two output clocks (pin sys_clkout1 and pin sys_clkout2) are available:
• sys_clkout1 can output the oscillator clock (26 MHz) at any time. It can be controlled by software or
externally using sys_clkreq control. When the device is in the off state, the sys_clkreq can be asserted
to enable the oscillator and activate the sys_clkout1 without waking up the device. The off state polarity
of sys_clkout1 is programmable.
• sys_clkout2 can output sys_clk (26 MHz), core_clk (core DPLL output), APLL-96 MHz, or APLL-54
MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is programmable. This output is active
only when the core domain is active.
Table 4-7 summarizes the sys_clkout1 output clock electrical characteristics.
Table 4-7. SYS_CLKOUT1 Output Clock Electrical Characteristics
NAME
DESCRIPTION
f
Frequency
CI
Load capacitance (1)
(1)
MIN
TYP
MAX
UNIT
26
MHz
f(max) = 38.4 MHz
70
pF
f(max) = 26 MHz
125
The load capacitance is adapted to a frequency.
Table 4-8 details the sys_clkout1 output clock timing characteristics.
Table 4-8. SYS_CLKOUT1 Output Clock Switching Characteristics
NAME
DESCRIPTION
MIN
f
1 / CO0
Frequency
CO1
tw(CLKOUT1)
Pulse duration, sys_clkout1 low or high
CO2
tR(CLKOUT1)
CO3
tF(CLKOUT1)
(1)
TYP
MAX
UNIT
26
MHz
0.40 *
tc(CLKOUT1)
0.60 *
tc(CLKOUT1)
ns
Rise time, sys_clkout1 (1)
3.31
ns
Fall time, sys_clkout1 (1)
3.31
ns
With a load capacitance of 25 pF.
CO0
CO1
CO1
sys_clkout1
030-014
Figure 4-4. SYS_CLKOUT1 System Output Clock
Table 4-9 summarizes the sys_clkout2 output clock electrical characteristics.
Table 4-9. SYS_CLKOUT2 Output Clock Electrical Characteristics
NAME
DESCRIPTION
f
Frequency, sys_clkout2
CL
Load capacitance (2)
(1)
(2)
MIN
TYP
2
8
(1)
f(max) = 166 MHz
MAX
UNIT
166
MHz
12
pF
The maximum frequency supported is core_clk/2 MHz.
The load capacitance is adapted to a frequency.
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
95
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 4-10 details the sys_clkout2 output clock timing characteristics.
Table 4-10. SYS_CLKOUT2 Output Clock Switching Characteristics
NAME
DESCRIPTION
MIN
f
1 / CO0
Frequency
CO1
tw(CLKOUT2)
Pulse duration, sys_clkout2 low or high
CO2
tR(CLKOUT2)
Rise time, sys_clkout2 (1)
CO3
(1)
tF(CLKOUT2)
Fall time, sys_clkout2
TYP
0.40 * tc(CLKOUT2)
MAX
UNIT
166
MHz
0.60 * tc(CLKOUT2)
ns
3.7
ns
4.3
ns
(1)
With a load capacitance of 25 pF.
CO0
CO1
CO1
sys_clkout2
030-015
Figure 4-5. SYS_CLKOUT2 System Output Clock
96
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
4.4
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
DPLL Specifications
The AM3517/05 integrates four DPLLs. The PRM and CM drive them.
The four main DPLLs are:
• DPLL1 (MPU)
• DPLL3 (Core)
• DPLL4 (Peripherals)
• DPLL5 (Second Peripherals DPLL)
Figure 4-6 illustrates the DPLL implementation.
Device
VDDS_DPLL_MPU_USBHOST
Power Rail
DPLL1
DPLL3
DPLL4
DPLL5
VDDS_DPLL_PER_CORE
030-016
Figure 4-6. DPLL Implementation
4.4.1
Digital Phase-Locked Loop (DPLL)
The DPLL provides all interface clocks and some functional clocks (such as the processor clocks) of the
AM3517/05 device.
DPLL1 gets an always-on clock used to produce the synthesized clock. They get a high-speed bypass
clock used to switch the DPLL output clock on this high-speed clock during bypass mode.
The high-speed bypass clock is an L3 divided clock (programmable by 1 or 2) that saves DPLL processor
power consumption when the processor does not need to run faster than the L3 clock speed, or optimizes
performance during frequency scaling.
Each DPLL synthesized frequency is set by programming M (multiplier) and N (divider) factors. In addition,
all DPLL outputs can be controlled by an independent divider (M2 to M6).
The clock generating DPLLs of the AM3517/05 device have following features:
• Independent power domain per DPLL
• Controlled by clock-manager (CM)
• Fed with always-on system clock with independent gating control per DPLL
• Analog part supplied through dedicated power supply (1.8 V) and an embedded LDO to get rid of 1MHz noise
• Up to four independent output dividers for simultaneous generation of multiple clock frequencies
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
97
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
4.4.1.1
www.ti.com
DPLL1 (MPU)
DPLL1 is located in the MPU subsystem and supplies all clocks of the subsystem. All MPU subsystem
clocks are internally generated in the subsystem. When the core domain is on, it can use the DPLL3
(CORE DPLL) output as a high-frequency bypass input clock.
4.4.1.2
DPLL3 (CORE)
DPLL3 supplies all interface clocks and also a few module functional clocks. It can be also source of the
emulation trace clock. It is located in the core domain area. All interface clocks and a few module
functional clocks are generated in the CM. When the core domain is on, it can be used as a bypass input
to DPLL1.
4.4.1.3
DPLL4 (Peripherals)
DPLL4 generates clocks for the peripherals. It supplies five clock sources: 96-MHz functional clocks to
subsystems and peripherals, 54 MHz to TV DAC, display functional clock, camera sensor clock, and
emulation trace clock. It is located in the core domain area. All interface clocks and few module functional
clocks are generated in the CM. Its outputs to the DSS, PER, and EMU domains are propagated with
always-on clock trees.
4.4.1.4
DPLL5 (Second peripherals DPLL)
DPLL5 supplies the 120-MHz functional clock to the CM.
98
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
4.4.2
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
DPLL Noise Isolation
The DPLL requires dedicated power supply pins to isolate the core analog circuit from the switching noise
generated by the core logic that can cause jitter on the clock output signal. Guard rings are added to the
cell to isolate it from substrate noise injection.
The vdd supplies are the most sensitive to noise; decoupling capacitance is recommended below the
supply rails. The maximum input noise level allowed is 30 mVPP for frequencies below 1 MHz.
Figure 4-7 illustrates an example of a noise filter.
Noise Filter
VDDS_DPLL_MPU_USBHOST
DPLL_MPU
DPLL_CORE
C
DLL
Noise Filter
VDDS_DPLL_PER_CORE
DPLL5
C
DPLL4
030-017
Figure 4-7. DPLL Noise Filter
Table 4-11 specifies the noise filter requirements.
Table 4-11. DPLL Noise Filter Requirements
NAME
MIN
Filtering capacitor
TYP
100
MAX
UNIT
nF
(1) The capacitors must be inserted between power and ground as close as possible.
(2) This circuit is provided only as an example.
(3) The filter must be located as close as possible to the device.
(4) No filtering required if noise is below 10 mVPP.
Clock Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
99
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
5 Video DAC Specifications
A dual-display interface equips the AM3517/05 processor. This display subsystem provides the necessary
control signals to interface the memory frame buffer directly to the external displays (TV-set). Two (one
per channel) 10-bit current steering DACs are inserted between the DSS and the TV set to generate the
video analog signal. One of the video DACs also includes TV detection and power-down mode. Figure 5-1
illustrates the AM3517/05 DAC architecture.
Device
TV DCT
DIN1[9:0]
ROUT1
tv_vfb1
TVOUT
BUFFER
Video DAC 1
tv_out1
DSS
tv_vfb2
TVOUT
TVOUT
BUFFER
BUFFER
Video DAC 2
ROUT2
DIN2[9:0]
tv_out2
vdda_dac
V_ref
vssa_dac
tv_vref
CBG
030-018
Figure 5-1. Video DAC Architecture
The following paragraphs detail the 10-bit DAC interface pinout, static and dynamic specifications, and
noise requirements. The operating conditions and absolute maximum ratings are detailed in Table 5-2 and
Table 5-4.
100
Video DAC Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
5.1
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Interface Description
Table 5-1 summarizes the external pins of the video DAC.
Table 5-1. External Pins of 10-bit Video DAC
PIN NAME
I/O
DESCRIPTION
tv_out1
O
TV analog output composite
DAC1 video output. An external resistor is connected between this
node and tv_vfb1. The nominal value of ROUT1 is 1650 . Finally, note
that this is the output node that drives the load (75 ).
tv_out2
O
TV analog output S-VIDEO
DAC2 video output. An external resistor is connected between this
node and tv_vfb2. The nominal value of ROUT2 is 1650 . Finally, note
that this is the output node that drives the load (75 ).
tv_vref
I
Reference output voltage from internal
bandgap
A decoupling capacitor (CBG) needs to be connected for optimum
performance.
tv_vfb1
O
Amplifier feedback node
Amplifier feedback node. An external resistor is connected between
this node and tv_out1. The nominal value of ROUT1 is 1650 (1%).
tv_vfb2
O
Amplifier feedback node
Amplifier feedback node. An external resistor is connected between
this node and tv_out2. The nominal value of ROUT2 is 1650 (1%).
Video DAC Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
101
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
5.2
www.ti.com
Electrical Specifications Over Recommended Operating Conditions
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650Ω , RLOAD = 75Ω , unless otherwise noted)
Table 5-2. DAC Static Electrical Specification
PARAMETER
R
CONDITIONS/ASSUMPTIONS
MIN
Resolution
TYP
MAX
10
UNIT
Bits
DC ACCURACY
INL (1)
Integral nonlinearity
1
1
LSB
DNL (2)
Differential nonlinearity
1
1
LSB
ANALOG OUTPUT
-
Full-scale output voltage
-
Output offset voltage
RLOAD = 75Ω
0,7
0.88
1
-
Output offset voltage drift
-
Gain error
RVOUT
Output impedance
67.5
75
82.5
VREF
Reference voltage range
0.525
0.55
0.575
-
Reference noise density
RSET
Full-scale current adjust resistor
V
50
mV
20
17
mV/C
19
% FS
REFERENCE
PSRR
Reference PSRR
(3)
100-kHz reference noise
bandwidth
129
3700
(Up to 6 MHz)
V
4000
4200
40
dB
POWER CONSUMPTION
Ivdda-up
Analog Supply Current (4)
2 channels, no load
8
mA
-
Analog supply driving a 75- load
(RMS)
2 channels
50
mA
Ivdda-up (peak) Peak analog supply current:
Lasts less than 1 ns
60
mA
Ivdd-up
Digital supply current (5)
Measured at fCLK = 54 MHz, fOUT
= 2 MHz sine wave, vdd = 1.3 V
2
mA
Ivdd-up (peak)
Peak digital supply current (6)
Lasts less than 1 ns
2.5
mA
Ivdda-down
Analog power at power-down
T = 30C, vdda = 1.8 V
1.5
mA
Ivdd-down
Digital power at power-down
T = 30C, vdd = 1.3 V
1
mA
(1)
(2)
(3)
(4)
(5)
(6)
102
The INL is measured at the output of the DAC (accessible at an external pin during bypass mode).
The DNL is measured at the output of the DAC (accessible at an external pin during bypass mode).
Assuming a capacitor of 0.1 F at the tv_ref node.
The analog supply current Ivdda is directly proportional to the full-scale output current IFS and is insensitive to fCLK
The digital supply current IVDD is dependent on the digital input waveform, the DAC update rate fCLK, and the digital supply VDD.
The peak digital supply current occurs at full-scale transition for duration less than 1 ns.
Video DAC Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 , RLOAD = 75 , unless otherwise noted)
Table 5-3. Video DAC Dynamic Electrical Specification
PARAMETER
(1)
fCLK
CONDITIONS/ASSUMPTIONS
MIN
TYP
MAX
Equal to input clock frequency
Clock jitter
rms clock jitter required in order to assure 10bit accuracy
Attenuation at 5.1 MHz
Corner frequency for signal
0.1
Attenuation at 54 MHz (1)
Image frequency
25
tST
Output settling time
Time from the start of the output transition to
output within 1 LSB of final value.
85
ns
tRout
Output rise time
Measured from 10% to 90% of full-scale
transition
25
ns
tFout
Output fall time
Measured from 10% to 90% of full-scale
transition
25
ns
BW
Signal bandwidth
6
MHz
Differential gain (2)
1.5%
Differential phase (2)
54
UNIT
Output update rate
MHz
40
ps
0.5
1.5
dB
30
33
dB
1
deg.
SFDR
Within bandwidth
fCLK = 54 MHz, fOUT = 1 MHz
45
dB
SNR
Signal-to-noise ratio
1 kHz to 6 MHz bandwidth
fCLK = 54 MHz, fOUT = 1 MHz
55 (3)
dB
PSRR
Power supply rejection ratio
Up to 6 MHz
20 (4)
Crosstalk
Between the two video
channels
(1)
(2)
(3)
(4)
50
dB
40
dB
For internal input clock information, For more information, see the Device Display Interface Subsystem Reference Guide [literature
number SPRUFV2].
The differential gain and phase value is for dc coupling. Note that there is degradation for the ac coupling.
The SNR value is for dc coupling. Note that there is a 6-dB degradation for ac coupling.
The PSSR value is for dc coupling. Note that there is a 10-dB degradation for ac coupling.
Video DAC Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
103
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
5.3
www.ti.com
Analog Supply (vdda_dac) Noise Requirements
In order to assure 10-bit accuracy of the DAC analog output, the analog supply vdda_dac has to meet the
noise requirements stated in this section.
The DAC Power Supply Rejection Ratio is defined as the relative variation of the full-scale output current
divided by the supply variation. Thus, it is expressed in percentage of Full-Scale Range (FSR) per volt of
DI OUT
I OUTFS
VAC
100 ×
supply variation as shown in the following equation:
PSRRDAC =
% FSR
V
Depending on frequency, the PSRR is defined in Table 5-4.
Table 5-4. Video DAC Power Supply Rejection Ratio
Supply Noise Frequency
PSRR % FSR/V
0 to 100 kHz
1
> 100 kHz
The rejection decreases 20 dB/dec.
Example: at 1 MHz the PSRR is 10% of FSR/V
A graphic representation is shown in Figure 5-2.
PSRR (% FSR/V)
First pole of
DAC output load
10
1
f
100 kHz 1 MHz
030-019
Figure 5-2. Video DAC Power Supply Rejection Ratio
To ensure that the DAC SFDR specification is met, the PSRR values and the clock jitter requirements
translate to the following limits on vdda_dac (for the Video DAC).
The maximum peak-to-peak noise on vdda (ripple) is defined in Table 5-5:
Table 5-5. Video DAC Maximum Peak-to-Peak Noise on vdda_dac
Tone Frequency
Maximum Peak-to-Peak Noise on vdda_dac
0 to 100 kHz
< 30 mVpp
> 100 kHz
Decreases 20 dB/dec.
Example: at 1 MHz the maximum is 3 mVpp
The maximum noise spectral density (white noise) is defined in Table 5-6:
Table 5-6. Video DAC Maximum Noise Spectral Density
Supply Noise Bandwidth
104
Maximum Supply Noise Density
0 to 100 kHz
< 20 V / Hz
> 100 kHz
Decreases 20 dB/dec.
Example: at 1 MHz the maximum noise density is 2 / Hz
Video DAC Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Because the DAC PSRR deteriorates at a rate of 20 dB/dec after 100 kHz, it is highly recommended to
have vdda_dac low pass filtered (proper decoupling) (see the illustrated application: Section 5.4, External
Component Value Choice).
5.4
External Component Value Choice
The full-scale output voltage VOUTMAX is regulated by the reference amplifier, and is set by an internal
resistor RSET. IOUTMAX can be expressed as:
IOUTMAX = IREF /8 * (63 + 15/16)
(1)
Where:
VREF = 0.5V
IREF = VREF/RSET
(2)
(3)
The output current IOUT appearing at DAC output is a function of both the input code and IOUTMAX and can
be expressed as:
IOUT = (DAC_CODE/1023) * IOUTMAX
(4)
Where:
DAC_CODE = 0 to 1023 is the DAC input code in decimal.
(5)
The output voltage is:
VOUT = IOUT *N* RCABLE
(6)
Where:
(N = amplifier gain = 21)
RCABLEΩ (cable typical impedance)
(7)
(8)
The TV-out buffer requires a per channel external resistors: ROUT1/2. The equation below can be used to
select different resistor values (if necessary):
ROUT = (N+1) RCABLE = 1650Ω
(9)
Recommended parameter values are:
Table 5-7. Video DAC Recommended External Components Values
Recommended Value
UNIT
CBG
100
nF
ROUT1/2
1650
Ω
In order to limit the reference noise bandwidth and to suppress transients on VREF, it is necessary to
connect a large decoupling capacitor ©BG) between the tv_vref and vssa_dac pins.
Video DAC Specifications
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
105
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6 Timing Requirements and Switching Characteristics
Note: The timing data shown is preliminary data and is subject to change in future revisions.
6.1
Timing Test Conditions
All timing requirements and switching characteristics are valid over the recommended operating conditions
of Table 3-3, unless otherwise specified.
6.2
6.2.1
Interface Clock Specifications
Interface Clock Terminology
The Interface clock is used at the system level to sequence the data and/or control transfers accordingly
with the interface protocol.
6.2.2
Interface Clock Frequency
The two interface clock characteristics are:
• The maximum clock frequency
• The maximum operating frequency
The interface clock frequency documented in this document is the maximum clock frequency, which
corresponds to the maximum frequency programmable on this output clock. This frequency defines the
maximum limit supported by the AM3517/05 IC and doesn't take into account any system consideration
(PCB, peripherals).
The system designer will have to consider these system considerations and AM3517/05 IC timings
characteristics as well, to define properly the maximum operating frequency, which corresponds to the
maximum frequency supported to transfer the data on this interface.
6.2.3
Clock Jitter Specifications
Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this
document is the time difference between the typical cycle period and the actual cycle period affected by
noise sources on the clock. The cycle (or period) jitter terminology identifies this type of jitter.
Cycle (or Period) Jitter
Tn-1
Tn
Tn+1
Max. Cycle Jitter = Max (Ti)
Min. Cycle Jitter = Min (Ti)
Jitter Standard Deviation (or rms Jitter) = Standard Deviation (Ti)
030-020
Figure 6-1. Cycle (or Period) Jitter
106
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.2.4
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Clock Duty Cycle Error
The maximum duty cycle error is the difference between the absolute value of the maximum high-level
pulse duration or the maximum low-level pulse duration and the typical pulse duration value:
• Maximum pulse duration = typical pulse duration + maximum duty cycle error
• Minimum pulse duration = typical pulse duration - maximum duty cycle error
6.3
Timing Parameters
The timing parameter symbols used in the timing requirement and switching characteristic tables are
created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other
related terminologies have been abbreviated as follows:
Table 6-1. Timing Parameters
LOWERCASE SUBSCRIPTS
Symbols
Parameter
c
Cycle time (period)
d
Delay time
dis
Disable time
en
Enable time
h
Hold time
su
Setup time
START
Start bit
t
Transition time
v
Valid time
w
Pulse duration (width)
X
Unknown, changing, or dont care level
H
High
L
Low
V
Valid
IV
Invalid
AE
Active Edge
FE
First Edge
LE
Last Edge
Z
High impedance
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
107
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.4
www.ti.com
External Memory Interfaces
The AM3517/05 processor includes the following external memory interfaces:
• General-purpose memory controller (GPMC)
• SDRAM controller (SDRC)
6.4.1
General-Purpose Memory Controller (GPMC)
The GPMC is the AM3517/05 unified memory controller used to interface external memory devices such
as:
• Asynchronous SRAM-like memories and ASIC devices
• Asynchronous page mode and synchronous burst NOR flash
• NAND flash
6.4.1.1
GPMC/NOR Flash Interface Synchronous Timing
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-2. GPMC/NOR Flash Synchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
Input Conditions
tR
Input signal rise time
0.3
1.8
ns
tF
Input signal fall time
0.3
1.8
ns
Output Conditions
CLOAD
Output load capacitance
30
pF
Table 6-3. GPMC/NOR Flash Interface Timing Requirements Synchronous Mode
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
F12
tsu(DV-CLKH)
Setup time, read gpmc_d[15:0] valid before
gpmc_clk high
2.021
ns
F13
th(CLKH-DV)
Hold time, gpmc_d[15:0] valid after gpmc_clk high
3.403
ns
F21
tsu(WAITV-CLKH)
Setup time, gpmc_waitx (1) valid before gpmc_clk
high
3.782
ns
F22
th(CLKH-WAITV)
Hold Time, gpmc_waitx (1) valid after gpmc_clk
high
3.343
ns
(1)
108
Wait monitoring support is limited to a WaitMonitoringTime value > 0.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
F0
tc(CLK)
Cycle time (1), output clock gpmc_clk
period
10
F1
tw(CLKH)
Typical pulse duration, output clock
gpmc_clk high
0.5 P (2)
0.5 P (2)
ns
F1
tw(CLKL)
Typical pulse duration, output clock
gpmc_clk low
0.5 P (2)
0.5 P (2)
ns
tdc(CLK)
Duty cycle error, output clk gpmc_clk
tj(CLK)
Jitter standard deviation (3), output clock
gpmc_clk
tR(CLK)
tF(CLK)
tR(DO)
Rise time, output data
-500
ns
500
ps
33.30
ps
Rise time, output clock gpmc_clk
1.6
ns
Fall time, output clock gpmc_clk
1.6
ns
2
ns
tF(DO)
Fall time, output data
2
ns
F2
td(CLKH-nCSV)
Delay time, gpmc_clk rising edge to
gpmc_ncsx (4) transition
F (5) - 1.9
F (5) + 3.3
ns
F3
td(CLKH-nCSIV)
Delay time, gpmc_clk rising edge to
gpmc_ncsx (4) invalid
E (6) - 1.9
E (6) + 3.3
ns
F4
td(ADDV-CLK)
Delay time, address bus valid to
gpmc_clk first edge
B (7) - 4.1
B (7) + 2.1
ns
F5
td(CLKH-ADDIV)
Delay time, gpmc_clk rising edge to
gpmc_a[16:1] invalid
F6
td(nBEV-CLK)
Delay time, gpmc_nbe0_cle, gpmc_nbe1
valid to gpmc_clk first edge
B (7) - 1.37
B (7) + 2.1
ns
F7
td(CLKH-nBEIV)
Delay time, gpmc_clk rising edge to
gpmc_nbe0_cle, gpmc_nbe1 invalid
D (8) - 2.1
D (8) + 1.1
ns
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
-2.103
ns
Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the I/F module by setting the
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.
P = gpmc_clk period
The jitter probability density can be approximated by a Gaussian function.
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
For nCS falling edge (CS activated):
• Case GpmcFCLKDivider = 0:
• F = 0.5 * CSExtraDelay * GPMC_FCLK
• Case GpmcFCLKDivider = 1:
• F = 0.5 * CSExtraDelay * GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime are
even)
• F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK otherwise
• Case GpmcFCLKDivider = 2:
• F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime - ClkActivationTime) is a multiple of 3)
• F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3)
• F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3)
For single read: E = (CSRdOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: E = (CSRdOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: E = (CSWrOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
B = ClkActivationTime * GPMC_FCLK
For single read: D = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: D = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: D = (WrCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
109
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode (continued)
NO.
PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
F8
td(CLKH-nADV)
Delay time, gpmc_clk rising edge to
gpmc_nadv_ale transition
G (9) - 1.9
G (9) + 4.1
ns
F9
td(CLKH-nADVIV)
Delay time, gpmc_clk rising edge to
gpmc_nadv_ale invalid
D (8) - 1.9
D (8) + 4.1
ns
F10
td(CLKH-nOE)
Delay time, gpmc_clk rising edge to
gpmc_noe transition
H (10) - 2.1
H (10) + 2.1
ns
F11
td(CLKH-nOEIV)
Delay time, gpcm rising edge to
gpmc_noe invalid
E (6) - 2.1
E (6) + 2.1
ns
(9)
For ADV falling edge (ADV activated):
• Case GpmcFCLKDivider = 0:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK
• Case GpmcFCLKDivider = 1:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and ADVOnTime
are even)
• G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
• Case GpmcFCLKDivider = 2:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVOnTime - ClkActivationTime) is a multiple of 3)
• G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3)
• G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime --ClkActivationTime - 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:
• Case GpmcFCLKDivider = 0:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK
• Case GpmcFCLKDivider = 1:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and
ADVRdOffTime are even)
• G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
• Case GpmcFCLKDivider = 2:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3)
• G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime --ClkActivationTime --1) is a multiple of 3)
• G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime --ClkActivationTime - 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:
• Case GpmcFCLKDivider = 0:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK
• Case GpmcFCLKDivider = 1:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and
ADVWrOffTime are even)
• G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
• Case GpmcFCLKDivider = 2:
• G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3)
• G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3)
• G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3)
(10) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction):
• Case GpmcFCLKDivider = 0:
• H = 0.5 * OEExtraDelay * GPMC_FCLK
• Case GpmcFCLKDivider = 1:
• H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime are
even)
• H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise
• Case GpmcFCLKDivider = 2:
• H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime - ClkActivationTime) is a multiple of 3)
• H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3)
• H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3)
For OE rising edge (OE deactivated):
• GpmcFCLKDivider = 0:
• H = 0.5 * OEExtraDelay * GPMC_FCLK
• Case GpmcFCLKDivider = 1:
• H = 0.5 * OEExtraDelay * GPMC_FC if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are
even)
• H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise
• Case GpmcFCLKDivider = 2:
• H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime - ClkActivationTime) is a multiple of 3)
• H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3)
• H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3)
110
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode (continued)
NO.
PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
F14
td(CLKH-nWE)
Delay time, gpmc_clk rising edge to
gpmc_nwe transition
I (11) - 1.9
I (11) + 4.1
ns
F15
td(CLKH-Data)
Delay time, gpmc_clk rising edge to data
bus transition
J (12) - 2.1
J (12) + 1.1
ns
F17
td(CLKH-nBE)
Delay time, gpmc_clk rising edge to
gpmc_nbex_cle transition
J (12) - 2.1
J (12) + 1.1
ns
F18
tW(nCSV)
Pulse duration,
gpmc_ncsx (4) low
Read
A (13)
ns
Write
A
(13)
ns
Pulse duration,
gpmc_nbe0_cle,
gpmc_nbe1 low
Read
C (14)
ns
Write
C (14)
ns
Pulse duration,
gpmc_nadv_ale low
Read
K (15)
ns
Write
K (15)
F19
F20
tW(nBEV)
tW(nADVV)
ns
F23
td(CLKH-IODIR)
Delay time, gpmc_clk rising edge to
gpmc_io_dir high (IN direction)
H (10) - 2.1
H (10) + 4.1
ns
F24
td(CLKH-IODIRIV)
Delay time, gpmc_clk rising edge to
gpmc_io_dir low (OUT direction)
M (16) - 2.1
M (16) + 4.1
ns
(11) For WE falling edge (WE activated):
• Case GpmcFCLKDivider = 0:
• I = 0.5 * WEExtraDelay * GPMC_FCLK
• Case GpmcFCLKDivider = 1:
• I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime are
even)
• I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise
• Case GpmcFCLKDivider = 2:
• I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime - ClkActivationTime) is a multiple of 3)
• I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime --ClkActivationTime - 1) is a multiple of 3)
• I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3)
(12)
(13)
(14)
(15)
(16)
For WE rising edge (WE deactivated):
• Case GpmcFCLKDivider = 0:
• I = 0.5 * WEExtraDelay * GPMC_FCLK
• Case GpmcFCLKDivider = 1:
• I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime are
even)
• I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise
• Case GpmcFCLKDivider = 2:
• I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime - ClkActivationTime) is a multiple of 3)
• I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3)
• I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3)
J = GPMC_FCLK period
For single read: A = (CSRdOffTime - CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
For burst read: A = (CSRdOffTime - CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
For burst write: A = (CSWrOffTime - CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
with n being the page burst access number.
For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: C = (RdCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: C = (WrCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n being the page
burst access number.
For read: K = (ADVRdOffTime - ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For write: K = (ADVWrOffTime - ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
M = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behavior is automatically handled by GPMC controller.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
111
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
F1
F1
F0
gpmc_clk
F3
F2
F18
gpmc_ncsx
F4
gpmc_a[10:1]
Valid Address
F7
F6
F19
gpmc_nbe0_cle
F19
gpmc_nbe1
F6
F8
F8
F20
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
F13
F12
D0
gpmc_d[15:0]
gpmc_waitx
F23
gpmc_io_dir
OUT
F24
IN
OUT
030-021
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-2. GPMC/NOR Flash Synchronous Single Read (GpmcFCLKDivider = 0)
112
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
F1
F0
F1
gpmc_clk
F2
F3
gpmc_ncsx
F4
Valid Address
gpmc_a[10:1]
F6
F7
gpmc_nbe0_cle
F7
gpmc_nbe1
F6
F8
F8
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
F13
F13
F12
D0
gpmc_d[15:0]
F21
F12
D1
D2
D3
F22
gpmc_waitx
F24
F23
gpmc_io_dir
OUT
IN
OUT
030-022
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-3. GPMC/NOR Flash Synchronous Burst Read 4x16-bit (GpmcFCLKDivider = 0)
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
113
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
Valid Address
gpmc_a[10:1]
F17
F6
F17
F17
gpmc_nbe0_cle
F17
F17
F17
gpmc_nbe1
F6
F8
F8
F9
gpmc_nadv_ale
F14
F14
gpmc_nwe
F15
gpmc_d[15:0]
D0
D1
F15
D2
F15
D3
gpmc_waitx
gpmc_io_dir
OUT
030-023
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-4. GPMC/NOR Flash Synchronous Burst Write (GpmcFCLKDivider = 0)
114
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
F1
F0
F1
gpmc_clk
F3
F2
gpmc_ncsx
F7
F6
Valid
gpmc_nbe0_cle
F6
F7
Valid
gpmc_nbe1
F4
Address (MSB)
gpmc_a[26:17]
F12
F5
F4
gpmc_a[16:1]_d[15:0]
Address (LSB)
F8
F13
D0
D1
F12
D2
F8
D3
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
gpmc_waitx
F24
F23
gpmc_io_dir
OUT
IN
OUT
030-024
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-5. GPMC/Multiplexed NOR Flash Synchronous Burst Read
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
115
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
gpmc_a[26:17]
Address (MSB)
F17
F6
F17
F17
gpmc_nbe0_cle
F17
F17
F17
gpmc_nbe1
F6
F8
F8
F9
gpmc_nadv_ale
F14
F14
gpmc_nwe
F15
gpmc_d[15:0]
Address (LSB)
D0
D1
F15
F15
D2
D3
gpmc_waitx
OUT
gpmc_io_dir
030-025
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-6. GPMC/Multiplexed NOR Flash Synchronous Burst Write
6.4.1.2
GPMC/NOR Flash Interface Asynchronous Timing
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-5. GPMC/NOR Flash Asynchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
Output load capacitance
30
pF
Output Conditions
CLOAD
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters (1)
NO.
PARAMETER
1.8V,3.3V
MIN
FI1
Maximum output data generation delay from internal functional clock
FI2
Maximum input data capture delay by internal functional clock
FI3
FI4
(2)
UNIT
MAX
6.5
ns
4
ns
Maximum device select generation delay from internal functional clock
6.5
ns
Maximum address generation delay from internal functional clock
6.5
ns
FI5
Maximum address valid generation delay from internal functional clock
6.5
ns
FI6
Maximum byte enable generation delay from internal functional clock
6.5
ns
(1)
(2)
116
The internal parameters table must be used to calculate Data Access Time stored in the corresponding CS register bit field.
Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters(1) (2) (continued)
NO.
PARAMETER
1.8V,3.3V
MIN
UNIT
MAX
FI7
Maximum output enable generation delay from internal functional clock
6.5
ns
FI8
Maximum write enable generation delay from internal functional clock
6.5
ns
FI9
Maximum functional clock skew
100
ps
Table 6-7. GPMC/NOR Flash Interface Timing Requirements – Asynchronous Mode
NO.
PARAMETER
1.8V,3.3V
MIN
FA5 (1)
UNIT
MAX
tacc(DAT)
Data maximum access time
H (2)
GPMC_FCLK cycles
(3)
tacc1-pgmode(DAT)
Page mode successive data maximum
access time
P (4)
GPMC_FCLK cycles
FA21 (5)
tacc2-pgmode(DAT)
Page mode first data maximum access
time
H (2)
GPMC_FCLK cycles
FA20
(1)
(2)
(3)
(4)
(5)
The FA5 parameter illustrates the amount of time required to internally sample input Data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data is internally sampled by active functional clock
edge. FA5 value must be stored inside the AccessTime register bit field.
H = AccessTime * (TimeParaGranularity + 1)
The FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number of
GPMC functional clock cycles. After each access to input Page Data, next input Page Data is internally sampled by active functional
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.
P = PageBurstAccessTime * (TimeParaGranularity + 1)
The FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data is internally sampled by
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode
NO.
PARAMETER
1.8V/ 3.3V
MIN
FA0
FA1
FA3
UNIT
MAX
tR(DO)
Rise time, output data
2.0
ns
tF(DO)
Fall time, output data
2.0
ns
tW(nBEV)
Pulse duration,
gpmc_nbe0_cle,
gpmc_nbe1 valid time
Read
N(12)
ns
Write
N(12)
ns
Pulse duration,
gpmc_ncsx(13) v low
Read
A(1)
ns
Write
A(1)
ns
Delay time,
gpmc_ncsx(13) valid to
gpmc_nadv_ale invalid
Read
B(2) – 0.2
B(2) + 2.0
ns
Write
B(2) – 0.2
B(2) + 2.0
ns
tW(nCSV)
td(nCSV-nADVIV)
FA4
td(nCSV-nOEIV)
Delay time, gpmc_ncsx(13) valid to
gpmc_noe invalid (Single read)
C(3) – 0.2
C(3) + 2.0
ns
FA9
td(AV-nCSV)
Delay time, address bus valid to
gpmc_ncsx(13) valid
J(9) – 0.2
J(9) + 2.0
ns
FA10
td(nBEV-nCSV)
Delay time, gpmc_nbe0_cle,
gpmc_nbe1 valid to gpmc_ncsx(13)
valid
J(9) – 0.2
J(9) + 2.0
ns
FA12
td(nCSV-nADVV)
Delay time, gpmc_ncsx(13) valid to
gpmc_nadv_ale valid
K(10) – 0.2
K(10) + 2.0
ns
FA13
td(nCSV-nOEV)
Delay time, gpmc_ncsx(13) valid to
gpmc_noe valid
L(11) – 0.2
L(11) + 2.0
ns
FA14
td(nCSV-IODIR)
Delay time, gpmc_ncsx(13) valid to
gpmc_io_dir high
L(11) – 0.2
L(11) + 2.0
ns
FA15
td(nCSV-IODIR)
Delay time, gpmc_ncsx(13) valid to
gpmc_io_dir low
M(14) – 0.2
M(14) + 2.0
ns
FA16
tw(AIV)
Address invalid duration between 2
successive R/W accesses
Copyright © 2009–2012, Texas Instruments Incorporated
G(7)
ns
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
117
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode (continued)
NO.
PARAMETER
1.8V/ 3.3V
UNIT
MIN
MAX
I(8) – 0.2
I(8) + 2.0
FA18
td(nCSV-nOEIV)
Delay time, gpmc_ncsx(13) valid to
gpmc_noe invalid (Burst read)
FA20
tw(AV)
Pulse duration, address valid – 2nd, 3rd,
and 4th accesses
FA25
td(nCSV-nWEV)
Delay time, gpmc_ncsx(13) valid to
gpmc_nwe valid
E(5) – 0.2
E(5) + 2.0
ns
FA27
td(nCSV-nWEIV)
Delay time, gpmc_ncsx(13) valid to
gpmc_nwe invalid
F(6) – 0.2
F(6) + 2.0
ns
FA28
td(nWEV-DV)
Delay time, gpmc_ new valid to data bus
valid
2.0
ns
FA29
td(DV-nCSV)
Delay time, data bus valid to
gpmc_ncsx(13) valid
J(9) + 2.0
ns
FA37
td(nOEV-AIV)
Delay time, gpmc_noe valid to
gpmc_a[16:1]_d[15:0] address phase
end
2.0
ns
D(4)
J(9) – 0.2
ns
ns
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n
being the page burst access number
(2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
(3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK
(5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(7) G = Cycle2CycleDelay * GPMC_FCLK
(8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) *
GPMC_FCLK
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK
(10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
(11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(14) M = ((RdCycleTime - CSOnTime) * (TimeParaGranularity + 1) - 0.5 * CSExtraDelay) * GPMC_FCLK
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behavior is automatically handled by GPMC controller.
118
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
GPMC_FCLK
gpmc_clk
FA5
FA1
gpmc_ncsx
FA9
gpmc_a[10:1]
Valid Address
FA0
FA10
gpmc_nbe0_cle
Valid
FA0
gpmc_nbe1
Valid
FA10
FA3
FA12
gpmc_nadv_ale
FA4
FA13
gpmc_noe
gpmc_d[15:0]
Data IN 0
Data IN 0
gpmc_waitx
FA14
gpmc_io_dir
FA15
OUT
IN
OUT
030-026
Figure 6-7. GPMC/NOR Flash – Asynchronous Read – Single Word Timing(1) (2) (3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
119
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
GPMC_FCLK
gpmc_clk
FA5
FA5
FA1
FA1
gpmc_ncsx
FA16
FA9
FA9
gpmc_a[10:1]
Address 0
Address 1
FA0
FA0
FA10
FA10
gpmc_nbe0_cle
Valid
gpmc_nbe1
Valid
FA0
FA0
Valid
Valid
FA10
FA10
FA3
FA3
FA12
FA12
gpmc_nadv_ale
FA4
FA4
FA13
FA13
gpmc_noe
gpmc_d[15:0]
Data Upper
gpmc_waitx
FA15
gpmc_io_dir
FA14
OUT
IN
FA14
OUT
FA15
IN
030-027
Figure 6-8. GPMC/NOR Flash – Asynchronous Read – 32-bit Timing(1) (2) (3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
120
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
GPMC_FCLK
gpmc_clk
FA21
FA20
FA20
FA20
FA1
gpmc_ncsx
FA9
Add0
gpmc_a[10:1]
Add1
Add2
Add3
D0
D1
D2
Add4
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA12
gpmc_nadv_ale
FA18
FA13
gpmc_noe
gpmc_d[15:0]
D3
D3
gpmc_waitx
FA15
gpmc_io_dir
OUT
FA14
IN
OUT
030-028
Figure 6-9. GPMC/NOR Flash – Asynchronous Read – Page Mode 4x16-bit Timing(1) (2) (3) (4)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by
active functional clock edge. FA21 value must be stored inside AccessTime register bit field.
(3) FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC
functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge
after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input
page data). FA20 value must be stored in PageBurstAccessTime register bit field.
(4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
121
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
gpmc_fclk
gpmc_clk
FA1
gpmc_ncsx
FA9
Valid Address
gpmc_a[10:1]
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA3
FA12
gpmc_nadv_ale
FA27
FA25
gpmc_nwe
FA29
gpmc_d[15:0]
Data OUT
gpmc_waitx
gpmc_io_dir
OUT
030-029
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-10. GPMC/NOR Flash – Asynchronous Write – Single Word Timing
122
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
GPMC_FCLK
gpmc_clk
FA1
FA5
gpmc_ncsx
FA9
gpmc_a[26:17]
Address (MSB)
FA0
FA10
gpmc_nbe0_cle
Valid
FA0
FA10
gpmc_nbe1
Valid
FA3
FA12
gpmc_nadv_ale
FA4
FA13
gpmc_noe
FA29
gpmc_a[16:1]_d[15:0]
FA37
Address (LSB)
FA14
gpmc_io_dir
Data IN
Data IN
FA15
OUT
IN
OUT
gpmc_waitx
030-030
Figure 6-11. GPMC/Multiplexed NOR Flash – Asynchronous Read – Single Word Timing(1) (2) (3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
123
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
gpmc_fclk
gpmc_clk
FA1
gpmc_ncsx
FA9
gpmc_a[26:17]
Address (MSB)
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA3
FA12
gpmc_nadv_ale
FA27
FA25
gpmc_nwe
FA29
gpmc_a[16:1]_d[15:0]
FA28
Valid Address (LSB)
Data OUT
gpmc_waitx
gpmc_io_dir
OUT
030-031
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-12. GPMC/Multiplexed NOR Flash – Asynchronous Write – Single Word Timing
6.4.1.3
GPMC/NAND Flash Interface Timing
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-9. GPMC/NAND Flash Asynchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
Input Conditions
tR
Input signal rise time
1.8
tF
Input signal fall time
1.8
CLOAD
Output load capacitance
124
30
ns
ns
pF
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing Internal Parameters (1)
NO.
PARAMETER
1.8V, 3.3V
MIN
GNFI1
Maximum output data generation delay from internal functional clock
GNFI2
Maximum input data capture delay by internal functional clock
GNFI3
GNFI4
(2)
UNIT
MAX
6.5
ns
4
ns
Maximum device select generation delay from internal functional clock
6.5
ns
Maximum address latch enable generation delay from internal functional
clock
6.5
ns
GNFI5
Maximum command latch enable generation delay from internal
functional clock
6.5
ns
GNFI6
Maximum output enable generation delay from internal functional clock
6.5
ns
GNFI7
Maximum write enable generation delay from internal functional clock
6.5
ns
GNFI8
Maximum functional clock skew
100
ps
(1)
(2)
Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
Table 6-11. GPMC/NAND Flash Interface Timing Requirements
NO.
PARAMETER
1.8V, 3.3V
MIN
GNF12 (1)
(1)
(2)
tacc(DAT)
UNIT
MAX
J (2)
Data maximum access time
GPMC_FCLK cycles
The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.
J = AccessTime * (TimeParaGranularity + 1)
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics
NO.
PARAMETER
1.8V, 3.3V
MIN
tR(DO)
Rise time, output data
UNIT
MAX
2.0
ns
2.0
ns
tF(DO)
Fall time, output data
GNF0
tw(nWEV)
Pulse duration, gpmc_nwe
valid time
GNF1
td(nCSV-nWEV)
Delay time, gpmc_ncsx(13)
valid to gpmc_nwe valid
B(2) - 0.2
B(2) + 2.0
ns
GNF2
tw(CLEH-nWEV)
Delay time, gpmc_nbe0_cle
high to gpmc_nwe valid
C(3) - 0.2
C(3) + 2.0
ns
GNF3
tw(nWEV-DV)
Delay time, gpmc_d[15:0]
valid to gpmc_nwe valid
D(4) - 0.2
D(4) + 2.0
ns
GNF4
tw(nWEIV-DIV)
Delay time, gpmc_nwe invalid
to gpmc_d[15:0] invalid
E(5) - 0.2
E(5) + 2.0
ns
GNF5
tw(nWEIV-CLEIV)
Delay time, gpmc_nwe invalid
to gpmc_nbe0_cle invalid
F(6) - 0.2
F(6) + 2.0
ns
GNF6
tw(nWEIV-nCSIV)
Delay time, gpmc_nwe invalid
to gpmc_ncsx(13) invalid
G(7) - 0.2
G(7) + 2.0
ns
GNF7
tw(ALEH-nWEV)
Delay time, gpmc_nadv_ale
High to gpmc_nwe valid
C(3) - 0.2
C(3) + 2.0
ns
GNF8
tw(nWEIV-ALEIV)
Delay time, gpmc_nwe invalid
to gpmc_nadv_ale invalid
F(6) - 0.2
F(6) + 2.0
ns
GNF9
tc(nWE)
Cycle time, Write cycle time
GNF10
td(nCSV-nOEV)
Delay time, gpmc_ncsx(13)
valid to gpmc_noe valid
GNF13
tw(nOEV)
Pulse duration, gpmc_noe
valid time
K(10)
ns
GN F14
tc(nOE)
Cycle time, Read cycle time
L(11)
ns
Copyright © 2009–2012, Texas Instruments Incorporated
A(1)
ns
H(8)
I(9) - 0.2
ns
I(9) + 2.0
ns
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
125
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics (continued)
NO.
GNF15
PARAMETER
tw(nOEIV-nCSIV)
1.8V, 3.3V
Delay time, gpmc_noe invalid
to gpmc_ncsx(13) invalid
UNIT
MIN
MAX
M(12) - 0.2
M(12) + 2.0
ns
(1) A = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(2) B = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(3) C = ((WEOnTime – ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – ADVExtraDelay)) * GPMC_FCLK
(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK
(5) E = (WrCycleTime – WEOffTime * (TimeParaGranularity + 1) – 0.5 * WEExtraDelay ) * GPMC_FCLK
(6) F = (ADVWrOffTime – WEOffTime * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – WEExtraDelay ) * GPMC_FCLK
(7) G = (CSWrOffTime – WEOffTime * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – WEExtraDelay ) * GPMC_FCLK
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK
(9) I = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(10) K = (OEOffTime – OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK
(12) M = (CSRdOffTime – OEOffTime * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – OEExtraDelay ) * GPMC_FCLK
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
GPMC_FCLK
GNF1
GNF6
GNF2
GNF5
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF0
gpmc_nwe
GNF3
gpmc_a[16:1]_d[15:0]
GNF4
Command
030-032
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-13. GPMC/NAND Flash – Command Latch Cycle Timing
126
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
GPMC_FCLK
GNF1
GNF6
GNF7
GNF8
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF9
GNF0
gpmc_nwe
GNF3
GNF4
gpmc_a[16:1]_d[15:0]
Address
030-033
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-14. GPMC/NAND Flash – Address Latch Cycle Timing
GPMC_FCLK
GNF12
GNF10
GNF15
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
GNF14
GNF13
gpmc_noe
gpmc_a[16:1]_d[15:0]
DATA
gpmc_waitx
030-034
Figure 6-15. GPMC/NAND Flash – Data Read Cycle Timing(1) (2) (3)
(1) The GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data is internally sampled by active functional clock
edge. The GNF12 value must be stored inside AccessTime register bit field.
(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
(3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 ,1, 2, or 3.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
127
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
GPMC_FCLK
GNF1
GNF6
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF9
GNF0
gpmc_nwe
GNF3
gpmc_a[16:1]_d[15:0]
GNF4
DATA
030-035
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 or 1.
Figure 6-16. GPMC/NAND Flash – Data Write Cycle Timing
128
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.4.2
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
SDRAM Controller (SDRC)
The SDRC is a dedicated interface to DDR2/LPDDR1 SDRAM that performs the following functions:
• Buffering of input image data from sensors or video sources
• Intermediate buffering for processing/resizing of image data in the VPFE
• Numerous OSD display buffers
• Intermediate buffering for large raw Bayer data image files while performing image processing
functions
• Buffering for intermediate data while performing video encode and decode functions
• Storage of executable code for the ARM
The main features of the controller are:
• Open Core Protocol 2.2 (OCP) compliant [7].
• Supports JEDEC standard compliant DDR2 [2] and LPDDR1 [4] devices.
– SDRAM address range over 2 chip selects.
– Supports following data bus widths:
OCP Data Bus Width SDRAM Data Bus Width
64 and 128-Bit
16, 32, and 64-Bit
– Supports following CAS latencies:
SDRAM Type
CAS Latencies
DDR2
2, 3, 4, 5, and 6
LPDDR1
2 and 3
– Supports following number of internal banks:
SDRAM Type
Internal Banks
DDR2
1, 2, 4, and 8
LPDDR1
1, 2, and 4
– Supports 256, 512, 1024, and 2048-word page sizes.
– Supports following burst lengths:
–
–
–
–
–
–
–
–
–
–
–
–
SDRAM Type
Burst Length
DDR2
8 (4 not supported)
LPDDR1
8 (2 and 4 not supported)
Supports sequential burst type.
SDRAM auto initialization from reset or configuration change.
Supports Bank Interleaving across both the chip selects.
Supports Clock Stop mode for LPDDR1 for low power.
Supports Self Refresh and Precharge Power-Down modes for low power.
Supports Partial Array Self Refresh and Temperature Controlled Self Refresh modes for low power
in LPDDR1.
Temperature Controlled Self Refresh is only supported for mobile SDRAM having on-chip
temperature sensor.
Supports ODT on DDR2.
Supports prioritized refresh.
Programmable SDRAM refresh rate and backlog counter.
Programmable SDRAM timing parameters.
Supports only little endian.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
129
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.4.2.1
www.ti.com
LPDDR Interface
This section provides the timing specification for the LPDDR interface as a PCB design and manufacturing
specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk,
and signal timing. These rules, when followed, result in a reliable LPDDR memory system without the
need for a complex timing closure process. For more information regarding guidelines for using this
LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR Timing Specification
Application Report (literature number SPRAAV0).
6.4.2.1.1 LPDDR Interface Schematic
Figure 6-17 and Figure 6-18 show the LPDDR interface schematics for a LPDDR memory system. The 1
x16 LPDDR system schematic is identical to Figure 6-17 except that the high word LPDDR device is
deleted.
Microprocessor
LPDDR
sdrc_d0
T
DQ0
sdrc_d7
sdrc_dm0
sdrc_dqs0p
sdrc_d8
T
DQ7
LDM
LDQS
DQ8
sdrc_d15
sdrc_dm1
sdrc_dqs1p
T
T
T
T
T
T
LPDDR
sdrc_d16
T
DQ0
sdrc_d23
sdrc_dm2
sdrc_dqs2p
sdrc_d24
T
DQ7
LDM
LDQS
DQ8
sdrc_d31
sdrc_dm3
sdrc_dqs3p
sdrc_ba0
sdrc_ba1
sdrc_a0
T
T
T
T
T
T
T
T
T
sdrc_a14
sdrc_ncs0
T
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
T
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
DQ15
UDM
UDQS
DQ15
UDM
UDQS
BA0
BA1
A0
BA0
BA1
A0
A14
CS
A14
CS
CAS
RAS
WE
CKE
CAS
RAS
WE
CKE
CK
CK
CK
CK
Figure 6-17. AM3517/05 LPDDR High Level Schematic (x16 memories)
130
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
LPDDR
Microprocessor
sdrc_d0
T
DQ0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
T
DQ7
DM0
DQS0
DQ8
sdrc_d15
sdrc_dm1
sdrc_dqs1
T
T
DQ15
DM1
DQS1
sdrc_d16
T
DQ16
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
T
DQ23
DM2
DQS2
DQ24
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
T
sdrc_a14
sdrc_ncs0
sdrc_ncs1
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
T
T
T
DQ31
DM3
DQS3
BA0
BA1
A0
A14
CS
T
N/C
T
CAS
RAS
WE
CKE
T
T
T
N/C
T
CK
CK
T
Figure 6-18. AM3517/05 LPDDR High Level Schematic (x32 memory)
6.4.2.1.2 Compatible JEDEC LPDDR Devices
Table 6-13 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface.
Generally, the LPDDR interface is compatible with x16 and x32 LPDDR333 speed grade LPDDR devices.
Table 6-13. Compatible JEDEC LPDDR Devices
(1)
(2)
NO.
PARAMETER
MIN
1
JEDEC LPDDR Device Speed
Grade
MAX
UNIT
LPDDR333
2
JEDEC LPDDR Device Bit Width
16
32
Bits
3
JEDEC LPDDR Device Count
1
2
Devices
4
JEDEC LPDDR Device Ball
Count
60
90
Balls
NOTES
See Note
(1)
See Note
(2)
Higher LPDDR speed grades operating at the specified speeds are supported due to inherent JEDEC LPDDR backwards compatibility.
1 x16 LPDDR device is used for 16 bit LPDDR memory system. 1x32 or 2x16 LPDDR devices are used for a 32-bit LPDDR memory
system.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
131
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6.4.2.1.3 PCB Stackup
The minimum stackup required for routing the microprocessor is a six layer stack as shown in Table 6-14.
Additional layers may be added to the PCB stack up to accommodate other circuity or to reduce the size
of the PCB footprint.
Table 6-14. Minimum PCB Stack Up
LAYER
TYPE
DESCRIPTION
1
Signal
Top Routing Mostly Horizontal
2
Plane
Ground
3
Plane
Power
4
Signal
Internal Routing
5
Plane
Ground
6
Signal
Bottom Routing Mostly Vertical
Table 6-15. PCB Stack Up Specifications
NO.
PARAMETER
MIN
1
PCB Routing/Plane Layers
6
2
Signal Routing Layers
3
3
Full ground layers under LPDDR routing region
2
4
Number of ground plane cuts allowed within LPDDR routing region
5
Number of ground reference planes required for each LPDDR routing 1
layer
6
Number of layers between LPDDR routing layer and reference ground 0
plane
7
PCB Routing Feature Size
4
Mils
8
PCB Trace Width w
4
Mils
9
PCB BGA escape via pad size
18
Mils
10
PCB BGA escape via hole size
8
Mils
11
Device BGA Pad Size
See Note (1)
12
LPDDR Device BGA Pad Size
See Note (2)
13
Single Ended Impedance, ZO
50
14
Impedance Control
Z-5
(1)
(2)
(3)
TYP
MAX
UNIT
NOTES
0
1
0
Z
75
Ω
Z+5
Ω
See Note (3)
Please see the Flip Chip Ball Grid Array Package Reference Guide (literature number SPRU811) for device BGA pad size.
Please see the LPDDR device manufacturer documentation for the LPDDR device BGA pad size.
Z is the nominal singled ended impedance selected for the PCB specified by item 12.
6.4.2.1.4 Placement
Figure 6-19 shows the required placement for the microprocessor as well as the LPDDR devices. The
dimensions for Figure 6-19 are defined in Table 6-16. The placement does not restrict the side of the PCB
that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace
lengths and allow for proper routing space. For 1x16 and 1x32 LPDDR memory systems, the second
LPDDR device is omitted from the placement.
132
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
X
Y
OFFSET
LPDDR
Device
Y
Y
OFFSET
LPDDR
Controller
A1
Microprocessor
A1
Recommended LPDDR Device
Orientation
Figure 6-19. AM3517/05 and LPDDR Device Placement
Table 6-16. Placement Specifications
NO.
(1)
(2)
(3)
(4)
(5)
MAX
UNIT
1
PARAMETER
X
MIN
1440
Mils
See Notes (1),
(2)
2
Y
1030
Mils
See Notes (1),
(2)
3
Y Offset
4
LPDDR Keepout Region
525
5
Clearance from non-LPDDR signal to LPDDR
Keepout Region
Mils
NOTES
See Notes
(1) (2) (3)
, ,
See Note (4)
4
w
See Note (5)
See Figure 6-19 for dimension definitions.
Measurements from center of device to center of LPDDR device.
For 16 bit memory systems it is recommended that Y Offset be as small as possible.
LPDDR keepout region to encompass entire LPDDR routing area.
Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.
6.4.2.1.5 LPDDR Keep Out Region
The region of the PCB used for the LPDDR circuitry must be isolated from other signals. The LPDDR
keep out region is defined for this purpose and is shown in Figure 6-20. The size of this region varies with
the placement and LPDDR routing. Additional clearances required for the keep out region are shown in
Table 6-16.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
133
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
LPDDR Controller
A1
LPDDR Device
A1
Region should encompass all LPDDR circuitry and varies depending
on placement. Non-LPDDR signals should not be routed on the
LPDDR signal layers within the LPDDR keep out region. Non-LPDDR
signals may be routed in the region provided they are routed on
layers separated from LPDDR signal layers by a ground layer. No
breaks should be allowed in the reference ground layers in this
region. In addition, the 1.8 V power plane should cover the entire keep
out region.
Figure 6-20. LPDDR Keepout Region
6.4.2.1.6 Net Classes
Table 6-17 lists the clock net classes for the LPDDR interface. Table 6-18 lists the signal net classes, and
associated clock net classes, for the signals in the LPDDR interface. These net classes are used for the
termination and routing rules that follow.
Table 6-17. Clock Net Class Definitions
CLOCK NET CLASS
PIN NAMES
CK
sdrc_clk/sdrc_nclk
DQS0
sdrc_dqs0
DQS1
sdrc_dqs1
DQS2
sdrc_dqs2
DQS3
sdrc_dqs3
Table 6-18. Signal Net Class Definitions
CLOCK NET CLASS
ASSOCIATED CLOCK NET CLASS
PIN NAMES
ADDR_CTRL
CK
sdrc_ba, sdrc_a, sdrc_ncs0, sdrc_ncas,
sdrc_nras, sdrc_nwe, sdrc_cke0
DQ0
DQS0
sdrc_d, sdrc_dm0
DQ1
DQS1
sdrc_d, sdrc_dm1
DQ2
DQS2
sdrc_d, sdrc_dm2
DQ3
DQS3
sdrc_d, sdrc_dm3
6.4.2.1.7 LPDDR Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 6-19 shows the specifications for the series terminators.
134
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-19. LPDDR Signal Terminations
NO.
PARAMETER
MIN
1
CK Net Class
0
2
ADDR_CTRL Net Class
0
3
Data Byte Net Classes
(DQS0-DQS3, DQ0-DQ3)
0
(1)
(2)
(3)
TYP
MAX
UNIT
NOTES
10
Ω
See Note (1)
22
Zo
Ω
See Notes (1), (2), (3)
22
Zo
Ω
See Notes (1), (2), (3)
Only series termination is permitted, parallel or SST specifically disallowed.
Terminator values larger than typical only recommended to address EMI issues.
Termination value should be uniform across net class.
6.4.2.1.8 LPDDR CK and ADDR_CTRL Routing
Figure 6-21 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
T
C
A
LPDDR
Controller
B
A1
Microprocessor
A1
Figure 6-21. CK and ADDR_CTRL Routing and Topology
Table 6-20. CK and ADDR_CTRL Routing Specification
NO.
PARAMETER
1
Center to Center CK-CK spacing
2w
2
CK A to B/A to C Skew Length Mismatch
3
CK B to C Skew Length Mismatch
4
Center to Center CK to other
LPDDR trace spacing
4w
5
CK/ADDR_CTRL nominal trace length
CACLM-50
6
(1)
(2)
(3)
MIN
TYP
MAX
UNIT
NOTES
25
Mils
See Note (1)
25
Mils
See Note (2)
CACLM
See Note (3)
CACLM+50
Mils
ADDR_CTRL to CK Skew Length Mismatch
100
Mils
7
ADDR_CTRL to ADDR_CTRL
Skew Length Mismatch
100
Mils
8
Center to Center ADDR_CTRL to other
LPDDR trace 4w spacing
4w
See Note (2)
9
Center to Center ADDR_CTRL to other
ADDR_CTRL 3w trace spacing
3w
See Note (2)
10
ADDR_CTRL A to B/A to C Skew Length
Mismatch
100
Mils
11
ADDR_CTRL B to C Skew Length Mismatch
100
Mils
See Note (1)
Series terminator, if used, should be located closest to device.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
135
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Figure 6-22 shows the topology and routing for the DQS and DQ net classes; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
T
E0
T
E1
LPDDR
Controller
A1
Microprocessor
T
A1
E2
T
E3
Figure 6-22. DQS and DQ Routing and Topology
Table 6-21. DQS and DQ Routing Specification (1)
NO.
PARAMETER
2
DQS E Skew Length Mismatch
MIN
3
Center to Center DQS to other LPDDR
trace spacing
4w
4
DQS/DQ nominal trace length
DQLM - 50
5
TYP
MAX
UNIT
25
Mils
NOTES
See Note (2)
See Note (3)
DQLM + 50
Mils
DQ to DQS Skew Length Mismatch
100
Mils
6
DQ to DQ Skew Length Mismatch
100
Mils
7
Center to Center DQ to other LPDDR
trace spacing
4w
See Note (2)
8
Center to Center DQ to other DQ trace
spacing
3w
See Note (2), (4)
9
DQ E Skew Length Mismatch
(1)
(2)
(3)
(4)
136
DQLM
100
Mils
Series terminator, if used, should be located closest to LPDDR.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
DQLM is the longest Manhattan distance of the DQS and DQ net classes.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.4.2.2
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
DDR2 Interface
This section provides the timing specification for the DDR2 interface as a PCB design and manufacturing
specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk,
and signal timing. These rules, when followed, result in a reliable DDR2 memory system without the need
for a complex timing closure process. For more information regarding guidelines for using this DDR2
specification, Understanding TI's PCB Routing Rule-Based DDR2 Timing Specification (SPRAAV0).
6.4.2.2.1 DDR2 Interface Schematic
Figure 6-23 shows the DDR2 interface schematic for a dual-memory DDR2 system. The single-memory
system is shown in Figure 6-24. Pin numbers for the AM3517/05 can be obtained from the pin description
section.
6.4.2.2.2 Compatible JEDEC DDR2 Devices
Table 6-22 shows the parameters of the JEDEC DDR2 devices that are compatible with this interface.
Generally, the DDR2 interface is compatible with x16 or x32 DDR2 speed grade DDR2-333 devices.
Table 6-22. Compatible JEDEC DDR2 Devices
No.
(1)
(2)
(3)
Parameter
Min
Max
1
JEDEC DDR2 Device Speed Grade
2
JEDEC DDR2 Device Bit Width
3
JEDEC DDR2 Device Count
1
2
4
JEDEC DDR2 Device Ball Count
84
92
Unit
x16
x32
Notes
See Note
(1)
Devices
See Note
(2)
Balls
See Note
(3)
DDR2-333 MHz
Bits
Higher DDR2 speed grades operating at the specified speeds are supported due to inherent JEDEC DDR2 backwards compatibility.
Device count indicates number of dies. If a package contains 2 dies, that is the maximum number of devices that can be connected.
92 ball devices retained for legacy support. New designs should use 84 ball DDR2 devices. Electrically, the 92 and 84 ball DDR2
devices are the same.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
137
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6.4.2.2.3 PCB Stackup
The minimum stackup required for routing the AM3517/05 is a six-layer stack as shown in Table 6-23.
Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size
of the PCB footprint.
Table 6-23. Minimum PCB Stack Up
138
Layer
Type
Description
1
Signal
Top Routing Mostly Horizontal
2
Plane
Ground
3
Plane
Power
4
Signal
Internal Routing
5
Plane
Ground
6
Signal
Bottom Routing Mostly Vertical
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Complete stack up specifications are provided in Table 6-24.
Microprocessor
SDRC_D0
T
SDRC_D7
T
DQ7
SDRC_DM0
SDRC_DQS0P
SDRC_DQS0N
SDRC_D8
T
T
LDM
LDQS
LDQS#
LQ8
T
T
SDRC_D15
SDRC_DM1
SDRC_DQS1P
SDRC_DQS1N
SDRC_STRBEN0
DQ0
T
LQ15
T
T
T
UDM
UDQS
UDQS#
T
Length = avg DQS0-1 length+CLK
SDRC_STRBEN_DLY0
x16 DDR2
SDRC_D16
T
DQ0
SDRC_D23
T
DQ7
SDRC_DM2
SDRC_DQS2P
SDRC_DQS2N
T
LDM
LDQS
LDQS#
SDRC_D24
T
DQ8
SDRC_D31
T
DQ15
T
UDM
UDQS
UDQS#
SDRC_DM3
SDRC_DQS3P
SDRC_DQS3N
SDRC_STRBEN1
T
T
T
T
T
Length = avg DQS2-3 length+CLK
SDRC_STRBEN_DLY1
SDRC_BA0
SDRC_BA1
SDRC_BA2
T
T
T
BA0
BA1
BA2*
BA0
BA1
BA2*
SDRC_A0
T
A0
A0
SDRC_A14
T
A14*
A14*
SDRC_nCS0
SDRC_nCS1
SDRC_nCAS
SDRC_nRAS
SDRC_nWE
SDRC_nCKE0
SDRC_CLK
SDRC_nCLK
T
T
T
T
CS1
CS2*
CAS#
RAS#
WE#
CS1
CS2*
CAS#
RAS#
WE#
CLK
CLK#
CLK
CLK#
SDRC_ODT
T
ODT*
ODT*
VREF
VREF
T
T
T
T
VREFSSTL
DDR_PADREF
50
0.1µF(A)
0.1µF(A)
(A)
0.1µF
Vio1.8
0.1µF
0.1µF
1K Ω
1%
1K Ω
1%
1%
A. See VREF Routing and Topology figure for information on capacitor placement.
Figure 6-23. DDR2 Dual-Memory High Level Schematic
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
139
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Microprocessor
DDR2
SDRC_D0
T
DQ0
SDRC_D7
T
DQ7
SDRC_DM0
SDRC_DQS0P
SDRC_DQS0N
SDRC_D8
T
T
T
T
DM0
DQS0
DQS0#
DQ8
SDRC_D15
T
DQ15
SDRC_DM1
SDRC_DQS1P
SDRC_DQS1N
SDRC_STRBEN0
T
T
T
DM1
DQS1
DQS1#
T
Length = avg D0-D15 length+CLK
SDRC_STRBEN_DLY0
SDRC_D16
T
DQ16
SDRC_D23
T
DQ23
SDRC_DM2
SDRC_DQS2P
SDRC_DQS2N
T
T
T
DM2
DQS2
DQS2#
SDRC_D24
T
DQ24
SDRC_D31
T
DQ31
SDRC_DM3
SDRC_DQS3P
SDRC_DQS3N
SDRC_STRBEN1
T
T
T
DM3
DQS3
DQS3#
T
Length = avg D16-D31 length+CLK
SDRC_STRBEN_DLY1
SDRC_BA0
SDRC_BA1
SDRC_BA2
T
T
T
BA0
BA1
BA2*
SDRC_A0
T
A0
SDRC_A14
T
A14*
SDRC_nCS0
SDRC_nCS1
SDRC_nCAS
SDRC_nRAS
SDRC_nWE
SDRC_nCKE0
SDRC_CLK
SDRC_nCLK
T
T
T
T
T
T
T
T
CS1
CS2*
CAS#
RAS#
WE#
CKE
CLK
CLK#
SDRC_ODT0
T
ODT*
VREFSSTL
DDR_PADREF
Vio1.8
0.1µF
1K Ω 1%
0.1µF
1K Ω 1%
VREF
0.1µF
(A)
0.1µF
(A)
0.1µF
(A)
50 1%
A. See VREF Routing and Topology figure for information on capacitor placement.
Figure 6-24. DDR2 Single-Memory High Level Schematic
140
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-24. PCB Stack Up Specifications
No.
(1)
(2)
(3)
Parameter
Min
Typ
Max
Unit
1
PCB Routing/Plane Layers
6
2
Signal Routing Layers
3
3
Full ground layers under DDR2 routing Region
2
4
Number of ground plane cuts allowed within DDR routing region
5
Number of ground reference planes required for each DDR2 routing layer
6
Number of layers between DDR2 routing layer and ground plane
7
PCB Routing Feature Size
4
Mils
8
PCB Trace Width w
4
Mils
9
PCB BGA escape via pad size
20
Mils
10
PCB BGA escape via hole size
10
Mils
11
AM3517/05 BGA pad size
12
12
DDR2 Device BGA pad size
13
Single Ended Impedance, Zo
14
Impedance Control
Notes
0
1
0
50
Z-5
Z
75
Ω
Z+5
Ω
See Note
(1)
See Note
(2)
See Note
(3)
The recommended pad size is 0.3 mm per IPC-7351 specification.
Please refer to IPC standard IPC-7351 or manufacturer's recommendations for correct BGA pad size.
Z is the nominal singled ended impedance selected for the PCB specified by item 12.
6.4.2.2.4 Placement
Figure 6-24 shows the required placement for the DDR2 devices. The dimensions for Figure 6-25 are
defined in Table 6-25. The placement does not restrict the side of the PCB that the devices are mounted
on. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper
routing space. For single-memory DDR2 systems, the second DDR2 device is omitted from the
placement.
X
Y
OFFSET
DDR2
Device
Y
Y
OFFSET
DDR2
Controller
A1
Microprocessor
A1
Recommended DDR2
Device Orientation
Figure 6-25. DDR2 Device Placement
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
141
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-25. Placement Specifications
No.
1
Parameter
Min
X
2
Y
3
Y Offset
4
DDR2 Keepout Region
5
Clearance from non-DDR2 signal to DDR2 Keepout Region
(1)
(2)
(3)
(4)
(5)
Max
Unit
1750
Mils
Notes
See Notes
(1) (2)
,
1280
Mils
See Notes
(1) (2)
650
Mils
See Notes
(1) (2)
4
w
,
(3)
.
See Note
(4)
See Note
(5)
,
See Figure 6-23 for dimension definitions.
Measurements from center of AM3517/05 device to center of DDR2 device.
For single memory systems it is recommended that Y Offset be as small as possible.
DDR2 Keepout region to encompass entire DDR2 routing area
Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane.
6.4.2.2.5 DDR2 Keep Out Region
The region of the PCB used for the DDR2 circuitry must be isolated from other signals. The DDR2 keep
out region is defined for this purpose and is shown in Figure 6-26. The size of this region varies with the
placement and DDR routing. Additional clearances required for the keep out region are shown in Table 625.
DDR2
Device
DDR2
Controller
A1
A1
Region should encompass all DDR2 circuitry and varies depending
on placement. Non-DDR2 signals should not be routed on the DDR
signal layers within the DDR2 keep out region. Non-DDR2 signals may
be routed in the region provided they are routed on layers separated
from DDR2 signal layers by a ground layer. No breaks should be
allowed in the reference ground layers in this region. In addition, the
1.8 V power plane should cover the entire keep out region.
Figure 6-26. DDR2 Keepout Region
142
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.4.2.2.6 Bulk Bypass Capacitors
Bulk bypass capacitors are required for moderate speed bypassing of the DDR2 and other circuitry.
Table 6-26 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note
that this table only covers the bypass needs of the AM3517/05and DDR2 interfaces. Additional bulk
bypass capacitance may be needed for other circuitry.
Table 6-26. Bulk Bypass Capacitors
No.
(1)
(2)
Parameter
Unit
Notes
3
Devices
See Note
VDDS Bulk Bypass Total Capacitance
30
uF
3
DDR#1 Bulk Bypass Capacitor Count
1
Devices
4
DDR#1 Bulk Bypass Total Capacitance
22
uF
5
DDR#2 Bulk Bypass Capacitor Count
1
Devices
See Notes
(1) (2)
,
6
DDR#2 Bulk Bypass Total Capacitance
22
uF
See Note
1
VDDS Bulk Bypass Capacitor Count
2
Min
Max
(1)
See Note
(1)
(2)
These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed
(HS) bypass caps.
Only used on dual-memory systems
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
143
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6.4.2.2.7 High-Speed Bypass Capacitors
High-speed (HS) bypass capacitors are critical for proper DDR2 interface operation. It is particularly
important to minimize the parasitic series inductance of the HS bypass cap, AM3517/05 DDR2 power, and
AM3517/05 DDR2 ground connections. Table 6-27 contains the specification for the HS bypass capacitors
as well as for the power connections on the PCB.
6.4.2.2.8 Net Classes
Table 6-28 lists the clock net classes for the DDR2 interface. Table 6-29 lists the signal net classes, and
associated clock net classes, for the signals in the DDR2 interface. These net classes are used for the
termination and routing rules that follow.
Table 6-27. High-Speed Bypass Capacitors
No.
Parameter
Min
1
HS Bypass Capacitor Package Size
2
Distance from HS bypass capacitor to device being bypassed
3
Number of connection vias for each HS bypass capacitor
2
4
Trace length from bypass capacitor contact to connection via
1
5
Number of connection vias for each DDR2 device power or ground balls
1
6
Trace length from DDR2 device power ball to connection via
7
VDDS HS Bypass Capacitor Count
20
8
VDDS HS Bypass Capacitor Total Capacitance
1.2
9
DDR#1 HS Bypass Capacitor Count
10
DDR#1 HS Bypass Capacitor Total Capacitance
11
DDR#2 HS Bypass Capacitor Count
12
DDR#2 HS Bypass Capacitor Total Capacitance
(1)
(2)
(3)
(4)
144
Max
Unit
0402
10 Mils
250
0.4
8
0.4
See Note
(2)
See Note
(3)
See Note
(3)
Mils
Vias
35
8
(1)
Mils
Vias
30
Notes
See Note
Mils
Devices
μF
Devices
μF
Devices
μF
See Notes
(3) (4)
,
See Note
(4)
LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor
An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.
These devices should be placed as close as possible to the device being bypassed.
Only used on dual-memory systems
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-28. Clock Net Class Definitions
Clock Net Class
AM3517/05 Device Pin Names
CK
sdrc_clk/sdrc_nclk
DQS0
sdrc_dqs0p /sdrc_dqs0n
DQS1
sdrc_dqs1p /sdrc_dqs1n
DQS2
sdrc_dqs2p/sdrc_dqs2n
DQS3
sdrc_dqs3p/sdrc_dqs3n
Table 6-29. Signal Net Class Definitions
Clock Net Class
ADDR_CTRL
Associated Clock Net
Class
AM3517/05 Device Pin Names
CK
sdrc_ba[2:0], sdrc_ncs1, sdrc_a[14:0], sdrc_ncs0 , sdrc_ncas, sdrc_nras,
sdrc_nwe, sdrc_cke0
DQ0
DQS0
sdrc_d[7:0], sdrc_dm0
DQ1
DQS1
sdrc_d[15:8], sdrc_dm1
DQ2
DQS2
sdrc_d[23:16],sdrc_dm2
DQ3
DQS3
sdrc_d[31:24],sdrc_dm3
SDRC_STRBEN0
CK,DQS0,DQS1
sdrc_strben0, sdrc_strben_dly0
SDRC_STRBEN1
CK,DQS2,DQS3
sdrc_strben1, sdrc_strben_dly1
6.4.2.2.9 DDR2 Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 6-30 shows the specifications for the series terminators.
Table 6-30. DDR2 Signal Terminations
No.
(1)
(2)
(3)
Parameter
Min
Typ
Max
Unit
Notes
10
Ω
See Note
(1)
22
Zo
Ω
See Notes
(2) (3)
,
(1)
0
22
Zo
Ω
See Notes
(2) (3)
,
(1)
0
10
Zo
Ω
See Notes
(2) (3)
,
(1)
1
CLK Net Class
0
2
ADDR_CTRL Net Class
0
3
Data Byte Net Classes (DQS0-DQS1, D0-D31)
4
SDRC_STRBENx Net Class (SDRC_STRBENx)
,
,
,
Only series termination is permitted, parallel or SST specifically disallowed.
Terminator values larger than typical only recommended to address EMI issues.
Termination value should be uniform across net class.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
145
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6.4.2.2.10 VREF Routing
VREF is used as a reference by the input buffers of the DDR2 memories as well as the AM3517/05. VREF
is intended to be half of the DDR2 power supply voltage and should be created using a resistive divider as
shown in Figure 6-23. Other methods of creating VREF are not recommended. Figure 6-27 shows the
layout guidelines for VREF.
VREF Bypass Capacitor
DDR2 Device
A1
VREF Nominal Minimum
Trace Width is 20 Mils
Microprocessor
A1
Neck down to minimum in BGA escape
regions is acceptable. Narrowing to
accomodate via congestion for short
distances is also acceptable. Best
performance is obtained if the width
of VREF is maximized.
Figure 6-27. VREF Routing and Topology
6.4.2.2.11 DDR2 CLK and ADDR_CTRL Routing
Figure 6-28 shows the topology of the routing for the CLK and ADDR_CTRL net classes. The route is a
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
T
C
A
DDR2
Controller
B
A1
Microprocessor
A1
Figure 6-28. CLK and ADDR_CTRL Routing and Topology
146
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-31. CLK and ADDR_CTRL Routing Specification
No
(1)
(2)
(3)
(4)
Parameter
Min
Typ
(1)
Max
Unit
Notes
25
Mils
See Note
(1)
25
Mils
See Note
(3)
See Note
(4)
4w
See Note
(3)
3w
See Note
(3)
See Note
(1)
1
Center to center DQS-DQSN spacing
2w
2
CK differential pair Skew Length Mismatch (2)
3
CLKB to CLKC Skew Length Mismatch
4
Center to center CLK to other DDR2 trace spacing
5
CK/ADDR_CTRL nominal trace length
6
7
8
Center to center ADDR_CTRL to other DDR2 trace
spacing
9
Center to center ADDR_CTRL to other ADDR_CTRL
trace spacing
10
ADDR_CTRL A to B, ADDR_CTRL A to C, Skew Length
Mismatch
100
Mils
11
ADDR_CTRL B to C Skew Length Mismatch
100
Mils
4w
CACLM-50
CACLM
CACLM+50
Mils
ADDR_CTRL to CLK Skew Length Mismatch
100
Mils
ADDR_CTRL to ADDR_CTRL Skew Length Mismatch
100
Mils
Series terminator, if used, should be located closest to AM3517/05.
Differential impedance should be 100-ohms.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
CACLM is the longest Manhattan distance of the CLK and ADDR_CTRL net classes.
Figure 6-29 shows the topology and routing for the DQS and Dx net classes; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
T
T
E0
E1
DDR2
Controller
A1
Microprocessor
T
A1
E2
T
E3
Figure 6-29. DQS and Dx Routing and Topology
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
147
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-32. DQS and Dx Routing Specification (1)
No.
Parameter
Min
1
Center to center DQS-DQSN spacing
2
DQS E differential pair Skew Length Mismatch (3)
3
Center to center DQS to other DDR2 trace spacing
4
DQS/Dx nominal trace length
5
Dx to DQS Skew Length Mismatch
6
Dx to Dx Skew Length Mismatch
7
Center to center Dx to other DDR2 trace spacing
8
Center to Center Dx to other Dx trace spacing
(1)
(2)
(3)
(4)
(5)
(6)
(7)
Typ
(2)
Max
Unit
Notes
2w
25
Mils
See Note
(4)
Mils
See Notes
(2)
100
Mils
See Note
(5)
100
Mils
See Note
(5)
4w
See Notes
(4)
3w
See Notes
(7)
4w
DQLM-50 DQLM DQLM+
50
,
(5)
(6)
(4)
,
,
"Dx" indicates a data line. E indicates length of DQS differential pair or Dx signal.
Series terminator, if used, should be located closest to DDR.
Differential impedance should be 100-ohms.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
There is no need and it is not recommended to skew match across data bytes, i.e., from DQS0 and data byte 0 to DQS1 and data byte
1.
Dx's from other DQS domains are considered other DDR2 trace.
DQLM is the longest Manhattan distance of each of the DQS and Dx net classes.
A1
FL
Figure 6-30 shows the routing for the SDRC_STRBENx net classes. Table 6-33 contains the routing
specification. SDRC_STRBENx net classes should be shielded from or routed on different layers than the
DQx net classes.
DDR2
Controller
T
A1
Microprocessor
FH
T
Figure 6-30. SDRC_STRBENx Routing
148
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-33. SDRC_STRBENx Routing Specification (1) (2)
No.
1
(1)
(2)
(3)
(4)
(5)
Parameter
Min
Typ
Max
Unit
Notes
SDRC_STRBEN0 Length F
CKB0B1
See Note
(3)
SDRC_STRBEN1 Length F
CKB0B2
See Note
(4)
See Note
(5)
3
Center to center SDRC_STRBENx to any other trace spacing
4
DQS/Dx nominal trace length
5
SDRC_STRBENx Skew
4w
DQLM-50
DQLM
DQLM+50
Mils
100
Mils
STRBENx termination resistors should be placed close to AM3517/05 STRBENx signal (not close to STRBEN_DLYx signal).
Ensure signal velocities across different layers are taken into account when calculating STRBENx length. For example, if DQS0 and
DSQ1 are 1inch each, and DQS0 is on a layer that is 10% faster, use 1.1inch as the length for DQS0.
CKB0B1 is the sum of the length of the CLK (the portion that goes to the memory associated with DQS0 and DQS1) plus the average
length of the DQS0 and DQS1 differential pairs.
CKB0B2 is the sum of the length of the CLK (the portion that goes to the memory associated with DQS2 and DQS3) plus the average
length of the DQS2 and DQS3 differential pairs.
Skew from CKB0B1 or CKB0B2.
6.4.2.2.12 On Die Termination (ODT)
ODT should only be used with 1 chip select as shown in Figure 6-31. If using sdrc_cs0 and sdrc_cs1,
sdrc_odt should not be used. ODT signals should be tied off at the memory.
sdrc_cs0
CS#
sdrc_odt
ODT
DDR2
Microprocessor
CS#
ODT
DDR2
vo DDR2 on One Chip Select
Figure 6-31. ODT Connection Using One Chip select (sdrc_cs0)
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
149
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.5
www.ti.com
Video Interfaces
6.5.1
Video Processing Subsystem (VPSS)
The Video Processing Sub-System (VPSS) provides a Video Processing Front End (VPFE) input interface
for external imaging peripherals (i.e., image sensors, video decoders, etc.).
6.5.1.1
Video Processing Front End (VPFE)
The Video Processing Front-End (VPFE) controller receives input video/image data from external capture
devices and stores it to external memory which is transferred into the external memory via a built in DMA
engine. An internal buffer block provides a high bandwidth path between the VPSS module and the
external memory. The Cortex-A8 will process the image data based on application requirements.
150
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.5.1.1.1 Video Processing Front End (VPFE) Timing
The following tables assume testing over recommended operating conditions.
Table 6-34. VPFE Timing Requirements
NO.
1.8V, 3.3V
PARAMETER
MIN
MAX
13.33
100
UNIT
VF1
tc(VDIN_CLK)
Cycle time, pixel clock input, VDIN_CLK
VF2
tsu(VDIN_D-VDIN_CLK)
Setup time, VDIN_D to VDIN_CLK rising edge
3.5
ns
ns
VF3
tsu(VDIN_HD-VDIN_CLK)
Setup time, VDIN_HD to VDIN_CLK rising edge
3.5
ns
VF4
tsu(VDIN_VD-VDIN_CLK)
Setup time, VDIN_VD to VDIN_CLK rising edge
3.5
ns
VF5
tsu(VDIN_WEN-VDIN_CLK)
Setup time, VDIN_WEN to VDIN_CLK rising edge
3.5
ns
VF6
tsu(C_FLD-VDIN_CLK)
Setup time, VDIN_FIELD to VDIN_CLK rising edge
3.5
ns
VF7
th(VDIN_CLK-VDIN_D)
Hold time, VDIN_D valid after VDIN_CLK rising edge
2.5
ns
VF8
th(VDIN-HD-VDIN_CLK)
Hold time, VDIN_HD to VDIN_CLK rising edge
2.5
ns
VF9
th(VDIN_VD-VDIN_CLK)
Hold time, VDIN_VD to VDIN_CLK rising edge
2.5
ns
VF10
th(VDIN_WEN-VDIN_CLK)
Hold time, VDIN_WEN to VDIN_CLK rising edge
2.5
ns
VF11
th(C_FLD-VDIN_CLK)
Hold time, VDIN_FIELD to VDIN_CLK rising edge
2.5
ns
Table 6-35. VPFE Output Switching Characteristics
NO.
1.8V, 3.3V
PARAMETER
MIN
MAX
UNIT
VF12
td(VDIN_HD-VDIN_CLK)
Output delay time, VDIN_HD to CLK rising edge
10
ns
VF13
td(VDIN_VD-VDIN_CLK)
Output delay time, VDIN_VD to CLK rising edge
10
ns
VF14
td(VDIN_WEN-VDIN_CLK)
Output delay time, VDIN_WEN to CLK rising edge
10
ns
VF15
toh(VDIN_HD-VDIN_CLK)
Output hold time, VDIN_HD to CLK rising edge
0.5
ns
VF16
toh(VDIN_VD-VDIN_CLK)
Output hold time, VDIN_VD to CLK rising edge
0.5
ns
VF17
toh(C_FLD-VDIN_CLK)
Output hold time, VDIN_FLD to CLK rising edge
0.5
ns
VF1
VDIN_CLK
(Falling Edge)
VDIN_CLK
(Rising Edge)
VF2
VF7
VF7
VDIN_D[xx]
VDIN_HD,
VDIN_VD,
VDIN_FIELD
VF8, VF9, VF11
VF3, VF4, VF6
VF10
VF5
VDIN_WEN
SPRS550-001
Figure 6-32. VPFE0 Input Timings
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
151
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
VDIN_CLK
(Falling Edge)
VDIN_CLK
(Rising Edge)
VF15, VF16,
VF17
VF12,
VF13, VF14
VDIN_HD,
VDIN_VD,
VDIN_FIELD
VF12, VF13, VF14
VF15, VF16,
VF17
SPRS550-002
Figure 6-33. VPFE Output Timings
VF18
VDIN_HD
(Falling Edge)
VDIN_HD
(Rising Edge)
VF19
VF20
VDIN_D[xx]
SPRS550-003
Figure 6-34. VPFE Input Timings With VDIN0_HD as Pixel Clock
6.5.2
Display Subsystem (DSS)
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or
internal (SRAM) memory on an LCD panel or a TV set. The DSS integrates a display controller. It can be
used in two configurations:
• LCD display support in:
– Bypass mode (RFBI module bypassed)
– RFBI mode (through RFBI module)
• TV display support (not discussed in this document because of its analog IO signals)
The two display supports can be active at the same time.
6.5.2.1
LCD Display Support in Bypass Mode
Two types of LCD panel are supported:
• Thin film transistor (TFT) or active matrix technology
• Supertwisted nematic (STN) or passive matrix technology
Both configurations are discussed in the following paragraphs.
152
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.5.2.1.1 LCD Display in TFT Mode
Table 6-36 assumes testing over the recommended operating conditions (see Figure 6-35).
Table 6-36. LCD Display Interface Switching Characteristics in TFT Mode (1)
NO.
PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
DL0
td(PCLKA-HSYNCT)
Delay time, dss_pclk active edge to dss_hsync transition
-4.215
4.215
ns
DL1
td(PCLKA-VSYNCT)
Delay time, dss_pclk active edge to dss_vsync transition
-4.215
4.215
ns
DL2
td(PCLKA-ACBIASA)
Delay time, dss_pclk active edge to dss_acbias active level
-4.215
4.215
ns
DL3
td(PCLKA-DATAV)
Delay time, dss_pclk active edge to dss_data bus valid
-4.215
4.215
ns
DL4
tc(PCLK)
Cycle time (2), dss_pclk
13.468
DL5
tw(PCLK)
Pulse duration, dss_pclk low or high
cload
Load capacitance
(1)
(2)
6.06
ns
7.46
ns
25
pF
The capacitive load is equivalent to 25 pF.
The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
DL5
DL4
dss_pclk
DL1
dss_vsync
DL0
dss_hsync
DL2
dss_acbias
DL3
dss_data[23:0]
030-061
Figure 6-35. LCD Display in TFT Mode(1) (2) (3) (4)
(1) The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
(2) The pixel clock frequency is programmable.
(3) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.
(4) For more information, see the AM35x ARM Microprocessor Technical Reference Manual (literature number SPRUGR0).
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
153
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6.5.2.1.2 LCD Display in STN Mode
Table 6-37 assumes testing over the recommended operating conditions (see Figure 6-36).
Table 6-37. LCD Display Interface Switching Characteristics in STN Mode (1)
NO.
PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
6.9
DL3
td(PCLKA-DATAV)
Delay time, dss_pclk active edge to dss_data bus valid
-4.21
DL4
tc(PCLK)
Cycle time (4), dss_pclk
22.73
DL5
tw(PCLK)
Pulse duration, dss_pclk low or high
10.23
cload
Load capacitance
(1)
(2)
(3)
(4)
(2) (3)
ns
ns
12.5
ns
40
pF
The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.
The capacitive load is equivalent to 40 pF.
For more information, see the AM35x ARM Microprocessor Technical Reference Manual (literature number SPRUGR0).
The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
DL5
DL4
dss_pclk
dss_vsync
dss_hsync
dss_acbias
DL3
dss_data[23:0]
030-062
Figure 6-36. LCD Display in STN Mode(1) (2) (3) (4) (5)
(1) The pixel data bus depends on the use 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
(2) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.
(3) dss_vsync width must be programmed to be as small as possible.
(4) The pixel clock frequency is programmable.
(5) For more information, see the AM35x ARM Microprocessor Technical Reference Manual (literature number SPRUGR0).
154
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.6
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Serial Communications Interfaces
6.6.1
Multichannel Buffered Serial Port (McBSP) Timing
There are five McBSP modules called McBSP1 through McBSP5. McBSP provides a full-duplex, direct
serial interface between the AM3517/05 device and other devices in a system such as other application
devices or codecs. It can accommodate a wide range of peripherals and clocked frame-oriented protocols
(I2S, PCM, and TDM) due to its high level of versatility.
The McBSP1-5 modules may support two types of data transfer at the system level:
• The full-cycle mode, for which one clock period is used to transfer the data, generated on one edge
and captured on the same edge (one clock period later).
• The half-cycle mode, for which one half clock period is used to transfer the data, generated on one
edge and captured on the opposite edge (one half clock period later). Note that a new data is
generated only every clock period, which secures the required hold time.
The interface clock (CLKX/CLKR) activation edge (data/frame sync capture and generation) has to be
configured accordingly with the external peripheral (activation edge capability) and the type of data
transfer required at the system level.
The AM3517/05 McBSP1-5 timing characteristics are described for both rising and falling activation edges.
McBSP1 supports:
• 6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins.
• 4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are
internally looped back via software configuration, respectively, to the clkr and fsr internal signals for
data receive.
McBSP2, 3, 4, and 5 support only the 4-pin mode.
The following sections describe the timing characteristics for applications in normal mode (that is,
AM3517/05 McBSPx connected to one peripheral) and TDM applications in multipoint mode.
6.6.1.1
McBSP in Normal Mode
The following tables assume=testing over the recommended operating conditions.
Table 6-38. McBSP Timing Conditions
TIMING CONDITION PARAMETER
1.8V, 3.3 V
Input Conditions
UNIT
VALUE
tR
Input signal rise time
2 (1)
ns
tF
Input signal fall time
2
ns
Output load
capacitance
10
pF
Output Conditions
CLOAD
(1)
Maximum value.
Table 6-39. McBSP1,2,4,5 Output Clock Pulse Duration
PARAMETER
VDDSHV = 1.8V, 3.3V
MIN
tC(CLK)
Cycle Time,
mcbsp1_clkr/mcbspx_clkx
UNIT
MAX
20.83
ns
(1)
tW(CLKH)
(1)
(2)
Typical pulse duration,
mcbsp1_clkr /
mcbspx_clkx high (1)
0.5*P (2)
0.5*P (2)
ns
In mcbspx, x identifies the McBSP number; 1, 2, 4, or 5.
P = mcbsp1_clkr / mcbspx_clkx clock period.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
155
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-39. McBSP1,2,4,5 Output Clock Pulse Duration (continued)
PARAMETER
VDDSHV = 1.8V, 3.3V
tW(CLKL)
Typical pulse duration,
mcbsp1_clkr /
mcbspx_clkx low (1)
tdc(CLK)
Duty cycle error,
mcbsp1_clkr /
mcbspx_clkx (1)
UNIT
0.5*P (2)
0.5*P (2)
ns
-0.75
0.75
ns
Table 6-40. McBSP3 Output Clock Pulse Duration
PARAMETER
VDDSHV = 1.8V, 3.3V
MIN
tC(CLK)
Cycle time, mcbsp3_clkx
UNIT
MAX
31.25
ns
(1)
ns
tW(CLKH)
Typical pulse duration,
mcbsp3_clkx high
0.5*P
tW(CLKL)
Typical pulse duration,
mcbsp3_clkx low
0.5*P (1)
0.5*P (1)
ns
tdc(CLK)
Duty cycle error,
mcbsp3_clkx
-0.75
0.75
ns
(1)
0.5*P
(1)
P = mcbsp3_clkx clock period
6.6.1.1.1 McBSP1
The following tables show the timing requirements and switching characteristics for McBSP1.
Table 6-41. McBSP1 Timing Requirements - Rising Edge and Receive Mode
No.
PARAMETER
VDDSHV=3.3V
MIN
B3
B4
B5
B6
156
tsu(DRVCLKAE)
VDDSHV=1.8V
MIN
UNIT
MAX
Half Cycle
Master
5.0
5.0
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
4.0
4.0
ns
Full Cycle
Slave
4.2
4.2
ns
Half Cycle
Master
5.8
5.8
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp1_fsr /
mcbsp1_fsx
valid before
mcbsp1_clkr /
mcbsp1_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
th(CLKAE-FSV) Hold time,
mcbsp1_fsr /
mcbsp1_fsx
valid after
mcbsp1_clkr /
mcbsp1_clkx
active edge
Half Cycle
Slave
0.5
0.5
ns
Full Cycle
Slave
1.0
1.0
ns
th(CLKAEDRV)
tsu(FSVCLKAE)
Setup time,
mcbsp1_dr
valid before
mcbsp1_clkr /
mcbsp1_clkx
active edge
MAX
Hold time,
mcbsp1_dr
valid after
mcbsp1_clkr /
mcbsp1_clkx
active edge
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-42. McBSP1 Switching Characteristics - Rising Edge and Receive Mode
No.
B2
PARAMETER
VDDSHV=3.3V
td(CLKAE-FSV) Delay time,
mcbsp1_clkr
active edge to
mcbsp1_fsr /
mcbsp1_fsx
valid
VDDSHV=1.8V
MIN
MAX
MIN
MAX
0.2
14.8
0.2
14.8
UNIT
ns
Table 6-43. McBSP1 Timing Requirements - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp1_fsx
valid before
mcbsp1_clkx
active edge
Full Cycle
Slave
5.2
4.7
ns
Half Cycle
Slave
4.2
3.7
ns
Hold time,
mcbsp1_fsx
valid after
mcbsp1_clkx
active edge
Full Cycle
Slave
5.2
4.7
ns
Half Cycle
Slave
1.0
0.5
ns
Table 6-44. McBSP1 Switching Characteristics - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
B2
td(CLKXAEFSXV)
Delay time,
mcbsp1_clkx
active edge to
mcbsp1_fsx
valid
B8
td(CLKXAEDXV)
Delay time,
mcbsp1_clkx
active edge to
mcbsp1_dx
valid
VDDSHV = 1.8V
UNIT
MIN
MAX
MIN
MAX
0.2
14.8
0.7
14.8
ns
Master
0.6
14.8
0.6
14.8
ns
Slave
0.6
14.8
0.6
14.8
ns
Table 6-45. McBSP1 Timing Requirements - Falling Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
B4
B5
tsu(DRVCLKAE)
th(CLKAEDRV)
tsu(FSVCLKAE)
Setup time,
mcbsp1_dr
valid before
mcbsp1_clkr /
mcbsp1_clkx
active edge
Hold time,
mcbsp1_dr
valid after
mcbsp1_clkr /
mcbsp1_clkx
active edge
Setup time,
mcbsp1_fsr /
mcbsp1_fsx
valid before
mcbsp1_clkr /
mcbsp1_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
5.0
5.0
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
4.0
4.0
ns
Full Cycle
Slave
4.2
4.2
ns
Half Cycle
Master
5.8
5.8
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
157
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-45. McBSP1 Timing Requirements - Falling Edge and Receive Mode (continued)
No.
PARAMETER
B6
th(CLKAE-FSV) Hold time,
mcbsp1_fsr /
mcbsp1_fsx
valid after
mcbsp1_clkr /
mcbsp1_clkx
active edge
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
Half Cycle
Slave
0.5
0.5
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-46. McBSP1 Switching Characteristics - Falling Edge and Receive Mode
No.
B2
PARAMETER
VDDSHV = 3.3V
td(CLKAE-FSV) Delay time, mcbsp1_clkr /
mcbsp1_clkx active edge to
mcbsp1_fsr / mcbsp1_fsx valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
14.8
0.7
14.8
UNIT
ns
Table 6-47. McBSP1 Timing Requirements - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp1_fsx
valid before
mcbsp1_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp1_fsx
valid after
mcbsp1_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-48. McBSP1 Switching Characteristics - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
B2
td(CLKXAEFSXV)
Delay time,
mcbsp1_clkx
active edge to
mcbsp1_fsx
valid
B8
td(CLKXAEDXV)
Delay time,
mcbsp1_clkx
active edge to
mcbsp1_dx
valid
158
VDDSHV = 1.8V
UNIT
MIN
MAX
MIN
MAX
0.2
14.8
0.2
14.8
ns
Master
0.6
14.8
0.6
14.8
ns
Slave
0.6
14.8
0.6
14.8
ns
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.6.1.1.2 McBSP2
The following tables show the timing requirements and switching characteristics for McBSP2.
Table 6-49. McBSP2 Timing Requirements - Rising Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
B4
B5
B6
tsu(DRVCLKXAE)
th(CLKXAEDRV)
tsu(FSVCLKXAE)
th(CLKXAEFSV)
Setup time,
mcbsp2_dr
valid before
mcbsp2_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
5.0
5.0
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
4.2
4.2
ns
Full Cycle
Slave
4.2
4.2
ns
Half Cycle
Master
5.8
5.8
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp2_fsx
valid before
mcbsp2_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp2_fsx
valid after
mcbsp2_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Hold time,
mcbsp2_dr
valid after
mcbsp2_clkx
active edge
Table 6-50. McBSP2 Switching Characteristics - Rising Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time,
mcbsp2_clkx
active edge to
mcbsp2_fsx
valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
14.8
0.2
14.8
UNIT
ns
Table 6-51. McBSP2 Timing Requirements - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp2_fsx
valid before
mcbsp2_clkx
active edge
Half Cycle
Slave
5.2
4.7
ns
Full Cycle
Slave
4.2
3.7
ns
Hold time,
mcbsp2_fsx
valid after
mcbsp2_clkx
active edge
Half Cycle
Slave
5.2
4.7
ns
Full Cycle
Slave
1.0
0.5
ns
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
159
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-52. McBSP2 Switching Characteristics - Rising Edge and Transmit Mode
No.
PARAMETER
B2
td(CLKXAEFSXV)
Delay time,
mcbsp2_clkx
active edge to
mcbsp2_fsx
valid
B8
td(CLKXAEDXV)
Delay time,
mcbsp2_clkx
active edge to
mcbsp2_dx
valid
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
MIN
MAX
MIN
MAX
0.2
14.8
0.2
14.8
ns
Master
0.6
14.8
0.6
14.8
ns
Slave
0.6
14.8
0.6
14.8
ns
Table 6-53. McBSP2 Timing Requirements - Falling Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
B4
B5
B6
tsu(DRVCLKXAE)
th(CLKXAEDRV)
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
Setup time,
mcbsp2_dr
valid before
mcbsp2_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
5.0
5.0
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
4.2
4.2
ns
Full Cycle
Slave
4.2
4.2
ns
Half Cycle
Master
5.8
5.8
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp2_fsx
valid before
mcbsp2_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp2_fsx
valid after
mcbsp2_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Hold time,
mcbsp2_dr
valid after
mcbsp2_clkx
active edge
Table 6-54. McBSP2 Switching Characteristics - Falling Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time, mcbsp2_clkx active
edge to mcbsp2_fsx valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
14.8
0.2
14.8
UNIT
ns
Table 6-55. McBSP2 Timing Requirements - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
160
tsu(FSXVCLKXAE)
Setup time,
mcbsp2_fsx
valid before
mcbsp2_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-55. McBSP2 Timing Requirements - Falling Edge and Transmit Mode (continued)
No.
B6
PARAMETER
th(CLKXAEFSXV)
Hold time,
mcbsp2_fsx
valid after
mcbsp2_clkx
active edge
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-56. McBSP2 Switching Characteristics - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAEFSXV)
Delay time, mcbsp2_clkx active
edge to mcbsp2_fsx valid
0.2
14.8
0.2
14.8
ns
B8
td(CLKXAEDXV)
Delay time,
mcbsp2_clkx
active edge to
mcbsp2_dx
valid
Master
0.6
14.8
0.6
14.8
ns
Slave
0.6
14.8
0.6
14.8
ns
6.6.1.1.3 McBSP3
6.6.1.1.3.1 McBSP3 Multiplexed on McBSP3 Pins
The following tables show the timing conditions and switching characteristics for McBSP3 multiplexed on
McBSP3 pins.
Note: All timings apply only to Set #1- multiplexing on mcbsp3 pins.
Table 6-57. McBSP3 (Set #1) Timing Requirements - Rising Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
B4
B5
B6
tsu(DRVCLKXAE)
th(CLKXAEDRV)
tsu(FSVCLKXAE)
th(CLKXAEFSV)
Setup time,
mcbsp3_dr
valid before
mcbsp3_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
7.5
7.5
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
5.6
5.6
ns
Full Cycle
Slave
5.8
5.8
ns
Half Cycle
Master
8.3
8.3
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp3_fsx
valid before
mcbsp3_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
5.8
5.8
ns
Hold time,
mcbsp3_fsx
valid after
mcbsp3_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
1.0
1.0
ns
Hold time,
mcbsp3_dr
valid after
mcbsp3_clkx
active edge
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
161
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-58. McBSP3 (Set #1) Switching Characteristics - Rising Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time, mcbsp3_clkx active
edge to mcbsp3_fsx valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
22.2
0.2
22.2
UNIT
ns
Table 6-59. McBSP3 (Set #1) Timing Requirements - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp3_fsx
valid before
mcbsp3_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
5.8
5.8
ns
Hold time,
mcbsp3_fsx
valid after
mcbsp3_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
1
1
ns
Table 6-60. McBSP3 (Set #1) Switching Characteristics - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAEFSXV)
Delay time, mcbsp3_clkx active
edge to mcbsp3_fsx valid
0.2
22.2
0.2
22.2
ns
B8
td(CLKXAEDXV)
Delay time,
mcbsp3_clkx
active edge to
mcbsp3_dx
valid
Master
0.6
22.2
0.6
22.2
ns
Slave
0.6
22.2
0.6
22.2
ns
Table 6-61. McBSP3 (Set #1) Timing Requirements - Falling Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
tsu(DRVCLKXAE)
th(CLKXAEDRV)
B5
B6
162
tsu(FXSVCLKXAE)
th(CLKXAEFSXV)
Setup time,
mcbsp3_dr
valid before
mcbsp3_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
7.5
7.5
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
5.6
5.6
ns
Full Cycle
Slave
5.8
5.8
ns
Half Cycle
Master
8.3
8.3
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp3_fsx
valid before
mcbsp3_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
5.8
5.8
ns
Hold time,
mcbsp3_fsx
valid after
mcbsp3_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
1.0
1.0
ns
Hold time,
mcbsp3_dr
valid after
mcbsp3_clkx
active edge
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-62. McBSP3 (Set #1) Switching Characteristics - Falling Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time, mcbsp3_clkx active
edge to mcbsp3_fsx valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
22.2
0.2
22.2
UNIT
ns
Table 6-63. McBSP3 (Set #1) Timing Requirements - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp3_fsx
valid before
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp3_fsx
valid after
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-64. McBSP3 (Set #1) Switching Characteristics - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAEFSXV)
Delay time, mcbsp3_clkx active
edge to mcbsp3_fsx valid
0.2
22.2
0.2
22.2
ns
B8
td(CLKXAEDXV)
Delay time,
mcbsp3_clkx
active edge to
mcbsp3_dx
valid
Master
0.6
22.2
0.6
22.2
ns
Slave
0.6
22.2
0.6
22.2
ns
6.6.1.1.3.2 McBSP3 Multiplexed on UART2 or McBSP1 Pins
The following tables show the timing conditions and switching characteristics for McBSP3 multiplexed on
UART2 or McBSP1 pins.
Note: These timings only apply to Set #2 (multiplexing mode on uart2 pins) and Set #3 (multiplexing on
mcbsp1 pins).
Table 6-65. McBSP3 (Sets #2 and #3) Timing Requirements - Rising Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
B4
tsu(DRVCLKXAE)
th(CLKXAEDRV)
Setup time,
mcbsp3_dr
valid before
mcbsp3_clkx
active edge
Hold time,
mcbsp3_dr
valid after
mcbsp3_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
5.0
5.0
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
4.2
4.2
ns
Full Cycle
Slave
4.2
4.2
ns
Half Cycle
Master
5.8
5.8
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
163
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-65. McBSP3 (Sets #2 and #3) Timing Requirements - Rising Edge and Receive Mode (continued)
No.
B5
B6
PARAMETER
tsu(FSVCLKXAE)
th(CLKXAEFSV)
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
Setup time,
mcbsp3_fsx
valid before
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp3_fsx
valid after
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-66. McBSP3 (Sets #2 and #3) Switching Characteristics - Rising Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time,
mcbsp3_clkx
active edge to
mcbsp3_fsx
valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
14.8
0.2
14.8
UNIT
ns
Table 6-67. McBSP3 (Sets #2 and #3) Timing Requirements - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp3_fsx
valid before
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp3_fsx
valid after
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-68. McBSP3 (Sets #2 and #3) Switching Characteristics - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAEFSXV)
Delay time, mcbsp3_clkx active
edge to mcbsp3_fsx valid
0.2
14.8
0.2
14.8
ns
B8
td(CLKXAEDXV)
Delay time,
mcbsp3_clkx
active edge to
mcbsp3_dx
valid
Master
0.6
14.8
0.6
14.8
ns
Slave
0.6
14.8
0.6
14.8
ns
Table 6-69. McBSP3 (Sets #2 and #3) Timing Requirements - Falling Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
164
tsu(DRVCLKXAE)
Setup time,
mcbsp3_dr
valid before
mcbsp3_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
5.0
5.0
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
4.2
4.2
ns
Full Cycle
Slave
4.2
4.2
ns
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-69. McBSP3 (Sets #2 and #3) Timing Requirements - Falling Edge and Receive Mode (continued)
No.
B4
B5
B6
PARAMETER
th(CLKXAEDRV)
tsu(FXSVCLKXAE)
th(CLKXAEFSXV)
Hold time,
mcbsp3_dr
valid after
mcbsp3_clkx
active edge
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
Half Cycle
Master
5.8
5.8
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp3_fsx
valid before
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp3_fsx
valid after
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-70. McBSP3 (Sets #2 and #3) Switching Characteristics - Falling Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time, mcbsp3_clkx active
edge to mcbsp3_fsx valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
14.8
0.2
14.8
UNIT
ns
Table 6-71. McBSP3 (Sets #2 and #3) Timing Requirements - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp3_fsx
valid before
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp3_fsx
valid after
mcbsp3_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-72. McBSP3 (Sets #2 and #3) Switching Characteristics - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
VDDSHV = 1 .8V
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAEFSXV)
Delay time, mcbsp3_clkx active
edge to mcbsp3_fsx valid
0.2
14.8
0.2
14.8
ns
B8
td(CLKXAEDXV)
Delay time,
mcbsp3_clkx
active edge to
mcbsp3_dx
valid
Master
0.6
14.8
0.6
14.8
ns
Slave
0.6
14.8
0.6
14.8
ns
6.6.1.1.4 McBSP4
The following tables show the timing requirements and switching characteristics for McBSP4.
Table 6-73. McBSP4 Timing Requirements - Rising Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
Copyright © 2009–2012, Texas Instruments Incorporated
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
165
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-73. McBSP4 Timing Requirements - Rising Edge and Receive Mode (continued)
No.
B3
B4
B5
B6
PARAMETER
tsu(DRVCLKXAE)
th(CLKXAEDRV)
tsu(FSVCLKXAE)
th(CLKXAEFSV)
Setup time,
mcbsp4_dr
valid before
mcbsp4_clkx
active edge
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
Half Cycle
Master
7.5
7.5
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
3.2
3.2
ns
Full Cycle
Slave
4.2
4.2
ns
Half Cycle
Master
7.7
7.7
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp4_fsx
valid before
mcbsp4_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
4.2
4.2
ns
Hold time,
mcbsp4_fsx
valid after
mcbsp4_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Hold time,
mcbsp4_dr
valid after
mcbsp4_clkx
active edge
Table 6-74. McBSP4 Switching Characteristics - Rising Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time,
mcbsp4_clkx
active edge to
mcbsp4_fsx
valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
16.6
0.2
16.6
UNIT
ns
Table 6-75. McBSP4 Timing Requirements - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp4_fsx
valid before
mcbsp4_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
3.7
3.7
ns
Hold time,
mcbsp4_fsx
valid after
mcbsp4_clkx
active edge
Half Cycle
Slave
1.0
1.0
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-76. McBSP4 Switching Characteristics - Rising Edge and Transmit Mode
No.
B2
166
PARAMETER
td(CLKXAEFSXV)
Delay time,
mcbsp4_clkx
active edge to
mcbsp4_fsx
valid
VDDSHV = 3.3V
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
16.6
0.2
16.6
UNIT
ns
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-76. McBSP4 Switching Characteristics - Rising Edge and Transmit Mode (continued)
No.
B8
PARAMETER
td(CLKXAEDXV)
Delay time,
mcbsp4_clkx
active edge to
mcbsp4_dx
valid
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
Master
0.6
16.6
0.6
16.6
ns
Slave
0.6
17.3
0.6
17.3
ns
Table 6-77. McBSP4 Timing Requirements - Falling Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
B4
B5
B6
tsu(DRVCLKXAE)
th(CLKXAEDRV)
tsu(FXSVCLKXAE)
th(CLKXAEFSXV)
Setup time,
mcbsp4_dr
valid before
mcbsp4_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
7.5
7.5
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
5.6
5.6
ns
Full Cycle
Slave
5.8
5.8
ns
Half Cycle
Master
7.7
7.7
ns
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp4_fsx
valid before
mcbsp4_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
5.8
5.8
ns
Hold time,
mcbsp4_fsx
valid after
mcbsp4_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Hold time,
mcbsp4_dr
valid after
mcbsp4_clkx
active edge
Table 6-78. McBSP4 Switching Characteristics - Falling Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time, mcbsp4_clkx active
edge to mcbsp4_fsx valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
16.6
0.2
16.6
UNIT
ns
Table 6-79. McBSP4 Timing Requirements - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp4_fsx
valid before
mcbsp4_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
3.7
3.7
ns
Hold time,
mcbsp4_fsx
valid after
mcbsp4_clkx
active edge
Half Cycle
Slave
5.2
5.2
ns
Full Cycle
Slave
1.0
1.0
ns
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
167
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-80. McBSP4 Switching Characteristics - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAEFSXV)
Delay time, mcbsp4_clkx active
edge to mcbsp4_fsx valid
0.2
16.6
0.2
16.6
ns
B8
td(CLKXAEDXV)
Delay time,
mcbsp4_clkx
active edge to
mcbsp4_dx
valid
Master
0.6
16.6
0.6
16.6
ns
Slave
0.6
17.3
0.6
17.3
ns
168
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.6.1.1.5 McBSP5
The following tables show the timing conditions and switching characteristics for McBSP5.
Table 6-81. McBSP5 Timing Requirements - Rising Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
B4
B5
B6
tsu(DRVCLKXAE)
th(CLKXAEDRV)
tsu(FSVCLKXAE)
th(CLKXAEFSV)
Setup time,
mcbsp5_dr
valid before
mcbsp5_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
7.5
7.5
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
5.6
5.6
ns
Full Cycle
Slave
5.8
5.8
ns
Half Cycle
Master
7.5
7.5
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp5_fsx
valid before
mcbsp5_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
5.8
5.8
ns
Hold time,
mcbsp5_fsx
valid after
mcbsp5_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
1.0
1.0
ns
Hold time,
mcbsp5_dr
valid after
mcbsp5_clkx
active edge
Table 6-82. McBSP5 Switching Characteristics - Rising Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time, mcbsp5_clkx active
edge to mcbsp5_fsx valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
14.8
0.7
14.8
UNIT
ns
Table 6-83. McBSP5 Timing Requirements - Rising Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp5_fsx
valid before
mcbsp5_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
5.8
5.8
ns
Hold time,
mcbsp5_fsx
valid after
mcbsp5_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
1.0
1.0
ns
Table 6-84. McBSP5 Switching Characteristics - Rising Edge and Transmit Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
Delay time,
mcbsp5_clkx
active edge to
mcbsp5_fsx
valid
Copyright © 2009–2012, Texas Instruments Incorporated
VDDSHV = 3.3V
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
14.8
0.2
14.8
UNIT
ns
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
169
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-84. McBSP5 Switching Characteristics - Rising Edge and Transmit Mode (continued)
No.
B8
PARAMETER
td(CLKXAEDXV)
Delay time,
mcbsp5_clkx
active edge to
mcbsp5_dx
valid
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
Master
0.6
14.8
0.6
14.8
ns
Slave
0.6
14.8
0.6
14.8
ns
Table 6-85. McBSP5 Timing Requirements - Falling Edge and Receive Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B3
B4
B5
B6
tsu(DRVCLKXAE)
th(CLKXAEDRV)
tsu(FXSVCLKXAE)
th(CLKXAEFSXV)
Setup time,
mcbsp5_dr
valid before
mcbsp5_clkx
active edge
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Half Cycle
Master
7.5
7.5
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
5.6
5.6
ns
Full Cycle
Slave
5.8
5.8
ns
Half Cycle
Master
8.3
8.3
ns
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Master
1.5
1.5
ns
Full Cycle
Slave
0.9
0.9
ns
Setup time,
mcbsp5_fsx
valid before
mcbsp5_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
5.8
5.8
ns
Hold time,
mcbsp5_fsx
valid after
mcbsp5_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
1.0
1.0
ns
Hold time,
mcbsp5_dr
valid after
mcbsp5_clkx
active edge
Table 6-86. McBSP5 Switching Characteristics - Falling Edge and Receive Mode
No.
B2
PARAMETER
td(CLKXAEFSXV)
VDDSHV = 3.3V
Delay time, mcbsp5_clkx active
edge to mcbsp5_fsx valid
VDDSHV = 1.8V
MIN
MAX
MIN
MAX
0.2
22.2
0.2
22.2
UNIT
ns
Table 6-87. McBSP5 Timing Requirements - Falling Edge and Transmit Mode
No.
PARAMETER
VDDSHV = 3.3V
MIN
B5
B6
170
tsu(FSXVCLKXAE)
th(CLKXAEFSXV)
MAX
VDDSHV = 1.8V
MIN
UNIT
MAX
Setup time,
mcbsp5_fsx
valid before
mcbsp5_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
5.8
5.8
ns
Hold time,
mcbsp5_fsx
valid after
mcbsp5_clkx
active edge
Half Cycle
Slave
7.7
7.7
ns
Full Cycle
Slave
1.0
1.0
ns
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-88. McBSP5 Switching Characteristics - Falling Edge and Transmit Mode
No.
PARAMETER
B2
td(CLKXAEFSXV)
Delay time,
mcbsp5_clkx
active edge to
mcbsp5_fsx
valid
B8
td(CLKXAEDXV)
Delay time,
mcbsp5_clkx
active edge to
mcbsp5_dx
valid
VDDSHV = 3.3V
VDDSHV = 1.8V
UNIT
MIN
MAX
MIN
MAX
0.2
22.2
0.2
22.2
ns
Master
0.6
22.2
0.6
22.2
ns
Slave
0.6
22.2
0.6
22.2
ns
6.6.1.1.6 McBSP in TDM Mode
The following tables assume=testing over the recommended operating conditions.
Table 6-89. McBSP Timing Conditions – TDM in Multipoint Mode
PARAMETER
DESCRIPTION
VDDSHV = 1.8V or 3.3V
MIN
MAX
UNIT
tr
Input signal rise time
1
8.5
ns
tf
Input signal fall time
1
8.5
ns
Cload
Output load capacitance
40
pf
Table 6-90. McBSP Timing Requirements — TDM in Multipoint Mode
INDEX
PARAMETER
DESCRIPTION
VDDSHV = 1.8V or 3.3V
MIN
UNIT
MAX
tw(CLKH)
Cycle Time, mcbspx_clkx
162.8
ns
tw(CLKH)
Typical Pulse duration, mcbspx_clkx high
81.4
ns
tw(CLKL)
Typical Pulse duration, mcbspx_clkx low
81.4
tdc(CLK)
Duty cycle error, mcbspx_clkx
-8.14
B3
tsu(DRV-CLKAE)
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
9
ns
B4
th(CLKAE-DRV)
Hold time, mcbspx_dr valid after mcbspx_clkx
active edge
2.4
ns
B5
tsu(FSV-CLKAE)
Setup time, mcbspx_fsx valid before
mcbspx_clkx active edge
9
ns
B6
th(CLKAE-FSV)
Hold time, mcbspx_fsx valid after mcbspx_clkx
active edge
2.4
ns
ns
8.14
ns
Table 6-91. McBSP Switching Characteristics — TDM in Multipoint Mode
INDEX
B8
PARAMETER
td(CLKXAE-DXV)
DESCRIPTION
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Copyright © 2009–2012, Texas Instruments Incorporated
VDDSHV = 1.8V or 3.3V
MIN
MAX
0.6
16.8
UNIT
ns
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
171
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6.6.1.1.7 McBSP Timing Diagrams
mcbspx_clkr
B2
B2
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D5
D6
030-068
Figure 6-37. McBSP Rising Edge Receive Timing in Master Mode
mcbspx_clkr
B5
B6
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-069
Figure 6-38. McBSP Rising Edge Receive Timing in Slave Mode
mcbspx_clkx
B2
B2
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-070
Figure 6-39. McBSP Rising Edge Transmit Timing in Master Mode
mcbspx_clkx
B5
B6
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-071
Figure 6-40. McBSP Rising Edge Transmit Timing in Slave Mode
mcbspx_clkr
B2
B2
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-072
Figure 6-41. McBSP Falling Edge Receive Timing in Master Mode
172
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
mcbspx_clkr
B5
B6
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-073
Figure 6-42. McBSP Falling Edge Receive Timing in Slave Mode
mcbspx_clkx
B2
B2
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-074
Figure 6-43. McBSP Falling Edge Transmit Timing in Master Mode
mcbspx_clkx
B5
B6
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-075
Figure 6-44. McBSP Falling Edge Transmit Timing in Slave Mode
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
173
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.6.2
www.ti.com
Multichannel Serial Port Interface (McSPI) Timing
The multichannel SPI is a master/slave synchronous serial bus. The McSPI1 module supports up to four
peripherals and the others (McSPI2, McSPI3, and McSPI4) support up to two peripherals. The following
timings are applicable to the different configurations of McSPI in master/slave mode for any McSPI and
any channel (n).
6.6.2.1
McSPI in Slave Mode
The following tables assume testing over the recommended operating conditions.
Table 6-92. McSPI Interface Timing Requirements – Slave Mode
NO.
PARAMETER
1.8 V
MIN
3.3 V
MAX
SS0
tc(CLK)
Cycle time, mcspix_clk
41.67
SS1
tw(CLK)
Pulse duration, mcspix_clk high or low
18.75
SS2
tsu(SIMOV-CLKAE)
Setup time, mcspix_simo valid before mcspix_clk
active edge
4.2
SS3
th(SIMOV-CLKAE)
Hold time, mcspix_simo valid after mcspix_clk active
edge
SS4
tsu(CS0V-CLKFE)
SS5
th(CS0I-CLKLE)
ns
11.25
ns
4
ns
4.6
3
ns
Setup time, mcspix_cs0 valid before mcspix_clk first
edge
13.8
7
ns
Hold time, mcspix_cs0 invalid after mcspix_clk last
edge
13.8
9.17
ns
PARAMETER
SS6
td(CLKAE-SOMIV)
Delay time, mcspix_clk active edge to mcspix_somi
shifted
SS7
td(CS0AE-SOMIV)
Delay time, mcspix_cs0 active edge to Modes 0 and 2
mcspix_somi shifted
(1)
(2)
(3)
(4)
174
UNIT
MAX
41.67
22.92
Table 6-93. McSPI Interface Switching Characteristics (1)
NO.
MIN
(2) (3) (4)
1.8 V
3.3 V
UNIT
MIN
MAX
MIN
MAX
1.8
15.9
2
16.5
ns
15.9
ns
16.38
The capacitive load is equivalent to 20 pF.
In mcspix, x is equal to 1, 2, 3, or 4.
The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable.
This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and
capture input data.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Mode 0 & 2
mcspix_cs0(EPOL=1)
SS0
SS4
SS5
SS1
mcspix_clk(POL=0)
SS0
SS1
mcspix_clk(POL=1)
SS2
SS3
mcspix_simo
Bit n-1
Bit n-2
SS7
mcspix_somi
Bit n-3
Bit n-4
Bit 0
SS6
Bit n-1
Bit n-2
Bit n-3
Bit n-4
Bit 0
Mode 1 & 3
mcspix_cs0(EPOL=1)
SS0
SS1
mcspix_clk(POL=0)
SS0
SS4
SS1
SS5
mcspix_clk(POL=1)
SS3
SS2
Bit n-1
mcspix_simo
Bit n-2
Bit n-3
Bit 1
Bit 0
SS6
Bit n-1
mcspix_somi
Bit n-2
Bit n-3
Bit 1
Bit 0
030-076
Figure 6-45. McSPI Interface Transmit and Receive in Slave Mode(1) (2)
(1) The active clock edge (rising or falling) on which mcspi_somi is driven and mcspi_simo data is latched is software configurable with the
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL In mcspix, x is equal to 1, 2, 3, or 4.
6.6.2.2
McSPI in Master Mode
The following tables assume testing over the recommended operating conditions.
Table 6-94. McSPI1, 2, and 4 Interface Timing Requirements – Master Mode (1)
NO.
PARAMETER
1.8 V
MIN
(2)
3.3 V
MAX
MIN
UNIT
MAX
SM2
tsu(SOMIV-CLKAE)
Setup time, mcspix_somi valid before mcspix_clk
active edge
2.56
4
ns
SM3
th(SOMIV-CLKAE)
Hold time, mcspix_somi valid after mcspix_clk active
edge
2.93
4
ns
(1)
(2)
The input timing requirements are given by considering a rise time and a fall time of 4 ns.
In mcspix, x is equal to 1, 2, 3, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 3.
n is equal to 0 for x equal to 4.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
175
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-95. McSPI1, 2, and 4 Interface Switching Characteristics – Master Mode (1)
NO.
PARAMETER
1.8 V
MIN
SM0
tc(CLK)
Cycle time, mcspix_clk
20.83
tj(CLK)
Cycle jitter (4), mcspix_clk
-200
SM1
tw(CLK)
Pulse duration, mcspix_clk high or low
0.45P
SM4
td(CLKAE-SIMOV)
Delay time, mcspix_clk active edge to
mcspix_simo shifted
-2.1
SM5
td(CSnA-CLKFE)
Delay time, mcspix_csi active to
mcspix_clk first edge
SM6
SM7
(1)
(2)
(3)
(4)
(5)
(6)
(7)
td(CLKLE-CSnI)
Delay time, mcspix_clk last edge to
mcspix_csi inactive
td(CSnAE-SIMOV)
Delay time, mcspix_csi active edge
to mcspix_simo shifted
(5)
(2) (3)
3.3 V
MAX
MIN
UNIT
MAX
20.83
200
0.55P
ns
-200
(5)
0.45P
5
200
(5)
0.55P
ps
(5)
ns
-3
6
ns
Modes 1
and 3
A (6) - 3.2
A (6) - 3.0
6
ns
Modes 0
and 2
B (7) - 3.2
B (7) -3.0
6
ns
Modes 1
and 3
B (7) - 3.2
B (7) - 3.0
ns
Modes 0
and 2
A (6) - 3.2
A (6) - 3.0
ns
Modes 0
and 2
5
5
ns
Timings are given for a maximum load capacitance of 20 pF for spix_csn signals, 30 pF for spix_clk and spix_simo signals with x = 1 or
2, and 20 pF for spi4_clk and spi4_simo signals.
In mcspix, x is equal to 1, 2, 3, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 3.
n is equal to 0 for x equal to 4.
The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable.
Maximum cycle jitter supported by mcspix_clk input clock.
P = mcspix_clk clock period
Case P = 20.8 ns, A = (TCS+0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a
bitfield of MSPI_CHCONFx[26:25] register). For more information, see the Device Multichannel Serial Port Interface (McSPI) Reference
Guide [literature number SPRUFV6].
B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the Device Multichannel Serial Port
Interface (McSPI) Reference Guide [literature number SPRUFV6].
The following tables assume testing over the recommended operating conditions.
Table 6-96. McSPI 3 Interface Timing Requirements – Master Mode (1)
NO.
PARAMETER
1.8 V
MIN
(2)
3.3 V
MAX
MIN
UNIT
MAX
SM2
tsu(SOMIV-CLKAE)
Setup time, mcspi3_somi valid before
mcspi3_clk active edge
2.5
4
ns
SM3
th(SOMIV-CLKAE)
Hold time, mcspi3_somi valid after mcspi3_clk
active edge
2.89
4
ns
(1)
(2)
176
The input timing requirements are given by considering a rise time and a fall time of 4 ns.
In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and
mcspi3_somi is latched is all software configurable.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-97. McSPI3 Interface Switching Characteristics – Master Mode (1)
NO.
PARAMETER
1.8 V
MIN
SM0
tc(CLK)
Cycle time, mcspix_clk
41.67
tj(CLK)
Cycle jitter (4)
-200
(5)
(2) (3)
3.3 V
MAX
MIN
UNIT
MAX
41.67
200
(5)
tw(CLK)
Pulse duration, mcspix_clk high or low
0.45P
td(CLKAE-SIMOV)
Delay time, mcspix_clk active edge to
mcspix_simo shifted
-2.1
SM5
td(CSnA-CLKFE)
Delay time, mcspix_csi active Modes 1
to mcspix_clk first edge
and 3
A (6) - 4.4
A (6) - 3.0
6
ns
Modes 0
and 2
B (7) - 4.4
B (7) - 3.0
6
ns
Modes 1
and 3
B (7) - 4.4
B (7) - 3.0
ns
Modes 0
and 2
A (6) - 4.4
A (6) - 3.0
ns
SM7
(1)
(2)
(3)
(4)
(5)
(6)
(7)
td(CLKLE-CSnI)
td(CSnAE-SIMOV)
Delay time, mcspix_clk last
edge to mcspix_csi inactive
Delay time, mcspix_csi active Modes 0
edge to mcspix_simo shifted and 2
11.3
0.55P
ps
(5)
SM4
11.3
0.45P
(5)
ns
200
SM1
SM6
0.55P
-200
-3
ns
ns
5
ns
The capacitive load is equivalent to 20 pF.
In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and
mcspi3_somi is latched are all software configurable.
This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and
capture input data.
Maximum cycle jitter supported by mcspix_clk input clock.
P = mcspix_clk clock period.
Case P = 20.8 ns, A = (TCS + 0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a bit
field of MSPI_CHCONFx[26:25] register). For more information, see the Device Multichannel Serial Port Interface (McSPI) Reference
Guide [literature number SPRUFV6].
B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the Device Multichannel Serial Port
Interface (McSPI) Reference Guide [literature number SPRUFV6].
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
177
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
mcspix_csn(EPOL=1)
www.ti.com
Mode 0 & 2
SM0
SM5
SM6
SM1
mcspix_clk(POL=0)
SM0
SM1
mcspix_clk(POL=1)
SM4
SM7
mcspix_simo
Bit n-1
Bit n-2
Bit n-3
Bit n-4
Bit 0
SM2
SM3
mcspix_somi
Bit n-1
Bit n-2
Bit n-3
Bit 0
Bit n-4
Mode 1 & 3
mcspix_csn(EPOL=1)
SM0
SM1
mcspix_clk(POL=0)
SM0
SM1
SM5
SM6
mcspix_clk(POL=1)
SM4
mcspix_simo
Bit n-1
Bit n-2
Bit n-3
Bit 1
Bit 0
SM2
SM3
mcspix_somi
Bit n-1
Bit n-2
Bit n-3
Bit 1
Bit 0
030-077
Figure 6-46. McSPI Interface Transmit and Receive in Master Mode(1) (2) (3)
(1) The active clock edge (rising or falling) on which mcspix_simo is driven and mcspi_somi data is latched is software configurable with the
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL.
(3) In mcspix, x is equal to 1. In mcspix_csn, n is equal to 0, 1, 2, or 3.
178
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.6.3
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Multiport Full-Speed Universal Serial Bus (USB) Interface
The AM3517/05 microprocessor provides three USB ports working in full- and low-speed data transactions
(up to 12Mbit/s).
Connected to either a serial link controller or a serial PHY (PHY interface modes) it supports:
• 6-pin (Tx: Dat/Se0 or Tx: Dp/Dm) unidirectional mode
• 4-pin bidirectional mode
• 3-pin bidirectional mode
6.6.3.1
Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional Standard 6-pin Mode
The following tables assume testing over the recommended operating conditions.
Table 6-98. Low-/Full-Speed USB Timing Conditions Unidirectional Standard 6-pin Mode
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-99. Low-/Full-Speed USB Timing Requirements Unidirectional Standard 6-pin Mode
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
FSU1
td(Vp,Vm)
Time duration, mmx_rxdp and mmx_rxdm low together during transition
14.0
ns
FSU2
td(Vp,Vm)
Time duration, mmx_rxdp and mmx_rxdm high together during transition
8.0
ns
FSU3
td(RCVU0)
Time duration, mmx_rrxcv undefine during a single end 0 (mmx_rxdp and
mmx_rxdm low together)
14.0
ns
FSU4
td(RCVU1)
Time duration, mmx_rxrcv undefine during a single end 1 (mmx_rxdp and
mmx_rxdm high together)
8.0
ns
Table 6-100. Low-/Full-Speed USB Switching Characteristics Unidirectional Standard 6-pin Mode
NO.
PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
FSU5
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
ns
FSU6
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
ns
FSU7
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 transition
1.5
ns
FSU8
td(DATI-TXENH)
Delay time, mmx_txdat invalid to mmx_txen_n high
81.8
FSU9
td(SE0I-TXENH)
Delay time, mmx_txse0 invalid to mmx_txen_n high
81.8
tR(do)
Rise time, mmx_txen_n
4.0
ns
tF(do)
Fall time, mmx_txen_n
4.0
ns
tR(do)
Rise time, mmx_txdat
4.0
ns
tF(do)
Fall time, mmx_txdat
4.0
ns
tR(do)
Rise time, mmx_txse0
4.0
ns
tF(do)
Fall time, mmx_txse0
4.0
ns
Copyright © 2009–2012, Texas Instruments Incorporated
ns
ns
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
179
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Transmit
mmx_txen_n
FSU5
Receive
FSU8
mmx_txdat
FSU6
FSU7
FSU9
mmx_txse0
FSU1
FSU2
FSU1
FSU2
FSU3
FSU4
mmx_rxdp
mmx_rxdm
mmx_rxrcv
030-080
In mmx, x is equal to 0, 1, or 2.
Figure 6-47. Low-/Full-Speed USB Unidirectional Standard 6-pin Mode
6.6.3.2
Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 4-pin Mode
The following tables assume testing over the recommended operating conditions.
Table 6-101. Low-/Full-Speed USB Timing Conditions Bidirectional Standard 4-pin Mode
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-102. Low-/Full-Speed USB Timing Requirements Bidirectional Standard 4-pin Mode
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
FSU10
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low together during
transition
14.0
ns
FSU11
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 high together during
transition
8.0
ns
FSU12
td(RCVU0)
Time duration, mmx_rrxcv undefine during a single end 0
(mmx_txdat and mmx_txse0 low together)
14.0
ns
FSU13
td(RCVU1)
Time duration, mmx_rxrcv undefine during a single end 1
(mmx_txdat and mmx_txse0 high together)
8.0
ns
Table 6-103. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 4-pin Mode
NO.
PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
FSU14
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
ns
FSU15
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
ns
FSU16
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 transition
1.5
ns
FSU17
td(DATV-TXENH)
Delay time, mmx_txdat invalid before mmx_txen_n high
81.8
FSU18
td(SE0V-TXENH)
Delay time, mmx_txse0 invalid before mmx_txen_n high
81.8
tR(txen)
Rise time, mmx_txen_n
180
ns
ns
4.0
ns
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-103. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 4-pin
Mode (continued)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
tF(txen)
Fall time, mmx_txen_n
4.0
ns
tR(dat)
Rise time, mmx_txdat
4.0
ns
tF(dat)
Fall time, mmx_txdat
4.0
ns
tR(se0)
Rise time, mmx_txse0
4.0
ns
tF(se0)
Fall time, mmx_txse0
4.0
ns
Transmit
mmx_txen_n
FSU14
FSU17
Receive
FSU10
FSU11
FSU18
FSU10
FSU11
FSU12
FSU13
mmx_txdat
FSU15
FSU16
mmx_txse0
mmx_rxrcv
030-081
In mmx, x is equal to 0, 1, or 2.
Figure 6-48. Low-/Full-Speed USB Bidirectional Standard 4-pin Mode
6.6.3.3
Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 3-pin Mode
The following tables assume testing over the recommended operating conditions.
Table 6-104. Low-/Full-Speed USB Timing Conditions Bidirectional Standard 3-pin Mode
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-105. Low-/Full-Speed USB Timing Requirements Bidirectional Standard 3-pin Mode
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
FSU19
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low together during
transition
14.0
ns
FSU20
td(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high together during
transition
8.0
ns
Table 6-106. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 3-pin Mode
NO.
PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
FSU21
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
ns
FSU22
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
ns
FSU23
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 transition
1.5
ns
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
181
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-106. Low-/Full-Speed USB Switching Characteristics Bidirectional Standard 3-pin
Mode (continued)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
FSU24
td(DATI-TXENH)
Delay time, mmx_txdat invalid to mmx_txen_n high
81.8
FSU25
td(SE0I-TXENH)
Delay time, mmx_txse0 invalid to mmx_txen_n high
81.8
tR(do)
Rise time, mmx_txen_n
4.0
ns
tF(do)
Fall time, mmx_txen_n
4.0
ns
tR(do)
Rise time, mmx_txdat
4.0
ns
tF(do)
Fall time, mmx_txdat
4.0
ns
tR(do)
Rise time, mmx_txse0
4.0
ns
tF(do)
Fall time, mmx_txse0
4.0
ns
Transmit
mmx_txen_n
FSU21
ns
ns
Receive
FSU24
FSU19
FSU20
FSU25
FSU19
FSU20
mmx_txdat
FSU22
FSU23
mmx_txse0
030-082
In mmx, x is equal to 0, 1, or 2.
Figure 6-49. Low-/Full-Speed USB Bidirectional Standard 3-pin Mode
6.6.4
Multiport High-Speed Universal Serial Bus (USB) Timing
In addition to the full-speed USB controller, a high-speed (HS) USB controller is instantiated inside the
AM3517/05. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 1 and 2.
• Port 1 and port 2:
– 12-bit master mode (SDR)
6.6.4.1
High-Speed Universal Serial Bus (USB) on Ports 1 and 2 12-bit Master Mode
The following tables assume testing over the recommended operating conditions.
Table 6-107. High-Speed USB Timing Conditions 12-bit Master Mode
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
3
pF
Input Conditions
Output Conditions
CLOAD
Table 6-108. High-Speed USB Timing Requirements 12-bit Master Mode (1)
NO.
PARAMETER
1.8V, 3.3V
MIN
HSU3
HSU4
(1)
182
UNIT
MAX
ts(DIRV-CLKH)
Setup time, hsusbx_dir valid before hsusbx_clk rising edge
7.5
ns
ts(NXTV-CLKH)
Setup time, hsusbx_nxt valid before hsusbx_clk rising edge
7.5
ns
th(CLKH-DIRIV)
Hold time, hsusbx_dir valid after hsusbx_clk rising edge
0.2
ns
In hsusbx, x is equal to 1 or 2.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-108. High-Speed USB Timing Requirements 12-bit Master Mode(1) (continued)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
th(CLKH-NXT/IV)
Hold time, hsusbx_nxt valid after hsusbx_clk rising edge
0.2
ns
HSU5
ts(DATAV-CLKH)
Setup time, hsusbx_data[0:7] valid before hsusbx_clk rising edge
7.5
ns
HSU6
th(CLKH-DATIV)
Hold time, hsusbx_data[0:7] valid after hsusbx_clk rising edge
0.2
ns
Table 6-109. High-Speed USB Switching Characteristics 12-bit Master Mode (1)
N O.
PARAMETER
1.8V, 3.3V
MIN
HSU0
HSU1
HSU2
(1)
(2)
UNIT
MAX
fp(CLK)
hsusbx_clk clock frequency
60
MHz
tj(CLK)
Jitter standard deviation (2), hsusbx_clk
200
ps
td(CLKH-STPV)
Delay time, hsusbx_clk high to output hsusbx_stp valid
13
ns
td(CLKH-STPIV)
Delay time, hsusbx_clk high to output hsusbx_stp invalid
td(CLKH-DV)
Delay time, hsusbx_clk high to output hsusbx_data[0:7] valid
td(CLKH-DIV)
Delay time, hsusbx_clk high to output hsusbx_data[0:7] invalid
tR(do)
Rise time, output signals
2
ns
tF(do)
Fall time, output signals
2
ns
2
ns
13
2
ns
ns
In hsusbx, x is equal to 1 or 2.
The jitter probability density can be approximated by a Gaussian function.
HSU0
hsusbx_clk
HSU1
HSU1
hsusbx_stp
HSU3
HSU4
hsusbx_dir_&_nxt
HSU5
HSU2
hsusbx_data[7:0]
HSU2
Data_OUT
HSU6
Data_IN
030-087
In hsusbx, x is equal to 1 or 2.
Figure 6-50. High-Speed USB 12-bit Master Mode
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
183
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.6.5
www.ti.com
USB0 OTG (USB2.0 OTG)
The AM3517/05 USB2.0 peripheral supports the following features:
• USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s) and full speed (FS: 12 Mb/s)
• USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s)
• All transfer modes (control, bulk, interrupt, and isochronous)
• 16 Transmit (TX) and 16 Receive (RX) endpoints in addition to endpoint 0
• FIFO RAM
– 32K endpoint
– Programmable size
• Integrated USB 2.0 High Speed PHY
• Connects to a standard Charge Pump for VBUS 5 V generation
• RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB
6.6.5.1
USB OTG Electrical Parameters
The USB OTG electrical parameters meet or exceed those specified in the following documents which can
be obtained from the USB Implementers Forum:
• Universal Serial Bus Specification, Revision 2.0, April 27, 2000
• On-The-Go Supplement to the USB 2.0 Specification, Revision 1.3, December 5, 2006
• Engineering Change Notice “Pull-up/pull-down resistors”, Universal Serial Bus Specification Revision
2.0
For additional information related to USB OTG electrical parameters, please see the respective
documents on the USB Implementers Forum web site (http://www.usb.org).
184
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.6.6
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
High-End Controller Area Network Controller (HECC) Timing
The AM3517/05 device has a High-End Controller Area Network Controller (HECC). The HECC uses
established protocol to communicate serially with other controllers in harsh environments. The HECC is
fully compliant with the Controller Area Network (CAN) protocol, version 2.0B.
Key features of the HECC include the following:
• CAN, version 2.0B compliant
• 32 RX/TX message objects
• 32 receive identifier masks
• Programmable wake-up on bus activity
• Programmable interrupt scheme
• Automatic reply to a remote request
• Automatic re-transmission in case of error or loss of arbitration
• Protection against reception of a new message
• 32-bit time stamp
• Local network time counter
• Programmable priority register for each message
• Programmable transmission and reception time-out
• HECC/SCC mode of operation
• Standard-Extended Identifier
• Self-test mode
6.6.6.1
HECC Timing Requirements
Table 6-110. Timing Requirements for HECC Receive (see Figure 6-51)
1.8 V, 3.3 V
NO.
(1)
1
f(baud)
Maximum programmable baud rate
2
tw(HECC_RX)
Pulse duration, receive data bit
MIN
MAX
H-1 (1)
H+3 (1)
1
UNIT
Mbps
ns
These values are relative to H (where H = 1/(baud rate).
6.6.6.2
HECC Switching Characteristics
Table 6-111. Switching Characteristics Over Recommended Operating Conditions for HECC Transmit
(see Figure 6-51)
NO.
(1)
1.8 V, 3.3 V
PARAMETER
3
f(baud)
Maximum programmable baud rate
4
tw(HECC_TX)
Pulse duration, transmit data bit
MIN
UNIT
MAX
1
H-1 (1)
H+3 (1)
Mbps
ns
These values are relative to H (where H = 1/(baud rate).
2
HECCx_RX
4
HECCx_TX
Figure 6-51. HECC Transmit/Receive Timing
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
185
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.6.7
www.ti.com
Ethernet Media Access Controller (EMAC)
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the AM3517/05 and
the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100
Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.
The EMAC controls the flow of packet data from the AM3517/05 device to the PHY. The MDIO module
controls PHY configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the AM3517/05 device through a custom interface that
allows efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to
multiplex and control interrupts.
6.6.7.1
EMAC Electrical Data/ Timing
The following tables assume testing over the recommended operating conditions.
Table 6-112. RMII Input Timing Requirements
NO.
1.8V, 3.3V
PARAMETER
fc(REFCLK)
Frequency, REF_CLK
MIN
TYP
MAX
50
UNIT
MHz
ft (REFCLK)
Frequency stability, REF_CLK
1
tc(REFCLK)
Cycle Time, REF_CLK
+/-50
2
tw(REFCLKH)
Pulse Width, REF_CLK High
7
13
ns
3
tw(REFCLKL)
Pulse Width, REF_CLK Low
7
13
ns
6
tsu(RXD-REFCLK)
Input Setup Time, RXD Valid before REF_CLK
High
4
ns
7
th(REFCLK-RXD)
Input Hold Time, RXD Valid after REF_CLK High
2
ns
8
tsu(CRSDV-REFCLK)
Input Setup Time, CRSDV Valid before
REF_CLK High
4
ns
9
th(REFCLK-CRSDV)
Input Hold Time, CRSDV Valid after REF_CLK
High
2
ns
10
tsu(RXER-REFCLK)
Input Setup Time, RXER Valid before REF_CLK
High
4
ns
11
th(REFCLKR-RXER)
Input Hold Time, RXER Valid after REF_CLK
High
2
ns
20
ppm
ns
Table 6-113. RMII Timing Conditions
TIMING CONDITION PARAMETER
Input Conditions
1.8V, 3.3V
UNIT
MIN
MAX
tR
Input signal rise time
1
5
ns
tF
Input signal fall time
1
5
ns
5.5
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-114. RMII Output Switching Characteristics
NO.
186
PARAMETER
1.8V, 3.3V
MIN
TYP
MAX
UNIT
4
td(REFCLK-TXD)
Output Delay Time, REF_CLK High to TXD Valid
2.5
13
ns
5
td(REFCLK-TXEN)
Output Delay Time, REF_CLK High to TXEN
Valid
2.5
13
ns
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
1
2
3
REF_CLK
5
5
TXEN
4
TXD[1:0]
6
7
RXD[1:0]
8
9
CRS_DV
10
11
RXER_IN
SPRS550-004
Figure 6-52. RMII Timing Diagram
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
187
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.6.8
www.ti.com
Management Data Input/Output (MDIO)
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to
enumerate all PHY devices in the system.
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to
interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO
module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the
negotiation results, and configure required parameters in the EMAC module for correct operation. The
module is designed to allow almost transparent operation of the MDIO interface, with very little
maintenance from the core processor. Only one PHY may be connected at any given time.
6.6.8.1
Management Data Input/Output (MDIO) Electrical Data/Timing
Table 6-115. Timing Requirements for MDIO Input (see Figure 6-53 and Figure 6-54)
No.
PARAMETER
MIN
MAX
UNIT
1
tc(MD_CLK)
Cycle time, MD_CLK
400
ns
4
tsu(MDIO-MDCLKH)
Setup time, MDIO data input valid before MD_CLK high
20
ns
5
th(MDCLKH-MDIO)
Hold time, MDIO data input valid after MDCLK high
0
ns
1
MD_CLK
4
5
MDIO_D
(input)
Figure 6-53. MDIO Input Timing
Table 6-116. Switching Characteristics Over Recommended Operating Conditions for MDIO Output
(see Figure 6-54)
No.
7
PARAMETER
td(MDCLKL-MDIO)
Delay time, MDCLK low to MDIO data output valid
MIN
MAX
UNIT
0
100
ns
1
MD_CLK
7
MDIO_D
(output)
Figure 6-54. MDIO Output Timing
6.6.9
Universal Asynchronous Receiver/Transmitter (UART)
The AM3517/05 has four UARTs (one with Infrared Data Association [IrDA] and Consumer Infrared [CIR]
modes).
188
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-117. Timing Requirements for UARTx Receive (1)
1.8V, 3.3V
NO.
(1)
MIN
MAX
UNIT
4
tw(URXDB)
Pulse duration, receive data bit (RXDn)
.96U
1.05U
ns
5
tw(URXSB)
Pulse duration, receive start bit
.96U
1.05U
ns
U = UART baud time = 1/programmed baud rate.
Table 6-118. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1)
NO.
1.8V, 3.3V
PARAMETER
MIN
UART0 Maximum programmable baud rate f(baud_15)
5
UART0 Maximum programmable baud rate f(baud_30)
0.23
UNIT
1
f(baud)
2
tw(UTXDB)
Pulse duration, transmit data bit, 15/30/100 pF
U-2
U+2
ns
3
tw(UTXSB)
Pulse duration, transmit start bit, 15/30/100 pF
U-2
U+2
ns
UART0 Maximum programmable baud rate f(baud_100)
(1)
MAX
mbps
0.115
U = UART baud time = 1/programmed baud rate.
3
2
UART_TXDn
Start
Bit
Data Bits
5
4
UART_RXDn
Start
Bit
Data Bits
Figure 6-55. UART Transmit/Receive Timing
6.6.9.1
UART IrDA Interface
The IrDA module can operate in three different modes:
• Slow infrared (SIR) (≤115.2 Kbits/s)
• Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s)
• Fast infrared (FIR) (4 Mbits/s)
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
189
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Pulse duration
90%
90%
50%
50%
10%
10%
tr
tf
030-118
Figure 6-56. UART IrDA Pulse Parameters
6.6.9.1.1 IrDA—Receive Mode
Table 6-119. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode
SIGNALING RATE
ELECTRICAL PULSE DURATION
MIN
NOMINAL
MAX
UNIT
SIR
2.4 Kbit/s
1.41
78.1
88.55
μs
9.6 Kbit/s
1.41
19.5
22.13
μs
19.2 Kbit/s
1.41
9.75
11.07
μs
38.4 Kbit/s
1.41
4.87
5.96
μs
57.6 Kbit/s
1.41
3.25
4.34
μs
115.2 Kbit/s
1.41
1.62
2.23
μs
MIR
0.576 Mbit/s
297.2
416
518.8
ns
1.152 Mbit/s
149.6
208
258.4
ns
4.0 Mbit/s (Single pulse)
67
125
164
ns
4.0 Mbit/s (Double pulse)
190
250
289
ns
FIR
Table 6-120. UART IrDA—Rise and Fall Time—Receive
Mode
190
PARAMETER
MAX
UNIT
tR
Rising time,
uart3_rx_irrx
200
ns
tF
Falling time,
uart3_rx_irrx
200
ns
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
6.6.9.1.2 IrDA—Transmit Mode
Table 6-121. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode
SIGNALING RATE
ELECTRICAL PULSE DURATION
MIN
NOMINAL
UNIT
MAX
SIR
2.4 Kbit/s
78.1
78.1
78.1
μs
9.6 Kbit/s
19.5
19.5
19.5
μs
19.2 Kbit/s
9.75
9.75
9.75
μs
38.4 Kbit/s
4.87
4.87
4.87
μs
57.6 Kbit/s
3.25
3.25
3.25
μs
115.2 Kbit/s
1.62
1.62
1.62
μs
0.576 Mbit/s
414
416
419
ns
1.152 Mbit/s
206
208
211
ns
4.0 Mbit/s (Single pulse)
123
125
128
ns
4.0 Mbit/s (Double pulse)
248
250
253
ns
MIR
FIR
6.6.10 HDQ / 1-Wire Interfaces
This module is intended to work with both the HDQ and the 1-Wire protocols. The protocols use a single
wire to communicate between the master and the slave. The protocols employ an asynchronous return to
1 mechanism where, after any command, the line is pulled high.
6.6.10.1 HDQ Protocol
Table 6-122 and Table 6-123 assume testing over the recommended operating conditions (see Figure 657 through Figure 6-60).
Table 6-122. HDQ Timing Requirements
PARAMETER
DESCRIPTION
MIN
tCYCD
Bit window
253
tHW1
Reads 1
tHW0
Reads 0
tRSPS
Command to host respond time (1)
(1)
MAX
UNIT
s
68
180
Defined by software.
Table 6-123. HDQ Switching Characteristics
PARAMETER
DESCRIPTION
tB
Break timing
MIN
TYP
tBR
Break recovery
63
tCYCH
Bit window
253
tDW1
Sends1 (write)
1.3
tDW0
Sends0 (write)
101
MAX
UNIT
193
tB
s
tBR
HDQ
030-095
Figure 6-57. HDQ Break (Reset) Timing
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
191
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
tCYCH
tHW0
tHW1
HDQ
030-096
Figure 6-58. HDQ Read Bit Timing (Data)
tCYCD
tDW0
tDW1
HDQ
030-097
Figure 6-59. HDQ Write Bit Timing (Command/Address or Data)
Command _byte_written
Data_byte_received
0_(LSB )
Break
1
tRSPS
6
1
7_(MSB)
0_(LSB)
6
HDQ
030-098
Figure 6-60. HDQ Communication Timing
6.6.10.2 1-Wire Protocol
Table 6-124 and Table 6-125 assume testing over the recommended operating conditions (see Figure 661 through Figure 6-63).
Table 6-124. 1-Wire Timing Requirements
PARAMETER
DESCRIPTION
tPDH
Presence pulse delay high
tPDL
Presence pulse delay low
tRDV + tREL
Read bit-zero time
MIN
MAX
UNIT
68
s
68 tPDH
102
Table 6-125. 1-Wire Switching Characteristics
PARAMETER
DESCRIPTION
tRSTL
Reset time low
MIN
TYP
484
tRSTH
Reset time high
484
tSLOT
Write bit cycle time
102
tLOW1
Write bit-one time
1.3
tLOW0
Write bit-zero time
101
tREC
Recovery time
134
tLOWR
Read bit strobe time
13
MAX
UNIT
s
tRSTH
1-WIRE
tRTSL
tPDH
tPDL
030-099
Figure 6-61. 1-Wire Break (Reset) Timing
192
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
tSLOT_and_ tREC
tRDV_and_ tREL
1-WIRE
tLOWR
030-100
Figure 6-62. 1-Wire Read Bit Timing (Data)
tSLOT_and_tREC
tLOW0
1-WIRE
tLOW1
030-101
Figure 6-63. 1-Wire Write Bit Timing (Command/Address or Data)
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
193
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6.6.11 I2C Interface
The multimaster I2C peripheral provides an interface between two or more devices via an I2C serial bus.
The I2C controller supports the multimaster mode which allows more than one device capable of
controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can
operate as either transmitter or receiver, according to the function of the device. In addition to being a
transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when
performing data transfers. This data transfer is carried out via two serial bidirectional wires:
• An SDA data line
• An SCL clock line
The following sections illustrate the data transfer is in master or slave configuration with 7-bit addressing
format. The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode
(up to 100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s) .
6.6.11.1 I2C Standard/Fast-Speed Mode
Table 6-126. I2C Standard/Fast-Speed Mode Timings
1.8V, 3.3-V
PARAMETER (1)
NO.
STANDARD
MODE
MIN
MAX
FAST MODE
MIN
MAX
fSCL
Clock Frequency, i2cX_scl
I1
tw(SCLH)
Pulse Duration, i2cX_scl high
I2
tw(SCLL)
Pulse Duration, i2cX_scl low
4.7
1.3
s
I3
tsu(SDAV-SCLH)
Setup time, i2cX_sda valid before i2cX_scl active level
250
100 (2)
ns
I4
th(SCLHSDAV)
Hold time, i2cX_sda valid after i2cX_scl active level
I5
tsu(SDAL-SCLH)
Setup time, i2cX_scl high after i2cX_sda low (for a
START (4) condition or a repeated START condition)
I6
th(SCLHSDAH)
I7
I8
(1)
(2)
(3)
(4)
194
100
UNIT
4
400
0.6
3.45 (3)
kHz
s
0.9 (3)
s
4.7
0.6
s
Hold time, i2cX_sda low level after i2cX_scl high level
(STOP condition)
4
0.6
s
th(SCLHRSTART)
Hold time, i2cX_sda low level after i2cX_scl high level (for
a repeated START condition)
4
0.6
s
tw(SDAH)
Pulse duration, i2cX_sda high between STOP and START
conditions
4.7
1.3
s
tR(SCL)
Rise time, i2cX_scl
1000
300
ns
tF(SCL)
Fall time, i2cX_scl
300
300
ns
tR(SDA)
Rise time, i2cX_sda
1000
300
ns
tF(SDA)
Fall time, i2cX_sda
300
300
ns
CB
Capacitive load for each bus line
60
60
pF
In i2cX, X is equal to 1, 2, or 3.
A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) 250 ns must then be
met. This is automatically the case if the device does not stretch the low period of the i2cx_scl. If such a device does stretch the low
period of the i2cx_scl, it must output the next data bit to the i2cx_sda line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns (according
to the standard-mode I2C-bus specification) before the i2cx_scl line is released.
The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl signal.
After this time, the first clock is generated.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
START REPEAT
START
START
STOP
i2cX_sda
I2
I6
I5
I1
I3
I4
I8
I6
I7
i2cX_scl
030-093
2
Figure 6-64. I C Standard/Fast Mode
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
195
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
6.6.11.2 I2C High-Speed Mode
Table 6-127. I2C High-Speed Mode Timings (1)
(2)
1.8V, 3.3V
NO.
PARAMETER
UNIT
MIN
I1
fSCL
Clock frequency, i2cX_scl
tw(SCLH)
Pulse duration, i2cX_scl high
MAX
3.4
MHz
60 (3)
I2
tw(SCLL)
Pulse duration, i2cX_scl low
I3
tsu(SDAV-SCLH)
Setup time, i2cX_sda valid before i2cX_scl active level
I4
th(SCLHSDAV)
Hold time, i2cX_sda valid after i2cX_scl active level
I5
tsu(SDAL-SCLH)
Setup time, i2cX_scl high after i2cX_sda low
(for a START (4) condition or a repeated START
condition)
160
s
I6
th(SCLHSDAH)
Hold time, i2cX_sda low level after i2cX_scl high level
(STOP condition)
160
s
I7
th(SCLHRSTART)
Hold time, i2cX_sda low level after i2cX_scl high level
(for a repeated START condition)
160
ns
tR(SCL)
Rise time, i2cX_scl
10
40
ns
tR(SCL)
Rise time, i2cX_scl after a repeated START condition
and after a bit acknowledge
10
80
ns
tF(SCL)
Fall time, i2cX_scl
10
40
ns
tR(SDA)
Rise time, i2cX_sda
10
80
ns
tF(SDA)
Fall time, i2cX_sda
10
80
ns
(1)
(2)
160
s
(3)
s
10
ns
70
s
In i2cX, X is equal to 1, 2, or 3.
The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to
bridge the undefined region of the falling edge of i2cx_scl.
HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(SCLL) > 2 tw(SCLH).
After this time, the first clock is generated.
(3)
(4)
START REPEAT
STOP
i2cX_sda
I5
I6
I1
I2
I3
I4
I7
i2cX_scl
030-094
2
Figure 6-65. I C High-Speed Mode(1) (2) (3)
(1) HS-mode master devices generate a serial clock signal with a high-to-low ratio of 1 to 2. tw(SCLL) > 2 x tw(SCLH).
(2) In i2cX, X is equal to 1, 2, or 3.
(3) After this time, the first clock is generated.
Table 6-128. Correspondence Standard vs. TI Timing References
STANDARD-I2C
AM3517/05
196
S/F Mode
HS Mode
fSCL
FSCL
FSCLH
I1
tw(SCLH)
THIGH
THIGH
I2
tw(SCLL)
TLOW
TLOW
I3
tsu(SDAV-SCLH)
TSU;DAT
TSU;DAT
I4
th(SCLH-SDAV)
TSU;DAT
TSU;DAT
I5
tsu(SDAL-SCLH)
TSU;STA
TSU;STA
I6
th(SCLH-SDAH)
THD;STA
THD;STA
I7
th(SCLH-RSTART)
TSU;STO
TSU;STO
I8
tw(SDAH)
TBUF
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.7
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Removable Media Interfaces
6.7.1
High-Speed Multimedia Memory Card (MMC) and Secure Digital IO Card (SDIO) Timing
The MMC/SDIO host controller provides an interface to high-speed and standard MMC, SD memory
cards, or SDIO cards. The application interface is responsible for managing transaction semantics. The
MMC/SDIO host controller deals with MMC/SDIO protocol at transmission level, packing data, adding
CRC, start/end bit, and checking for syntactical correctness.
There are three MMC interfaces on the AM3517/05:
• MMC/SD/SDIO Interface 1:
– 1.8-V/3.3-V support
– 8 bits
• MMC/SD/SDIO Interface 2:
– 1.8-V/3.3-V support
– 8 bits
– 4 bits with external transceiver allowing to support 1.8-V/3.3-V peripherals in 1.8-V mode operation.
Transceiver direction control signals are multiplexed with the upper four data bits.
• MMC/SD/SDIO Interface 3:
– 1.8-V/3.3-V support
– 8 bits
6.7.1.1
MMC/SD/SDIO in SD Identification Mode
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-129. MMC/SD/SDIO Timing Conditions SD Identification Mode
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
SD Identification Mode
Input Conditions
tr
Input signal rise time
10
ns
tf
Input signal fall time
10
ns
Output Conditions
CLOAD
Output load capacitance
30
pF
Table 6-130. MMC/SD/SDIO Timing Requirements SD Identification Mode (1)
NO.
PARAMETER
(2) (3) (4)
1.8V, 3.3V
MIN
UNIT
MAX
SD Identification Mode
MMC/SD/SDIO Interface 1
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk rising
clock edge
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk rising
clock edge
1249.2
ns
Setup time, mmc2_cmd valid before mmc2_clk rising
clock edge
1198.4
ns
MMC/SD/SDIO Interface 2
HSSD3/SD3
(1)
(2)
(3)
(4)
tsu(CMDV-CLKIH)
Timing parameters refer to output clock specified in Table 6-131.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-131.
Corresponding figures showing timing parameters are common with other interface modes. (See SD and HS SD modes).
For more information, see the AM35x ARM Microprocessor Technical Reference Manual (literature number SPRUGR0).
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
197
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-130. MMC/SD/SDIO Timing Requirements SD Identification Mode(1) (2)
NO.
PARAMETER
tsu(CLKIH-CMDIV)
(continued)
1.8V, 3.3V
MIN
HSSD4/SD4
(3)(4)
UNIT
MAX
Hold time, mmc2_cmd valid after mmc2_clk rising
clock edge
1249.2
ns
MMC/SD/SDIO Interface 3
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk rising
clock edge
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk rising
clock edge
1249.2
ns
Table 6-131. MMC/SD/SDIO Switching Characteristics SD Identification Mode (1) (2)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
SD Identification Mode
HSSD1/SD1
tc(clk)
Cycle time, output clk period
2500
(3)
*PO
(4)
ns
HSSD2/SD2
tW(clkH)
Typical pulse duration, output clk high
X
HSSD2/SD2
tW(clkL)
Typical pulse duration, output clk low
Y (5)*PO (4)
ns
tdc(clk)
Duty cycle error, output clk
125
ns
tj(clk)
Jitter standard deviation, output clk
200
ps
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to mmc1_cmd
transition
2492.7
ns
ns
MMC/SD/SDIO Interface 1
HSSD5/SD5
6.3
MMC/SD/SDIO Interface 2
HSSD5/SD5
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to mmc2_cmd
transition
2492.7
ns
6.3
MMC/SD/SDIO Interface 3
HSSD5/SD5
(1)
(2)
(3)
(4)
(5)
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to mmc3_cmd
transition
2492.7
ns
6.3
Corresponding figures showing timing parameters are common with other interface modes (see SD and HS SD modes).
The jitter probability density can be approximated by a Gaussian function.
The X parameter is defined as shown below.
PO = output clk period in ns.
The Y parameter is defined as shown below.
Table 6-132. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunc[CLKD/2]+1)/CLKD
198
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-133. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunc[CLKD/2])/CLKD
6.7.1.2
MMC/SD/SDIO in High-Speed MMC Mode
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-134. MMC/SD/SDIO Timing Conditions High-Speed MMC Mode
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
High-Speed MMC Mode
Input Conditions
tr
Input signal rise time
0.19
3
ns
tf
Input signal fall time
0.19
3
ns
30
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-135. MMC/SD/SDIO Timing Requirements High-Speed MMC Mode (1) (2) (3) (4)
NO.
PARAMETER
1.8 V
MIN
3.3V
MAX
MIN
UNIT
MAX
High-Speed MMC Mode
MMC/SD/SDIO Interface 1
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
2.13
2.41
ns
MMC4 th(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
3.47
2.09
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
2.13
2.41
ns
MMC8 th(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
3.47
2.09
ns
MMC/SD/SDIO Interface 2
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk
rising clock edge
2.88
3.23
ns
MMC4 th(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
2.90
1.46
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk
rising clock edge
2.88
3.23
ns
MMC8 th(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
2.90
1.46
ns
MMC/SD/SDIO Interface 3
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk
rising clock edge
3.38
3.41
ns
MMC4 th(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
2.83
1.46
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk
rising clock edge
3.38
3.41
ns
MMC8 th(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
2.83
1.46
ns
(1)
(2)
(3)
(4)
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Timing parameters refer to output clock specified in Table 6-136.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-136.
Corresponding figures showing timing parameters are common with Standard MMC mode.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
199
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-136. MMC/SD/SDIO Switching Characteristics High-Speed MMC Mode (1) (2)
N O.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
High-Speed MMC Mode
MMC1
tc(clk)
Cycle time, output clk period
20.83
(3)
*PO
(4)
MMC2
tW(clkH)
Typical pulse duration, output clk high
X
MMC2
tW(clkL)
Typical pulse duration, output clk low
Y (5)*PO (4)
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation, output clk
ns
ns
ns
1041.67
ps
200
ps
MMC/SD/SDIO Interface 1
tc(clk)
Rise time, output clk
3
ns
tW(clkH)
Fall time, output clk
3
ns
tW(clkL)
Rise time, output data
3
ns
tdc(clk)
Fall time, output data
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to mmc1_cmd
transition
3.7
14.11
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to mmc1_datx
transition
3.7
16.50
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
3
ns
tW(clkH)
Fall time, output clk
3
ns
tW(clkL)
Rise time, output data
3
ns
tdc(clk)
Fall time, output data
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to mmc2_cmd
transition
3.7
14.11
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to mmc2_datx
transition
3.7
16.50
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
3
ns
tW(clkH)
Fall time, output clk
3
ns
tW(clkL)
Rise time, output data
3
ns
tdc(clk)
Fall time, output data
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to mmc3_cmd
transition
3.7
14.11
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to mmc3_datx
transition
3.7
14.11
ns
(1)
(2)
(3)
(4)
(5)
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
The jitter probability density can be approximated by a Gaussian function.
The X parameter is defined as shown below.
PO = output clk period in ns.
The Y parameter is defined as shown below.
Table 6-137. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunc[CLKD/2]+1)/CLKD
Table 6-138. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunc[CLKD/2])/CLKD
200
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
For details about clock division factor CLKD, see the AM35x ARM Microprocessor Technical Reference
Manual (literature number SPRUGR0).
6.7.1.3
MMC/SD/SDIO in Standard MMC Mode and MMC Identification Mode
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-139. MMC/SD/SDIO Timing Conditions Standard MMC Mode and MMC Identification Mode
TIMING CONDITION PARAMETER
1.8-V,3.3-V
MIN
UNIT
MAX
Standard MMC Mode and MMC Identification Mode
Input Conditions
tr
Input signal rise time
0.19
10
ns
tf
Input signal fall time
0.19
10
ns
Output Conditions
CLOAD
Output load capacitance
Copyright © 2009–2012, Texas Instruments Incorporated
30
pF
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
201
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-140. MMC/SD/SDIO Timing Requirements Standard MMC Mode and MMC Identification
Mode (1) (2) (3)
NO.
PARAMETER
1.8 V
MIN
3.3V
MAX
MIN
UNIT
MAX
Standard MMC Mode and MMC Identification Mode
MMC/SD/SDIO Interface 1
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
2.13
2.41
ns
MMC4 th(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
3.47
2.09
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
2.13
2.41
ns
MMC8 th(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
3.47
2.09
ns
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before
mmc2_clk rising clock edge
2.88
3.23
ns
MMC4 th(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
2.90
1.46
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before
mmc2_clk rising clock edge
2.88
3.23
ns
MMC8 th(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
2.90
1.46
ns
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before
mmc3_clk rising clock edge
3.38
3.41
ns
MMC4 th(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
2.83
1.46
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before
mmc3_clk rising clock edge
3.38
3.41
ns
MMC8 th(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
2.83
1.46
ns
MMC/SD/SDIO Interface 2
MMC/SD/SDIO Interface 3
(1)
(2)
(3)
Timing parameters are referred to output clock specified in Table 6-141.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-141.
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Table 6-141. MMC/SD/SDIO Switching Characteristics Standard MMC Mode and MMC Identification
Mode (1) (2)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
MMC Identification Mode
MMC1
tc(clk)
Cycle time
MMC2
tW(clkH)
Typical pulse duration, output clk high
X (3)*PO (4)
2500
ns
ns
MMC2
tW(clkL)
Typical pulse duration, output clk low
Y (5)*PO (4)
ns
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation
2604.17
ns
200
ps
2500
ns
Standard MMC Mode
MMC1
tc(clk)
Cycle time
(3)
(4)
ns
ns
MMC2
tW(clkH)
Typical pulse duration, output clk high
X *PO
MMC2
tW(clkL)
Typical pulse duration, output clk low
Y (5)*PO (4)
(1)
(2)
(3)
(4)
(5)
202
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
The jitter probability density can be approximated by a Gaussian function.
The X parameter is defined as shown below.
PO = output clk period in ns.
The Y parameter is defined as shown below.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-141. MMC/SD/SDIO Switching Characteristics Standard MMC Mode and MMC Identification
Mode(1)(2) (continued)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
tdc(clk)
Duty cycle error, output clk
2604.17
ps
tj(clk)
Jitter standard deviation
200
ps
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to mmc1_cmd
transition
4.3
47.78
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to mmc1_datx
transition
4.3
47.78
ns
MMC/SD/SDIO Interface 1
MMC/SD/SDIO Interface 2
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to mmc2_cmd
transition
4.3
47.78
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to mmc2_datx
transition
4.3
47.78
ns
MMC/SD/SDIO Interface 3
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to mmc3_cmd
transition
4.3
47.78
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to mmc3_datx
transition
4.3
47.78
ns
Table 6-142. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunc[CLKD/2]+1)/CLKD
Table 6-143. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunc[CLKD/2])/CLKD
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
203
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
For details about clock division factor CLKD, see the AM35x ARM Microprocessor Technical Reference
Manual (literature number SPRUGR0).
MMC1
MMC2
mmcx_clk
MMC3
MMC4
mmcx_cmd
MMC7
MMC8
mmcx_dat[3:0]
030-104
In mmcx, x is equal to 1, 2, or 3.
Figure 6-66. MMC/SD/SDIO High-Speed and Standard MMC Modes Data/Command Receive
MMC1
MMC2
mmcx_clk
MMC5
MMC5
mmcx_cmd
MMC6
MMC6
mmcx_dat[3:0]
030-105
In mmcx, x is equal to 1, 2, or 3.
Figure 6-67. MMC/SD/SDIO High-Speed and Standard MMC Modes Data/Command Transmit
6.7.1.4
MMC/SD/SDIO in High-Speed SD Mode
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-144. MMC/SD/SDIO Timing Conditions High-Speed SD Mode
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
High-Speed SD Mode
Input Conditions
tR
Input signal rise time
0.19
3
ns
tF
Input signal fall time
0.19
3
ns
Output Conditions
CLOAD
Output load capacitance
30
pF
Table 6-145. MMC/SD/SDIO Timing Requirements High-Speed SD Mode (1) (2) (3)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
High-Speed SD Mode
MMC/SD/SDIO Interface 1
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk rising
clock edge
5.61
ns
HSSD4
th(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk rising
clock edge
2.28
ns
(1)
(2)
(3)
204
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-146.
Timing Parameters refer to output clock specified in Table 6-146.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-145. MMC/SD/SDIO Timing Requirements High-Speed SD Mode(1)(2)(3) (continued)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk rising
clock edge
5.61
ns
HSSD8
th(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk rising
clock edge
2.28
ns
MMC/SD/SDIO Interface 2
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk rising
clock edge
5.61
ns
HSSD4
th(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk rising
clock edge
2.28
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk rising
clock edge
5.61
ns
HSSD8
th(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk rising
clock edge
2.28
ns
MMC/SD/SDIO Interface 3
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk rising
clock edge
5.61
ns
HSSD4
th(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk rising
clock edge
2.28
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk rising
clock edge
5.61
ns
HSSD8
th(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk rising
clock edge
2.28
ns
Table 6-146. MMC/SD/SDIO Switching Characteristics High-Speed SD Mode (1) (2)
NO.
PARAMETER
1.8 V, 3.3 V
MIN
UNIT
MAX
High-Speed SD Mode
HSSD1
tc(clk)
Cycle time
20.83
(3)
*PO
(4)
HSSD2
tW(clkH)
Typical pulse duration, output clk high
X
HSSD2
tW(clkL)
Typical pulse duration, output clk low
Y (5)*PO (4)
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation
ns
ns
ns
1041.67
ps
200
ps
MMC/SD/SDIO Interface 1
tr(clk)
Rise time, output clk
3
ns
tf(clkH)
Fall time, output clk
3
ns
tr(clkL)
Rise time, output data
3
ns
tf(clk)
Fall time, output data
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to mmc1_cmd
transition
3.72
14.11
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to mmc1_datx
transition
3.72
14.11
ns
MMC/SD/SDIO Interface 2
(1)
(2)
(3)
(4)
(5)
tr(clk)
Rise time, output clk
3
ns
tf(clkH)
Fall time, output clk
3
ns
tr(clkL)
Rise time, output data
3
ns
tf(clk)
Fall time, output data
3
ns
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
The jitter probability density can be approximated by a Gaussian function.
The X parameter is defined as shown in Table 6-147.
PO = output clk period in ns.
The Y parameter is defined as shown in Table 6-148.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
205
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-146. MMC/SD/SDIO Switching Characteristics High-Speed SD Mode(1)(2) (continued)
NO.
PARAMETER
1.8 V, 3.3 V
UNIT
MIN
MAX
HSSD5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to mmc2_cmd
transition
3.72
14.11
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to mmc2_datx
transition
3.72
14.11
ns
MMC/SD/SDIO Interface 3
tr(clk)
Rise time, output clk
3
ns
tf(clkH)
Fall time, output clk
3
ns
tr(clkL)
Rise time, output data
3
ns
tf(clk)
Fall time, output data
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to mmc3_cmd
transition
3.72
14.11
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to mmc3_datx
transition
3.72
14.11
ns
Table 6-147. X Parameters
CLKD
X
1 or Even
0.5
Odd
(trunc[CLKD/2]+1)/CLKD
Table 6-148. Y Parameters
CLKD
Y
1 or Even
0.5
Odd
(trunc[CLKD/2])/CLKD
For details about clock division factor CLKD, see the AM35x ARM Microprocessor Technical Reference
Manual (literature number SPRUGR0).
HSSD1
HSSD2
mmcx_clk
HSSD3
HSSD4
mmcx_cmd
HSSD7
HSSD8
mmcx_dat[3:0]
030-106
In mmcx, x is equal to 1, 2, or 3.
Figure 6-68. MMC/SD/SDIO High-Speed SD Mode Data/Command Receive
HSSD1
HSSD2
mmcx_clk
HSSD5
HSSD5
mmcx_cmd
HSSD6
HSSD6
mmcx_dat[3:0]
030-107
In mmcx, x is equal to 1, 2, or 3.
Figure 6-69. MMC/SD/SDIO High-Speed SD Mode Data/Command Transmit
206
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.7.1.5
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
MMC/SD/SDIO in Standard SD Mode
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-149. MMC/SD/SDIO Timing Conditions Standard SD Mode
TIMING CONDITION PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
Standard SD Mode
Input Conditions
tR
Input signal rise time
0.19
10
ns
tF
Input signal fall time
0.19
10
ns
Output Conditions
CLOAD
Output load capacitance
Copyright © 2009–2012, Texas Instruments Incorporated
30
pF
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
207
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-150. MMC/SD/SDIO Timing Requirements Standard SD Mode (1) (2) (3)
NO.
PARAMETER
1.8 V, 3.3V
MIN
UNIT
MAX
Standard SD Mode
MMC/SD/SDIO Interface 1
SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk rising clock
edge
6.23
ns
SD4
th(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk rising clock
edge
19.37
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk rising clock
edge
6.23
ns
SD8
th(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk rising clock
edge
19.37
ns
MMC/SD/SDIO Interface 2
SD3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk rising clock
edge
6.23
ns
SD4
th(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk rising clock
edge
19.37
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk rising clock
edge
6.23
ns
SD8
th(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk rising clock
edge
19.37
ns
MMC/SD/SDIO Interface 3
SD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk rising clock
edge
6.23
ns
SD4
th(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk rising clock
edge
19.37
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk rising clock
edge
6.23
ns
SD8
th(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk rising clock
edge
19.37
ns
(1)
(2)
(3)
Timing parameters refer to output clock specified in Table 6-151.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-151.
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Table 6-151. MMC/SD/SDIO Switching Characteristics Standard SD Mode (1) (2)
NO.
PARAMETER
1.8V, 3.3V
MIN
UNIT
MAX
Standard SD Mode
SD1
tc(clk)
Cycle time
SD2
tW(clkH)
Typical pulse duration, output clk high
X (3)*PO (4)
41.67
ns
ns
SD2
tW(clkL)
Typical pulse duration, output clk low
Y (5)*PO (4)
ns
tdc(clk)
Duty cycle error, output clk
2083.33
ps
tj(clk)
Jitter standard deviation
200
ps
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
MMC/SD/SDIO Interface 1
(1)
(2)
(3)
(4)
(5)
208
The jitter probability density can be approximated by a Gaussian function.
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
The X parameter is defined as shown in Table 6-152.
PO = output clk period in ns.
The Y parameter is defined as shown in Table 6-153.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Table 6-151. MMC/SD/SDIO Switching Characteristics Standard SD Mode(1)(2) (continued)
NO.
PARAMETER
1.8V, 3.3V
UNIT
MIN
MAX
SD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to mmc1_cmd
transition
6.13
35.53
ns
SD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to mmc1_datx
transition
6.13
35.53
ns
MMC/SD/SDIO Interface 2
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to mmc2_cmd
transition
6.13
35.53
ns
SD6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to mmc2_datx
transition
6.13
35.53
ns
MMC/SD/SDIO Interface 3
tr(clk)
Rise time, output clk
10
ns
tf(clkH)
Fall time, output clk
10
ns
tr(clkL)
Rise time, output data
10
ns
tf(clk)
Fall time, output data
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to mmc3_cmd
transition
6.13
35.53
ns
SD6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to mmc3_datx
transition
6.13
35.53
ns
Table 6-152. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunc[CLKD/2]+1)/CLKD
Table 6-153. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunc[CLKD/2])/CLKD
For details about clock division factor CLKD, see the AM35x ARM Microprocessor Technical Reference
Manual (literature number SPRUGR0).
SD1
SD2
mmcx_clk
SD3
SD4
mmcx_cmd
SD7
SD8
mmcx_dat[3:0]
030-108
In mmcx, x is equal to 1, 2, or 3.
Figure 6-70. MMC/SD/SDIO Standard SD Mode Data/Command Receive
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
209
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
SD1
SD2
mmcx_clk
SD5
SD5
mmcx_cmd
SD6
SD6
mmcx_dat[3:0]
030-109
In mmcx, x is equal to 1, 2, or 3.
Figure 6-71. MMC/SD/SDIO Standard SD Mode Data/Command Transmit
210
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
6.8
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Test Interfaces
The emulation and trace interfaces allow tracing activities of the following CPUs:
• ARM CortexTM-A8 through an Embedded Trace Macro-cell (ETM11) dedicated to enable real-time
trace of the ARM subsystem operations.
All processors can be emulated via JTAG ports.
6.8.1
Embedded Trace Macro Interface (ETM)
The following tables assume testing over the recommended operating conditions.
Table 6-154. Embedded Trace Macro Interface Switching Characteristics
NO.
PARAMETER
MIN
MAX
UNIT
166
MHz
f
1/tc(CLK)
Frequency, etk_clk
ETM0
tc(CLK)
Cycle time
6.02
ETM1
tW(CLK)
Clock pulse width, etk_clk
3.01
ETM2
td(CLK-CTL)
Delay time, etk_clk clock edge to etk_ctl transition
-0.5
0.5
ns
ETM3
td(CLK-D)
Delay time, etk_clk clock high to etk_d[15:0] transition
-0.5
0.5
ns
ns
ns
ETM0
ETM1
etk_clk
ETM2
ETM2
etk_ctl
ETM3
ETM3
etk_d[15:0]
030-110
Figure 6-72. Embedded Trace Macro Interface
6.8.2
JTAG Interfaces
AM3517/05 JTAG TAP controller handles standard IEEE JTAG interfaces. The following sections define
the timing requirements for several tools used to test the AM3517/05 processors as:
• Free running clock tool, like XDS560 and XDS510 tools
• Adaptive clock tool, like RealView ICE tool and Lauterbach tool
6.8.2.1
JTAG Free Running Clock Mode
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-155. JTAG Timing Conditions Free Running Clock Mode
TIMING CONDITION PARAMETER
1.8 V
3.3 V
MAX
MAX
UNIT
Input Conditions
tR
Input signal rise time
5
3
ns
tF
Input signal fall time
5
3
ns
Output Conditions
CLOAD
Output load capacitance
Copyright © 2009–2012, Texas Instruments Incorporated
30
pF
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
211
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-156. JTAG Timing Requirements Free Running Clock Mode (1) (2) (3)
NO.
PARAMETER
1.8V
MIN
3.3V
MAX
MIN
MAX
UNIT
JT4
tc(tck)
Cycle time
20
20
ns
JT5
tw(tckL)
Typical pulse duration, jtag_tck low
10
10
ns
JT6
tw(tckH)
Typical pulse duration, jtag_tck high
10
tdc(tck)
Duty cycle error, jtag_tck
-1250
1250
-1250
1250
ps
tj(tck)
Cycle jitter
-1250
1250
-1250
1250
ps
JT7
tsu(tdiV-rtckH)
Setup time, jtag_tdi valid before jtag_rtck high
1.8
3.8
ns
JT8
th(tdiV-rtckH)
Hold time, jtag_tdi valid after jtag_rtck high
0.7
2.7
ns
JT9
tsu(tmsV-rtckH)
Setup time, jtag_tms valid before jtag_rtck high
1.8
3.8
ns
JT10
th(tmsV-rtckH)
Hold time, jtag_tms valid after jtag_rtck high
0.7
2.7
ns
JT12
tsu(emuxV-rtckH)
Setup time, jtag_emux
14.6
14.6
ns
JT13
th(emuxV-rtckH)
Hold time,jtag_emux
2
2
ns
(1)
(2)
(3)
10
ns
Maximum cycle jitter supported by jtag _tck input clock.
x = 0 to 1
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Table 6-157. JTAG Switching Characteristics Free Running Clock Mode (1) (2)
1.8 V
NO.
PARAMETER
(1)
JT1
tc(rtck)
Cycle time
JT2
tw(rtckL)
Typical pulse duration, jtag_rtck low
JT3
tw(rtckH)
Typical pulse duration, jtag_rtck high
tdc(rtck)
Duty cycle error, jtag_rtck
tj(rtck)
Jitter standard deviation (2), jtag_rtck
tR(rtck)
Rise time, jtag_rtck
tF(rtck)
Fall time, jtag_rtck
JT11 td(rtckL-tdoV)
212
Delay time, jtag_rtck low to jtag_tdo valid
tR(tdo)
Rise time, jtag_tdo
tF(tdo)
Fall time, jtag_tdo
JT14 td(rtckH-emuxV)
(1)
(2)
, jtag_rtck period
Delay time, jtag_rtck high to ,jtag_emux
MIN
3.3 V
MAX
MIN
MAX
UNIT
20
20
ns
10
10
ns
10
-1250
10
1250
-1250
ps
33.33
33.33
ps
4
4
ns
4
ns
8
ns
4
ns
4
-5.8
5.8
-8
4
4
2.7
ns
1250
15.1
2.7
4
ns
15.1
ns
tR(emux)
Rise time, jtag_emux
6
6
ns
tF(emux)
Fall time, jtag_emux
6
6
ns
Related with the jtag_rtck maximum frequency.
The jitter probability density can be approximated by a Gaussian function.
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
JT4
JT5
JT6
jtag_tck
JT1
JT2
JT3
jtag_rtck
JT7
JT8
JT9
JT10
jtag_tdi
jtag_tms
JT12
JT13
jtag_emux(IN)
JT11
jtag_tdo
JT14
jtag_emux(OUT)
030-113
In jtag_emux, x is equal to 0 to 1.
Figure 6-73. JTAG Interface Timing Free Running Clock Mode
6.8.2.2
JTAG Adaptive Clock Mode
The following tables assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-158. JTAG Timing Conditions Adaptive Clock Mode
TIMING CONDITION PARAMETER
1.8 V
3.3 V
MAX
MAX
UNIT
Input Conditions
tR
Input signal rise time
5
3
ns
tF
Input signal fall time
5
3
ns
30
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-159. JTAG Timing Requirements Adaptive Clock Mode (1) (2)
1.8 V
NO.
PARAMETER
MIN
3.3 V
MAX
MIN
MAX
UNIT
JA4
tc(tck)
Cycle time
20
20
ns
JA5
tw(tckL)
Typical pulse duration, jtag_tck low
10
10
ns
JA6
tw(tckH)
Typical pulse duration, jtag_tck high
tdc(lclk)
Duty cycle error, jtag_tck
-2500
2500
-2500
2500
ps
tj(lclk)
Cycle jitter
-1500
1500
-1500
1500
ps
JA7
tsu(tdiV-tckH)
Setup time, jtag_tdi valid before jtag_tck high
13.8
13.8
ns
JA8
th(tdiV-tckH)
Hold time, jtag_tdi valid after jtag_tck high
13.8
13.8
ns
JA9
tsu(tmsV-tckH)
Setup time, jtag_tms valid before jtag_tck high
13.8
13.8
ns
th(tmsV-tckH)
Hold time, jtag_tms valid after jtag_tck high
13.8
13.8
ns
JA10
(1)
(2)
10
10
ns
Maximum cycle jitter supported by jtag _tck input clock.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Copyright © 2009–2012, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
213
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
Table 6-160. JTAG Switching Characteristics Adaptive Clock Mode (1)
1.8 V
PARAMETER
JA1
tc(rtck)
Cycle time
20
20
ns
JA2
tw(rtckL)
Typical pulse duration, jtag_rtck low
10
10
ns
JA3
tw(rtckH)
Typical pulse duration, jtag_rtck high
tdc(rtck)
Duty cycle error, jtag_rtck
tj(rtck)
Jitter standard deviation
tR(rtck)
tF(rtck)
td(rtckL-tdoV)
Delay time, jtag_rtck low to jtag_tdo valid
tR(tdo)
Rise time, jtag_tdo,
tF(tdo)
Fall time, jtag_tdo
JA11
(1)
MIN
3.3 V
NO.
MAX
MIN
10
-2500
MAX
10
-2500
ns
2500
ps
33.33
33.33
ps
Rise time, jtag_rtck
4
4
ns
Fall time, jtag_rtck
4
4
ns
14.6
ns
4
4
ns
4
4
ns
-14.6
2500
UNIT
14.6
-14.6
The jitter probability density can be approximated by a Gaussian function.
JA4
JA5
JA6
jtag_tck
JA7
JA8
JA9
JA10
jtag_tdi
jtag_tms
JA1
JA2
JA3
jtag_rtck
JA11
jtag_tdo
030-114
Figure 6-74. JTAG Interface Timing Adaptive Clock Mode
214
Timing Requirements and Switching Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
7 Package Characteristics
7.1
Package Thermal Resistance
Table 7-1 provides the thermal resistance characteristics for the recommended package types used on the
AM3517/05.
Table 7-1. AM3517/05 Thermal Resistance Characteristics (1)
PACKAGE
POWER (W)
RJA(C/W)
RJB(C/W)
RJC(C/W)
BOARD TYPE
Figure 6-31
ZCN Pkg.
1.6
24.58
10.81
-
2S2P
ZER Pkg.
1.6
15.8
6
6
2S2P
(1)
RJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, C/W
RJB (Theta-JB) = Thermal Resistance Junction-to-Board, C/W
RJC (Theta-JC) = Thermal Resistance Junction-to-Case, C/W
7.2
7.2.1
Device Support
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
AM3517/05 microprocessors and support tools. Each device has one of three prefixes: X, P, or null (no
prefix). Texas Instruments recommends two of three possible prefix designators for its support tools:
TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering
prototypes (TMDX) through fully qualified production devices/tools (TMDS).
Device development evolutionary flow:
X
Experimental device that is not necessarily representative of the final devices electrical
specifications and may not use production assembly flow. (TMX definition)
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet
final electrical specifications. (TMP definition)
null
Production version of the silicon die that is fully qualified. (TMS definition)
Support tool development evolutionary flow:
TMDX
Development support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
Developmental product is intended for internal evaluation purposes.
Production devices and TMDS development-support tools have been characterized fully, and the quality
and reliability of the device have been demonstrated fully. TIs standard warranty applies.
Predictions show that prototype devices (X or P), have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
For additional description of the device nomenclature markings, see the AM35x ARM Microprocessor
Silicon Errata (literature number SPRZ306).
Package Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
215
AM3517, AM3505
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
www.ti.com
X
AM3517
A
ZCN
PREFIX
X
= Experimental Device
P
= Prototype Device
blank = Production Device
( )
( )
blank = no security
C
= crypto enabled
blank = commercial temperature
A
= extended temperature
PACKAGE TYPE
ZCN = 491-pin sPBGA
ZER = 484-pin sPBGA
DEVICE
SILICON REVISION
Figure 7-1. Device Nomenclature
7.2.2
Documentation Support
7.2.2.1
Related Documentation from Texas Instruments
The following documents describe the AM3517/05 device. Copies of these documents are available on the
Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.
The current documentation that describes the AM3517/05 ARM microprocessor, related peripherals, and
other technical collateral, is available in the product folder at: www.ti.com.
SPRUGR0
7.2.2.2
AM35x ARM Microprocessor Technical Reference Manual. Collection of documents
providing detailed information on the Sitara™ architecture including power, reset, and clock
control, interrupts, memory map, and switch fabric interconnect. Detailed information on the
microprocessor unit (MPU) subsystem as well a functional description of the peripherals
supported on AM3517/05 devices is also included.
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and
help solve problems with fellow engineers.
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help
developers get started with Embedded Processors from Texas Instruments and to foster
innovation and growth of general knowledge about the hardware and software surrounding
these devices.
7.2.2.3
Related Documentation from Other Sources
The following documents are related to the AM3517/05 device. Copies of these documents can be
obtained directly from the internet or from your Texas Instruments representative.
Cortex-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8
processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com. See the
AM35x ARM Microprocessor Silicon Errata (literature number SPRZ306) to determine the revision of the
Cortex-A8 core used on your device.
ARM Core Cortex™-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the different
revisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. See the
AM35x ARM Microprocessor Silicon Errata (literature number SPRZ306) to determine the revision of the
Cortex-A8 core used on your device.
216
Package Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
AM3517, AM3505
www.ti.com
7.3
SPRS550D – OCTOBER 2009 – REVISED MARCH 2012
Mechanical Data
The following packaging information reflects the most current data available for the designated device(s).
This data is subject to change without notice and without revision of this document.
Package Characteristics
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3517 AM3505
217
PACKAGE OPTION ADDENDUM
www.ti.com
7-Sep-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
(Requires Login)
AM3505AZCN
ACTIVE
NFBGA
ZCN
491
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3505AZCNA
ACTIVE
NFBGA
ZCN
491
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3505AZCNAC
ACTIVE
NFBGA
ZCN
491
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3505AZCNC
ACTIVE
NFBGA
ZCN
491
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3505AZER
ACTIVE
BGA
ZER
484
60
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3505AZERA
ACTIVE
BGA
ZER
484
60
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3505AZERAC
ACTIVE
BGA
ZER
484
60
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3505AZERC
ACTIVE
BGA
ZER
484
60
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3517AZCN
ACTIVE
NFBGA
ZCN
491
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3517AZCNA
ACTIVE
NFBGA
ZCN
491
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3517AZCNAC
ACTIVE
NFBGA
ZCN
491
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3517AZCNC
ACTIVE
NFBGA
ZCN
491
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3517AZER
ACTIVE
BGA
ZER
484
60
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3517AZERA
ACTIVE
BGA
ZER
484
60
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3517AZERAC
ACTIVE
BGA
ZER
484
60
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
AM3517AZERC
ACTIVE
BGA
ZER
484
60
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
XAM3517AZCN
OBSOLETE
NFBGA
ZCN
491
TBD
Call TI
Addendum-Page 1
Samples
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
7-Sep-2012
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated