ELPIDA HB52RF648DC-B

HB52RF648DC-B, HB52RD648DC-B
512 MB Unbuffered SDRAM S.O.DIMM
64-Mword × 64-bit, 133/100 MHz Memory Bus, 2-Bank Module
(16 pcs of 32 M × 8 components)
PC133/100 SDRAM
E0083H40 (Ver. 4.0)
Nov. 16, 2001 (K) Japan
Description
The HB52RF648DC, HB52RD648DC are a 32M × 64 × 2 banks Synchronous Dynamic RAM Small Outline
Dual In-line Memory Module (S.O.DIMM), mounted 16 pieces of 256-Mbit SDRAM (HM5225805BTB)
sealed in TCP package and 1 piece of serial EEPROM (2-kbit) for Presence Detect (PD). An outline of the
products is 144-pin Zig Zag Dual tabs socket type compact and thin package. Therefore, they make high
density mounting possible without surface mount technology. They provide common data inputs and outputs.
Decoupling capacitors are mounted beside TCP on the module board.
Note: Do not push the cover or drop the modules in order to protect from mechanical defects, which would
be electrical defects.
Features
• Fully compatible with: JEDEC standard outline 8-byte S.O.DIMM
• 144-pin Zig Zag Dual tabs socket type (dual lead out)
 Outline: 67.60 mm (Length) × 31.75 mm (Height) × 3.80 mm (Thickness)
 Lead pitch: 0.80 mm
• 3.3 V power supply
• Clock frequency: 133/100 MHz (max)
• LVTTL interface
• Data bus width: × 64 Non parity
• Single pulsed RAS
• 4 Banks can operates simultaneously and independently
• Burst read/write operation and burst read/single write operation capability
• Programmable burst length : 1/2/4/8
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.
HB52RF648DC-B, HB52RD648DC-B
• 2 variations of burst sequence
 Sequential
 Interleave
• Programmable CE latency: 2/3
• Byte control by DQMB
• Refresh cycles: 8192 refresh cycles/64 ms
• 2 variations of refresh
 Auto refresh
 Self refresh
• Low self refresh current: HB52RF648DC-xxBL (L-version)
: HB52RD648DC-xxBL (L-version)
Ordering Information
Frequency
CE latency
Package
HB52RF648DC-75B*
HB52RF648DC-75BL*1
133 MHz
133 MHz
3
3
Small outline DIMM (144-pin) Gold
HB52RD648DC-A6B*1
HB52RD648DC-A6BL*1
HB52RD648DC-B6B*2
HB52RD648DC-B6BL*2
100 MHz
100 MHz
100 MHz
100 MHz
2/3
2/3
3
3
Type No.
1
Notes: 1. 100 MHz operation at CE latency = 2.
2. 66 MHz operation at CE latency = 2.
Data Sheet E0083H40
2
Contact pad
HB52RF648DC-B, HB52RD648DC-B
Pin Arrangement
Front Side
1pin
59pin
61pin
143pin
2pin
60pin
62pin
144pin
Back Side
Front side
Back side
Pin No.
Signal name Pin No.
Signal name Pin No.
Signal name Pin No.
Signal name
1
VSS
73
NC
2
VSS
74
CK1
3
DQ0
75
VSS
4
DQ32
76
VSS
5
DQ1
77
NC
6
DQ33
78
NC
7
DQ2
79
NC
8
DQ34
80
NC
9
DQ3
81
VCC
10
DQ35
82
VCC
11
VCC
83
DQ16
12
VCC
84
DQ48
13
DQ4
85
DQ17
14
DQ36
86
DQ49
15
DQ5
87
DQ18
16
DQ37
88
DQ50
17
DQ6
89
DQ19
18
DQ38
90
DQ51
19
DQ7
91
VSS
20
DQ39
92
VSS
21
VSS
93
DQ20
22
VSS
94
DQ52
23
DQMB0
95
DQ21
24
DQMB4
96
DQ53
25
DQMB1
97
DQ22
26
DQMB5
98
DQ54
27
VCC
99
DQ23
28
VCC
100
DQ55
29
A0
101
VCC
30
A3
102
VCC
31
A1
103
A6
32
A4
104
A7
33
A2
105
A8
34
A5
106
BA0
35
VSS
107
VSS
36
VSS
108
VSS
37
DQ8
109
A9
38
DQ40
110
BA1
39
DQ9
111
A10 (AP)
40
DQ41
112
A11
Data Sheet E0083H40
3
HB52RF648DC-B, HB52RD648DC-B
Front side
Back side
Pin No.
Signal name Pin No.
Signal name Pin No.
Signal name Pin No.
Signal name
41
DQ10
113
VCC
42
DQ42
114
VCC
43
DQ11
115
DQMB2
44
DQ43
116
DQMB6
45
VCC
117
DQMB3
46
VCC
118
DQMB7
47
DQ12
119
VSS
48
DQ44
120
VSS
49
DQ13
121
DQ24
50
DQ45
122
DQ56
51
DQ14
123
DQ25
52
DQ46
124
DQ57
53
DQ15
125
DQ26
54
DQ47
126
DQ58
55
VSS
127
DQ27
56
VSS
128
DQ59
57
NC
129
VCC
58
NC
130
VCC
59
NC
131
DQ28
60
NC
132
DQ60
61
CK0
133
DQ29
62
CKE0
134
DQ61
63
VCC
135
DQ30
64
VCC
136
DQ62
65
RE
137
DQ31
66
CE
138
DQ63
67
W
139
VSS
68
CKE1
140
VSS
69
S0
141
SDA
70
A12
142
SCL
71
S1
143
VCC
72
NC
144
VCC
Data Sheet E0083H40
4
HB52RF648DC-B, HB52RD648DC-B
Pin Description
Pin name
Function
A0 to A12
Address input
 Row address A0 to A12
 Column address A0 to A9
BA0/BA1
Bank select address
DQ0 to DQ63
Data-input/output
S0/S1
Chip select
RE
Row address asserted bank enable
CE
Column address asserted
W
Write enable
DQMB0 to DQMB7
Byte input/output mask
CK0/CK1
Clock input
CKE0/CKE1
Clock enable
SDA
Data-input/output for serial PD
SCL
Clock input for serial PD
VCC
Power supply
VSS
Ground
NC
No connection
Data Sheet E0083H40
5
HB52RF648DC-B, HB52RD648DC-B
Serial PD Matrix*1
Byte No. Function described
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
0
Number of bytes used by
module manufacturer
1
0
0
0
0
0
0
0
80
128
1
Total SPD memory size
0
0
0
0
1
0
0
0
08
256 byte
2
Memory type
0
0
0
0
0
1
0
0
04
SDRAM
3
Number of row addresses bits 0
0
0
0
1
1
0
1
0D
13
4
Number of column addresses
bits
0
0
0
0
1
0
1
0
0A
10
5
Number of banks
0
0
0
0
0
0
1
0
02
2
6
Module data width
0
1
0
0
0
0
0
0
40
64
7
Module data width (continued) 0
0
0
0
0
0
0
0
00
0 (+)
8
Module interface signal levels 0
0
0
0
0
0
0
1
01
LVTTL
9
0
1
1
1
0
1
0
1
75
CL = 3
1
0
1
0
0
0
0
0
A0
0
1
0
1
0
1
0
0
54
0
1
1
0
0
0
0
0
60
SDRAM cycle time
(highest CE latency)
(-75) 7.5 ns
(-A6/B6) 10 ns
10
SDRAM access from Clock
(highest CE latency)
(-75) 5.4 ns
(-A6/B6) 6 ns
11
Module configuration type
0
0
0
0
0
0
0
0
00
Non parity
12
Refresh rate/type
1
0
0
0
0
0
1
0
82
Normal
(7.8125 µs)
Self refresh
13
SDRAM width
0
0
0
0
1
0
0
0
08
×8
14
Error checking SDRAM width
0
0
0
0
0
0
0
0
00
—
15
0
SDRAM device attributes:
minimum clock delay for backto-back random column
addresses
0
0
0
0
0
0
1
01
1 CLK
16
SDRAM device attributes:
Burst lengths supported
0
0
0
0
1
1
1
1
0F
1, 2, 4, 8
17
SDRAM device attributes:
number of banks on SDRAM
device
0
0
0
0
0
1
0
0
04
4
18
SDRAM device attributes:
CE latency
0
0
0
0
0
1
1
0
06
2, 3
19
SDRAM device attributes:
S latency
0
0
0
0
0
0
0
1
01
0
Data Sheet E0083H40
6
HB52RF648DC-B, HB52RD648DC-B
Byte No. Function described
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
20
SDRAM device attributes:
W latency
0
0
0
0
0
0
0
1
01
0
21
SDRAM module attributes
0
0
0
0
0
0
0
0
00
Non buffer
22
SDRAM device attributes:
General
0
0
0
0
1
1
1
0
0E
VCC ± 10%
23
SDRAM cycle time
(2nd highest CE latency)
(-75/A6)10 ns
1
0
1
0
0
0
0
0
A0
CL = 2
1
1
1
1
0
0
0
0
F0
0
1
1
0
0
0
0
0
60
1
0
0
1
0
0
0
0
90
(-B6) 15 ns
24
SDRAM access from Clock
(2nd highest CE latency)
(-75/A6) 6 ns
(-B6) 9 ns
25
SDRAM cycle time
(3rd highest CE latency)
Undefined
0
0
0
0
0
0
0
0
00
26
SDRAM access from Clock
(3rd highest CE latency)
Undefined
0
0
0
0
0
0
0
0
00
27
Minimum row precharge time
0
0
0
1
0
1
0
0
14
20 ns
28
Row active to row active min
(-75)
0
0
0
0
1
1
1
1
0F
15 ns
0
0
0
1
0
1
0
0
14
20 ns
(-A6/B6)
29
RE to CE delay min
0
0
0
1
0
1
0
0
14
20 ns
30
Minimum RE pulse width
(-75)
0
0
1
0
1
1
0
1
2D
45 ns
0
0
1
1
0
0
1
0
32
50 ns
(-A6/B6)
31
Density of each bank on
module
0
1
0
0
0
0
0
0
40
256M byte
32
Address and command signal 0
input setup time
(-75)
0
0
1
0
1
0
1
15
1.5 ns
0
0
1
0
0
0
0
0
20
2.0 ns
Address and command signal 0
input hold time
(-75)
0
0
0
1
0
0
0
08
0.8 ns
0
0
0
1
0
0
0
0
10
1.0 ns
0
0
0
1
0
1
0
1
15
1.5 ns
0
0
1
0
0
0
0
0
20
2.0 ns
(-A6/B6)
33
(-A6/B6)
34
Data signal input setup time
(-75)
(-A6/B6)
Data Sheet E0083H40
7
HB52RF648DC-B, HB52RD648DC-B
Byte No. Function described
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
35
0
0
0
0
1
0
0
0
08
0.8 ns
0
0
0
1
0
0
0
0
10
1.0 ns
36 to 61 Superset information
0
0
0
0
0
0
0
0
00
Future use
62
SPD data revision code
0
0
0
1
0
0
1
0
12
Rev. 1.2B
63
Checksum for bytes 0 to 62
(-75)
0
1
0
1
0
0
1
1
53
83
(-A6)
1
0
1
1
1
0
1
0
BA
186
(-B6)
0
0
1
1
1
0
1
0
3A
58
Manuf act urer’s JEDEC ID c ode
0
0
0
0
0
1
1
1
07
HITACHI
65 to 71 Manuf act urer’s JEDEC ID c ode
0
0
0
0
0
0
0
0
00
72
Manufacturing location
×
×
×
×
×
×
×
×
××
* 2 (ASCII8bit code)
73
Manufacturer’s part number
0
1
0
0
1
0
0
0
48
H
74
Manufacturer’s part number
0
1
0
0
0
0
1
0
42
B
75
Manufacturer’s part number
0
0
1
1
0
1
0
1
35
5
76
Manufacturer’s part number
0
0
1
1
0
0
1
0
32
2
77
Manufacturer’s part number
0
1
0
1
0
0
1
0
52
R
78
Manufacturer’s part number
(-75)
0
1
0
0
0
1
1
0
46
F
0
1
0
0
0
1
0
0
44
D
Data signal input hold time
(-75)
(-A6/B6)
64
(-A6/B6)
79
Manufacturer’s part number
0
0
1
1
0
1
1
0
36
6
80
Manufacturer’s part number
0
0
1
1
0
1
0
0
34
4
81
Manufacturer’s part number
0
0
1
1
1
0
0
0
38
8
82
Manufacturer’s part number
0
1
0
0
0
1
0
0
44
D
83
Manufacturer’s part number
0
1
0
0
0
0
1
1
43
C
84
Manufacturer’s part number
0
0
1
0
1
1
0
1
2D

85
Manufacturer’s part number
(-75)
0
0
1
1
0
1
1
1
37
7
(-A6)
0
1
0
0
0
0
0
1
41
A
(-B6)
0
1
0
0
0
0
1
0
42
B
Data Sheet E0083H40
8
HB52RF648DC-B, HB52RD648DC-B
Byte No. Function described
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
86
0
0
1
1
0
1
0
1
35
5
0
0
1
1
0
1
1
0
36
6
Manufacturer’s part number
(-75)
(-A6/B6)
87
Manufacturer’s part number
0
1
0
0
0
0
1
0
42
B
88
Manufacturer’s part number
(-xxB)
0
0
1
0
0
0
0
0
20
(Space)
0
1
0
0
1
1
0
0
4C
L
(-xxBL)
89
Manufacturer’s part number
0
0
1
0
0
0
0
0
20
(Space)
90
Manufacturer’s part number
0
0
1
0
0
0
0
0
20
(Space)
91
Revision code
0
0
1
1
0
0
0
0
30
Initial
92
Revision code
0
0
1
0
0
0
0
0
20
(Space)
93
Manufacturing date
×
×
×
×
×
×
×
×
××
Year code
(BCD)
94
Manufacturing date
×
×
×
×
×
×
×
×
××
Week code
(BCD)
95 to 98 Assembly serial number
*3
99 to 125 Manufacturer specific data
—
—
—
—
—
—
—
—
—
*4
126
Intel specification frequency
0
1
1
0
0
1
0
0
64
100 MHz
127
Intel specification CE# latency 1
support
(-75/A6)
1
0
0
1
1
1
1
CF
CL = 2, 3
1
0
0
1
1
0
1
CD
CL = 3
(-B6)
1
Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High”.
These SPD are based on Rev. 1.2B Specification.
2. Byte72 is manufacturing location code. (ex: In case of Japan, byte72 is 4AH. 4AH shows “J” on
ASCII code.)
3. Bytes 95 through 98 are assembly serial number.
4. All bits of 99 through 125 are not defined (“1” or “0”).
Data Sheet E0083H40
9
HB52RF648DC-B, HB52RD648DC-B
Block Diagram
W
S1
S0
CS WE
DQMB0
DQ0
to DQ7
DQMB1
DQ8
to DQ15
DQM
N0, N1 I/O0
to I/O7
D0
CS WE
DQM
N2, N3 I/O0
to I/O7
D1
CS WE
DQMB2
DQ16
to DQ23
DQMB3
DQ24
to DQ31
DQM
N4, N5 I/O0
to I/O7
D2
CS WE
DQM
N6, N7 I/O0
to I/O7
D3
CS WE
CS WE
DQM
D8
I/O0
to I/O7
DQ32
to DQ39
CS WE
DQM
DQMB5
I/O0
to I/O7
DQ40
to DQ47
D9
CS WE
DQM
D4
I/O0
to I/O7
CS WE
DQM
CS WE
DQM
D5
D13
I/O0
to I/O7
CS WE
D10
I/O0
to I/O7
DQ48
to DQ55
CS WE
DQM
DQMB7
I/O0
to I/O7
DQ56
to DQ63
D11
RAS (D0 to D15)
CE
CAS (D0 to D15)
Ax (D0 to D15)
BA0, BA1
BAx (D0 to D15)
CKE0
CKE (D0 to D7)
CKE1
CKE (D8 to D15)
D12
I/O0
to I/O7
N10, N11 I/O0
to I/O7
DQM
DQMB6
A0 to A12
N12, N13 I/O0
to I/O7
CS WE
DQM
D6
CS WE
DQM
N14, N15 I/O0
to I/O7
D14
I/O0
to I/O7
CS WE
DQM
D7
D15
I/O0
to I/O7
Serial PD
SDA
SCL
SCL
A0
U0
A1
A2
VSS
CLK (D0, D4, D8, D12)
CLK0
CLK (D1, D5, D9, D13)
CLK (D2, D6, D10, D14)
CLK1
CLK (D3, D7, D11, D15)
VCC
VCC (D0 to D15)
C0 to C15
VSS (D0 to D15)
Data Sheet E0083H40
10
N8, N9
CS WE
DQM
RE
VSS
DQM
DQMB4
* D0 to D15 : HM5225805
U0 : 2-kbit EEPROM
C0 to C15 : 0.1 µF
N0 to N15 : Network resistors (10 Ω)
SDA
HB52RF648DC-B, HB52RD648DC-B
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Note
Voltage on any pin relative to V SS
VT
–0.5 to VCC + 0.5
(≤ 4.6 (max))
V
1
Supply voltage relative to VSS
VCC
–0.5 to +4.6
V
1
Short circuit output current
Iout
50
mA
Power dissipation
PT
8.0
W
Operating temperature
Topr
0 to +65
°C
Storage temperature
Tstg
–55 to +125
°C
Note:
1. Respect to V SS .
DC Operating Conditions (Ta = 0 to +65°C)
Parameter
Symbol
Min
Max
Unit
Notes
Supply voltage
VCC
3.0
3.6
V
1, 2
VSS
0
0
V
3
Input high voltage
VIH
2.0
VCC + 0.3
V
1, 4
Input low voltage
VIL
–0.3
0.8
V
1, 5
Ambient illuminance
—
—
100
lx
Notes: 1.
2.
3.
4.
5.
All voltage referred to VSS
The supply voltage with all VCC pins must be on the same level.
The supply voltage with all VSS pins must be on the same level.
VIH (max) = VCC + 2.0 V for pulse width ≤ 3 ns at VCC.
VIL (min) = VSS – 2.0 V for pulse width ≤ 3 ns at VSS .
Data Sheet E0083H40
11
HB52RF648DC-B, HB52RD648DC-B
DC Characteristics (Ta = 0 to +65˚C, VCC, VCCQ = 3.3 V ± 0.3 V, VSS, VSSQ = 0 V)
HB52RF648DC/HB52RD648DC
-75
-A6
-B6
Parameter
Symbol Min
Max
Min Max Min Max Unit Test conditions
Operating current
(CE latency = 2)
I CC1
—
1120
—
1000 —
840
(CE latency = 3)
I CC1
—
1120
—
1000 —
1000 mA
Standby current in
power down
I CC2P
—
48
—
48
—
48
Standby current in
power down
(input signal stable)
I CC2PS
—
32
—
32
—
Standby current in non I CC2N
power down
—
320
—
Active standby current I CC3P
in power down
—
64
Active standby current I CC3N
in non power down
—
Notes
Burst length = 1
t RC = min
1, 2, 3
mA
CKE = VIL,
t CK = 12 ns
6
32
mA
CKE = VIL, t CK = ∞
7
320 —
320
mA
CKE, S = VIH,
t CK = 12 ns
4
—
64
64
mA
CKE = VIL,
t CK = 12 ns
1, 2, 6
480
—
480 —
480
mA
CKE, S = VIH,
t CK = 12 ns
1, 2, 4
mA
t CK = min, BL = 4
1, 2, 5
—
mA
Burst operating
current
(CE latency = 2)
I CC4
—
1040
—
1040 —
840
(CE latency = 3)
I CC4
—
1320
—
1040 —
1040 mA
Refresh current
I CC5
—
2000
—
2000 —
2000 mA
t RC = min
3
Self refresh current
I CC6
—
48
—
48
—
48
mA
VIH ≥ VCC – 0.2 V
VIL ≤ 0.2 V
8
Self refresh current
(L-version)
I CC6
—
32
—
32
—
32
mA
Input leakage current
I LI
–10
10
–10 10
–10 10
µA
0 ≤ Vin ≤ VCC
Output leakage
current
I LO
–10
10
–10 10
–10 10
µA
0 ≤ Vout ≤ VCC
DQ = disable
Output high voltage
VOH
2.4
—
2.4
—
2.4
—
V
I OH = –4 mA
Output low voltage
VOL
—
0.4
—
0.4
—
0.4
V
I OL = 4 mA
Notes: 1. I CC depends on output load condition when the device is selected. ICC (max) is specified at the
output open condition.
2. One bank operation.
3. Input signals are changed once per one clock.
4. Input signals are changed once per two clocks.
5. Input signals are changed once per four clocks.
6. After power down mode, CK0/CK1 operating current.
7. After power down mode, no CK0/CK1 operating current.
8. After self refresh mode set, self refresh current.
Data Sheet E0083H40
12
HB52RF648DC-B, HB52RD648DC-B
Capacitance (Ta = 25°C, VCC = 3.3 V ± 0.3 V)
Parameter
Symbol
Max
Unit
Notes
Input capacitance (Address)
CIN
90
pF
1, 2, 4
Input capacitance (RE, CE, W)
CIN
90
pF
1, 2, 4
Input capacitance (S0/S1, CK0/CK1, CKE0/CKE1)
CIN
60
pF
1, 2, 4
Input capacitance (DQMB)
CIN
30
pF
1, 2, 4
Input/Output capacitance (DQ)
CI/O
27
pF
1, 2, 3, 4
Notes: 1.
2.
3.
4.
Capacitance measured with Boonton Meter or effective capacitance measuring method.
Measurement condition: f = 1 MHz, 1.4 V bias, 200 mV swing.
DQMB = VIH to disable Data-out.
This parameter is sampled and not 100% tested.
Data Sheet E0083H40
13
HB52RF648DC-B, HB52RD648DC-B
AC Characteristics (Ta = 0 to +65°C, VCC, VCCQ = 3.3 V ± 0.3 V, VSS, VSSQ = 0 V)
HB52RF648DC/HB52RD648DC
-75
-A6
-B6
Parameter
PC100
Symbol Symbol Min
Max
Min
Max
Min
Max
Unit Notes
System clock cycle time
(CE latency = 2)
t CK
Tclk
10
—
10
—
15
—
ns
(CE latency = 3)
t CK
Tclk
7.5
—
10
—
10
—
ns
CK high pulse width
t CKH
Tch
2.5
—
3
—
3
—
ns
1
CK low pulse width
t CKL
Tcl
2.5
—
3
—
3
—
ns
1
Access time from CK
(CE latency = 2)
t AC
Tac
—
6
—
6
—
8
ns
1, 2
(CE latency = 3)
t AC
Tac
—
5.4
—
6
—
6
ns
Data-out hold time
t OH
Toh
2.7
—
3
—
3
—
ns
1, 2
CK to Data-out low
impedance
t LZ
2
—
2
—
2
—
ns
1, 2, 3
CK to Data-out high
impedance
t HZ
—
5.4
—
6
—
6
ns
1, 4
Input setup time
t AS , t CS,
t DS, t CES
Tsi
1.5
—
2
—
2
—
ns
1, 5, 6
CKE setup time for power
down exit
t CESP
Tpde
1.5
—
2
—
2
—
ns
1
Input hold time
t AH, t CH,
t DH, t CEH
Thi
0.8
—
1
—
1
—
ns
1, 6
Ref/Active to Ref/Active
command period
t RC
Trc
67.5
—
70
—
70
—
ns
1
Active to Precharge
command period
t RAS
Tras
45
120000
50
120000 50
120000 ns
1
Active command to column
command (same bank)
t RCD
Trcd
20
—
20
—
20
—
ns
1
Precharge to active
command period
t RP
Trp
20
—
20
—
20
—
ns
1
Write recovery or data-in to
precharge lead time
t DPL
Tdpl
15
—
20
—
20
—
ns
1
Active (a) to Active (b)
command period
t RRD
Trrd
15
—
20
—
20
—
ns
1
Transition time (rise and fall) t T
1
5
1
5
1
5
ns
Refresh period
—
64
—
64
—
64
ms
t REF
Data Sheet E0083H40
14
1
HB52RF648DC-B, HB52RD648DC-B
Notes: 1.
2.
3.
4.
5.
AC measurement assumes t T = 1 ns. Reference level for timing of input signals is 1.5 V.
Access time is measured at 1.5 V. Load condition is C L = 50 pF.
t LZ (min) defines the time at which the outputs achieves the low impedance state.
t HZ (max) defines the time at which the outputs achieves the high impedance state.
t CES defines CKE setup time to CK rising edge except power down exit command.
Test Conditions
• Input and output timing reference levels: 1.5 V
• Input waveform and output load: See following figures
2.4 V
input
0.4 V
DQ
2.0 V
0.8 V
CL
t
T
tT
Data Sheet E0083H40
15
HB52RF648DC-B, HB52RD648DC-B
Relationship Between Frequency and Minimum Latency
HB52RF648DC/
HB52RD648DC
Parameter
-75
-A6/B6
Frequency (MHz)
133
100
tCK (ns)
Symbol
Active command to column command
(same bank)
lRCD
Active command to active command
(same bank)
PC100
Symbol 7.5
10
Notes
3
2
1
lRC
9
7
= [lRAS+ lRP]
1
Active command to precharge command
(same bank)
lRAS
6
5
1
Precharge command to active command
(same bank)
lRP
3
2
1
Write recovery or data-in to precharge
command (same bank)
lDPL
2
2
1
Active command to active command
(different bank)
lRRD
2
2
1
Self refresh exit time
lSREX
Tsrx
1
1
2
Last data in to active command
(Auto precharge, same bank)
lAPW
Tdal
5
4
= [lDPL + lRP]
Self refresh exit to command input
lSEC
9
7
= [lRC]
3
Precharge command to high impedance
(CE latency = 2)
lHZP
Troh
2
2
lHZP
Troh
3
3
lAPR
1
1
lEP
–1
–1
lEP
–2
–2
(CE latency = 3)
Last data out to active command
(Auto precharge, same bank)
Last data out to precharge (early precharge)
(CE latency = 2)
(CE latency = 3)
Tdpl
Column command to column command
lCCD
Tccd
1
1
Write command to data in latency
lWCD
Tdwd
0
0
DQMB to data in
lDID
Tdqm
0
0
DQMB to data out
lDOD
Tdqz
2
2
CKE to CK disable
lCLE
Tcke
1
1
Register set to active command
lRSA
Tmrd
1
1
Data Sheet E0083H40
16
HB52RF648DC-B, HB52RD648DC-B
HB52RF648DC/
HB52RD648DC
Parameter
-75
-A6/B6
Frequency (MHz)
133
100
PC100
Symbol 7.5
tCK (ns)
Symbol
10
S to command disable
lCDD
0
0
Power down exit to command input
lPEC
1
1
Notes
Notes: 1. lRCD to l RRD are recommended value.
2. Be valid [DESL] or [NOP] at next command of self refresh exit.
3. Except [DESL] and [NOP]
Data Sheet E0083H40
17
HB52RF648DC-B, HB52RD648DC-B
Pin Functions
CK0/CK1 (input pin): CK is the master clock input to this pin. The other input signals are referred at CK
rising edge.
S0/S1 (input pin): When S is Low, the command input cycle becomes valid. When S is High, all inputs are
ignored. However, internal operations (bank active, burst operations, etc.) are held.
RE, CE and W (input pins): Although these pin names are the same as those of conventional DRAM
modules, they function in a different way. These pins define operation commands (read, write, etc.)
depending on the combination of their voltage levels. For details, refer to the command operation section.
A0 to A12 (input pins): Row address (AX0 to AX12) is determined by A0 to A12 level at the bank active
command cycle CK rising edge. Column address (AY0 to AY9) is determined by A0 to A9 level at the read
or write command cycle CK rising edge. And this column address becomes burst access start address. A10
defines the precharge mode. When A10 = High at the precharge command cycle, both banks are precharged.
But when A10 = Low at the precharge command cycle, only the bank that is selected by BA0/BA1 (BA) is
precharged.
BA0/BA1 (input pin): BA0/BA1 is a bank select signal (BA). The memory array is divided into bank0,
bank1, bank2 and bank3. If BA0 is Low and BA1 is Low, bank0 is selected. If BA0 is High and BA1 is
Low, bank1 is selected. If BA0 is Low and BA1 is High, bank2 is selected. If BA0 is High and BA1 is High,
bank3 is selected.
CKE0, CKE1 (input pin): This pin determines whether or not the next CK is valid. If CKE is High, the
next CK rising edge is valid. If CKE is Low, the next CK rising edge is invalid. This pin is used for powerdown mode, clock suspend mode and self refresh mode.
DQMB0 to DQMB7 (input pins): Read operation: If DQMB is High, the output buffer becomes High-Z. If
the DQMB is Low, the output buffer becomes Low-Z (The latency of DQMB during reading is 2 clocks).
Write operation: If DQMB is High, the previous data is held (the new data is not written). If DQMB is Low,
the data is written (The latency of DQMB during writing is 0 clock).
DQ0 to DQ63 (DQ pins): Data is input to and output from these pins.
VCC (power supply pins): 3.3 V is applied.
VSS (power supply pins): Ground is connected.
Detailed Operation Part
Refer to the HM5225165B/HM5225805B/HM5225405B-75/A6/B6 datasheet (E0082H).
Data Sheet E0083H40
18
HB52RF648DC-B, HB52RD648DC-B
Physical Outline
Unit:mm
67.60
3.80 Max
(Datum -A-)
B
23.20
3.30
4.00 Min
20.00
1
143
31.75
Component area
(front)
3.20 Min
2R3.00 Min
A
32.80
1.00 ± 0.10
4.60
2.50
2.10
4.60
Component area
(back)
4.00 ± 0.10
32.80
144
23.20
2
3.70
2-R2.00
2.00 Min
(Datum -A-)
Detail B
Detail A
(DATUM -A-)
2.5
0.80
R0.75
4.00 ± 0.10
2.55 Min
0.25 Max
0.60 ± 0.05
1.50 ± 0.10
ECA-TS2-0044-01
Data Sheet E0083H40
19
HB52RF648DC-B, HB52RD648DC-B
Cautions
1. Elpida Memory, Inc. neither warrants nor grants licenses of any rights of Elpida Memory, Inc.’s or any
third party’s patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Elpida Memory, Inc. bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information contained in this
document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, contact Elpida Memory, Inc. before using the product in an application that demands especially
high quality and reliability or where its failure or malfunction may directly threaten human life or cause
risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Elpida Memory, Inc.
particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage
when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally
foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as
fail-safes, so that the equipment incorporating Elpida Memory, Inc. product does not cause bodily injury,
fire or other consequential damage due to operation of the Elpida Memory, Inc. product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Elpida Memory, Inc..
7. Contact Elpida Memory, Inc. for any questions regarding this document or Elpida Memory, Inc.
semiconductor products.
© Hitachi, Ltd., 2000
Data Sheet E0083H40
20