TI SNJ54BCT373J

SN54BCT373, SN74BCT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS016D – SEPTEMBER 1988 – REVISED MARCH 2003
D
D
Operating Voltage Range of 4.5 V to 5.5 V
State-of-the-Art BiCMOS Design
Significantly Reduces ICCZ
Full Parallel Access for Loading
D
3-State Outputs Drive Bus Lines or Buffer
Memory Address Registers
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
SN54BCT373 . . . J OR W PACKAGE
SN74BCT373 . . . DB, DW, N, OR NS PACKAGE
(TOP VIEW)
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
1D
1Q
OE
VCC
1
VCC
8Q
8D
7D
7Q
6Q
6D
5D
5Q
LE
2D
2Q
3Q
3D
4D
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
8D
7D
7Q
6Q
6D
4Q
GND
LE
5Q
5D
OE
1Q
1D
2D
2Q
3Q
3D
4D
4Q
GND
SN54BCT373 . . . FK PACKAGE
(TOP VIEW)
8Q
D
D
description/ordering information
These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively
low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional
bus drivers, and working registers.
The eight latches of the ’BCT373 devices are transparent D-type latches. While the latch-enable (LE) input is
high, the Q outputs follow the data (D) inputs. When the latch enable is taken low, the Q outputs are latched
at the logic levels that were set up at the D inputs.
A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high
or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive
the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus
lines without interface or pullup components.
ORDERING INFORMATION
PDIP – N
0°C to 70°C
–55°C to 125°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
TOP-SIDE
MARKING
Tube
SN74BCT373N
Tube
SN74BCT373DW
Tape and reel
SN74BCT373DWR
SOP – NS
Tape and reel
SN74BCT373NSR
BCT373
SSOP – DB
Tape and reel
SN74BCT373DBR
BT373
CDIP – J
Tube
SNJ54BCT373J
SNJ54BCT373J
CFP – W
Tube
SNJ54BCT373W
SNJ54BCT373W
LCCC – FK
Tube
SNJ54BCT373FK
SOIC – DW
SN74BCT373N
BCT373
SNJ54BCT373FK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54BCT373, SN74BCT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS016D – SEPTEMBER 1988 – REVISED MARCH 2003
description/ordering information (continued)
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered
while the outputs are in the high-impedance state.
FUNCTION TABLE
(each latch)
INPUTS
OE
LE
D
OUTPUT
Q
L
H
H
H
L
H
L
L
L
L
X
Q0
H
X
X
Z
logic diagram (positive logic)
OE
LE
1
11
C1
1D
3
1D
To Seven Other Channels
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2
1Q
SN54BCT373, SN74BCT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS016D – SEPTEMBER 1988 – REVISED MARCH 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Voltage range applied to any output in the disabled or power-off state, VO . . . . . . . . . . . . . . . . –0.5 V to 5.5 V
Voltage range applied to any output in the high state, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC
Input clamp current, IIK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –30 mA
Current into any output in the low state: SN54BCT373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA
SN74BCT373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Package thermal impedance, θJA (see Note 2): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
SN54BCT373
SN74BCT373
MIN
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.5
5
5.5
UNIT
VCC
VIH
Supply voltage
VIL
IIK
Low-level input voltage
0.8
0.8
V
Input clamp current
–18
–18
mA
IOH
IOL
High-level output current
–12
–15
mA
Low-level output current
48
64
mA
High-level input voltage
2
2
V
V
TA
Operating free-air temperature
–55
125
0
70
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54BCT373, SN74BCT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS016D – SEPTEMBER 1988 – REVISED MARCH 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
SN54BCT373
TYP†
MAX
TEST CONDITIONS
VCC = 4.5 V,
VCC = 4.5 V
MIN
II = –18 mA
IOH = –3 mA
–1.2
IOH = –12 mA
IOH = –15 mA
VOL
VCC = 4
4.5
5V
IOL = 48 mA
IOL = 64 mA
II
IIH
VCC = 5.5 V,
VCC = 5.5 V,
VI = 5.5 V
VI = 2.7 V
IIL
IOS‡
VCC = 5.5 V,
VCC = 5.5 V,
VI = 0.5 V
VO = 0
IOZH
IOZL
VCC = 5.5 V,
VCC = 5.5 V,
VO = 2.7 V
VO = 0.5 V
ICCL
ICCH
VCC = 5.5 V
VCC = 5.5 V
ICCZ
Ci
VCC = 5.5 V
VCC = 5 V,
SN74BCT373
TYP†
MAX
MIN
2.4
3.3
2
3.2
–1.2
2.4
3.1
0.55
0.42
0.55
V
0.4
0.4
mA
20
20
µA
–0.6
–100
V
3.3
V
2
0.38
UNIT
–225
–100
50
–0.6
mA
–225
mA
50
µA
–50
µA
37
60
37
60
mA
2
5
2
5
mA
5
8
5
8
mA
–50
VI = 2.5 V or 0.5 V
VO = 2.5 V or 0.5 V
6
Co
VCC = 5 V,
11
† All typical values are at VCC = 5 V, TA = 25°C.
‡ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
6
pF
11
pF
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
VCC = 5 V,
TA = 25°C
MIN
tw
tsu
Pulse duration, LE high
th
Hold time, data after LE↓
4
Setup time, data before LE↓
POST OFFICE BOX 655303
MAX
SN54BCT373
MIN
MAX
SN74BCT373
MIN
UNIT
MAX
7.5
7.5
7.5
ns
2
2
2
ns
5.5
5.5
5.5
ns
• DALLAS, TEXAS 75265
SN54BCT373, SN74BCT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS016D – SEPTEMBER 1988 – REVISED MARCH 2003
switching characteristics (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCC = 5 V,
CL = 50 pF,
R1 = 500 Ω,
R2 = 500 Ω,
TA = 25°C
VCC = 4.5 V to 5.5 V,
CL = 50 pF,
R1 = 500 Ω,
R2 = 500 Ω,
TA = MIN to MAX†
’BCT373
tPLH
tPHL
D
Q
tPLH
tPHL
LE
Q
tPZH
tPZL
OE
Q
tPHZ
tPLZ
OE
Q
SN54BCT373
UNIT
SN74BCT373
MIN
TYP
MAX
MIN
MAX
MIN
MAX
2
5.9
7.7
1.5
10.1
2
9.3
2
6.7
8.5
1
10.3
1.5
9.5
2
6.2
8.2
2
10.1
2
9.3
2
5.9
7.8
2
9.2
2
8.8
1
7.8
9.6
1
12.3
1
11.8
1
8.2
10.2
1
12.5
1
12
1
4.9
6.6
1
7.4
1
7
1
5
6.7
1
8.1
1
7.4
ns
ns
ns
ns
† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN54BCT373, SN74BCT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS016D – SEPTEMBER 1988 – REVISED MARCH 2003
PARAMETER MEASUREMENT INFORMATION
7 V (tPZL, tPLZ, O.C.)
S1
Open
(all others)
From Output
Under Test
Test
Point
CL
(see Note A)
R1
From Output
Under Test
R1
Test
Point
CL
(see Note A)
R2
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
RL = R1 = R2
LOAD CIRCUIT FOR
3-STATE AND OPEN-COLLECTOR OUTPUTS
High-Level
Pulse
(see Note B)
3V
Timing Input
(see Note B)
3V
1.5 V
1.5 V
0V
1.5 V
tw
0V
Data Input
(see Note B)
3V
th
tsu
Low-Level
Pulse
3V
1.5 V
1.5 V
0V
1.5 V
1.5 V
VOLTAGE WAVEFORMS
PULSE DURATION
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
3V
Output
Control
(low-level enable)
3V
Input
(see Note B)
1.5 V
1.5 V
0V
tPLH
In-Phase
Output
(see Note D)
1.5 V
VOL
VOH
1.5 V
1.5 V
0V
tPLZ
1.5 V
Waveform 1
(see Notes C and D)
3.5 V
VOL
tPHZ
tPLH
tPHL
Out-of-Phase
Output
(see Note D)
1.5 V
1.5 V
tPZL
tPHL
VOH
1.5 V
0.3 V
tPZH
Waveform 2
(see Notes C and D)
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES (see Note D)
VOH
1.5 V
0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, tr = tf ≤ 2.5 ns, duty cycle = 50%.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.
E. When measuring propagation delay times of 3-state outputs, switch S1 is open.
F. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
5962-9074601M2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9074601MRA
ACTIVE
CDIP
J
20
1
TBD
1
Lead/Ball Finish
MSL Peak Temp (3)
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
TBD
A42
N / A for Pkg Type
TBD
Call TI
5962-9074601MSA
ACTIVE
CFP
W
20
SN74BCT373DBLE
OBSOLETE
SSOP
DB
20
SN74BCT373DBR
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373DBRE4
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373DBRG4
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373DW
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373DWE4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373DWG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373DWR
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373DWRE4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373DWRG4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373N
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
SN74BCT373NE4
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
SN74BCT373NSR
ACTIVE
SO
NS
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373NSRE4
ACTIVE
SO
NS
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74BCT373NSRG4
ACTIVE
SO
NS
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SNJ54BCT373FK
ACTIVE
LCCC
FK
20
1
TBD
SNJ54BCT373J
ACTIVE
CDIP
J
20
1
TBD
A42 SNPB
N / A for Pkg Type
SNJ54BCT373W
ACTIVE
CFP
W
20
1
TBD
A42
N / A for Pkg Type
Call TI
POST-PLATE N / A for Pkg Type
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74BCT373DBR
SSOP
DB
20
2000
330.0
16.4
8.2
7.5
2.5
12.0
16.0
Q1
SN74BCT373DWR
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74BCT373DBR
SN74BCT373DWR
SSOP
DB
20
2000
346.0
346.0
33.0
SOIC
DW
20
2000
346.0
346.0
41.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated