TI SN74LVC1G17QDBVRQ1

SN74LVC1G17-Q1
SINGLE SCHMITT-TRIGGER BUFFER
www.ti.com
SCES663 – MARCH 2006
FEATURES
•
•
•
•
•
•
Qualified for Automotive Applications
Customer-Specific Configuration Control Can
Be Supported Along With Major-Change
Approval
Supports 5-V VCC Operation
Inputs Accept Voltages to 5.5 V
±24-mA Output Drive at 3.3 V
Ioff Supports Partial-Power-Down Mode
Operation
DBV PACKAGE
(TOP VIEW)
NC
1
A
2
GND
3
5
4
DCK PACKAGE
(TOP VIEW)
VCC
NC
1
A
2
GND
3
5
VCC
4
Y
Y
See mechanical drawings for dimensions.
DESCRIPTION/ORDERING INFORMATION
This single Schmitt-trigger buffer is designed for 1.65-V to 5.5-V VCC operation.
The SN74LVC1G17-Q1 contains one buffer and performs the Boolean function Y = A. The device functions as
an independent buffer, but because of Schmitt action, it may have different input threshold levels for
positive-going (VT+) and negative-going (VT–) signals.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
ORDERING INFORMATION
TA
–40°C to 125°C
(1)
(2)
PACKAGE (1)
ORDERABLE PART NUMBER
TOP-SIDE MARKING (2)
SOT (SOT-23) – DBV
Reel of 3000
SN74LVC1G17QDBVRQ1
C17_
SOT (SC-70) – DCK
Reel of 3000
SN74LVC1G17QDCKRQ1
C7_
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
FUNCTION TABLE
INPUT A
OUTPUT Y
H
H
L
L
LOGIC DIAGRAM (POSITIVE LOGIC)
A
2
4
Y
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2006, Texas Instruments Incorporated
SN74LVC1G17-Q1
SINGLE SCHMITT-TRIGGER BUFFER
www.ti.com
SCES663 – MARCH 2006
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
MIN
TYP
MAX
UNIT
VCC
Supply voltage range
–0.5
6.5
V
VI
Input voltage range (2)
–0.5
6.5
V
–0.5
6.5
V
–0.5
VCC + 0.5
state (2)
VO
Voltage range applied to any output in the high-impedance or power-off
VO
Voltage range applied to any output in the high or low state (2) (3)
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through VCC or GND
θJA
Package thermal impedance (4)
Tstg
Storage temperature range
(1)
(2)
(3)
(4)
DBV package
206
DCK package
252
–65
V
°C/W
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The value of VCC is provided in the recommended operating conditions table.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions (1)
Operating
MIN
MAX
1.65
5.5
UNIT
VCC
Supply voltage
VI
Input voltage
0
5.5
V
VO
Output voltage
0
VCC
V
Data retention only
1.5
VCC = 1.65 V
–4
VCC = 2.3 V
IOH
High-level output current
–8
–16
VCC = 3 V
Low-level output current
–32
VCC = 1.65 V
4
VCC = 2.3 V
8
16
VCC = 3 V
32
Human-Body Model
2 (H2)
Charged-Device Model
1 (C5)
Machine Model
TA
(1)
2
Operating free-air temperature
–40
kV
200 (M3)
V
125
°C
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. See the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
mA
24
VCC = 4.5 V
ESD rating
mA
–24
VCC = 4.5 V
IOL
V
SN74LVC1G17-Q1
SINGLE SCHMITT-TRIGGER BUFFER
www.ti.com
SCES663 – MARCH 2006
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Positive-going
input threshold
voltage
VT+
Negative-going
input threshold
voltage
VT–
Hysteresis
(VT+ – VT–)
∆VT
IOH = –100 µA
VOH
2.3 V
1
1.68
3V
1.36
2.04
4.5 V
2.07
2.86
5.5 V
2.53
3.43
1.65 V
0.23
0.71
2.3 V
0.44
1.05
3V
0.77
1.35
4.5 V
1.22
2.09
5.5 V
1.73
2.52
1.65 V
0.26
0.74
2.3 V
0.33
0.92
3V
0.4
0.99
4.5 V
0.45
1.28
5.5 V
0.56
1.32
1.2
2.3 V
1.9
3V
IOL = 100 µA
1.65 V to 4.5 V
0.1
IOL = 4 mA
1.65 V
0.45
IOL = 8 mA
2.3 V
0.4
VI or VO = 5.5 V
ICC
VI = 5.5 V or GND, IO = 0
∆ICC
One input at VCC – 0.6 V, Other inputs at VCC or GND
Ci
VI = VCC or GND
V
3.8
0.5
3V
Ioff
V
2.3
4.5 V
VI = 5.5 or GND
V
V
2.4
IOH = –32 mA
IOL = 32 mA
UNIT
VCC – 0.1
IOH = –8 mA
IOL = 24 mA
(1)
1.25
1.65 V
IOL = 16 mA
A input
0.64
1.65 V to 4.5 V
IOH = –24 mA
II
MAX
1.65 V
IOH = –4 mA
IOH = –16 mA
VOL
MIN TYP (1)
VCC
V
0.7
4.5 V
0.7
0 to 5.5 V
±10
µA
0
±25
µA
1.65 V to 5.5 V
20
µA
3 V to 5.5 V
500
µA
3.3 V
4.5
pF
All typical values are at VCC = 3.3 V, TA = 25°C.
Submit Documentation Feedback
3
SN74LVC1G17-Q1
SINGLE SCHMITT-TRIGGER BUFFER
www.ti.com
SCES663 – MARCH 2006
Switching Characteristics
over recommended operating free-air temperature range, CL = 30 pF or 50 pF (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
A
Y
tpd
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.8
14
1
9
1.5
8
0.7
7
ns
Operating Characteristics
TA = 25°C
PARAMETER
Cpd Power dissipaton capacitance
4
TEST CONDITIONS
f = 10 MHz
VCC = 1.8 V
VCC = 2.5 V
VCC = 3.3 V
VCC = 5 V
TYP
TYP
TYP
TYP
20
21
22
26
Submit Documentation Feedback
UNIT
pF
SN74LVC1G17-Q1
SINGLE SCHMITT-TRIGGER BUFFER
www.ti.com
SCES663 – MARCH 2006
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
CL
(see Note A)
Open
GND
RL
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUTS
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VI
tr/tf
VCC
VCC
3V
VCC
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
VM
VM
VOL
tPHL
VM
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
tPLZ
VLOAD/2
VM
tPZH
VOH
Output
VM
tPZL
tPHL
VOH
Output
VI
Output
Control
VM
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + V∆
VOL
tPHZ
VM
VOH − V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
Submit Documentation Feedback
5
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LVC1G17QDBVRQ1
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVC1G17QDCKRQ1
ACTIVE
SC70
DCK
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless
www.ti.com/lpw
Telephony
www.ti.com/telephony
Mailing Address:
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated