HITACHI HA12155NT

HA12155NT/HA12157NT
Audio Signal Processor for Cassette Deck (Dolby B/C-type NR
with Recording System)
ADE-207-115C (Z)
4th Edition
June 1997
Description
HA12155NT/HA12157NT is silicon monolithic bipolar IC providing Dolby noise reduction system*,
electrical volume system, REC equalizer system and level meter system in one chip.
Functions
• REC equalizer
× 2 channel
• Dolby B/C NR
× 2 channel
• Electronic volume
× 2 channel
• Level Meter
× 2 channel
Features
• Inductor less REC equalizer is adjustable of its characteristics by external resistor
• Rec level is adjustable automatically with electrical volume which is built-in
• 3 type of input selection is available (one is by way of electrical volume)
• Separate input selection SW and REC/PB SW
• Dolby noise reduction with dubbing cassette decks
(Unprocessed signal output available from recording out terminals during PB mode)
• Log-compressed level meter output is range from 0 V to 5 V
(Usable as music search switchable gain of 0 dB and 20 dB respectivily)
• Normal-speed/high-speed (Double), normal/metal/chrome fully electronic control switching built-in
• NR-ON/OFF, Dolby B/C, MPX ON/OFF fully electronic control switching built-in
(Controllable from micro-controller directly)
• Reduction of number of pin by transfered serial data to electronic volume control switching and another
control switching
(Controllable from micro-controller directly)
• Low external parts count
HA12155NT/HA12157NT
*
Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
Ordering Information
Operating voltage
Type
Package
Dolby Level
REC-OUT Level PB-OUT Level
Min
Max
HA12155NT
DP-64S
300 mVrms
300 mVrms
580 mVrms
9.5 V
16 V
775 mVrms
12 V
16 V
HA12157NT
Rev.4, Jun. 1997, page 2 of 57
63
2
3
62
4
BIAS
61
5
60
58
6
7
6BIT
DAC
E VOL
E VOL
6BIT
DAC
59
8
57
9
56
10
11
54
P
X
12
53
13
52
NRIN Vref
M (L) (L)
14
51
15
50
48
47
Dolby B/C NR
49
16
17
18
Dolby B/C NR
PB OUT
(L)
M
P
X NRIN
PBOUT
IA OUT (R) Vref (R)
(R)
(R)
IA
IA
55
NR C/B MPX VCC VRI CNT RPI REF PBI INJ
(R)
ON/OFF (R) (R) (R)
ON/OFF
1
SW
Decoder
Latch
Shift
register
64
GND VRI CNT RPI
PBI
DATA CLK STB (1) (L) (L) (L) BIAS (L) DGND
IA OUT
(L)
20
45
REC
OUT(R)
19
46
REC
OUT(L)
42
22
25
REC
EQ
REC
EQ
26
39
27
28 29 30 31 32
FM fQ f/Q GH GL GP
EQ-Controller
NN NC NM HN HC
HM
37 36 35 34 33
38
EQ
IN(R) IREF EQ
OUT(R)
24
LM
OUT(R)
23
RECT
–
LMA
+
41
40
GND EQ
(2) OUT(L)
EQ
IN(L)
LM
OUT(L)
RECT
43
+
LMA
–
LM
IN(R)
21
44
LM
IN(L)
HA12155NT/HA12157NT
Block Diagram
Rev.4, Jun. 1997, page 3 of 57
HA12155NT/HA12157NT
Absolute Maximum Ratings
Item
Symbol
Ratings
Unit
Supply voltage
VCC
16
V
Power dissipation*1
Pd
770
mW
Operating temperature
Topr
–30 to +75
°C
Storage temperature
Tstg
–55 to +125
°C
Note:
1. Value at Ta ≤ 75°C
Electrical Characteristics (Ta = 25°C VCC = 14 V Dolby level 300 mVrms)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
Quiescent current
IQ
—
29.0
37.0
mA
no signal
Input amp gain
GVIA RPI
18.5
20.0
21.5
dB
Vin = 0 dB, f = 1 kHz
GVIA PBI
18.5
20.0
21.5
B-type NR Encode Boost B-ENC-2K
2.8
4.3
5.8
dB
Vin = –20 dB, f = 2 kHz
B-ENC-5K
1.7
3.2
4.7
C-type NR Encode Boost C-ENC-1K(1)
Vin = –20 dB, f = 5 kHz
3.9
5.9
7.9
C-ENC-1K(2)
18.1
19.6
21.6
Vin = –60 dB, f = 1 kHz
C-ENC-700
9.8
11.8
13.8
Vin = –30 dB, f = 700 Hz
Signal handling
Vomax
12.0
13.0
—
dB
f = 1 kHz, THD = 1%,
VCC = 12 V
Signal to noise ratio
S/N
60.0
63.0
—
dB
Rg = 5.1 kΩ, CCIR/ARM
Total harmonic distortion
THD
—
0.08
0.3
%
Vin = 0 dB, f = 1 kHz
CT (R↔L)
—
–85.0 –79.0 dB
Crosstalk
CT (RPI↔PBI) —
–80.0 –74.0
CT (VRI↔RPI) —
–77.0 –71.0
Control
Hi level
VcH
3.5
—
5.3
voltage
Lo level
VcL
–0.2
—
1.0
Serial data
Hi level
VsH
3.5
—
5.3
voltage
Lo level
VsL
–0.2
—
1.0
PB-out level
HA12155
Vout
500
580
670
665
775
900
HA12157
dB
V
Vin = –20 dB, f = 1 kHz
Vin = 0 dB, f = 1 kHz
MPX ON/OFF, NR
ON/OFF C-NR/B-NR
V
CLK, DATA, STB
mVrms Vin = 0 dB, f = 1 kHz
PB-offset
Vofs
–100 0.0
+100 mV
no signal
Channel balance
∆GV
–1.0
0.0
1.0
dB
Vin = 0 dB, f = 1 kHz
Volume gain
GVVR (MAX)
17.5
19.3
21.5
dB
Vin = 100 mVrms, f =1 kHz
GVVR (MIN)
—
—
–55.0
Rev.4, Jun. 1997, page 4 of 57
Notes
Vin = 3 Vrms, f = 1 kHz
*1
HA12155NT/HA12157NT
Electrical Characteristics (Ta = 25°C VCC = 14 V Dolby level 300 mVrms) (cont)
Item
Symbol
Min
Typ
Max
Volume mute
GVVR (MUT)
—
—
–80.0 dB
Vin = 3 Vrms, f = 1 kHz
Max-input level to volume Vin max (VR)
11.0
12.6
—
dBs
f = 1 kHz, THD = 1%,
VCC = 12 V
Volume S/N
S/N (VR)
78.0
84.0
—
dB
Vin = 100 mVrms, f = 1
kHz, A-WTG
Volume THD
THD (VR)
—
0.04
0.3
%
Vin = 100 mVrms, f = 1
kHz
Equalizer gain
GV EQ (500)
13.0
15.0
17.0
dB
Vin = 77.5 mVrms,
f = 500 Hz
GV EQ (1K)
13.0
15.0
17.0
Vin = 77.5 mVrms,
f = 1 kHz
GV EQ (5K)
14.5
16.5
18.5
Vin = 77.5 mVrms,
f = 5 kHz
GV EQ (10K)
18.5
20.5
22.5
Vin = 77.5 mVrms,
f = 10 kHz
GV EQ (20K)
29.5
32.0
34.5
Vin = 77.5 mVrms,
f = 20 kHz
Equalizer maximum input Vin max (EQ)
–8.0
–7.0
—
dBs
f = 1 kHz, THD = 1%,
VCC = 12 V
Equalizer S/N
S/N (EQ)
57.0
62.0
—
dB
Rg = 5.1 kΩ, A-WTG
Equalizer THD
THD (EQ)
—
0.2
0.5
%
Vin = 77.5 mVrms,
f = 1 kHz
Equalizer offset
Vofs (EQ)
–400 0.0
+400 mV
no signal
Level meter output
LM (0 dB)
2.60
2.85
3.10
V
Vin = 0 dB, f = 1 kHz
LM (12 dB)
3.60
3.90
4.20
V
Vin = 12 dB, f = 1 kHz
LM (–20 dB)1
0.80
1.10
1.40
V
Vin = –20 dB, f = 1 kHz
LM (–20 dB)2
2.55
3.0
3.15
V
Vin = –20 dB, f = 1 kHz,
–20 dB range
LMofs 1
—
150
300
mV
no signal
LMofs 2
—
200
350
Level meter output
Level meter offset
Unit
Test conditions
Notes
*1
*2
*2
no signal, –20 dB range
Notes: 1. HA12155 VCC = 9.5 V, HA12157 VCC = 12 V
2. 0 dB = PB-OUT level
Rev.4, Jun. 1997, page 5 of 57
Rev.4, Jun. 1997, page 6 of 57
1
2
3
SW1
OFF
R
SW22 SW23
AC VM 1
EQ
VR
RP
PB
C4
14 V
+
5
DC
Source 1
+
C32
100 µ
0.47µ
4
ON OFF
S2 S3 S2 S3 S2 S3
SW21
OFF ON b c
SW18 SW19 SW20
SW3
59
C2
58
+
C6
R68
5.1 k
R29
C1
R28
10 k
57
56
OFF
55
54
SW25
TP4
53
52
R27 R26
2.4 k 5.6 k
Degital
ON
GND
TP3
SW8
AC VM 2
50
R24
22 k
51
C29
C27
C26
L
C25
48
47
46
2200p 0.1 µ 0.1 µ
49
R23
560
2200p 2200p
C30
µ
+ 2.2
C28
R25
10 k
+
45
43
+
42
C21
R22
7.5 k
41
+ 0.47 µ
R20 R71
C22 100 k 51 k
1µ
C23
0.1 µ
44
2.2 µ
C24
R21
20 k
SW10
R72
16 k
40
C20
38
+
C8
DC
Source 2
12
13
TP2
SW7
ON
14
R11
22 k
15
R13
560
C12
R12
10 k
17
C13
18
19
C14
2200p 0.1 µ 0.1 µ
16
SW24 C11 C9
C10
+
2200 p 2200 p
2.2 µ
R9
R10
2.4 k 5.6 k
OFF
11
AC VM 3
TP1
DC
Source 3
5V
HA12155/7 NT (REC 1 CHIP)
DP-64S
R75
16 k
+
22
SW9
24
25
AC VM 4
R70
51k
R15
7.5 k
C18 + R17
24 k
0.47 µ
23
C17
1 µ R16
100 k
0.1 µ
C16
21
R14
20 k
2.2 µ
C15
+
20
27
R60
R54
R48
R42
R36
28
FQ
Distortion
analyzer
36
R61
R55
R49
R43
R37
R31
35
R62
R56
R50
R44
R38
R32
R63
R57
R51
R45
R39
R33
31
GL
HC
34
33
R64
R58
R52
R46
R40
R65
R59
R53
R47
R41
R35
32
GP
HM
R34
LM
SW13
Noise meter
with CCIR/ARM filter
and A–WTG filter
Noise meter
LM
EQ
REC
PB
SW15
R
OFF
SW16
Notes 1: Registor tolerance are ±1 %
2: Capacitor tolerance are ±1 %
3: Unit R: Ω C:F
Oscilloscope
L
SW17
ON
SW14
L
33 k 33 k 33 k
30
GH
HN
51 k
29
F/Q
NM
EQ 100k 51 k
SW11
REC
PB
R
R18
10 k
4.7 µ
+ C19
26
IA OUT NRIN V REF PBOUT SS1 SS2 CCR HLS
REC LM LM
LM
EQ
EQ
LLS
(R)
(R)
(R)
(R) (R) (R) DET(R) DET(R)OUT(R) IN(R) DET(R) OUT(R) IN(R) IREF OUT(R) FM
(R)
R8
1.2 k
10
INJ
R7
10 k
+
9
PBI
(R)
1 µ 0.47 µ
C7
8
REF
37
SW12
NC
R30
R19
10 k
EQ
PB
4.7 µ
39
+
REC
BIAS PBI DGND IA OUT NRIN V REF PBOUT SS1 SS2 CCR HLS
REC LM LM
LM
LLS
NN
EQ GND EQ
(L)
(L)
(L)
(L) (L) (L) DET(L) DET(L) OUT(L) IN(L) DET(L) OUT(L) IN(L) (2) OUT(L)
(L)
(L)
R69
5.1 k
+
7
1 µ 0.47 µ
C5
6
CNT RPI
(R) (R)
60
C33
R66
5.1 k
+ 1 µ + 0.47 µ 18 k + 0.47µ
VRI
MPX
NR
ON/OFFC/B ON/OFF V CC (R)
61
+
0.47 µ C3
R67
5.1 k
CNT RPI
(L)
(L)
10p
C62
GND VRI
(1)
(L)
62
STB
R6
10 k
63
64
R5
10k
10p
3
R1 R2 R3
22 k 22 k 22 k
Audio SG
ON
L
VR
C61
DATA CLK
R4
10 k
10p
C60
SW4
PB
RP
EQ
Mode
controller
PB
REC
EQ
DC VM 2
HA12155NT/HA12157NT
Test Circuit
3
4
5
6
DATA
DGND
MPX
ON/OFF
C/B
8
7
2
CLK
NR
ON/OFF
VCC2
(+5 V)
1
1
2
3
VEE
VCC1
CN2
GND
CN1
STB
C3
6
7
8
REF
9
PBI
(R)
R7
10 k
*1
R8
12
+
50
C27
C26
C25
47
46
0.1 µ 0.1 µ
13
2200 p
2200 p
44
43
0.1 µ
+
42
C21
41
DP-64S
2200 p
C12
17
C14
19
0.1 µ 0.1 µ
C13
18
EQIN (R)
C17
1 µ R16
100 k
+
PBOUT (R)
C18 +
24
25
R15
7.5 k
R70
51 k
39
38
FQ
NC
37
FQ
NM
36
EQOUT (L)
LMOUT (L)
35
GH
HN
34
GL
HC
33
GP
HM
R61
R55
R49
R43
51 k 33 k
R62 R63
R56 R57
R50 R51
R44 R45
LMOUT (R)
EQOUT (R)
100 k 51 k
R60
R54
R48
R42
33 k
R64
R58
R52
R46
33 k
R65
R59
R53
R47
R8 =
VINJ – VEE – 0.7
(k Ω)
3.6
The value of external resistor R8 is obtained by using following equations.
R18
10 k
26
27
28
29
30
31
32
C19 R30 R31 R32 R33 R34 R35
+
4.7 µ
R36 R37 R38 R39 R40 R41
EQ
IREF OUT (R) FM
0.47 µ R17
23
RECOUT (R)
R75
16 k
22
0.1 µ
C16
21
R14
20 k
C15
+
2.2 µ
20
CCR HLS
LLS REC
LM
LM
LM
EQ
(R) DET (R) DET (R)OUT (R) IN (R) DET (R)OUT (R) IN (R)
C20
+ 0.47 µ
R19
10 k
GND EQ
NN
(2) OUT (L)
40
+ 0.47 µ
R20 R71
C22 100 k 51 k
1µ
C23
R22
7.5 k
Note 1: The pin 10 can connect to VCC 1 through R8.
R12
10 k
+ C11
2.2 µ
16
SS2
(R)
R13
560
15
C9 C10
R11
22 k
14
Vref PBOUT SS1
(R)
(R)
(R)
45
+ 2.2 µ
C24
R21
20 k
EQIN (L)
RECOUT (L)
PBOUT (L)
CCR HLS
LLS REC
LM
LM
LM
EQ
(L) DET (L) DET (L) OUT (L) IN (L) DET (L) OUT (L) IN (L)
48
2200 p
SS2
(L)
49
R23
560
R72
16 k
HA12155/7 (REC 1 CHIP)
R9
R10
2.4 k 5.6 k
11
51
TP1
R69
5.1 k
1 µ 0.47 µ
10
INJ
IAOUT NRIN
(R)
(R)
52
R24
22 k
2200 p 2200 p
Vref PBOUT SS1
(L)
(L)
(L)
RBI (R)
R68
5.1 k
1 µ 0.47 µ
53
PBI DGND IAOUT NRIN
(L)
(L)
(L)
C4 + C5 + C6 + C7 + C8 +
5
0.47 µ
4
BIAS
TP2
C32
100 µ
R3
22 k
3
PRI
(R)
RPI
(L)
R27 R26
2.4 k 5.6 k
54
Degital GND
R28
10 k
R25
10 k
C30
+ 2.2 µ
C28 C29
TP4
TP3
RPI (R)
VRI (R)
R2
22 k
+
C34
100 µ
R1
22 k
2
CNT
(R)
VRI
(R)
NR
MPX
ON/OFF C/B ON/OFF VCC
1
R66
5.1 k
C33 C2
R29 C1
18 k +
+
+
0.47 µ 1 µ 0.47 µ
0.47 µ
60
59
58
57
56
55
+
R67
5.1 k
CNT
(L)
61
C62
10p
VRI
(L)
STB
62
C61
10p
R6
10 k
GND
(1)
63
CLK
64
R5
10 k
DATA
C60
10p
R4
10 k
VRI (L)
RPI (L)
PBI (L)
HA12155NT/HA12157NT
Example of Split Supply Circuit
Rev.4, Jun. 1997, page 7 of 57
Rev.4, Jun. 1997, page 8 of 57
Parts No.
IC1
IC2
IC3
IC4
IC5
IC6
IC7
IC8
IC9
C3
R4
510
TRIGGER
CLR
Q A Q B QC Q D
HD74HC221
HD74HC74
HD74HC393
HD74HC165
HD74HC175
HD74HC00
HD74HC00
HD74HC04
HD74HC74
Type
A B C D E F G
D2 IC2
PR Q
D Q
CLR
R5
22 K
N13 IC8
N5 IC8
N1 IC6
Q
D Q
CLR
Q
D Q
CLR
3
2
8
4
1
5
6
1
4: Unit R : Ω , C : F
3: As for IC1-IC9, required to put 0.1 µ F-capacitor between near GND pin and Voltage source pin for bypass.
2: As for IC1-IC9, input pins which are not used should be pulled up with resistor of 22 kΩ .
N10 IC7
N9 IC7
JP3
JP2
JP1
N8 IC7
SW3
D6 IC5
N6 IC6
N4 IC8
N7 IC6
N3 IC6
SW2
Q
D Q
CLR
SW1
D9 IC9
D5 IC5
PR Q
D Q
CLR
N2 IC8
D4 IC5
D3 IC3
CLR
QA QB Q C QD
R 17
22 k
Notes 1: HC type IC which operate eqaully is also applicable instead of IC1-IC9.
H CLK CLK SHIFT
INHIBITLOAD
QH
IC4
SW1
D7
MCLK
D1 IC2
PR Q
D Q
CLR
R4
22 K
62.5 kHz SW10
125 kHz
250 kHz
500 kHz
D8 IC3
TRIGGER
IC 1
Q
Q
CLR
C 1 2.2 µ
+
R 8 R 9 R 10 R 11 R 12 R 13 R 14
22 k 22 k 22 k 22 k 22 k 22 k 22 k
X'tal
10 p 1 MHz 120 p
C2
1M
R 22
N11 IC8 N12 IC8
X'tal OSC
R2
22 k
R3
1M
SW8 SW7 SW6 SW5 SW4 SW3 SW2
R7
22 k
SW9
R1
22 k
C4
100 µ
+
GND VCC (+5 V)
DATA
CLK
VCC (+5 V)
GND
STB
MPX•ON/OFF
C/B
NR•ON/OFF
HA12155NT/HA12157NT
Mode Controller
HA12155NT/HA12157NT
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical
value)
Pin No.
Terminal
DC
DP-64S
name
Zin
voltage
7
RPI
100 kΩ
VCC/2
Equivalent circuit
Description
Recording input
58
9
PBI
Play back input
56
21
LM IN
44
24
HA12155
---75 kΩ
Level meter input
HA12157
---100 kΩ
EQ IN
100 kΩ
VRI
100 kΩ
Equalyzer input
41
5
60
VCC/2
Volume input
+0.7 V
4
VCC
—
VCC
—
Power supply
8
REF
—
VCC/2
—
Ripple filter
12
NR IN
—
VCC/2
NR processor input
SS 1
—
VCC/2
Spectral skewing amp
input
53
15
50
Rev.4, Jun. 1997, page 9 of 57
HA12155NT/HA12157NT
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical
value) (cont)
Pin No.
Terminal
DC
DP-64S
name
Zin
voltage
17
CCR
—
VCC/2
Equivalent circuit
Current controled
48
11
Description
resistor output
IA OUT
—
VCC/2
Input amp output
VCC
54
GND
13
VREF
52
14
buffer output
PB OUT
51
16
SS 2
Spectral skewing
amp. output
REC OUT
45
26
Play back (Decode)
output
49
20
Reference voltage
Recording (Encode)
output
EQ OUT
39
Rev.4, Jun. 1997, page 10 of 57
Equalyzer output
HA12155NT/HA12157NT
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical
value) (cont)
Pin No.
Terminal
DC
DP-64S
name
Zin
voltage
18
HLS DET
—
2.3 V
Equivalent circuit
Description
Time constant pin for
47
19
rectifier
LLS DET
46
57
BIAS
—
0.28 V
Dolby NR Reference
current input
GND
25
IREF
—
1.2 V
EQ Reference current
input
27
FM
EQ Parameter current
28
fQ
input
29
f/Q
30
GH
31
GL
32
GP
Rev.4, Jun. 1997, page 11 of 57
HA12155NT/HA12157NT
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical
value) (cont)
Pin No.
Terminal
DC
DP-64S
name
Zin
voltage
33
HM
—
—
Equivalent circuit
Description
EQ Parameter
selector
GND
34
HC
35
HN
36
NM
37
NC
38
NN
6
CNT
5.2 kΩ
59
VCC/2-
DAC output Volume
VCC / 2
1.5 V to
VCC/2
control input
DAC
out
22
LMD
—
0.2 V
Time constant Pin for
43
level meter
LM OUT
GND
LMD
23
LM OUT
—
42
Rev.4, Jun. 1997, page 12 of 57
0.2 V
Level meter output
HA12155NT/HA12157NT
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical
value) (cont)
Pin No.
Terminal
DC
DP-64S
name
Zin
voltage
1
NR
ON/OFF
100 kΩ
—
Equivalent circuit
Description
Mode control input
D - GND
GND
2
C/B
3
MPX
ON/OFF
62
STB
63
CLK
64
DATA
10
INJ
—
0.7 V
—
Injection current input
2
for I L
55
D-GND
—
0.0 V
—
Digital (Logic) ground
40
GND
—
0.0 V
—
Ground
61
Application Note
Power Supply Range
HA12155NT/HA12157NT are designed to operate on either single supply or split supply.
The operating range of the supply voltage is shown in table 1.
Table 1
Supply Voltage
Type No.
Single supply
Split supply
HA12155NT
9.5 V to 16 V
±6 V to 8 V
HA12157NT
12 V to 16 V
±6 V to 8 V
The lower limit of supply voltage depends on the line output reference level.
Rev.4, Jun. 1997, page 13 of 57
HA12155NT/HA12157NT
The minimum value of the headroom margin is specified as 12 dB by Dolby Laboratories. HA12155 series
are provided with two line output level, which will permit an optimum headroom margin for power supply
conditions.
Reference Voltage
For the single supply operation these devices provide the reference voltage of half the supply voltage that is
the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about
1/100 compared with their usual value. The Reference voltage are provided for the left channel and the
right channel separately. The block diagram is shown as figure 1.
52
VCC
+
–
L channel
reference
R channel
reference
8
–
+
+
1 µF
13
Figure 1 The Block Diagram of Reference Voltage Supply
Operating Mode Control
HA12155NT/HA12157NT provides fully electronic switching circuits. NR-ON/OFF, C/B, and MPX
ON/OFF switches are controlled by parallel data (DC voltage) and other switches are controlled by serial
data.
Rev.4, Jun. 1997, page 14 of 57
HA12155NT/HA12157NT
Table 2
Threshold Voltage (VTH)
Pin No.
Lo
Hi
Unit
1, 2, 3
–0.2 to 1.0
3.5 to 5.3
V
62, 63, 64
–0.2 to 1.0
3.5 to 5.3
V
Notes: 1. Voltages shown above are determined by internal circuits of LSI when take pin 55 (DGND pin) as
reference pin. On split supply use, same VTH can be offered by connecting DGND pin to GND
pin.
This means that it can be controlled directly by micro processor.
2. Each pins are on pulled down with 100 kΩ internal resistor.
Therefore, it will be low-level when each pins ar open.
3. Note on serial data inputting
(a) The clock frequency on CLK must be less than 500 kHz.
(b) Over shoot level and under shoot level of input signal must be the value shown below.
(c) The serial input pins (pins 62, 63, and 64) are extremely sensitive to undershoot, overshoot,
ringing, and noise. This can result in malfunctions due to problems with the wiring pattern.
We recommend attaching capacitors in parallel with the serial input pins to ameliorate this
problem.
Figure 2-b shows an example of this circuit appropriate when the clock frequency is 500
kHz. The value of the capacitor should be set in accordance with the clock frequency
actually used.
4. NR Mode Switching
In actual use, pop noises may accompany NR on/off switching in C mode. To avoid these
noises, use the following sequences to turn NR on and off.
From C mode NR off to C mode NR on:
(C mode, NR off) → (B mode, NR off) → (B mode, NR on) → (C mode, NR on).
From C mode NR on to C mode NR off:
(C mode, NR on) → (B mode, NR on) → (B mode, NR off) → (C mode, NR off).
Table 3
Switching Truth Table
Pin No.
Lo
Hi
1
NR-OFF
NR-ON
2
B-NR
C-NR
3
MPX-ON
MPX-OFF
Notes: 1. Low level will be offered when each pins are open.
2. Please refer to next term as for the serial data for formatting.
When connecting microcomputer or Logic-IC with HA12155NT/HA12157NT directly, there is
apprehension of rash-current under some transition timming of raising voltage or falling voltage at VCC
ON/OFF.
For this countermeasure, connect 10 kΩ to 20 kΩ resistor with each pins. It is shown in test circuit.
Rev.4, Jun. 1997, page 15 of 57
HA12155NT/HA12157NT
under 5.3 V
0
within –0.2 V
Figure 2 Input Level
Serial Data Formatting
8 bit shift register is employed. CLK and DATA are stored during STB being high and data is ratched
when STB goes high to low. The clock frequency on CLK must be less than 500 kHz.
5V
0V
5V
DATA
0V
5V
STB
0V
CLK
0
1
2
3
4
5
6
latch of data
Figure 3 Serial Data Timming Chart
Rev.4, Jun. 1997, page 16 of 57
7
HA12155NT/HA12157NT
Table 4
Serial Data Formatting
Bit Control
No. register
0
Volume register
TAPE
H
SELECT 1
L
DAC0
TS1
TS2
H
H
TAPE IV
TAPE I
L
TAPE II
TAPE I
bit No.
L
5
L
L
L
L
4
L
L
L
L
gain
3 2 1 0
L L L L increase
L L L H
L L H L
L L H H
H H H H L H
H H H H H L decrese
H H H H H H mute
1
2
3
TAPE
H
SELECT 2
L
TAPE
H High (double) speed selection DAC2
SPEED
L
METER
H Meter sensitivity 20 dB up
SENSITIVITY L
4
INPUT
H
SELECT 1
L
DAC1
Normal speed selection
6
INPUT
H
SELECT 2
L
REC/PB
DAC4
IS1
H
L
H
PB I
VR I
L
RP I
VR I
7
REGISTER
SELECT
DAC 5
H PB mode selection
L
DAC3
Meter sensitivity normal
IS2
5
*mute is implemented when all
bits are high.
R/L SELECT H Rch register selection
REC mode selection
H Control register selection
REGISTER
SELECT
L
Lch register selection
L
Volume register selection
Note: TAPE I: Normal tape, TAPE II: Chrome tape, TAPE IV: Metal tape
Rev.4, Jun. 1997, page 17 of 57
HA12155NT/HA12157NT
Input Block Diagram and Level Diagram
–3 dB
IA
OUT
RPI PBI
43 mVrms
(–25.2 dBs)
VRI
MPX
Filter
43 mVrms
(–25.2 dBs)
426 mVrms
(–5.2 dBs)
Input
Amp
MPX ON
Electrical
VR
PB - OUT
NR
lN
HA12155
580 mVrms
(–2.5 dBs)
300 mVrms
(–8.2 dBs)
HA12157
775 mVrms
(0 dBs)
NR
circuit
MA
MPX OFF
– 3 dB
47 mVrms
(–24.3 dBs)
b) REC mode
IA
OUT
RPI PBI
30 mVrms
(–28.2 dBs)
VRI
Electrical
VR
30 mVrms
(–28.2 dBs)
The each level shown above is typical value when
offering Dolby level to test point pin (NR IN) with
the gain of electrical volume is under the condition
of max.
MPX
Filter
HA12155
580 mVrms
(–2.5 dBs)
300 mVrms
(–8.2 dBs)
Input
Amp
HA12157
775 mVrms
(0 dBs)
MA
33 mVrms
(–27.4 dBs)
NR
circuit
NR circuit
a) PB mode
The each level shown above is typical value when
offering Dolby level to test point pin (IA OUT) with
the gain of electrical volume is under the condition
of max.
Figure 4 Input Block Diagram
Rev.4, Jun. 1997, page 18 of 57
PB - OUT
NR
lN
HA12155NT/HA12157NT
MPX ON/OFF Switch
MPX-OFF mode means that signal from input amp doesn’t go through the MPX filter, but signal goes
through the SS circuit after being attenuated 3 dB by internal resistor. Refer to figure 5. For not cause any
level difference between MPX-ON mode and MPX-OFF mode, it is requested to use MPX-filter which has
definitely 3 dB attenuated. MPX-OFF mode offer totally flat frequency response and no bias-trap effect.
And when applying other usage except figure 5, take consideration to give bias voltage to NR-IN terminal
by resistor or so on because internal of NR-IN terminal hsa no bias resistor.
5.6 k Ω
MPX
2.4 k Ω
IA OUT
NR IN
VREF
Vref
+
INPUT amp
–
+
–
MPX ON
NR
PROCESSER
MPX OFF
3 dB ATT.
Vref
Figure 5 MPX ON/OFF Switch Block Diagram
Application as for the Dubbing Cassette Deck
HA12155NT/HA12157NT series has unprocessor signal from recording out terminals during plyaback
mode. So, it is simply applied for dubbing cassette decks.
And HA12155NT/HA12157NT has three input terminal. So, it is applicable to switch the signal from PBEQ as shown below.
Rev.4, Jun. 1997, page 19 of 57
HA12155NT/HA12157NT
A deck
B deck
PB EQ
PB EQ
Compensation
of low
frequency
region
RPI PBI
REC
REC OUT
PB
EQ IN
REC IN
VRI
HA12155 / 7
EQ OUT
PB OUT
Figure 6 Application for Dubbing Deck
Injector Current
2
HA12155NT/HA12157NT has logic circuit which is fabricated by I L into IC. To operate this circuit, it is
required enough injector current. Injector current goes into from the INJ pin (pin 10) and external resistor
is required to connect to this pin for adequate current. The value of external resistor is obtained by using
following equations. And put them with ±10% tolerance value which is calculated. VINJ can allow to
connect to VCC shown below. Under the condition of high temperature, the mis-operation of logic is caused
by large injector current. Also, under the condition of low temperature, the stop of logic is caused by small
injector current. Therefore, pay attention to have good stability of VINJ.
R INJ =
VINJ – 0.7
3.6
[kΩ] ---- Single supply
R INJ =
VINJ + VEE – 0.7
3.6
[kΩ] ---- Split supply
RINJ
RINJ
10
3.6 mA
VINJ
10
HA12155 / 7
40
61
3.6 mA
VINJ
HA12155 / 7
40
VEE
a) Single supply use
b) Split supply use
Figure 7 Injector Current Application
Rev.4, Jun. 1997, page 20 of 57
61
HA12155NT/HA12157NT
Gain Control of Electronic Volume
HA12155NT/HA12157NT is designed in order to change the gain by 6 bit DAC fabricated into IC. To
reduce the click noise when changing volume gain instantaneously, required to connect the capacitor (CR
time constant) to CNT pin (pin 6,59). These terminals are also be used as output pin of DAC. Therefore,
by forcing voltage or current to these terminals, it is applicable to control volume gain directly. But,
voltage forced to these terminals must be from VCC/2 –2 V to VCC/2 (for split supply use, –2 V to 0 V) in this
case. In case of forcing the current these pins, voltage must be the value mentioned above even it is ±20%
distributed of internal resistor (5.2 kΩ) of CNT pin. And, these case, change of a gain depending on a
temperature gets large.
The Tolerances of External Components for Dolby NR-Block
For adequate Dolby NR tracking response, take external components shown below.
For smooth capacitors of C13, C14, C25 and C26, please employ a few object of the leak, though you can
be useful for an electrolytic capacitor.
C28
2200 p
± 5%
R29
18 k
± 2%
C29
2200 p
± 5%
R24
22 k
± 2%
57
51
BIAS
PB OUT
(L)
R23
560
± 2%
50
49
SS1
(L)
SS2
(L)
C27
C26
2200 p 0.1 µ
± 5%
±10%
48
47
46
CCR
(L)
HLS
DET(L)
C25
0.1 µ
±10%
LLS
DET(L)
HA12155/7 (REC 1 Chip)
PB OUT
(R)
SS1
(R)
SS2
(R)
CCR
(R)
HLS
DET(R)
LLS
DET(R)
14
15
16
17
18
19
R11
R13
560
± 2%
22 k
± 2%
Unit R : Ω
C:F
C9
2200 p
± 5%
C12
2200 p
± 5%
C13
0.1 µ
±10%
C14
0.1 µ
±10%
C10
2200 p
± 5%
Figure 8 Tolerances of External Components
Level Meter
The coupling capacitor of LMIN pin (21 pin and 44 pin).
For these capacitors please employ a small object of the leak.
Rev.4, Jun. 1997, page 21 of 57
HA12155NT/HA12157NT
The Application of Equalizer Frequency Response
F/Q
EQ
IN
+
_OP1
R1
_
_
GP
+
OP2
_
+
Gm1
_
OP5
+
Gm2
+
R6
C1
R7
R5
R3
R4
R2
+
Gm3
_
+
OP6
_
C2
R10
FM
_
+
Gm4
_
+
C3
_ OP7
GL
Gm5
+
_
+
OP3
_
_
R9
EQ
OUT
OP4
+
GH
R8
Gm6
+
Figure 9 REC Equalizer Block Diagram
Transfer Function:


C2
C3 Gm6
+
S


R 4 ⋅ R 10
R 8 ⋅ R 10 1 Gm4 Gm5 S
Vout R 2 + R 3 
Gm3

=
+ Gm1
Gm5
C3
R
R


R7
C2
C1
C2
Vin
R2
R9
R6 + R7 1 + 4
1+
S
S+ 4
S2 

Gm 4
R 5 R 6 + R 7 Gm3
R 5 Gm 2 Gm3 



−10 R FM ⋅ R GH
⋅S
1 + 6.67 ×10
−

3.0 × 10 10 ⋅ R FQ ⋅ S
R GL
4.16 

+ RGP
=
R
− 10
−11
−20
2
R REF  GL
1 + 4.5 ×10 ⋅ R FQ ⋅ S + 2.5 × 10 ⋅ R FQ ⋅ R F / Q S 
1 + 6.67 × 10 R FM ⋅ S




*RREF-----25 pin bias resistance
Rev.4, Jun. 1997, page 22 of 57
HA12155NT/HA12157NT
Gain
g1
3dB
BW
g2
g3
f1
f2
f3
f
Figure 10 REC Equalizer Frequency Response
gl =
g2 =
g3 =
f1 =
f2 =
f3 =
BW =
Q=
4.16
(6.67 × R GP + R GH )
R REF
4.16 × R GL
R REF
4.16 × R GH
R REF
1
2π × 6.67 ×10 −10 × R FM
R GL
2π × 6.67 ×10 −10 × R FM × R GH
0.3
1
⋅
2π 2.25 ×10 −21 × R × R
FQ
F/Q
1
4 π × 2.78 × 10−10 × R F / Q
f3
BW
= 3.51 ×
RF/ Q
RF/ Q
Rev.4, Jun. 1997, page 23 of 57
HA12155NT/HA12157NT
Quiescent Current vs. Supply Voltage
Quiescent current I Q (mA)
35
30
REC – C
REC – B
REC – OFF
PB – C
PB – B
PB – OFF
REC : VRI in (DAC Step 0)
LM : Normal
PB : PBI in (DAC Step 0)
LM : Normal
25
8
10
12
14
Supply voltage Vcc (V)
Rev.4, Jun. 1997, page 24 of 57
16
18
HA12155NT/HA12157NT
Encode Boost vs. Frequency (HA12155)
12
NR–B RPI in RECOUT out
: Vin = – 0 dB
: Vin = – 10 dB
: Vin = – 20 dB
: Vin = – 30 dB
: Vin = – 40 dB
10
Encode Boost (dB)
8
16 V
14 V
6
9V
4
2
0
100
200
500
1k
2k
5k
10 k
20 k
50 k
100 k
Frequency (Hz)
Rev.4, Jun. 1997, page 25 of 57
HA12155NT/HA12157NT
Encode Boost vs. Frequency (HA12155)
25
NR-C RPI in RECOUT out
20
: Vin = 0 dB
: Vin = – 20 dB
: Vin = – 30 dB
: Vin = – 40 dB
: Vin = – 60 dB
Encode Boost (dB)
15
16 V
10
14 V
9V
5
0
–5
–10
100
200
500
1k
2k
5k
Frequency (Hz)
Rev.4, Jun. 1997, page 26 of 57
10 k
20 k
50 k
100 k
HA12155NT/HA12157NT
Encode Boost vs. Frequency (HA12157)
12
NR-B RPI in RECOUT out
Encode Boost (dB)
10
8
16 V
14 V
: Vin = 0 dB
: Vin = – 10 dB
: Vin = – 20 dB
: Vin = – 30 dB
: Vin = – 40 dB
6
11 V
4
2
0
100
200
500
1k
2k
5k
10 k
20 k
50 k
100 k
Frequency (Hz)
Rev.4, Jun. 1997, page 27 of 57
HA12155NT/HA12157NT
Encode Boost vs. Frequency (HA12157)
25
NR-C RPI in RECOUT out
: Vin = – 0 dB
: Vin = – 20 dB
: Vin = – 30 dB
: Vin = – 40 dB
: Vin = – 60 dB
20
Encode Boost (dB)
15
16 V
14 V
11 V
10
5
0
–5
– 10
100
200
500
1k
2k
5k
Frequency (Hz)
Rev.4, Jun. 1997, page 28 of 57
10 k
20 k
50 k
100 k
HA12155NT/HA12157NT
Output Gain vs. Frequency (HA12155)
26
PB OUT
Output gain Gv (dB)
22
18
REC OUT
14
10
(NR – OFF, RPI) Vcc = 14 V
REC mode
6
10
30
60 100
300
600
1k
3k
6 k 10 k
30 k 60 k 100 k
Frequency (Hz)
Rev.4, Jun. 1997, page 29 of 57
HA12155NT/HA12157NT
Output Gain vs. Frequency (HA12155)
28
PB OUT
Output gain Gv (dB)
24
REC OUT
20
16
12
PB mode (NR – OFF, RPI) Vcc = 14 V
8
10
30
60 100
300
600 1 k
Frequency (Hz)
Rev.4, Jun. 1997, page 30 of 57
3k
6 k 10 k
30 k
60 k 100 k
HA12155NT/HA12157NT
Output Gain vs. Frequency (HA12157)
28
PB OUT
Output gain Gv (dB)
24
20
REC OUT
16
12
8
(NR – OFF, RPI) Vcc = 14 V
REC mode
10
30
60 100
300
600 1 k
3k
6 k 10 k
30 k
60 k 100 k
Frequency (Hz)
Rev.4, Jun. 1997, page 31 of 57
HA12155NT/HA12157NT
Output Gain vs. Frequency (HA12157)
30
PB OUT
Out put gain Gv (dB)
26
22
REC OUT
18
14
PB mode (NR – OFF, PBI) Vcc = 14 V
10
10
30
60 100
300
600 1 k
Frequency (Hz)
Rev.4, Jun. 1997, page 32 of 57
3k
6 k 10 k
30 k
60 k 100 k
HA12155NT/HA12157NT
Total harmonic distortin T.H.D. (%)
Total Harmonic Distortion vs. Output Level (HA12155)
10
RPI in RECOUT out REC mode
f = 100 Hz
V CC = 14 V
3.0
0 dB = 300 mVrms
1.0
NR-C
0.3
NR-B
0.1
0.03
0.01
–15
NR-OFF
–10
–5
0
5
10
15
Total harmonic distortion T.H.D. (%)
Output level Vout (dB)
Total Harmonic Distortion vs. Output Level (HA12155)
10
RPI in RECOUT out REC mode
f = 1 kHz
V CC = 14 V
3.0
0 dB = 300 mVrms
1.0
NR-C
0.3
0.1
NR-B
0.03
0.01
–15
NR-OFF
–10
–5
0
5
10
15
Output level Vout (dB)
Rev.4, Jun. 1997, page 33 of 57
Total harmonic distortion T.H.D. (%)
HA12155NT/HA12157NT
Total Harmonic Distortion vs. Output Level (HA12155)
10
RPI in RECOUT out REC mode
f = 10 kHz
V CC = 14 V
3.0
0 dB = 300 mVrms
1.0
0.3
NR-C
0.1
NR-B
0.03
NR-OFF
0.01
–15
–10
–5
0
5
10
15
Total harmonic distortion T.H.D. (%)
Output level Vout (dB)
Total Harmonic Distortion vs. Output Level (HA12155)
10
PBI in PBOUT out PB mode
f = 100 Hz
V CC = 14 V
3.0
0 dB = 580 mVrms
NR-C
1.0
0.3
NR-OFF
0.1
0.03
NR-B
0.01
–15
–10
–5
0
5
10
Output level Vout (dB)
Rev.4, Jun. 1997, page 34 of 57
15
Total harmonic distortion T.H.D. (%)
HA12155NT/HA12157NT
Total Harmonic Distortion vs. Output Level (HA12155)
10
PBI in PBOUT out PB mode
f = 1 kHz
V CC = 14 V
3.0
0 dB = 580 mVrms
1.0
0.3
NR-C
0.1
NR-OFF
0.03
NR-B
0.01
–15
–10
–5
0
5
10
15
Total harmonic distortion T.H.D. (%)
Output level Vout (dB)
Total Harmonic Distortion vs. Output Level (HA12155)
10
PBI in PBOUT out PB mode
f = 10 kHz
V CC = 14 V
3.0
0 dB = 580 mVrms
1.0
0.3
NR-C
0.1
NR-OFF
0.03
NR-B
0.01
–15
–10
–5
0
5
10
15
Output level Vout (dB)
Rev.4, Jun. 1997, page 35 of 57
Total harmonic distortion T.H.D. (%)
HA12155NT/HA12157NT
Total Harmonic Distortion vs. Output Level (HA12157)
10
RPI in RECOUT out REC mode
f = 100 Hz
V CC = 14 V
3.0
1.0
NR-C
0.3
NR-B
0.1
0.03
0.01
–15
NR-OFF
–10
–5
0
5
10
15
Total harmonic distortion T.H.D. (%)
Output level Vout (dB)
Total Harmonic Distortion vs. Output Level (HA12157)
10
RPI in RECOUT out REC mode
f = 1 kHz
VCC = 14 V
3.0
1.0
0.3
NR-C
0.1
0.03
0.01
–15
NR-B
NR-OFF
–10
–5
0
5
Output level Vout (dB)
Rev.4, Jun. 1997, page 36 of 57
10
15
Total harmonic distortion T.H.D. (%)
HA12155NT/HA12157NT
Total Harmonic Distortion vs. Output Level (HA12157)
10
RPI in RECOUT out REC mode
f = 10 kHz
V CC = 14 V
3.0
1.0
0.3
NR-C
0.1
NR-B
0.03
NR-OFF
0.01
–15
–10
–5
0
5
10
15
Total harmonic distortion T.H.D. (%)
Output level Vout (dB)
Total Harmonic Distortion vs. Output Level (HA12157)
10
RBI in RBOUT out PB mode
f = 100 Hz
V CC = 14 V
3.0
1.0
NR-C
0.3
0.1
NR-OFF
0.03
0.01
–15
NR-B
–10
–5
0
5
10
15
Output level Vout (dB)
Rev.4, Jun. 1997, page 37 of 57
Total harmonic distortion T.H.D. (%)
HA12155NT/HA12157NT
Total Harmonic Distortion vs. Output Level (HA12157)
10
PBI in PBOUT out REC mode
f = 10 kHz
V CC = 14 V
3.0
1.0
0.3
NR-C
0.1
NR-OFF
0.03
NR-B
0.01
–15
–10
–5
0
5
10
15
Total harmonic distortion T.H.D. (%)
Output level Vout (dB)
Total Harmonic Distortion vs. Output Level (HA12157)
10
PBI in PBOUT out PB mode
f = 10 kHz
V CC = 14 V
3.0
1.0
NR-C
0.3
0.1
NR-OFF
0.03
NR-B
0.01
–15
–10
–5
0
5
Output level Vout (dB)
Rev.4, Jun. 1997, page 38 of 57
10
15
HA12155NT/HA12157NT
Max. output level Vo max (dB)
Max. Output Level vs. Supply Voltage (HA12155)
20
15
OFF
B
C
10
5
T.H.D. = 1%
0 dB = 300 mVrms
f = 1 kHz REC mode RPI in RECOUT out
0
8
9
10 11 12 13 14
Supply voltage VCC (V)
15
16
Max. output level Vo max (dB)
Max. Output Level vs. Supply Voltage (HA12155)
20
15
10
5
T.H.D. = 1%
0 dB = 580 mVrms
f = 1 kHz PB mode PBI in PBOUT out
0
8
9
10 11 12 13 14
Supply voltage VCC (V)
15
16
Rev.4, Jun. 1997, page 39 of 57
HA12155NT/HA12157NT
Max. output level Vo max (dB)
Max. Output Level vs. Supply Voltage (HA12157)
20
15
10
OFF
B
C
5
T.H.D. = 1%
0 dB = 300 mVrms
f = 1 kHz REC mode
RPI in RECOUT out
0
9
10
11
12
13
15
16
Supply voltage V CC (V)
Max. output level Vo max (dB)
Max. Output Level vs. Supply Voltage (HA12157)
20
15
10
OFF
B
C
5
T.H.D. = 1%
0 dB = 775 mVrms
f = 1 kHz PB mode
PBI in PBOUT out
0
10
11
12
13
14
15
Supply voltage V CC (V)
Rev.4, Jun. 1997, page 40 of 57
16
HA12155NT/HA12157NT
Signal-to-Noise Ratio vs. Supply Voltage (HA12155)
PB-C
90
PB-B
REC-OFF RPI
Signal-to-noise ratio S/N (dB)
REC-OFF VRI
PB-OFF
80
REC-B RPI
REC-B VRI
70
REC-C RPI
REC-C VRI
60
E Vol : DAC Step No.18
Vin = 100 mVrms
CCIR/ARM
50
9
10
11
12
13
14
15
16
Supply voltage Vcc (V)
Rev.4, Jun. 1997, page 41 of 57
HA12155NT/HA12157NT
Signal-to-Noise Ratio vs. Supply Voltage (HA12157)
90
PB-C
PB-B
REC-OFF RPI
Signal-to-noise ratio S/N (dB)
REC-OFF VRI
RB-OFF
80
PB-B RPI
REC-B VRI
70
REC-C RPI
REC-C VRI
60
VRI : DAC Step No.18
Vin = 100 mVrms
CCIR/ARM
50
10
11
12
13
14
15
16
Supply voltage VCC (V)
Crosstalk vs. Frequency (R
L)
–20
REC mode RPI in RECOUT out
Vin = +6 dB
VCC = 14 V
Crosstalk (R
L) (dB)
–40
–60
C
–80
B
–100
–120
10
OFF
100
1k
Frequency (Hz)
Rev.4, Jun. 1997, page 42 of 57
10 k
100 k
HA12155NT/HA12157NT
Crosstalk vs. Frequency (R
L)
–20
PB mode RPI in PBOUT out
Vin = +6 dB
VCC = 14 V
–60
C
–80
OFF
–100
B
–120
10
100
1k
10 k
100 k
Frequency (Hz)
Crosstalk vs. Frequency
0
VCC = 14 V
–20
Crosstalk (dB)
Crosstalk (R
L) (dB)
–40
–40
RPI
PBI
–60
–80
RPI
–100
10
30
60 100
300 600 1 k
3 k 6 k 10 k
VRI
30 k 60 k 100 k
Frequency (Hz)
Rev.4, Jun. 1997, page 43 of 57
HA12155NT/HA12157NT
Crosstalk vs. Frequency
0
VCC = 14 V
Crosstalk (dB)
–20
–40
–60
PBI
RPI
–80
–100
10
PBI
30
60 100
300 600 1 k
3 k 6 k 10 k
VRI
30 k 60 k 100 k
Frequency (Hz)
Crosstalk vs. Frequency
0
VCC = 14 V
Crosstalk (dB)
–20
–40
–60
VRI
RPI
–80
VRI
–100
10
30
60 100
300 600 1 k
3 k 6 k 10 k
Frequency (Hz)
Rev.4, Jun. 1997, page 44 of 57
PBI
30 k 60 k 100 k
HA12155NT/HA12157NT
Ripple Rejection Ratio vs. Frequency (REC mode)
Ripple rejection ratio R.R.R. (dB)
0
V CC = 14 V RECOUT out
–10
–20
C
–30
B
–40
OFF
–50
10
50 100
500 1 k
5 k 10 k
50 k 100 k
Frequency (Hz)
Ripple Rejection Ratio vs. Frequency (PB mode)
Ripple rejection ratio R.R.R. (dB)
–10
–20
–30
OFF
–40
B
C
–50
–60
10
V CC = 14 V PBOUT out
50 100
500 1 k
5 k 10 k
50 k 100 k
Frequency (Hz)
Rev.4, Jun. 1997, page 45 of 57
HA12155NT/HA12157NT
Gain, S/N and Vomax vs. DAC Step
20
–25
100
Gv.Vin
–5
0
S/N
(JIS A filter)
0
80
Vo max
20
16
12
5
–10
70
8
10
4
VCC = 14 V f = 1 kHz
VRI in IAOUT out
15
–20
60
0
10
20
DAC Step No.
Rev.4, Jun. 1997, page 46 of 57
30
40
0
2
Vo max (dB) 0 dB = –5.2 dBs T.H.D. = 1 %
–10
90
S/N (dB)
10
–15
IAOUT gain Gv (dB)
Input level Vin (the value to be converted) (dBs)
–20
HA12155NT/HA12157NT
Total Harmonic Distortion vs. DAC Step
10
Total harmonic distortion T.H.D. (%)
3.0
0 dB = –5.2 dBs
Vcc = 14 V
f = 100 Hz
IAOUT output level = const
1.0
+10 dB
0 dB
–10 dB
0.3
0.1
0.03
0.01
0
10
20
30
DAC Step
40
50
Total Harmonic Distortion vs. DAC Step
10
Total harmonic distortion T.H.D. (%)
3.0
0 dB = –5.2 dBs
Vcc = 14 V
f = 1 kHz
IAOUT output level = const
1.0
+ 10 dB
0 dB
– 10 dB
0.3
0.1
0.03
0.01
0
10
20
30
DAC Step
40
50
Rev.4, Jun. 1997, page 47 of 57
HA12155NT/HA12157NT
Total Harmonic Distortion vs. DAC Step
10
Total harmonic distortion T.H.D. (%)
3.0
1.0
+ 10 dB
0 dB
– 10 dB
0.3
0.1
0.03
0.01
E. Vol Max. input level Vin max (IAOUT T.H.D. = 1 %) (dB)
0 dB = –5.2 dBs
Vcc = 14 V
f = 10 kHz
IAOUT output level = const
0
10
20
30
DAC Step
40
E. Vol Max. Input Level vs. Supply Voltage
16
14
12
10
8
6
4
2
0
f = 1 kHz
IAOUT out DAC Step No.= 42
8
10
12
14
16
Supply voltage VCC (V)
Rev.4, Jun. 1997, page 48 of 57
50
18
HA12155NT/HA12157NT
Electronic Volume Gain vs. Frequency
30
VRI in IAOUT out
V CC = 14 V
V in = –12 dBs
DAC Step0
DAC Step20
10
DAC Step29
0
DAC Step36
–10
DAC Step42
–20
DAC Step47
–30
DAC Step51
–40
DAC Step56
–50
DAC Step62
–60
–70
10
100
1k
10 k
100 k
Frequency (Hz)
Level Meter Output vs. Input Level (HA12155)
4.0
3.0
Level meter output (V)
Electronic volume gain (dB)
20
–20 dB Range
2.0
0 dB Range
1.0
0 dB = 580 mVrms
VCC = 14 V
f = 1 kHz
0
–80 –60 –40 –20
0
20
40
Input level Vin (dB)
Rev.4, Jun. 1997, page 49 of 57
HA12155NT/HA12157NT
Level Meter Output vs. Input Level (HA12157)
4.0
Level meter output (V)
3.0
–20 dB Range
2.0
0 dB Range
1.0
0 dB = 775 mVrms
VCC = 14 V
f = 1 kHz
0
–80 –60 –40 –20 0
20 40
Input level Vin (dB)
Level Meter Output vs. Frequency
3.2
VCC = 14 V
Level meter output (V)
3.0
2.8
2.6
0 dB Range
Vin = 0 dB
–20 dB Range Vin = –20 dB
2.4
2.2
2.0
20 30
100
300
1k
3k
Frequency (Hz)
Rev.4, Jun. 1997, page 50 of 57
10 k
30 k
100 k
HA12155NT/HA12157NT
Level Meter Output vs. Supply Voltage
4.0
0 dB Range Vin = 12 dB
Level meter output (V)
3.0
0 dB Range Vin = 0 dB
–20 dB Range Vin = –20 dB
2.0
1.0
0 dB Range Vin = –20 dB
f = 1 kHz
0
8
10
12
14
16
18
Supply voltage VCC (V)
Equalizer Gain vs. Frequency
40
(5)
Equalizer gain (dB)
(1) (2) (3) (4) (5) (6)
NN HN NC HC NM HM
(3)
RGP 33 k 33 k 33 k 33 k 47 k 47 k
RGL 33 k 33 k 51 k 51 k 51 k 51 k
RGH 33 k 33 k 51 k 51 k 51 k 51 k
RF/Q 51 k 20 k 51 k 20 k 51 k 20 k
RFQ 51 k 27 k 51 k 27 k 51 k 27 k
RFM 100 k100 k 100 k100 k100 k100 k
25
(6)
(4)
VCC = 14 V Vin = –20 dBs
(1)
(2)
10
10
300
1k
3k
10 k
30 k
100 k
Frequency (Hz)
Rev.4, Jun. 1997, page 51 of 57
HA12155NT/HA12157NT
Equalizer Total Harmonic Distortion vs. Output Level
Total hrmonic distortion T.H.D. (%)
30
VCC = 14 V
0 dB = –5 dBs
Rload = 10 kΩ
RGL = 33 k Ω
RGH = 33 k Ω
RFM = 100 k Ω
RGP = 33 k Ω
RF/Q = 51 k Ω
RFQ = 51 k Ω
10
3.0
: 15 kHz
: 10 kHz
: 6.3 kHz
: 3.15 kHz
: 1 kHz
: 315 Hz
1.0
0.3
0.1
–10
–5
0
5
10
15
Output level Vout (dB)
Equalizer amplifier gain GL (dB)
35
30
25
20
Equalizer Amplifier Gain (GL) vs. RGL
VCC = 14V
RGH = R GP = 33 k Ω
RFQ = R F/Q = 51 k Ω
RFM = 100 k Ω
f = 315 Hz
f = 1 kHz
15
10
5
5k 10 k
Rev.4, Jun. 1997, page 52 of 57
at R GL = 33 k Ω
V out = Ð5 dBs
30 k
100 k
R GL (Ω )
300 k
1M
20
HA12155NT/HA12157NT
Equalizer Amplifier Gain (GH) vs. RGH
Equalizer amplifier gain GH (dB)
35
30
25
VCC = 14 V
R GL = 33 k Ω
R GP = 16 k Ω
R FQ = R F/Q = 24 k Ω
R FM = 390 k Ω
f = 6.3 kHz
20
at RGH = 33 k Ω
Vout = Ð5 dBs
15
10
5
5k 10 k
30 k
100 k
RGH ( Ω)
300 k
1M
Equalizer Amplifier Gain (GP) vs. RGP
Equalizer amplifier gain GP (dB)
50
45
VCC = 14 V
R GH = R GP = 33 k Ω
R FQ = R F/Q = 51 k Ω
R FM = 100 k Ω
40
f = 19 kHz
35
30
25
20
5k 10 k
30 k
100 k
R GP (Ω )
300 k
1M
Rev.4, Jun. 1997, page 53 of 57
HA12155NT/HA12157NT
Equalizer cut off frequency FM (Hz)
100 k
Equalizer Cut off Frequency (FM) vs. R FM
30 k
VCC = 14 V
RGL = 120 k Ω
RGH = 7.5 k Ω
RFQ = R F/Q = 24 k Ω
RGP = 16 k Ω
10 k
3k
1k
300
5k
10 k
30 k
100 k
300 k
1M
R FM (Ω )
Equalizer peak frequency fo (Hz)
300 k
Equalizer Peak Frequency vs. RFQ
100 k
30 k
R F/Q =
12 k Ω
10 k
24 k Ω
51 k Ω
100 k Ω
200 k Ω
3k
2k
5k
390 k Ω
10 k
30 k
100 k
R FQ ( Ω)
Rev.4, Jun. 1997, page 54 of 57
300 k
1M
HA12155NT/HA12157NT
Equalizer Q vs. R FQ
Equalizer quality factor Q
15
10
5
0
5k
R F/Q =
390 kΩ
200 kΩ
100 kΩ
51 kΩ
24 kΩ
12 kΩ
10 k
30 k
100 k
300 k
1M
R FQ ( Ω )
Rev.4, Jun. 1997, page 55 of 57
HA12155NT/HA12157NT
Package Dimensions
Unit: mm
57.6
58.5 Max
33
17.0
18.6 Max
64
32
1.0
1.78 ± 0.25
0.48 ± 0.10
0.51 Min
1.46 Max
2.54 Min 5.08 Max
1
19.05
+ 0.11
0.25 – 0.05
0˚ – 15˚
Hitachi Code
JEDEC Code
EIAJ Code
Weight
Rev.4, Jun. 1997, page 56 of 57
DP-64S
—
SC-553-64A
8.8 g
HA12155NT/HA12157NT
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.4, Jun. 1997, page 57 of 57