HA12155NT/HA12157NT Audio Signal Processor for Cassette Deck (Dolby B/C-type NR with Recording System) ADE-207-115C (Z) 4th Edition June 1997 Description HA12155NT/HA12157NT is silicon monolithic bipolar IC providing Dolby noise reduction system*, electrical volume system, REC equalizer system and level meter system in one chip. Functions • REC equalizer × 2 channel • Dolby B/C NR × 2 channel • Electronic volume × 2 channel • Level Meter × 2 channel Features • Inductor less REC equalizer is adjustable of its characteristics by external resistor • Rec level is adjustable automatically with electrical volume which is built-in • 3 type of input selection is available (one is by way of electrical volume) • Separate input selection SW and REC/PB SW • Dolby noise reduction with dubbing cassette decks (Unprocessed signal output available from recording out terminals during PB mode) • Log-compressed level meter output is range from 0 V to 5 V (Usable as music search switchable gain of 0 dB and 20 dB respectivily) • Normal-speed/high-speed (Double), normal/metal/chrome fully electronic control switching built-in • NR-ON/OFF, Dolby B/C, MPX ON/OFF fully electronic control switching built-in (Controllable from micro-controller directly) • Reduction of number of pin by transfered serial data to electronic volume control switching and another control switching (Controllable from micro-controller directly) • Low external parts count HA12155NT/HA12157NT * Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. Ordering Information Operating voltage Type Package Dolby Level REC-OUT Level PB-OUT Level Min Max HA12155NT DP-64S 300 mVrms 300 mVrms 580 mVrms 9.5 V 16 V 775 mVrms 12 V 16 V HA12157NT Rev.4, Jun. 1997, page 2 of 57 63 2 3 62 4 BIAS 61 5 60 58 6 7 6BIT DAC E VOL E VOL 6BIT DAC 59 8 57 9 56 10 11 54 P X 12 53 13 52 NRIN Vref M (L) (L) 14 51 15 50 48 47 Dolby B/C NR 49 16 17 18 Dolby B/C NR PB OUT (L) M P X NRIN PBOUT IA OUT (R) Vref (R) (R) (R) IA IA 55 NR C/B MPX VCC VRI CNT RPI REF PBI INJ (R) ON/OFF (R) (R) (R) ON/OFF 1 SW Decoder Latch Shift register 64 GND VRI CNT RPI PBI DATA CLK STB (1) (L) (L) (L) BIAS (L) DGND IA OUT (L) 20 45 REC OUT(R) 19 46 REC OUT(L) 42 22 25 REC EQ REC EQ 26 39 27 28 29 30 31 32 FM fQ f/Q GH GL GP EQ-Controller NN NC NM HN HC HM 37 36 35 34 33 38 EQ IN(R) IREF EQ OUT(R) 24 LM OUT(R) 23 RECT – LMA + 41 40 GND EQ (2) OUT(L) EQ IN(L) LM OUT(L) RECT 43 + LMA – LM IN(R) 21 44 LM IN(L) HA12155NT/HA12157NT Block Diagram Rev.4, Jun. 1997, page 3 of 57 HA12155NT/HA12157NT Absolute Maximum Ratings Item Symbol Ratings Unit Supply voltage VCC 16 V Power dissipation*1 Pd 770 mW Operating temperature Topr –30 to +75 °C Storage temperature Tstg –55 to +125 °C Note: 1. Value at Ta ≤ 75°C Electrical Characteristics (Ta = 25°C VCC = 14 V Dolby level 300 mVrms) Item Symbol Min Typ Max Unit Test conditions Quiescent current IQ — 29.0 37.0 mA no signal Input amp gain GVIA RPI 18.5 20.0 21.5 dB Vin = 0 dB, f = 1 kHz GVIA PBI 18.5 20.0 21.5 B-type NR Encode Boost B-ENC-2K 2.8 4.3 5.8 dB Vin = –20 dB, f = 2 kHz B-ENC-5K 1.7 3.2 4.7 C-type NR Encode Boost C-ENC-1K(1) Vin = –20 dB, f = 5 kHz 3.9 5.9 7.9 C-ENC-1K(2) 18.1 19.6 21.6 Vin = –60 dB, f = 1 kHz C-ENC-700 9.8 11.8 13.8 Vin = –30 dB, f = 700 Hz Signal handling Vomax 12.0 13.0 — dB f = 1 kHz, THD = 1%, VCC = 12 V Signal to noise ratio S/N 60.0 63.0 — dB Rg = 5.1 kΩ, CCIR/ARM Total harmonic distortion THD — 0.08 0.3 % Vin = 0 dB, f = 1 kHz CT (R↔L) — –85.0 –79.0 dB Crosstalk CT (RPI↔PBI) — –80.0 –74.0 CT (VRI↔RPI) — –77.0 –71.0 Control Hi level VcH 3.5 — 5.3 voltage Lo level VcL –0.2 — 1.0 Serial data Hi level VsH 3.5 — 5.3 voltage Lo level VsL –0.2 — 1.0 PB-out level HA12155 Vout 500 580 670 665 775 900 HA12157 dB V Vin = –20 dB, f = 1 kHz Vin = 0 dB, f = 1 kHz MPX ON/OFF, NR ON/OFF C-NR/B-NR V CLK, DATA, STB mVrms Vin = 0 dB, f = 1 kHz PB-offset Vofs –100 0.0 +100 mV no signal Channel balance ∆GV –1.0 0.0 1.0 dB Vin = 0 dB, f = 1 kHz Volume gain GVVR (MAX) 17.5 19.3 21.5 dB Vin = 100 mVrms, f =1 kHz GVVR (MIN) — — –55.0 Rev.4, Jun. 1997, page 4 of 57 Notes Vin = 3 Vrms, f = 1 kHz *1 HA12155NT/HA12157NT Electrical Characteristics (Ta = 25°C VCC = 14 V Dolby level 300 mVrms) (cont) Item Symbol Min Typ Max Volume mute GVVR (MUT) — — –80.0 dB Vin = 3 Vrms, f = 1 kHz Max-input level to volume Vin max (VR) 11.0 12.6 — dBs f = 1 kHz, THD = 1%, VCC = 12 V Volume S/N S/N (VR) 78.0 84.0 — dB Vin = 100 mVrms, f = 1 kHz, A-WTG Volume THD THD (VR) — 0.04 0.3 % Vin = 100 mVrms, f = 1 kHz Equalizer gain GV EQ (500) 13.0 15.0 17.0 dB Vin = 77.5 mVrms, f = 500 Hz GV EQ (1K) 13.0 15.0 17.0 Vin = 77.5 mVrms, f = 1 kHz GV EQ (5K) 14.5 16.5 18.5 Vin = 77.5 mVrms, f = 5 kHz GV EQ (10K) 18.5 20.5 22.5 Vin = 77.5 mVrms, f = 10 kHz GV EQ (20K) 29.5 32.0 34.5 Vin = 77.5 mVrms, f = 20 kHz Equalizer maximum input Vin max (EQ) –8.0 –7.0 — dBs f = 1 kHz, THD = 1%, VCC = 12 V Equalizer S/N S/N (EQ) 57.0 62.0 — dB Rg = 5.1 kΩ, A-WTG Equalizer THD THD (EQ) — 0.2 0.5 % Vin = 77.5 mVrms, f = 1 kHz Equalizer offset Vofs (EQ) –400 0.0 +400 mV no signal Level meter output LM (0 dB) 2.60 2.85 3.10 V Vin = 0 dB, f = 1 kHz LM (12 dB) 3.60 3.90 4.20 V Vin = 12 dB, f = 1 kHz LM (–20 dB)1 0.80 1.10 1.40 V Vin = –20 dB, f = 1 kHz LM (–20 dB)2 2.55 3.0 3.15 V Vin = –20 dB, f = 1 kHz, –20 dB range LMofs 1 — 150 300 mV no signal LMofs 2 — 200 350 Level meter output Level meter offset Unit Test conditions Notes *1 *2 *2 no signal, –20 dB range Notes: 1. HA12155 VCC = 9.5 V, HA12157 VCC = 12 V 2. 0 dB = PB-OUT level Rev.4, Jun. 1997, page 5 of 57 Rev.4, Jun. 1997, page 6 of 57 1 2 3 SW1 OFF R SW22 SW23 AC VM 1 EQ VR RP PB C4 14 V + 5 DC Source 1 + C32 100 µ 0.47µ 4 ON OFF S2 S3 S2 S3 S2 S3 SW21 OFF ON b c SW18 SW19 SW20 SW3 59 C2 58 + C6 R68 5.1 k R29 C1 R28 10 k 57 56 OFF 55 54 SW25 TP4 53 52 R27 R26 2.4 k 5.6 k Degital ON GND TP3 SW8 AC VM 2 50 R24 22 k 51 C29 C27 C26 L C25 48 47 46 2200p 0.1 µ 0.1 µ 49 R23 560 2200p 2200p C30 µ + 2.2 C28 R25 10 k + 45 43 + 42 C21 R22 7.5 k 41 + 0.47 µ R20 R71 C22 100 k 51 k 1µ C23 0.1 µ 44 2.2 µ C24 R21 20 k SW10 R72 16 k 40 C20 38 + C8 DC Source 2 12 13 TP2 SW7 ON 14 R11 22 k 15 R13 560 C12 R12 10 k 17 C13 18 19 C14 2200p 0.1 µ 0.1 µ 16 SW24 C11 C9 C10 + 2200 p 2200 p 2.2 µ R9 R10 2.4 k 5.6 k OFF 11 AC VM 3 TP1 DC Source 3 5V HA12155/7 NT (REC 1 CHIP) DP-64S R75 16 k + 22 SW9 24 25 AC VM 4 R70 51k R15 7.5 k C18 + R17 24 k 0.47 µ 23 C17 1 µ R16 100 k 0.1 µ C16 21 R14 20 k 2.2 µ C15 + 20 27 R60 R54 R48 R42 R36 28 FQ Distortion analyzer 36 R61 R55 R49 R43 R37 R31 35 R62 R56 R50 R44 R38 R32 R63 R57 R51 R45 R39 R33 31 GL HC 34 33 R64 R58 R52 R46 R40 R65 R59 R53 R47 R41 R35 32 GP HM R34 LM SW13 Noise meter with CCIR/ARM filter and A–WTG filter Noise meter LM EQ REC PB SW15 R OFF SW16 Notes 1: Registor tolerance are ±1 % 2: Capacitor tolerance are ±1 % 3: Unit R: Ω C:F Oscilloscope L SW17 ON SW14 L 33 k 33 k 33 k 30 GH HN 51 k 29 F/Q NM EQ 100k 51 k SW11 REC PB R R18 10 k 4.7 µ + C19 26 IA OUT NRIN V REF PBOUT SS1 SS2 CCR HLS REC LM LM LM EQ EQ LLS (R) (R) (R) (R) (R) (R) DET(R) DET(R)OUT(R) IN(R) DET(R) OUT(R) IN(R) IREF OUT(R) FM (R) R8 1.2 k 10 INJ R7 10 k + 9 PBI (R) 1 µ 0.47 µ C7 8 REF 37 SW12 NC R30 R19 10 k EQ PB 4.7 µ 39 + REC BIAS PBI DGND IA OUT NRIN V REF PBOUT SS1 SS2 CCR HLS REC LM LM LM LLS NN EQ GND EQ (L) (L) (L) (L) (L) (L) DET(L) DET(L) OUT(L) IN(L) DET(L) OUT(L) IN(L) (2) OUT(L) (L) (L) R69 5.1 k + 7 1 µ 0.47 µ C5 6 CNT RPI (R) (R) 60 C33 R66 5.1 k + 1 µ + 0.47 µ 18 k + 0.47µ VRI MPX NR ON/OFFC/B ON/OFF V CC (R) 61 + 0.47 µ C3 R67 5.1 k CNT RPI (L) (L) 10p C62 GND VRI (1) (L) 62 STB R6 10 k 63 64 R5 10k 10p 3 R1 R2 R3 22 k 22 k 22 k Audio SG ON L VR C61 DATA CLK R4 10 k 10p C60 SW4 PB RP EQ Mode controller PB REC EQ DC VM 2 HA12155NT/HA12157NT Test Circuit 3 4 5 6 DATA DGND MPX ON/OFF C/B 8 7 2 CLK NR ON/OFF VCC2 (+5 V) 1 1 2 3 VEE VCC1 CN2 GND CN1 STB C3 6 7 8 REF 9 PBI (R) R7 10 k *1 R8 12 + 50 C27 C26 C25 47 46 0.1 µ 0.1 µ 13 2200 p 2200 p 44 43 0.1 µ + 42 C21 41 DP-64S 2200 p C12 17 C14 19 0.1 µ 0.1 µ C13 18 EQIN (R) C17 1 µ R16 100 k + PBOUT (R) C18 + 24 25 R15 7.5 k R70 51 k 39 38 FQ NC 37 FQ NM 36 EQOUT (L) LMOUT (L) 35 GH HN 34 GL HC 33 GP HM R61 R55 R49 R43 51 k 33 k R62 R63 R56 R57 R50 R51 R44 R45 LMOUT (R) EQOUT (R) 100 k 51 k R60 R54 R48 R42 33 k R64 R58 R52 R46 33 k R65 R59 R53 R47 R8 = VINJ – VEE – 0.7 (k Ω) 3.6 The value of external resistor R8 is obtained by using following equations. R18 10 k 26 27 28 29 30 31 32 C19 R30 R31 R32 R33 R34 R35 + 4.7 µ R36 R37 R38 R39 R40 R41 EQ IREF OUT (R) FM 0.47 µ R17 23 RECOUT (R) R75 16 k 22 0.1 µ C16 21 R14 20 k C15 + 2.2 µ 20 CCR HLS LLS REC LM LM LM EQ (R) DET (R) DET (R)OUT (R) IN (R) DET (R)OUT (R) IN (R) C20 + 0.47 µ R19 10 k GND EQ NN (2) OUT (L) 40 + 0.47 µ R20 R71 C22 100 k 51 k 1µ C23 R22 7.5 k Note 1: The pin 10 can connect to VCC 1 through R8. R12 10 k + C11 2.2 µ 16 SS2 (R) R13 560 15 C9 C10 R11 22 k 14 Vref PBOUT SS1 (R) (R) (R) 45 + 2.2 µ C24 R21 20 k EQIN (L) RECOUT (L) PBOUT (L) CCR HLS LLS REC LM LM LM EQ (L) DET (L) DET (L) OUT (L) IN (L) DET (L) OUT (L) IN (L) 48 2200 p SS2 (L) 49 R23 560 R72 16 k HA12155/7 (REC 1 CHIP) R9 R10 2.4 k 5.6 k 11 51 TP1 R69 5.1 k 1 µ 0.47 µ 10 INJ IAOUT NRIN (R) (R) 52 R24 22 k 2200 p 2200 p Vref PBOUT SS1 (L) (L) (L) RBI (R) R68 5.1 k 1 µ 0.47 µ 53 PBI DGND IAOUT NRIN (L) (L) (L) C4 + C5 + C6 + C7 + C8 + 5 0.47 µ 4 BIAS TP2 C32 100 µ R3 22 k 3 PRI (R) RPI (L) R27 R26 2.4 k 5.6 k 54 Degital GND R28 10 k R25 10 k C30 + 2.2 µ C28 C29 TP4 TP3 RPI (R) VRI (R) R2 22 k + C34 100 µ R1 22 k 2 CNT (R) VRI (R) NR MPX ON/OFF C/B ON/OFF VCC 1 R66 5.1 k C33 C2 R29 C1 18 k + + + 0.47 µ 1 µ 0.47 µ 0.47 µ 60 59 58 57 56 55 + R67 5.1 k CNT (L) 61 C62 10p VRI (L) STB 62 C61 10p R6 10 k GND (1) 63 CLK 64 R5 10 k DATA C60 10p R4 10 k VRI (L) RPI (L) PBI (L) HA12155NT/HA12157NT Example of Split Supply Circuit Rev.4, Jun. 1997, page 7 of 57 Rev.4, Jun. 1997, page 8 of 57 Parts No. IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 C3 R4 510 TRIGGER CLR Q A Q B QC Q D HD74HC221 HD74HC74 HD74HC393 HD74HC165 HD74HC175 HD74HC00 HD74HC00 HD74HC04 HD74HC74 Type A B C D E F G D2 IC2 PR Q D Q CLR R5 22 K N13 IC8 N5 IC8 N1 IC6 Q D Q CLR Q D Q CLR 3 2 8 4 1 5 6 1 4: Unit R : Ω , C : F 3: As for IC1-IC9, required to put 0.1 µ F-capacitor between near GND pin and Voltage source pin for bypass. 2: As for IC1-IC9, input pins which are not used should be pulled up with resistor of 22 kΩ . N10 IC7 N9 IC7 JP3 JP2 JP1 N8 IC7 SW3 D6 IC5 N6 IC6 N4 IC8 N7 IC6 N3 IC6 SW2 Q D Q CLR SW1 D9 IC9 D5 IC5 PR Q D Q CLR N2 IC8 D4 IC5 D3 IC3 CLR QA QB Q C QD R 17 22 k Notes 1: HC type IC which operate eqaully is also applicable instead of IC1-IC9. H CLK CLK SHIFT INHIBITLOAD QH IC4 SW1 D7 MCLK D1 IC2 PR Q D Q CLR R4 22 K 62.5 kHz SW10 125 kHz 250 kHz 500 kHz D8 IC3 TRIGGER IC 1 Q Q CLR C 1 2.2 µ + R 8 R 9 R 10 R 11 R 12 R 13 R 14 22 k 22 k 22 k 22 k 22 k 22 k 22 k X'tal 10 p 1 MHz 120 p C2 1M R 22 N11 IC8 N12 IC8 X'tal OSC R2 22 k R3 1M SW8 SW7 SW6 SW5 SW4 SW3 SW2 R7 22 k SW9 R1 22 k C4 100 µ + GND VCC (+5 V) DATA CLK VCC (+5 V) GND STB MPX•ON/OFF C/B NR•ON/OFF HA12155NT/HA12157NT Mode Controller HA12155NT/HA12157NT Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical value) Pin No. Terminal DC DP-64S name Zin voltage 7 RPI 100 kΩ VCC/2 Equivalent circuit Description Recording input 58 9 PBI Play back input 56 21 LM IN 44 24 HA12155 ---75 kΩ Level meter input HA12157 ---100 kΩ EQ IN 100 kΩ VRI 100 kΩ Equalyzer input 41 5 60 VCC/2 Volume input +0.7 V 4 VCC — VCC — Power supply 8 REF — VCC/2 — Ripple filter 12 NR IN — VCC/2 NR processor input SS 1 — VCC/2 Spectral skewing amp input 53 15 50 Rev.4, Jun. 1997, page 9 of 57 HA12155NT/HA12157NT Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical value) (cont) Pin No. Terminal DC DP-64S name Zin voltage 17 CCR — VCC/2 Equivalent circuit Current controled 48 11 Description resistor output IA OUT — VCC/2 Input amp output VCC 54 GND 13 VREF 52 14 buffer output PB OUT 51 16 SS 2 Spectral skewing amp. output REC OUT 45 26 Play back (Decode) output 49 20 Reference voltage Recording (Encode) output EQ OUT 39 Rev.4, Jun. 1997, page 10 of 57 Equalyzer output HA12155NT/HA12157NT Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical value) (cont) Pin No. Terminal DC DP-64S name Zin voltage 18 HLS DET — 2.3 V Equivalent circuit Description Time constant pin for 47 19 rectifier LLS DET 46 57 BIAS — 0.28 V Dolby NR Reference current input GND 25 IREF — 1.2 V EQ Reference current input 27 FM EQ Parameter current 28 fQ input 29 f/Q 30 GH 31 GL 32 GP Rev.4, Jun. 1997, page 11 of 57 HA12155NT/HA12157NT Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical value) (cont) Pin No. Terminal DC DP-64S name Zin voltage 33 HM — — Equivalent circuit Description EQ Parameter selector GND 34 HC 35 HN 36 NM 37 NC 38 NN 6 CNT 5.2 kΩ 59 VCC/2- DAC output Volume VCC / 2 1.5 V to VCC/2 control input DAC out 22 LMD — 0.2 V Time constant Pin for 43 level meter LM OUT GND LMD 23 LM OUT — 42 Rev.4, Jun. 1997, page 12 of 57 0.2 V Level meter output HA12155NT/HA12157NT Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical value) (cont) Pin No. Terminal DC DP-64S name Zin voltage 1 NR ON/OFF 100 kΩ — Equivalent circuit Description Mode control input D - GND GND 2 C/B 3 MPX ON/OFF 62 STB 63 CLK 64 DATA 10 INJ — 0.7 V — Injection current input 2 for I L 55 D-GND — 0.0 V — Digital (Logic) ground 40 GND — 0.0 V — Ground 61 Application Note Power Supply Range HA12155NT/HA12157NT are designed to operate on either single supply or split supply. The operating range of the supply voltage is shown in table 1. Table 1 Supply Voltage Type No. Single supply Split supply HA12155NT 9.5 V to 16 V ±6 V to 8 V HA12157NT 12 V to 16 V ±6 V to 8 V The lower limit of supply voltage depends on the line output reference level. Rev.4, Jun. 1997, page 13 of 57 HA12155NT/HA12157NT The minimum value of the headroom margin is specified as 12 dB by Dolby Laboratories. HA12155 series are provided with two line output level, which will permit an optimum headroom margin for power supply conditions. Reference Voltage For the single supply operation these devices provide the reference voltage of half the supply voltage that is the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about 1/100 compared with their usual value. The Reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. 52 VCC + – L channel reference R channel reference 8 – + + 1 µF 13 Figure 1 The Block Diagram of Reference Voltage Supply Operating Mode Control HA12155NT/HA12157NT provides fully electronic switching circuits. NR-ON/OFF, C/B, and MPX ON/OFF switches are controlled by parallel data (DC voltage) and other switches are controlled by serial data. Rev.4, Jun. 1997, page 14 of 57 HA12155NT/HA12157NT Table 2 Threshold Voltage (VTH) Pin No. Lo Hi Unit 1, 2, 3 –0.2 to 1.0 3.5 to 5.3 V 62, 63, 64 –0.2 to 1.0 3.5 to 5.3 V Notes: 1. Voltages shown above are determined by internal circuits of LSI when take pin 55 (DGND pin) as reference pin. On split supply use, same VTH can be offered by connecting DGND pin to GND pin. This means that it can be controlled directly by micro processor. 2. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins ar open. 3. Note on serial data inputting (a) The clock frequency on CLK must be less than 500 kHz. (b) Over shoot level and under shoot level of input signal must be the value shown below. (c) The serial input pins (pins 62, 63, and 64) are extremely sensitive to undershoot, overshoot, ringing, and noise. This can result in malfunctions due to problems with the wiring pattern. We recommend attaching capacitors in parallel with the serial input pins to ameliorate this problem. Figure 2-b shows an example of this circuit appropriate when the clock frequency is 500 kHz. The value of the capacitor should be set in accordance with the clock frequency actually used. 4. NR Mode Switching In actual use, pop noises may accompany NR on/off switching in C mode. To avoid these noises, use the following sequences to turn NR on and off. From C mode NR off to C mode NR on: (C mode, NR off) → (B mode, NR off) → (B mode, NR on) → (C mode, NR on). From C mode NR on to C mode NR off: (C mode, NR on) → (B mode, NR on) → (B mode, NR off) → (C mode, NR off). Table 3 Switching Truth Table Pin No. Lo Hi 1 NR-OFF NR-ON 2 B-NR C-NR 3 MPX-ON MPX-OFF Notes: 1. Low level will be offered when each pins are open. 2. Please refer to next term as for the serial data for formatting. When connecting microcomputer or Logic-IC with HA12155NT/HA12157NT directly, there is apprehension of rash-current under some transition timming of raising voltage or falling voltage at VCC ON/OFF. For this countermeasure, connect 10 kΩ to 20 kΩ resistor with each pins. It is shown in test circuit. Rev.4, Jun. 1997, page 15 of 57 HA12155NT/HA12157NT under 5.3 V 0 within –0.2 V Figure 2 Input Level Serial Data Formatting 8 bit shift register is employed. CLK and DATA are stored during STB being high and data is ratched when STB goes high to low. The clock frequency on CLK must be less than 500 kHz. 5V 0V 5V DATA 0V 5V STB 0V CLK 0 1 2 3 4 5 6 latch of data Figure 3 Serial Data Timming Chart Rev.4, Jun. 1997, page 16 of 57 7 HA12155NT/HA12157NT Table 4 Serial Data Formatting Bit Control No. register 0 Volume register TAPE H SELECT 1 L DAC0 TS1 TS2 H H TAPE IV TAPE I L TAPE II TAPE I bit No. L 5 L L L L 4 L L L L gain 3 2 1 0 L L L L increase L L L H L L H L L L H H H H H H L H H H H H H L decrese H H H H H H mute 1 2 3 TAPE H SELECT 2 L TAPE H High (double) speed selection DAC2 SPEED L METER H Meter sensitivity 20 dB up SENSITIVITY L 4 INPUT H SELECT 1 L DAC1 Normal speed selection 6 INPUT H SELECT 2 L REC/PB DAC4 IS1 H L H PB I VR I L RP I VR I 7 REGISTER SELECT DAC 5 H PB mode selection L DAC3 Meter sensitivity normal IS2 5 *mute is implemented when all bits are high. R/L SELECT H Rch register selection REC mode selection H Control register selection REGISTER SELECT L Lch register selection L Volume register selection Note: TAPE I: Normal tape, TAPE II: Chrome tape, TAPE IV: Metal tape Rev.4, Jun. 1997, page 17 of 57 HA12155NT/HA12157NT Input Block Diagram and Level Diagram –3 dB IA OUT RPI PBI 43 mVrms (–25.2 dBs) VRI MPX Filter 43 mVrms (–25.2 dBs) 426 mVrms (–5.2 dBs) Input Amp MPX ON Electrical VR PB - OUT NR lN HA12155 580 mVrms (–2.5 dBs) 300 mVrms (–8.2 dBs) HA12157 775 mVrms (0 dBs) NR circuit MA MPX OFF – 3 dB 47 mVrms (–24.3 dBs) b) REC mode IA OUT RPI PBI 30 mVrms (–28.2 dBs) VRI Electrical VR 30 mVrms (–28.2 dBs) The each level shown above is typical value when offering Dolby level to test point pin (NR IN) with the gain of electrical volume is under the condition of max. MPX Filter HA12155 580 mVrms (–2.5 dBs) 300 mVrms (–8.2 dBs) Input Amp HA12157 775 mVrms (0 dBs) MA 33 mVrms (–27.4 dBs) NR circuit NR circuit a) PB mode The each level shown above is typical value when offering Dolby level to test point pin (IA OUT) with the gain of electrical volume is under the condition of max. Figure 4 Input Block Diagram Rev.4, Jun. 1997, page 18 of 57 PB - OUT NR lN HA12155NT/HA12157NT MPX ON/OFF Switch MPX-OFF mode means that signal from input amp doesn’t go through the MPX filter, but signal goes through the SS circuit after being attenuated 3 dB by internal resistor. Refer to figure 5. For not cause any level difference between MPX-ON mode and MPX-OFF mode, it is requested to use MPX-filter which has definitely 3 dB attenuated. MPX-OFF mode offer totally flat frequency response and no bias-trap effect. And when applying other usage except figure 5, take consideration to give bias voltage to NR-IN terminal by resistor or so on because internal of NR-IN terminal hsa no bias resistor. 5.6 k Ω MPX 2.4 k Ω IA OUT NR IN VREF Vref + INPUT amp – + – MPX ON NR PROCESSER MPX OFF 3 dB ATT. Vref Figure 5 MPX ON/OFF Switch Block Diagram Application as for the Dubbing Cassette Deck HA12155NT/HA12157NT series has unprocessor signal from recording out terminals during plyaback mode. So, it is simply applied for dubbing cassette decks. And HA12155NT/HA12157NT has three input terminal. So, it is applicable to switch the signal from PBEQ as shown below. Rev.4, Jun. 1997, page 19 of 57 HA12155NT/HA12157NT A deck B deck PB EQ PB EQ Compensation of low frequency region RPI PBI REC REC OUT PB EQ IN REC IN VRI HA12155 / 7 EQ OUT PB OUT Figure 6 Application for Dubbing Deck Injector Current 2 HA12155NT/HA12157NT has logic circuit which is fabricated by I L into IC. To operate this circuit, it is required enough injector current. Injector current goes into from the INJ pin (pin 10) and external resistor is required to connect to this pin for adequate current. The value of external resistor is obtained by using following equations. And put them with ±10% tolerance value which is calculated. VINJ can allow to connect to VCC shown below. Under the condition of high temperature, the mis-operation of logic is caused by large injector current. Also, under the condition of low temperature, the stop of logic is caused by small injector current. Therefore, pay attention to have good stability of VINJ. R INJ = VINJ – 0.7 3.6 [kΩ] ---- Single supply R INJ = VINJ + VEE – 0.7 3.6 [kΩ] ---- Split supply RINJ RINJ 10 3.6 mA VINJ 10 HA12155 / 7 40 61 3.6 mA VINJ HA12155 / 7 40 VEE a) Single supply use b) Split supply use Figure 7 Injector Current Application Rev.4, Jun. 1997, page 20 of 57 61 HA12155NT/HA12157NT Gain Control of Electronic Volume HA12155NT/HA12157NT is designed in order to change the gain by 6 bit DAC fabricated into IC. To reduce the click noise when changing volume gain instantaneously, required to connect the capacitor (CR time constant) to CNT pin (pin 6,59). These terminals are also be used as output pin of DAC. Therefore, by forcing voltage or current to these terminals, it is applicable to control volume gain directly. But, voltage forced to these terminals must be from VCC/2 –2 V to VCC/2 (for split supply use, –2 V to 0 V) in this case. In case of forcing the current these pins, voltage must be the value mentioned above even it is ±20% distributed of internal resistor (5.2 kΩ) of CNT pin. And, these case, change of a gain depending on a temperature gets large. The Tolerances of External Components for Dolby NR-Block For adequate Dolby NR tracking response, take external components shown below. For smooth capacitors of C13, C14, C25 and C26, please employ a few object of the leak, though you can be useful for an electrolytic capacitor. C28 2200 p ± 5% R29 18 k ± 2% C29 2200 p ± 5% R24 22 k ± 2% 57 51 BIAS PB OUT (L) R23 560 ± 2% 50 49 SS1 (L) SS2 (L) C27 C26 2200 p 0.1 µ ± 5% ±10% 48 47 46 CCR (L) HLS DET(L) C25 0.1 µ ±10% LLS DET(L) HA12155/7 (REC 1 Chip) PB OUT (R) SS1 (R) SS2 (R) CCR (R) HLS DET(R) LLS DET(R) 14 15 16 17 18 19 R11 R13 560 ± 2% 22 k ± 2% Unit R : Ω C:F C9 2200 p ± 5% C12 2200 p ± 5% C13 0.1 µ ±10% C14 0.1 µ ±10% C10 2200 p ± 5% Figure 8 Tolerances of External Components Level Meter The coupling capacitor of LMIN pin (21 pin and 44 pin). For these capacitors please employ a small object of the leak. Rev.4, Jun. 1997, page 21 of 57 HA12155NT/HA12157NT The Application of Equalizer Frequency Response F/Q EQ IN + _OP1 R1 _ _ GP + OP2 _ + Gm1 _ OP5 + Gm2 + R6 C1 R7 R5 R3 R4 R2 + Gm3 _ + OP6 _ C2 R10 FM _ + Gm4 _ + C3 _ OP7 GL Gm5 + _ + OP3 _ _ R9 EQ OUT OP4 + GH R8 Gm6 + Figure 9 REC Equalizer Block Diagram Transfer Function: C2 C3 Gm6 + S R 4 ⋅ R 10 R 8 ⋅ R 10 1 Gm4 Gm5 S Vout R 2 + R 3 Gm3 = + Gm1 Gm5 C3 R R R7 C2 C1 C2 Vin R2 R9 R6 + R7 1 + 4 1+ S S+ 4 S2 Gm 4 R 5 R 6 + R 7 Gm3 R 5 Gm 2 Gm3 −10 R FM ⋅ R GH ⋅S 1 + 6.67 ×10 − 3.0 × 10 10 ⋅ R FQ ⋅ S R GL 4.16 + RGP = R − 10 −11 −20 2 R REF GL 1 + 4.5 ×10 ⋅ R FQ ⋅ S + 2.5 × 10 ⋅ R FQ ⋅ R F / Q S 1 + 6.67 × 10 R FM ⋅ S *RREF-----25 pin bias resistance Rev.4, Jun. 1997, page 22 of 57 HA12155NT/HA12157NT Gain g1 3dB BW g2 g3 f1 f2 f3 f Figure 10 REC Equalizer Frequency Response gl = g2 = g3 = f1 = f2 = f3 = BW = Q= 4.16 (6.67 × R GP + R GH ) R REF 4.16 × R GL R REF 4.16 × R GH R REF 1 2π × 6.67 ×10 −10 × R FM R GL 2π × 6.67 ×10 −10 × R FM × R GH 0.3 1 ⋅ 2π 2.25 ×10 −21 × R × R FQ F/Q 1 4 π × 2.78 × 10−10 × R F / Q f3 BW = 3.51 × RF/ Q RF/ Q Rev.4, Jun. 1997, page 23 of 57 HA12155NT/HA12157NT Quiescent Current vs. Supply Voltage Quiescent current I Q (mA) 35 30 REC – C REC – B REC – OFF PB – C PB – B PB – OFF REC : VRI in (DAC Step 0) LM : Normal PB : PBI in (DAC Step 0) LM : Normal 25 8 10 12 14 Supply voltage Vcc (V) Rev.4, Jun. 1997, page 24 of 57 16 18 HA12155NT/HA12157NT Encode Boost vs. Frequency (HA12155) 12 NR–B RPI in RECOUT out : Vin = – 0 dB : Vin = – 10 dB : Vin = – 20 dB : Vin = – 30 dB : Vin = – 40 dB 10 Encode Boost (dB) 8 16 V 14 V 6 9V 4 2 0 100 200 500 1k 2k 5k 10 k 20 k 50 k 100 k Frequency (Hz) Rev.4, Jun. 1997, page 25 of 57 HA12155NT/HA12157NT Encode Boost vs. Frequency (HA12155) 25 NR-C RPI in RECOUT out 20 : Vin = 0 dB : Vin = – 20 dB : Vin = – 30 dB : Vin = – 40 dB : Vin = – 60 dB Encode Boost (dB) 15 16 V 10 14 V 9V 5 0 –5 –10 100 200 500 1k 2k 5k Frequency (Hz) Rev.4, Jun. 1997, page 26 of 57 10 k 20 k 50 k 100 k HA12155NT/HA12157NT Encode Boost vs. Frequency (HA12157) 12 NR-B RPI in RECOUT out Encode Boost (dB) 10 8 16 V 14 V : Vin = 0 dB : Vin = – 10 dB : Vin = – 20 dB : Vin = – 30 dB : Vin = – 40 dB 6 11 V 4 2 0 100 200 500 1k 2k 5k 10 k 20 k 50 k 100 k Frequency (Hz) Rev.4, Jun. 1997, page 27 of 57 HA12155NT/HA12157NT Encode Boost vs. Frequency (HA12157) 25 NR-C RPI in RECOUT out : Vin = – 0 dB : Vin = – 20 dB : Vin = – 30 dB : Vin = – 40 dB : Vin = – 60 dB 20 Encode Boost (dB) 15 16 V 14 V 11 V 10 5 0 –5 – 10 100 200 500 1k 2k 5k Frequency (Hz) Rev.4, Jun. 1997, page 28 of 57 10 k 20 k 50 k 100 k HA12155NT/HA12157NT Output Gain vs. Frequency (HA12155) 26 PB OUT Output gain Gv (dB) 22 18 REC OUT 14 10 (NR – OFF, RPI) Vcc = 14 V REC mode 6 10 30 60 100 300 600 1k 3k 6 k 10 k 30 k 60 k 100 k Frequency (Hz) Rev.4, Jun. 1997, page 29 of 57 HA12155NT/HA12157NT Output Gain vs. Frequency (HA12155) 28 PB OUT Output gain Gv (dB) 24 REC OUT 20 16 12 PB mode (NR – OFF, RPI) Vcc = 14 V 8 10 30 60 100 300 600 1 k Frequency (Hz) Rev.4, Jun. 1997, page 30 of 57 3k 6 k 10 k 30 k 60 k 100 k HA12155NT/HA12157NT Output Gain vs. Frequency (HA12157) 28 PB OUT Output gain Gv (dB) 24 20 REC OUT 16 12 8 (NR – OFF, RPI) Vcc = 14 V REC mode 10 30 60 100 300 600 1 k 3k 6 k 10 k 30 k 60 k 100 k Frequency (Hz) Rev.4, Jun. 1997, page 31 of 57 HA12155NT/HA12157NT Output Gain vs. Frequency (HA12157) 30 PB OUT Out put gain Gv (dB) 26 22 REC OUT 18 14 PB mode (NR – OFF, PBI) Vcc = 14 V 10 10 30 60 100 300 600 1 k Frequency (Hz) Rev.4, Jun. 1997, page 32 of 57 3k 6 k 10 k 30 k 60 k 100 k HA12155NT/HA12157NT Total harmonic distortin T.H.D. (%) Total Harmonic Distortion vs. Output Level (HA12155) 10 RPI in RECOUT out REC mode f = 100 Hz V CC = 14 V 3.0 0 dB = 300 mVrms 1.0 NR-C 0.3 NR-B 0.1 0.03 0.01 –15 NR-OFF –10 –5 0 5 10 15 Total harmonic distortion T.H.D. (%) Output level Vout (dB) Total Harmonic Distortion vs. Output Level (HA12155) 10 RPI in RECOUT out REC mode f = 1 kHz V CC = 14 V 3.0 0 dB = 300 mVrms 1.0 NR-C 0.3 0.1 NR-B 0.03 0.01 –15 NR-OFF –10 –5 0 5 10 15 Output level Vout (dB) Rev.4, Jun. 1997, page 33 of 57 Total harmonic distortion T.H.D. (%) HA12155NT/HA12157NT Total Harmonic Distortion vs. Output Level (HA12155) 10 RPI in RECOUT out REC mode f = 10 kHz V CC = 14 V 3.0 0 dB = 300 mVrms 1.0 0.3 NR-C 0.1 NR-B 0.03 NR-OFF 0.01 –15 –10 –5 0 5 10 15 Total harmonic distortion T.H.D. (%) Output level Vout (dB) Total Harmonic Distortion vs. Output Level (HA12155) 10 PBI in PBOUT out PB mode f = 100 Hz V CC = 14 V 3.0 0 dB = 580 mVrms NR-C 1.0 0.3 NR-OFF 0.1 0.03 NR-B 0.01 –15 –10 –5 0 5 10 Output level Vout (dB) Rev.4, Jun. 1997, page 34 of 57 15 Total harmonic distortion T.H.D. (%) HA12155NT/HA12157NT Total Harmonic Distortion vs. Output Level (HA12155) 10 PBI in PBOUT out PB mode f = 1 kHz V CC = 14 V 3.0 0 dB = 580 mVrms 1.0 0.3 NR-C 0.1 NR-OFF 0.03 NR-B 0.01 –15 –10 –5 0 5 10 15 Total harmonic distortion T.H.D. (%) Output level Vout (dB) Total Harmonic Distortion vs. Output Level (HA12155) 10 PBI in PBOUT out PB mode f = 10 kHz V CC = 14 V 3.0 0 dB = 580 mVrms 1.0 0.3 NR-C 0.1 NR-OFF 0.03 NR-B 0.01 –15 –10 –5 0 5 10 15 Output level Vout (dB) Rev.4, Jun. 1997, page 35 of 57 Total harmonic distortion T.H.D. (%) HA12155NT/HA12157NT Total Harmonic Distortion vs. Output Level (HA12157) 10 RPI in RECOUT out REC mode f = 100 Hz V CC = 14 V 3.0 1.0 NR-C 0.3 NR-B 0.1 0.03 0.01 –15 NR-OFF –10 –5 0 5 10 15 Total harmonic distortion T.H.D. (%) Output level Vout (dB) Total Harmonic Distortion vs. Output Level (HA12157) 10 RPI in RECOUT out REC mode f = 1 kHz VCC = 14 V 3.0 1.0 0.3 NR-C 0.1 0.03 0.01 –15 NR-B NR-OFF –10 –5 0 5 Output level Vout (dB) Rev.4, Jun. 1997, page 36 of 57 10 15 Total harmonic distortion T.H.D. (%) HA12155NT/HA12157NT Total Harmonic Distortion vs. Output Level (HA12157) 10 RPI in RECOUT out REC mode f = 10 kHz V CC = 14 V 3.0 1.0 0.3 NR-C 0.1 NR-B 0.03 NR-OFF 0.01 –15 –10 –5 0 5 10 15 Total harmonic distortion T.H.D. (%) Output level Vout (dB) Total Harmonic Distortion vs. Output Level (HA12157) 10 RBI in RBOUT out PB mode f = 100 Hz V CC = 14 V 3.0 1.0 NR-C 0.3 0.1 NR-OFF 0.03 0.01 –15 NR-B –10 –5 0 5 10 15 Output level Vout (dB) Rev.4, Jun. 1997, page 37 of 57 Total harmonic distortion T.H.D. (%) HA12155NT/HA12157NT Total Harmonic Distortion vs. Output Level (HA12157) 10 PBI in PBOUT out REC mode f = 10 kHz V CC = 14 V 3.0 1.0 0.3 NR-C 0.1 NR-OFF 0.03 NR-B 0.01 –15 –10 –5 0 5 10 15 Total harmonic distortion T.H.D. (%) Output level Vout (dB) Total Harmonic Distortion vs. Output Level (HA12157) 10 PBI in PBOUT out PB mode f = 10 kHz V CC = 14 V 3.0 1.0 NR-C 0.3 0.1 NR-OFF 0.03 NR-B 0.01 –15 –10 –5 0 5 Output level Vout (dB) Rev.4, Jun. 1997, page 38 of 57 10 15 HA12155NT/HA12157NT Max. output level Vo max (dB) Max. Output Level vs. Supply Voltage (HA12155) 20 15 OFF B C 10 5 T.H.D. = 1% 0 dB = 300 mVrms f = 1 kHz REC mode RPI in RECOUT out 0 8 9 10 11 12 13 14 Supply voltage VCC (V) 15 16 Max. output level Vo max (dB) Max. Output Level vs. Supply Voltage (HA12155) 20 15 10 5 T.H.D. = 1% 0 dB = 580 mVrms f = 1 kHz PB mode PBI in PBOUT out 0 8 9 10 11 12 13 14 Supply voltage VCC (V) 15 16 Rev.4, Jun. 1997, page 39 of 57 HA12155NT/HA12157NT Max. output level Vo max (dB) Max. Output Level vs. Supply Voltage (HA12157) 20 15 10 OFF B C 5 T.H.D. = 1% 0 dB = 300 mVrms f = 1 kHz REC mode RPI in RECOUT out 0 9 10 11 12 13 15 16 Supply voltage V CC (V) Max. output level Vo max (dB) Max. Output Level vs. Supply Voltage (HA12157) 20 15 10 OFF B C 5 T.H.D. = 1% 0 dB = 775 mVrms f = 1 kHz PB mode PBI in PBOUT out 0 10 11 12 13 14 15 Supply voltage V CC (V) Rev.4, Jun. 1997, page 40 of 57 16 HA12155NT/HA12157NT Signal-to-Noise Ratio vs. Supply Voltage (HA12155) PB-C 90 PB-B REC-OFF RPI Signal-to-noise ratio S/N (dB) REC-OFF VRI PB-OFF 80 REC-B RPI REC-B VRI 70 REC-C RPI REC-C VRI 60 E Vol : DAC Step No.18 Vin = 100 mVrms CCIR/ARM 50 9 10 11 12 13 14 15 16 Supply voltage Vcc (V) Rev.4, Jun. 1997, page 41 of 57 HA12155NT/HA12157NT Signal-to-Noise Ratio vs. Supply Voltage (HA12157) 90 PB-C PB-B REC-OFF RPI Signal-to-noise ratio S/N (dB) REC-OFF VRI RB-OFF 80 PB-B RPI REC-B VRI 70 REC-C RPI REC-C VRI 60 VRI : DAC Step No.18 Vin = 100 mVrms CCIR/ARM 50 10 11 12 13 14 15 16 Supply voltage VCC (V) Crosstalk vs. Frequency (R L) –20 REC mode RPI in RECOUT out Vin = +6 dB VCC = 14 V Crosstalk (R L) (dB) –40 –60 C –80 B –100 –120 10 OFF 100 1k Frequency (Hz) Rev.4, Jun. 1997, page 42 of 57 10 k 100 k HA12155NT/HA12157NT Crosstalk vs. Frequency (R L) –20 PB mode RPI in PBOUT out Vin = +6 dB VCC = 14 V –60 C –80 OFF –100 B –120 10 100 1k 10 k 100 k Frequency (Hz) Crosstalk vs. Frequency 0 VCC = 14 V –20 Crosstalk (dB) Crosstalk (R L) (dB) –40 –40 RPI PBI –60 –80 RPI –100 10 30 60 100 300 600 1 k 3 k 6 k 10 k VRI 30 k 60 k 100 k Frequency (Hz) Rev.4, Jun. 1997, page 43 of 57 HA12155NT/HA12157NT Crosstalk vs. Frequency 0 VCC = 14 V Crosstalk (dB) –20 –40 –60 PBI RPI –80 –100 10 PBI 30 60 100 300 600 1 k 3 k 6 k 10 k VRI 30 k 60 k 100 k Frequency (Hz) Crosstalk vs. Frequency 0 VCC = 14 V Crosstalk (dB) –20 –40 –60 VRI RPI –80 VRI –100 10 30 60 100 300 600 1 k 3 k 6 k 10 k Frequency (Hz) Rev.4, Jun. 1997, page 44 of 57 PBI 30 k 60 k 100 k HA12155NT/HA12157NT Ripple Rejection Ratio vs. Frequency (REC mode) Ripple rejection ratio R.R.R. (dB) 0 V CC = 14 V RECOUT out –10 –20 C –30 B –40 OFF –50 10 50 100 500 1 k 5 k 10 k 50 k 100 k Frequency (Hz) Ripple Rejection Ratio vs. Frequency (PB mode) Ripple rejection ratio R.R.R. (dB) –10 –20 –30 OFF –40 B C –50 –60 10 V CC = 14 V PBOUT out 50 100 500 1 k 5 k 10 k 50 k 100 k Frequency (Hz) Rev.4, Jun. 1997, page 45 of 57 HA12155NT/HA12157NT Gain, S/N and Vomax vs. DAC Step 20 –25 100 Gv.Vin –5 0 S/N (JIS A filter) 0 80 Vo max 20 16 12 5 –10 70 8 10 4 VCC = 14 V f = 1 kHz VRI in IAOUT out 15 –20 60 0 10 20 DAC Step No. Rev.4, Jun. 1997, page 46 of 57 30 40 0 2 Vo max (dB) 0 dB = –5.2 dBs T.H.D. = 1 % –10 90 S/N (dB) 10 –15 IAOUT gain Gv (dB) Input level Vin (the value to be converted) (dBs) –20 HA12155NT/HA12157NT Total Harmonic Distortion vs. DAC Step 10 Total harmonic distortion T.H.D. (%) 3.0 0 dB = –5.2 dBs Vcc = 14 V f = 100 Hz IAOUT output level = const 1.0 +10 dB 0 dB –10 dB 0.3 0.1 0.03 0.01 0 10 20 30 DAC Step 40 50 Total Harmonic Distortion vs. DAC Step 10 Total harmonic distortion T.H.D. (%) 3.0 0 dB = –5.2 dBs Vcc = 14 V f = 1 kHz IAOUT output level = const 1.0 + 10 dB 0 dB – 10 dB 0.3 0.1 0.03 0.01 0 10 20 30 DAC Step 40 50 Rev.4, Jun. 1997, page 47 of 57 HA12155NT/HA12157NT Total Harmonic Distortion vs. DAC Step 10 Total harmonic distortion T.H.D. (%) 3.0 1.0 + 10 dB 0 dB – 10 dB 0.3 0.1 0.03 0.01 E. Vol Max. input level Vin max (IAOUT T.H.D. = 1 %) (dB) 0 dB = –5.2 dBs Vcc = 14 V f = 10 kHz IAOUT output level = const 0 10 20 30 DAC Step 40 E. Vol Max. Input Level vs. Supply Voltage 16 14 12 10 8 6 4 2 0 f = 1 kHz IAOUT out DAC Step No.= 42 8 10 12 14 16 Supply voltage VCC (V) Rev.4, Jun. 1997, page 48 of 57 50 18 HA12155NT/HA12157NT Electronic Volume Gain vs. Frequency 30 VRI in IAOUT out V CC = 14 V V in = –12 dBs DAC Step0 DAC Step20 10 DAC Step29 0 DAC Step36 –10 DAC Step42 –20 DAC Step47 –30 DAC Step51 –40 DAC Step56 –50 DAC Step62 –60 –70 10 100 1k 10 k 100 k Frequency (Hz) Level Meter Output vs. Input Level (HA12155) 4.0 3.0 Level meter output (V) Electronic volume gain (dB) 20 –20 dB Range 2.0 0 dB Range 1.0 0 dB = 580 mVrms VCC = 14 V f = 1 kHz 0 –80 –60 –40 –20 0 20 40 Input level Vin (dB) Rev.4, Jun. 1997, page 49 of 57 HA12155NT/HA12157NT Level Meter Output vs. Input Level (HA12157) 4.0 Level meter output (V) 3.0 –20 dB Range 2.0 0 dB Range 1.0 0 dB = 775 mVrms VCC = 14 V f = 1 kHz 0 –80 –60 –40 –20 0 20 40 Input level Vin (dB) Level Meter Output vs. Frequency 3.2 VCC = 14 V Level meter output (V) 3.0 2.8 2.6 0 dB Range Vin = 0 dB –20 dB Range Vin = –20 dB 2.4 2.2 2.0 20 30 100 300 1k 3k Frequency (Hz) Rev.4, Jun. 1997, page 50 of 57 10 k 30 k 100 k HA12155NT/HA12157NT Level Meter Output vs. Supply Voltage 4.0 0 dB Range Vin = 12 dB Level meter output (V) 3.0 0 dB Range Vin = 0 dB –20 dB Range Vin = –20 dB 2.0 1.0 0 dB Range Vin = –20 dB f = 1 kHz 0 8 10 12 14 16 18 Supply voltage VCC (V) Equalizer Gain vs. Frequency 40 (5) Equalizer gain (dB) (1) (2) (3) (4) (5) (6) NN HN NC HC NM HM (3) RGP 33 k 33 k 33 k 33 k 47 k 47 k RGL 33 k 33 k 51 k 51 k 51 k 51 k RGH 33 k 33 k 51 k 51 k 51 k 51 k RF/Q 51 k 20 k 51 k 20 k 51 k 20 k RFQ 51 k 27 k 51 k 27 k 51 k 27 k RFM 100 k100 k 100 k100 k100 k100 k 25 (6) (4) VCC = 14 V Vin = –20 dBs (1) (2) 10 10 300 1k 3k 10 k 30 k 100 k Frequency (Hz) Rev.4, Jun. 1997, page 51 of 57 HA12155NT/HA12157NT Equalizer Total Harmonic Distortion vs. Output Level Total hrmonic distortion T.H.D. (%) 30 VCC = 14 V 0 dB = –5 dBs Rload = 10 kΩ RGL = 33 k Ω RGH = 33 k Ω RFM = 100 k Ω RGP = 33 k Ω RF/Q = 51 k Ω RFQ = 51 k Ω 10 3.0 : 15 kHz : 10 kHz : 6.3 kHz : 3.15 kHz : 1 kHz : 315 Hz 1.0 0.3 0.1 –10 –5 0 5 10 15 Output level Vout (dB) Equalizer amplifier gain GL (dB) 35 30 25 20 Equalizer Amplifier Gain (GL) vs. RGL VCC = 14V RGH = R GP = 33 k Ω RFQ = R F/Q = 51 k Ω RFM = 100 k Ω f = 315 Hz f = 1 kHz 15 10 5 5k 10 k Rev.4, Jun. 1997, page 52 of 57 at R GL = 33 k Ω V out = Ð5 dBs 30 k 100 k R GL (Ω ) 300 k 1M 20 HA12155NT/HA12157NT Equalizer Amplifier Gain (GH) vs. RGH Equalizer amplifier gain GH (dB) 35 30 25 VCC = 14 V R GL = 33 k Ω R GP = 16 k Ω R FQ = R F/Q = 24 k Ω R FM = 390 k Ω f = 6.3 kHz 20 at RGH = 33 k Ω Vout = Ð5 dBs 15 10 5 5k 10 k 30 k 100 k RGH ( Ω) 300 k 1M Equalizer Amplifier Gain (GP) vs. RGP Equalizer amplifier gain GP (dB) 50 45 VCC = 14 V R GH = R GP = 33 k Ω R FQ = R F/Q = 51 k Ω R FM = 100 k Ω 40 f = 19 kHz 35 30 25 20 5k 10 k 30 k 100 k R GP (Ω ) 300 k 1M Rev.4, Jun. 1997, page 53 of 57 HA12155NT/HA12157NT Equalizer cut off frequency FM (Hz) 100 k Equalizer Cut off Frequency (FM) vs. R FM 30 k VCC = 14 V RGL = 120 k Ω RGH = 7.5 k Ω RFQ = R F/Q = 24 k Ω RGP = 16 k Ω 10 k 3k 1k 300 5k 10 k 30 k 100 k 300 k 1M R FM (Ω ) Equalizer peak frequency fo (Hz) 300 k Equalizer Peak Frequency vs. RFQ 100 k 30 k R F/Q = 12 k Ω 10 k 24 k Ω 51 k Ω 100 k Ω 200 k Ω 3k 2k 5k 390 k Ω 10 k 30 k 100 k R FQ ( Ω) Rev.4, Jun. 1997, page 54 of 57 300 k 1M HA12155NT/HA12157NT Equalizer Q vs. R FQ Equalizer quality factor Q 15 10 5 0 5k R F/Q = 390 kΩ 200 kΩ 100 kΩ 51 kΩ 24 kΩ 12 kΩ 10 k 30 k 100 k 300 k 1M R FQ ( Ω ) Rev.4, Jun. 1997, page 55 of 57 HA12155NT/HA12157NT Package Dimensions Unit: mm 57.6 58.5 Max 33 17.0 18.6 Max 64 32 1.0 1.78 ± 0.25 0.48 ± 0.10 0.51 Min 1.46 Max 2.54 Min 5.08 Max 1 19.05 + 0.11 0.25 – 0.05 0˚ – 15˚ Hitachi Code JEDEC Code EIAJ Code Weight Rev.4, Jun. 1997, page 56 of 57 DP-64S — SC-553-64A 8.8 g HA12155NT/HA12157NT Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.4, Jun. 1997, page 57 of 57